[go: up one dir, main page]

JP4681153B2 - CCD camera automatic switching method and system in scanning electron microscope with laser defect detection function - Google Patents

CCD camera automatic switching method and system in scanning electron microscope with laser defect detection function Download PDF

Info

Publication number
JP4681153B2
JP4681153B2 JP2001184696A JP2001184696A JP4681153B2 JP 4681153 B2 JP4681153 B2 JP 4681153B2 JP 2001184696 A JP2001184696 A JP 2001184696A JP 2001184696 A JP2001184696 A JP 2001184696A JP 4681153 B2 JP4681153 B2 JP 4681153B2
Authority
JP
Japan
Prior art keywords
defect
ccd camera
laser
scanning electron
detection function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001184696A
Other languages
Japanese (ja)
Other versions
JP2003004653A (en
Inventor
成司 森田
光義 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Science Corp
Original Assignee
SII NanoTechnology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SII NanoTechnology Inc filed Critical SII NanoTechnology Inc
Priority to JP2001184696A priority Critical patent/JP4681153B2/en
Publication of JP2003004653A publication Critical patent/JP2003004653A/en
Application granted granted Critical
Publication of JP4681153B2 publication Critical patent/JP4681153B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Closed-Circuit Television Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体製造工程の歩留り管理に用いられる走査型電子顕微鏡に備えられた光学顕微鏡の、標準CCDカメラと高感度CCDカメラとの切替え方式に関する。
【0002】
【従来の技術】
最近の超高集積化されたLSIの製造において不良品をもたらす主たる要因は、ウエハに付着した微小異物によるものといわれている。すなわち、その微小異物が汚染物質となって回路パターンの断線やショートを引き起こし、半導体チップの不良の発生や品質、信頼性の低下に大きくつながっている。回路パターンの微小化に伴い直径O.1μmレベルの微小異物までが対象となっている。そのため微小異物の付着状態などの実態を定量的に精度よく計測および分析して把握し、管理することが、超高集積LSIの製造における歩留り向上の最重要課題となっている。
【0003】
現在この微小異物の付着状態などの実態を定量的に精度よく計測および分析する手法としては図1に示すようなパーティクル検査装置が用いられている。この装置は▲1▼走査型電子顕微鏡像と▲2▼高感度CCDカメラ4を介して得る高感度暗視野像と▲3▼CCDカメラ5による暗視野像若しくは明視野像の三種類の画像がCRT9上に表示できる装置である。走査型電子顕微鏡1は鏡筒部11と二次電子検出器(SED)12とを備えており、鏡筒部11の偏向手段によって偏向走査されて試料6に照射された電子ビームによって弾き出された二次電子をSED12によって検出し、該検出情報をビーム照射位置との対応をとって画像化し、走査型電子顕微鏡像▲1▼とする。▲3▼の明視野像はライト8からの光を光学路を介して上方より試料表面に光スポットを照射し、該試料表面が鏡面であるときは一様に反射され、異物があるときはそこで光が散乱されることに基きその試料表面を上方よりCCDカメラ5で撮影して得る画像である。▲3▼の暗視野像はレーザ光源7からのビームを斜め上方から試料面に照射し、該試料表面が鏡面であるときは全反射され、異物があるときはそこで光が散乱されることに基きその試料表面を上方よりCCDカメラ5で撮影して得る画像である。▲2▼の高感度案視野像は基本的に▲2▼の暗視野像と同様であるが、より小さな微粒子を観察するために高感度CCDカメラ4を介して得る画像である。対象が超微粒子であるため散乱光は微弱となるため高感度のCCD(ICCD)カメラが用いられる。
【0004】
この装置を用いた従来の欠陥検出は、まず、低倍率の明視野像や暗視野像によって異物の位置存在を検知しその数や分布状況を把握する。明視野像を得るときにはコンピュータ10を介してコントロールボックス11を操作しライト8を点灯して上方より試料面にスポットを照射し、CCDカメラ5で顕微鏡像を撮像する。暗視野像を撮像するときはコンピュータ10を介してコントロールボックス11を操作しレーザ光源を発光させて斜め上方から試料面にレーザビームを照射し、CCDカメラ5で顕微鏡像を撮像する。この当初の検査により存在を確認した異物について、更に高感度CCDカメラ4で高倍率の暗視野像や走査型電子顕微鏡像によって、最初の検査では観察できなかった微細な異物粒子を含め、異物の形状大きさを観察し評価をおこなう。微小異物粒子は低倍率の観察で位置特定がなされた上で高倍率の観測を行うことが出来る。試料ステージの位置情報として扱えない微細な位置情報も画面座標上の情報として扱うことができる。また、着目する異物粒子の組成については高倍率光学画像や二次電子検出の走査顕微鏡像からでは分析できないが、これについては二次X線検出(EDS)機能を有した電子顕微鏡を用いることで分析することができる。
ところで、レーザ散乱光を光学顕微鏡で観察する場合、そのレーザ散乱光量は欠陥の大きさにより大きく異なる。この散乱光をCCDカメラで撮像するのであるが、微小な粒子等による微弱な散乱光を観察するために検出感度を高く設定している高感度CCD(Image intensifier CCD:ICCD)は、比較的大きな異物等からの強い散乱光を受光したときやステージ移動のときには高圧保護のため安全装置が作動し稼動を停止させるようにしている。そのため、その都度作業が中断され、作業効率を悪くしているという問題がある。
【0005】
【発明が解決しようとする課題】
本発明の課題は、上記の問題すなわち、レーザ欠陥検出を行う高感度CCDカメラを備えた走査型電子顕微鏡において、高感度CCDカメラを稼動させる際に、比較的大きな異物等からの強い散乱光を受光することにより安全装置が作動して頻繁にその稼動を停止させてしまうことがないシステムを構築して作業効率を向上させることにある。
【0006】
【課題を解決するための手段】
本発明のレーザ欠陥検出機能を備えた走査型電子顕微鏡におけるCCDカメラ自動切替方式は、欠陥位置にレーザを斜め上方から照射するレーザ光学系と欠陥からの散乱光を観察する光学顕微鏡を備えたウエハ表面観察用走査型電子顕微鏡において、光学顕微鏡に高感度用と標準タイプのCCDカメラを取付け、予め測定された欠陥位置情報に基いて光学軸を位置決めして光学顕微鏡の標準CCDカメラで欠陥観察を行うステップと、該標準CCDカメラで欠陥観察を観察出来なかった際には高感度CCDカメラに切替えて欠陥観察を行うステップを踏む手法を採用した。
【0007】
【発明の実施の形態】
レーザ欠陥検出機能を備えた走査型電子顕微鏡を用いてシリコンウエハ等平面状の試料表面に存在する微小異物を検出し、検査評価しようとする際、走査型電子顕微鏡での観察に先立ち、微小異物をレーザ照射による暗視野像を高感度CCDカメラで観察しその位置特定しようとするとき、安全装置が作動してすぐに稼動が停止して作業が中断されてしまう。その理由は前述したように高感度CCDカメラの場合、検出感度を高く設定しているため比較的大きな異物等による強い光を受光した場合、出力信号が高圧となることから回路の高圧保護の安全装置が作動することに起因する。そこで、本発明は、予め標準のCCDカメラによる観察で乱反射光が受光されなかった場合のみ、この高感度CCDカメラの稼動をさせるようにしようというものである。すなわち大きな欠陥サイズであっても出力信号が高圧になることが無い標準のCCDカメラによる観察で比較的大きな異物が無いことを確認してから高感度CCDカメラの稼動をさせることになるので、該高感度CCDカメラの出力が高圧に成ることは無いのである。したがって、高感度CCDカメラの使用によっても作業が中断されるようなことがなく作業効率を上げることが出来る。
【0008】
