JP2003004653A - Automatic ccd camera changeover system in scanning electron microscope with laser defect detecting function - Google Patents
Automatic ccd camera changeover system in scanning electron microscope with laser defect detecting functionInfo
- Publication number
- JP2003004653A JP2003004653A JP2001184696A JP2001184696A JP2003004653A JP 2003004653 A JP2003004653 A JP 2003004653A JP 2001184696 A JP2001184696 A JP 2001184696A JP 2001184696 A JP2001184696 A JP 2001184696A JP 2003004653 A JP2003004653 A JP 2003004653A
- Authority
- JP
- Japan
- Prior art keywords
- defect
- ccd camera
- scanning electron
- laser
- standard
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Analysing Materials By The Use Of Radiation (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Closed-Circuit Television Systems (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、半導体製造工程の
歩留り管理に用いられる走査型電子顕微鏡に備えられた
光学顕微鏡の、標準CCDカメラと高感度CCDカメラ
との切替え方式に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a switching system between a standard CCD camera and a high-sensitivity CCD camera of an optical microscope provided in a scanning electron microscope used for controlling yield in a semiconductor manufacturing process.
【0002】[0002]
【従来の技術】最近の超高集積化されたLSIの製造に
おいて不良品をもたらす主たる要因は、ウエハに付着し
た微小異物によるものといわれている。すなわち、その
微小異物が汚染物質となって回路パターンの断線やショ
ートを引き起こし、半導体チップの不良の発生や品質、
信頼性の低下に大きくつながっている。回路パターンの
微小化に伴い直径O.1μmレベルの微小異物までが対象と
なっている。そのため微小異物の付着状態などの実態を
定量的に精度よく計測および分析して把握し、管理する
ことが、超高集積LSIの製造における歩留り向上の最
重要課題となっている。2. Description of the Related Art It is said that the main cause of defective products in the recent manufacture of ultra-highly integrated LSIs is minute foreign substances attached to a wafer. That is, the minute foreign matter becomes a contaminant and causes a disconnection or short circuit of the circuit pattern.
This has led to a decrease in reliability. With the miniaturization of circuit patterns, even minute foreign particles with a diameter of 0.1 μm are targeted. Therefore, it is the most important issue to improve the yield in the manufacture of ultra-high-integrated LSIs in order to quantitatively and accurately measure and analyze the actual condition such as the adhered state of minute foreign substances, to grasp and manage it.
【0003】現在この微小異物の付着状態などの実態を
定量的に精度よく計測および分析する手法としては図1
に示すようなパーティクル検査装置が用いられている。
この装置は走査型電子顕微鏡像と高感度CCDカメ
ラ4を介して得る高感度暗視野像とCCDカメラ5に
よる暗視野像若しくは明視野像の三種類の画像がCRT
9上に表示できる装置である。走査型電子顕微鏡1は鏡
筒部11と二次電子検出器(SED)12とを備えており、
鏡筒部11の偏向手段によって偏向走査されて試料6に照
射された電子ビームによって弾き出された二次電子をS
ED12によって検出し、該検出情報をビーム照射位置と
の対応をとって画像化し、走査型電子顕微鏡像とす
る。の明視野像はライト8からの光を光学路を介して
上方より試料表面に光スポットを照射し、該試料表面が
鏡面であるときは一様に反射され、異物があるときはそ
こで光が散乱されることに基きその試料表面を上方より
CCDカメラ5で撮影して得る画像である。の暗視野
像はレーザ光源7からのビームを斜め上方から試料面に
照射し、該試料表面が鏡面であるときは全反射され、異
物があるときはそこで光が散乱されることに基きその試
料表面を上方よりCCDカメラ5で撮影して得る画像で
ある。の高感度案視野像は基本的にの暗視野像と同
様であるが、より小さな微粒子を観察するために高感度
CCDカメラ4を介して得る画像である。対象が超微粒
子であるため散乱光は微弱となるため高感度のCCD
(ICCD)カメラが用いられる。At present, as a method for quantitatively and accurately measuring and analyzing the actual state of the adhered state of such minute foreign matter, FIG.