本発明のレーザ欠陥検出機能を備えた走査型電子顕微鏡におけるCCDカメラ切替え方式のフローチャートを図2に示しその動作を説明する。まず、(ST1)使用する走査型電子顕微鏡における光学顕微鏡の光学軸と走査型電子顕微鏡の電子光学軸との相対位置関係を記憶する。(ST2)続いて他の検査装置によって測定された欠陥位置情報を記憶する。以上が事前の準備作業である。(ST3)ウエハ等の被検査試料を試料ステージに載置し、チャンバー内の環境を整える。なお、以上のステップは順序が入れ替わってもよい。(ST4)先に記憶してある欠陥位置情報に基き試料ステージの駆動機構(一般にはx,y軸駆動機構)を駆動制御して着目欠陥を光学顕微鏡の光学軸位置に位置決めする。(ST5)まず、標準CCDカメラで欠陥画像を観察する。(ST6)標準CCDカメラの観察像で欠陥画像が見えるか否かを判定する。(ST7)欠陥画像が観察できた場合はその画像上で装置の基準位置に対する欠陥位置情報を測定して記憶する。(ST8)欠陥画像が観察できなかった場合は高感度CCDカメラで欠陥を観察する。(ST9)続いてその観察画像上で装置の基準位置に対する欠陥位置情報を測定して記憶する。(ST10)ステップ7若しくは9で測定した位置情報に基き試料ステージの駆動機構(一般にはx,y軸駆動機構)を駆動制御して着目欠陥を走査型電子顕微鏡の光学軸位置に位置決めする。(ST11)走査型電子顕微鏡による観察・分析を実行する。(ST12)全ての欠陥に対して観察・分析が終了していないときはステップ4に戻り作業を繰返し、全ての欠陥に対して観察・分析が終ったならば一連の作業を終了する。
【0009】
【実施例】
更に本発明は、レーザ欠陥検出機能を備えた走査型電子顕微鏡を用いて行う微小欠陥検査における上記のCCDカメラ自動切替え手法を自動的に実行するシステムの実現と、欠陥の認識も自動的に行うシステムを提供する。
本発明のシステムは、図1に示すようにレーザ光源7からのレーザビームを斜め上方から欠陥位置に照射するレーザ光学系と欠陥からの散乱光を観察する光学顕微鏡3を備えたウエハ表面観察用走査型電子顕微鏡において、前記光学顕微鏡3には高感度用CCDカメラ4と標準タイプのCCDカメラ5を備え、予め他の検査装置によって測定された欠陥位置情報に基いて光学顕微鏡の光学軸を位置決めする手段を備えるようにした。この手段はコンピュータ10内の機能として記憶装置に記憶された欠陥位置情報に基き、試料ステージのx,y駆動機構に制御信号を出力して該試料ステージのx,y駆動機構を稼動させて光学顕微鏡3の光学軸位置に着目欠陥がくるように位置決めさせるものである。この状態となったところでコンピュータ10は光学顕微鏡の標準CCDカメラを稼動させて欠陥観察を実行させる。これを受けた該標準CCDカメラは稼動を開始し試料面を撮像するが、この画像信号はコンピュータ10に送信され、更にCRTの如きディスプレイ9に送信されて画像表示される。表示画面上で欠陥部からのレーザ散乱光の有無をマニュアルで検知することができるが、本発明において好ましくはコンピュータ10に標準CCDカメラからの画像情報中に閾値以上の輝度信号が有るか無いかを検知する機能を備えるようにする。システムとしてこの機能を備えることにより、画像中に欠陥情報があるか無いかを自動判別することができる。
【0010】
上記の段階で、欠陥信号が認識されたなら、その欠陥位置をこのシステムの基準点に対する位置情報として測定し、該位置情報をコンピュータ10の記憶装置に記憶させる。引き続きその欠陥の走査型電子顕微鏡1による観察に移行するが、光学顕微鏡3の光学軸と該電子顕微鏡1の光学軸とは位置的に数十mm離れているので、認識された着目欠陥を電子顕微鏡1で観察するためにはその距離分試料ステージを移動させなくてはならない。両光学系の相対位置関係は装置が組まれた時点で一義的に決まる固定値であるが、この情報は予めコンピュータ10の記憶装置に記憶させておく。先の光学顕微鏡の観察によりこのシステムの基準点に対する位置情報が測定され、記憶されているのでこれらの記憶情報から試料ステージのx,y駆動機構に移動すべき制御信号を出力して該試料ステージのx,y駆動機構を稼動させて走査型電子顕微鏡1の電子光学軸位置に着目欠陥がくるように位置決めさせる。
【0011】
先の標準CCDカメラ5からの画像情報中に欠陥情報がなかったときには、コンピュータ10からの指令により標準CCDカメラ5の稼動を停止させ、代わりに高感度CCDカメラ4を稼動させる。そしてこの高感度CCDカメラ4によって欠陥観察を行うのであるが、この領域のレーザ散乱光は光量レベルが低いこと、すなわち大きな欠陥はないことが確認されているので、検出感度が高く設定されている高感度CCDカメラ4からの暗視野像出力信号が高圧となることはない。この画像情報はコンピュータ10に送信され、更にディスプレイ9に送信されて画像表示される。この観察画像から、上記の場合と同様にこのシステムの基準点に対する位置情報が測定され、記憶される。また、光学顕微鏡3の光学軸と該電子顕微鏡1の光学軸との相対位置情報は記憶装置に記憶されているのでいるのでこれらの記憶情報から試料ステージのx,y駆動機構に移動すべき制御信号を出力して該試料ステージのx,y駆動機構を稼動させて走査型電子顕微鏡1の電子光学軸位置に着目欠陥がくるように位置決めさせる作動も先の場合と同様である。
【0012】
【発明の効果】
本発明のレーザ欠陥検出機能を備えた走査型電子顕微鏡におけるCCDカメラ自動切替方法は、欠陥位置にレーザを斜め上方から照射するレーザ光学系と欠陥からの散乱光を観察する光学顕微鏡を備えたウエハ表面観察用走査型電子顕微鏡において、光学顕微鏡に高感度用と標準タイプのCCDカメラを取付け、予め測定された欠陥位置情報に基いて光学軸を位置決めして光学顕微鏡の標準CCDカメラで欠陥観察を行うステップと、該標準CCDカメラで欠陥観察を観察出来なかった際には高感度CCDカメラに切替えて欠陥観察を行うステップを踏むようにしたので、高感度CCDカメラに切替えた際にその出力信号が高電圧となって回路保護層装置を作動させて作業を中断してしまうことがなくなり、この種の検査分析作業の効率化を実現できる。
【0013】
また、本発明のレーザ欠陥検出機能を備えた走査型電子顕微鏡におけるCCDカメラ自動切替システムは、欠陥位置にレーザを斜め上方から照射するレーザ光学系と欠陥からの散乱光を観察する光学顕微鏡を備えたウエハ表面観察用走査型電子顕微鏡であって、前記光学顕微鏡には高感度用と標準タイプのCCDカメラを備え、予め測定された欠陥位置情報に基いて光学顕微鏡の光学軸を位置決めする手段と、光学顕微鏡の標準CCDカメラを稼動させて欠陥観察を行う手段と、該標準CCDカメラの画像情報中に欠陥情報の有無を検知する手段と、該検知手段により欠陥情報が検出出来なかったときに高感度CCDカメラを稼動させて欠陥観察を行う手段とからなるものであるから、CCDカメラ自動切替を自動的に行うことができ、また、標準CCDカメラの画像情報中に欠陥情報が有るか無いかを、該画像情報中に閾値以上の輝度信号の有無を検知するような手段を備えることで作業の容易性と時間短縮を促進でき更に効率を高めることができるものである。しかも、システムとしての構成は従来装置に特別なハードを付け加える必要はなく、単に、ソフトだけを備えることで実現できる。
【図面の簡単な説明】
【図1】本発明のオートフォーカス方式を実現するレーザ欠陥検出機能を備えた走査型電子顕微鏡システムの基本構成を示す図である。
【図2】本発明の作動をフローチャートで示したものである。
【符号の説明】
1 走査型電子顕微鏡 7 レーザ光源
11 鏡筒部 8 ライト
12 二次電子検出器 9 CRT
3 光学顕微鏡 10 コンピュータ
4 高感度CCDカメラ 15 コントロールボックス
5 CCDカメラ
6 試料
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of switching between a standard CCD camera and a high-sensitivity CCD camera in an optical microscope provided in a scanning electron microscope used for yield management in a semiconductor manufacturing process.
[0002]
[Prior art]
It is said that the main factor causing defective products in the recent manufacture of ultra-highly integrated LSI is due to minute foreign matter adhering to the wafer. In other words, the minute foreign matter becomes a contaminant and causes circuit pattern disconnection or short-circuiting, leading to the occurrence of defects in semiconductor chips and the deterioration of quality and reliability. Along with the miniaturization of circuit patterns, even fine foreign objects with a diameter of O.1 μm are targeted. For this reason, it is the most important issue to improve the yield in the manufacture of ultra-highly integrated LSIs by measuring, analyzing and analyzing the actual state of minute foreign matter quantitatively with high accuracy.
[0003]
At present, a particle inspection apparatus as shown in FIG. 1 is used as a method for quantitatively and accurately measuring and analyzing the actual state of the adhesion of minute foreign matters. This apparatus has three types of images: (1) scanning electron microscope image, (2) high sensitivity dark field image obtained through high sensitivity CCD camera 4, and (3) dark field image or bright field image by CCD camera 5. This is a device that can display on the CRT 9. The scanning electron microscope 1 includes a lens barrel portion 11 and a secondary electron detector (SED) 12, and is deflected and scanned by the deflection means of the lens barrel portion 11 and is ejected by an electron beam irradiated on the sample 6. Secondary electrons are detected by the SED 12, and the detected information is imaged in correspondence with the beam irradiation position to obtain a scanning electron microscope image (1). The bright field image of (3) irradiates light from the light 8 through the optical path to the sample surface from above, and is uniformly reflected when the sample surface is a mirror surface. Therefore, the image is obtained by photographing the sample surface from above with the CCD camera 5 based on the scattered light. In the dark field image (3), the sample surface is irradiated with a beam from the laser light source 7 obliquely from above, and when the sample surface is a mirror surface, it is totally reflected, and when there is a foreign object, the light is scattered there. This is an image obtained by photographing the surface of the sample with the CCD camera 5 from above. The high-sensitivity proposed field image (2) is basically the same as the dark-field image (2), but is an image obtained through the high-sensitivity CCD camera 4 in order to observe smaller particles. Since the object is an ultrafine particle, the scattered light becomes weak, so a highly sensitive CCD (ICCD) camera is used.
[0004]
In the conventional defect detection using this apparatus, first, the position of a foreign object is detected from a low-magnification bright-field image or dark-field image, and the number and distribution status thereof are grasped. When a bright field image is obtained, the control box 11 is operated via the computer 10 to turn on the light 8 to irradiate a spot on the sample surface from above, and the CCD camera 5 captures a microscope image. When a dark field image is captured, the control box 11 is operated via the computer 10 to emit a laser light source, irradiate the sample surface with a laser beam obliquely from above, and the CCD camera 5 captures a microscope image. Concerning the foreign matter whose presence was confirmed by this initial inspection, including a fine foreign particle that could not be observed in the initial inspection by a high-sensitivity CCD camera 4 and a high-magnification dark-field image or scanning electron microscope image, Observe the shape and evaluate it. Fine foreign particles can be observed at a high magnification after the position is specified by observation at a low magnification. Fine position information that cannot be handled as sample stage position information can also be handled as information on screen coordinates. In addition, the composition of the foreign particles of interest cannot be analyzed from a high-magnification optical image or a scanning microscope image of secondary electron detection, but for this, an electron microscope having a secondary X-ray detection (EDS) function is used. Can be analyzed.
By the way, when the laser scattered light is observed with an optical microscope, the amount of laser scattered light varies greatly depending on the size of the defect. This scattered light is imaged by a CCD camera, but a high sensitivity CCD (Image Intensifier CCD: ICCD) in which detection sensitivity is set high in order to observe weak scattered light caused by minute particles or the like is relatively large. When a strong scattered light from a foreign substance or the like is received or the stage is moved, a safety device is activated to stop the operation for high pressure protection. Therefore, there is a problem that work is interrupted each time and work efficiency is deteriorated.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to solve the above problem, that is, in a scanning electron microscope equipped with a high-sensitivity CCD camera that performs laser defect detection, when operating a high-sensitivity CCD camera, strong scattered light from a relatively large foreign object or the like is generated. It is to improve the work efficiency by constructing a system in which the safety device is not operated frequently by stopping the operation by receiving the light.