The particle inspection device as shown in FIG.
This apparatus uses a scanning electron microscope image, a high-sensitivity dark-field image obtained through the high-sensitivity CCD camera 4, and a dark-field image or bright-field image obtained by the CCD camera 5 as a CRT.
9 is a device that can be displayed. The scanning electron microscope 1 includes a lens barrel portion 11 and a secondary electron detector (SED) 12,
The secondary electrons that are deflected and scanned by the deflection means of the lens barrel 11 and emitted by the electron beam irradiated on the sample 6 are S
It is detected by the ED 12, and the detected information is imaged in correspondence with the beam irradiation position to obtain a scanning electron microscope image. The bright field image of illuminates the light spot from the light 8 onto the sample surface from above through the optical path, and is uniformly reflected when the sample surface is a mirror surface, and when there is a foreign substance, the light is emitted there. This is an image obtained by photographing the sample surface from above with the CCD camera 5 based on the scattering. The dark field image of the sample is based on the fact that the beam from the laser light source 7 is radiated onto the sample surface from diagonally above, and the sample surface is totally reflected when the sample surface is a mirror surface and the light is scattered there when there is a foreign matter. It is an image obtained by photographing the surface from above with a CCD camera 5. The high-sensitivity proposed field image is basically the same as the dark-field image, but is an image obtained through the high-sensitivity CCD camera 4 for observing smaller particles. Since the target is ultra-fine particles, the scattered light is weak, so a highly sensitive CCD
A (ICCD) camera is used.
【0004】この装置を用いた従来の欠陥検出は、ま
ず、低倍率の明視野像や暗視野像によって異物の位置存
在を検知しその数や分布状況を把握する。明視野像を得
るときにはコンピュータ10を介してコントロールボック
ス11を操作しライト8を点灯して上方より試料面にスポ
ットを照射し、CCDカメラ5で顕微鏡像を撮像する。
暗視野像を撮像するときはコンピュータ10を介してコン
トロールボックス11を操作しレーザ光源を発光させて斜
め上方から試料面にレーザビームを照射し、CCDカメ
ラ5で顕微鏡像を撮像する。この当初の検査により存在
を確認した異物について、更に高感度CCDカメラ4で
高倍率の暗視野像や走査型電子顕微鏡像によって、最初
の検査では観察できなかった微細な異物粒子を含め、異
物の形状大きさを観察し評価をおこなう。微小異物粒子
は低倍率の観察で位置特定がなされた上で高倍率の観測
を行うことが出来る。試料ステージの位置情報として扱
えない微細な位置情報も画面座標上の情報として扱うこ
とができる。また、着目する異物粒子の組成については
高倍率光学画像や二次電子検出の走査顕微鏡像からでは
分析できないが、これについては二次X線検出(ED
S)機能を有した電子顕微鏡を用いることで分析するこ
とができる。ところで、レーザ散乱光を光学顕微鏡で観
察する場合、そのレーザ散乱光量は欠陥の大きさにより
大きく異なる。この散乱光をCCDカメラで撮像するの
であるが、微小な粒子等による微弱な散乱光を観察する
ために検出感度を高く設定している高感度CCD(Imag
e intensifier CCD:ICCD)は、比較的大きな異
物等からの強い散乱光を受光したときやステージ移動の
ときには高圧保護のため安全装置が作動し稼動を停止さ
せるようにしている。そのため、その都度作業が中断さ
れ、作業効率を悪くしているという問題がある。In the conventional defect detection using this device, first, the presence of foreign matter is detected by a low-magnification bright-field image or dark-field image, and the number and distribution of the foreign matter are grasped. When obtaining a bright field image, the control box 11 is operated via the computer 10 to turn on the light 8 to illuminate a spot on the sample surface from above, and