[0006]
[Means for Solving the Problems]
The CCD camera automatic switching method in a scanning electron microscope having a laser defect detection function of the present invention is a wafer including a laser optical system for irradiating a laser at a defect position obliquely from above and an optical microscope for observing scattered light from the defect. In a scanning electron microscope for surface observation, a high-sensitivity and standard CCD camera is attached to the optical microscope, the optical axis is positioned based on the defect position information measured in advance, and the defect is observed with the standard CCD camera of the optical microscope. A technique is adopted in which a step of performing defect observation is performed by switching to a high-sensitivity CCD camera when defect observation cannot be observed with the standard CCD camera.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
When using a scanning electron microscope equipped with a laser defect detection function to detect minute foreign objects existing on the surface of a flat sample such as a silicon wafer and to inspect and evaluate them, prior to observation with a scanning electron microscope, minute foreign objects When a dark field image by laser irradiation is observed with a high-sensitivity CCD camera and its position is to be specified, the operation is stopped immediately after the safety device is activated and the operation is interrupted. The reason for this is that, as described above, in the case of a high-sensitivity CCD camera, the detection sensitivity is set high, so when strong light from a relatively large foreign object is received, the output signal becomes high voltage, so the high-voltage protection of the circuit is safe. Due to the operation of the device. Therefore, the present invention intends to operate the high-sensitivity CCD camera only when irregularly reflected light is not received in advance by observation with a standard CCD camera. That is, the high-sensitivity CCD camera is operated after confirming that there is no relatively large foreign object by observation with a standard CCD camera in which the output signal does not become high voltage even with a large defect size. The output of the high sensitivity CCD camera does not become high pressure. Therefore, even when a high sensitivity CCD camera is used, the work is not interrupted and the work efficiency can be increased.
[0008]
The operation of the CCD camera switching method in the scanning electron microscope having the laser defect detection function of the present invention will be described with reference to FIG. First, (ST1) The relative positional relationship between the optical axis of the optical microscope and the electron optical axis of the scanning electron microscope in the scanning electron microscope to be used is stored. (ST2) Subsequently, defect position information measured by another inspection apparatus is stored. This is the preliminary preparation work. (ST3) A sample to be inspected such as a wafer is placed on the sample stage, and the environment in the chamber is adjusted. Note that the order of the above steps may be changed. (ST4) Based on the defect position information stored in advance, the driving mechanism of the sample stage (generally, the x, y axis driving mechanism) is driven to position the defect of interest at the optical axis position of the optical microscope. (ST5) First, a defect image is observed with a standard CCD camera. (ST6) It is determined whether or not a defect image can be seen in the observation image of the standard CCD camera. (ST7) When a defect image can be observed, the defect position information with respect to the reference position of the apparatus is measured and stored on the image. (ST8) When the defect image cannot be observed, the defect is observed with a high sensitivity CCD camera. (ST9) Subsequently, the defect position information with respect to the reference position of the apparatus is measured and stored on the observed image. (ST10) Based on the position information measured in step 7 or 9, the sample stage drive mechanism (generally, the x and y axis drive mechanisms) is driven to position the defect of interest at the optical axis position of the scanning electron microscope. (ST11) Observation / analysis with a scanning electron microscope is executed. (ST12) When the observation / analysis has not been completed for all the defects, the process returns to step 4 and the operation is repeated. When the observation / analysis has been completed for all the defects, the series of operations is terminated.
[0009]
【Example】
Furthermore, the present invention realizes a system that automatically executes the above-described CCD camera automatic switching method in a minute defect inspection performed using a scanning electron microscope equipped with a laser defect detection function, and automatically performs defect recognition. Provide a system.
As shown in FIG. 1, the system of the present invention is for observing a wafer surface provided with a laser optical system for irradiating a defect position with a laser beam from a laser light source 7 and an optical microscope 3 for observing scattered light from the defect. In the scanning electron microscope, the optical microscope 3 includes a high-sensitivity CCD camera 4 and a standard type CCD camera 5, and positions the optical axis of the optical microscope based on defect position information measured in advance by another inspection apparatus. There is a means to do. This means is based on the defect position information stored in the storage device as a function in the computer 10, and outputs a control signal to the x and y drive mechanism of the sample stage to operate the x and y drive mechanism of the sample stage. Positioning is performed so that the defect of interest comes to the optical axis position of the microscope 3. In this state, the computer 10 activates the standard CCD camera of the optical microscope to execute defect observation. Upon receiving this, the standard CCD camera starts operation and images the sample surface. This image signal is transmitted to the computer 10 and further transmitted to the display 9 such as a CRT for image display. Although it is possible to manually detect the presence or absence of laser scattered light from the defective portion on the display screen, in the present invention, it is preferable whether or not the computer 10 has a luminance signal greater than a threshold in the image information from the standard CCD camera. Provide a function to detect By providing this function as a system, it is possible to automatically determine whether or not there is defect information in the image.
[0010]
If a defect signal is recognized in the above step, the defect position is measured as position information with respect to the reference point of the system, and the position information is stored in the storage device of the computer 10. Subsequently, the defect shifts to observation with the scanning electron microscope 1, but since the optical axis of the optical microscope 3 and the optical axis of the electron microscope 1 are separated by several tens mm, the recognized defect of interest is regarded as an electron. In order to observe with the microscope 1, the sample stage must be moved by that distance. The relative positional relationship between the two optical systems is a fixed value that is uniquely determined when the apparatus is assembled, but this information is stored in advance in the storage device of the computer 10. Position information with respect to the reference point of this system is measured and stored by observation with the previous optical microscope, so that a control signal to be moved from the stored information to the x and y drive mechanism of the sample stage is output to the sample stage. The x and y drive mechanisms are operated so that the target defect comes to the position of the electron optical axis of the scanning electron microscope 1.
[0011]
When there is no defect information in the image information from the previous standard CCD camera 5, the operation of the standard CCD camera 5 is stopped by a command from the computer 10, and the high sensitivity CCD camera 4 is operated instead. The high-sensitivity CCD camera 4 performs defect observation, and it has been confirmed that the laser scattered light in this region has a low light amount level, that is, no large defect, so that the detection sensitivity is set high. The dark field image output signal from the high sensitivity CCD camera 4 does not become a high voltage. This image information is transmitted to the computer 10 and further transmitted to the display 9 for image display. From this observation image, the position information with respect to the reference point of this system is measured and stored in the same manner as described above. Further, since the relative position information between the optical axis of the optical microscope 3 and the optical axis of the electron microscope 1 is stored in the storage device, the control to be moved from these stored information to the x and y drive mechanism of the sample stage. The operation of outputting a signal and operating the x and y drive mechanism of the sample stage to position the target optical defect at the position of the electron optical axis of the scanning electron microscope 1 is the same as in the previous case.
[0012]
【The invention's effect】
A CCD camera automatic switching method in a scanning electron microscope having a laser defect detection function according to the present invention is a wafer including a laser optical system that irradiates a laser at a defect position obliquely from above and an optical microscope that observes scattered light from the defect. In a scanning electron microscope for surface observation, a high-sensitivity and standard CCD camera is attached to the optical microscope, the optical axis is positioned based on the defect position information measured in advance, and the defect is observed with the standard CCD camera of the optical microscope. When the defect observation cannot be observed with the standard CCD camera, the step of switching to the high-sensitivity CCD camera and taking the defect observation are taken. It is no longer necessary to operate the circuit protection layer device due to high voltage and interrupt the work, and this type of inspection analysis work can be made more efficient. It can be current.
[0013]
In addition, the CCD camera automatic switching system in the scanning electron microscope having the laser defect detection function of the present invention includes a laser optical system that irradiates a laser at a defect position obliquely from above and an optical microscope that observes scattered light from the defect. A scanning electron microscope for observing a wafer surface, the optical microscope comprising a high-sensitivity and standard CCD camera, and means for positioning the optical axis of the optical microscope based on defect position information measured in advance. A means for operating a standard CCD camera of an optical microscope to perform defect observation, a means for detecting the presence or absence of defect information in the image information of the standard CCD camera, and when the defect information cannot be detected by the detection means Since it consists of a means for observing defects by operating a high-sensitivity CCD camera, automatic switching of the CCD camera can be performed automatically. Ease of work and reduction of time can be promoted by providing means for detecting whether or not there is defect information in the image information of the standard CCD camera, and whether or not there is a luminance signal exceeding the threshold in the image information. Efficiency can be increased. Moreover, it is not necessary to add special hardware to the conventional apparatus, and the system configuration can be realized simply by providing software.
[Brief description of the drawings]
FIG. 1 is a diagram showing a basic configuration of a scanning electron microscope system having a laser defect detection function for realizing an autofocus method of the present invention.
FIG. 2 is a flowchart showing the operation of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Scanning electron microscope 7 Laser light source 11 Barrel part 8 Light 12 Secondary electron detector 9 CRT
3 Optical microscope 10 Computer 4 High sensitivity CCD camera 15 Control box 5 CCD camera 6 Sample

Claims (3)

欠陥位置にレーザを斜め上方から照射するレーザ光学系と欠陥からの散乱光を観察する光学顕微鏡からなるレーザ欠陥検出機能を備えた走査型電子顕微鏡におけるCCDカメラ自動切替方法において、
記憶装置から前記欠陥の欠陥位置情報を読み出すステップと、
試料ステージを移動し、前記欠陥位置を前記光学顕微鏡の光学軸上に配置するステップと、
前記光学顕微鏡の第一のCCDカメラで前記欠陥位置にある前記欠陥を撮像するステップと、
前記第一のCCDカメラで撮像した画像情報中に欠陥情報が無い場合、前記第一のCCDカメラよりも感度の高い第二のCCDカメラに切替え、前記欠陥を撮像するステップと、を有するレーザ欠陥検出機能を備えた走査型電子顕微鏡におけるCCDカメラ自動切替方法。
In a CCD camera automatic switching method in a scanning electron microscope having a laser defect detection function comprising a laser optical system for irradiating a laser to a defect position obliquely from above and an optical microscope for observing scattered light from the defect,
Reading defect position information of the defect from a storage device;
Moving the sample stage and placing the defect position on the optical axis of the optical microscope;
Imaging the defect at the defect location with a first CCD camera of the optical microscope;
When there is no defect information in the image information imaged by the first CCD camera, a laser defect having a step of switching to a second CCD camera having higher sensitivity than the first CCD camera and imaging the defect A CCD camera automatic switching method in a scanning electron microscope having a detection function.
欠陥位置にレーザを斜め上方から照射するレーザ光学系と欠陥からの散乱光を観察する光学顕微鏡からなるレーザ欠陥検出機能を備えた走査型電子顕微鏡におけるCCDカメラ自動切替システムにおいて、
前記欠陥の欠陥位置情報を記憶する記憶装置と、
前記光学顕微鏡の第一のCCDカメラと、
前記第一のCCDカメラよりも感度の高い第二のCCDカメラと、
前記欠陥位置情報に基き前記欠陥位置を前記光学顕微鏡の光学軸上に配置させるための試料ステージの移動手段と、
前記欠陥位置において前記第一のCCDカメラで撮像した画像情報中の欠陥情報の有無を検知する検知機能と、
前記検知機能において前記欠陥情報が無の場合、前記第二のCCDカメラにより前記欠陥を撮像するために前記第一のCCDカメラから前記第二のCCDカメラに切替えるための信号を出力する機能とを備えたコンピュータと、を有するレーザ欠陥検出機能を備えた走査型電子顕微鏡におけるCCDカメラ自動切替システム。
In a CCD camera automatic switching system in a scanning electron microscope having a laser defect detection function comprising a laser optical system that irradiates a laser at a defect position obliquely from above and an optical microscope that observes scattered light from the defect,
A storage device for storing defect position information of the defect;
A first CCD camera of the optical microscope;
A second CCD camera having higher sensitivity than the first CCD camera;
Sample stage moving means for placing the defect position on the optical axis of the optical microscope based on the defect position information;
A detection function for detecting the presence or absence of defect information in the image information captured by the first CCD camera at the defect position ;
A function of outputting a signal for switching from the first CCD camera to the second CCD camera in order to image the defect by the second CCD camera when the defect information is absent in the detection function; And a CCD camera automatic switching system in a scanning electron microscope having a laser defect detection function.
前記検知機能は、前記第一のCCDカメラで撮像した画像情報中における閾値以上の輝度信号の有無を検知する請求項2に記載のレーザ欠陥検出機能を備えた走査型電子顕微鏡におけるCCDカメラ自動切替システム。  3. The CCD camera automatic switching in a scanning electron microscope having a laser defect detection function according to claim 2, wherein the detection function detects presence / absence of a luminance signal equal to or higher than a threshold in image information captured by the first CCD camera. system.
JP2001184696A 2001-06-19 2001-06-19 CCD camera automatic switching method and system in scanning electron microscope with laser defect detection function Expired - Fee Related JP4681153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001184696A JP4681153B2 (en) 2001-06-19 2001-06-19 CCD camera automatic switching method and system in scanning electron microscope with laser defect detection function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001184696A JP4681153B2 (en) 2001-06-19 2001-06-19 CCD camera automatic switching method and system in scanning electron microscope with laser defect detection function

Publications (2)

Publication Number Publication Date
JP2003004653A JP2003004653A (en) 2003-01-08
JP4681153B2 true JP4681153B2 (en) 2011-05-11

Family

ID=19024412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001184696A Expired - Fee Related JP4681153B2 (en) 2001-06-19 2001-06-19 CCD camera automatic switching method and system in scanning electron microscope with laser defect detection function

Country Status (1)

Country Link
JP (1) JP4681153B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016079547A1 (en) * 2014-11-18 2016-05-26 Femtonics Kft. Combined imaging system and mri compatible laser scanning microscope

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4751617B2 (en) * 2005-01-21 2011-08-17 株式会社日立ハイテクノロジーズ Defect inspection method and apparatus
JP2013148349A (en) * 2010-04-23 2013-08-01 Hitachi High-Technologies Corp Review method and review device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01147513A (en) * 1987-12-04 1989-06-09 Hitachi Ltd Foreign matter analysis device
JPH0357241A (en) * 1989-07-26 1991-03-12 Hitachi Ltd Automatic visual inspection equipment
JPH08122252A (en) * 1994-10-26 1996-05-17 Matsushita Electric Works Ltd Dust sensor
JPH11160330A (en) * 1997-12-01 1999-06-18 Seiko Instruments Inc Surface-analyzing apparatus
JPH11201909A (en) * 1998-01-16 1999-07-30 Hitachi Ltd Foreign matter inspection method and apparatus
JP2000088563A (en) * 1998-09-08 2000-03-31 Hitachi Ltd Method and apparatus for visual inspection
JP2001133417A (en) * 1999-06-15 2001-05-18 Applied Materials Inc Apparatus and method for re-inspecting defects on an object

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01147513A (en) * 1987-12-04 1989-06-09 Hitachi Ltd Foreign matter analysis device
JPH0357241A (en) * 1989-07-26 1991-03-12 Hitachi Ltd Automatic visual inspection equipment
JPH08122252A (en) * 1994-10-26 1996-05-17 Matsushita Electric Works Ltd Dust sensor
JPH11160330A (en) * 1997-12-01 1999-06-18 Seiko Instruments Inc Surface-analyzing apparatus
JPH11201909A (en) * 1998-01-16 1999-07-30 Hitachi Ltd Foreign matter inspection method and apparatus
JP2000088563A (en) * 1998-09-08 2000-03-31 Hitachi Ltd Method and apparatus for visual inspection
JP2001133417A (en) * 1999-06-15 2001-05-18 Applied Materials Inc Apparatus and method for re-inspecting defects on an object

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016079547A1 (en) * 2014-11-18 2016-05-26 Femtonics Kft. Combined imaging system and mri compatible laser scanning microscope

Also Published As

Publication number Publication date
JP2003004653A (en) 2003-01-08

Similar Documents

Publication Publication Date Title
JP4610798B2 (en) Scanning electron microscope with laser defect detection function and its autofocus method
TWI780336B (en) Correlating sem and optical images for wafer noise nuisance identification
JP4312910B2 (en) Review SEM
US7777183B2 (en) Charge particle beam system, sample processing method, and semiconductor inspection system
JPH10213422A (en) Pattern inspection device
JP5946751B2 (en) Defect detection method and apparatus, and defect observation method and apparatus
JP3938227B2 (en) Foreign object inspection method and apparatus
JP2010080969A (en) Method and apparatus for observation of sample
US20070165938A1 (en) Pattern inspection apparatus and method and workpiece tested thereby
JP2000161948A (en) Apparatus and method for inspecting circuit pattern
JP4876744B2 (en) Inspection device
JP4681153B2 (en) CCD camera automatic switching method and system in scanning electron microscope with laser defect detection function
JP4041630B2 (en) Circuit pattern inspection apparatus and inspection method
JP4745380B2 (en) Review SEM
JP4287863B2 (en) Review SEM
JP3665194B2 (en) Circuit pattern inspection method and inspection apparatus
JP5036889B2 (en) Review SEM
TWI784683B (en) charged particle beam device
JP2001284234A (en) Charged particle beam exposure system and method thereof
JP2004048002A (en) Circuit-pattern inspecting apparatus and method
JP4924931B2 (en) Stencil mask inspection method and apparatus
JP3446754B2 (en) Micro foreign matter detection method and its detection device
JPH11274256A (en) Sample checking device
JP2008147679A (en) Electron beam application device
JPS61267246A (en) Foreign object detection device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040303

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080212

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091113

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110204

R150 Certificate of patent or registration of utility model

Ref document number: 4681153

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees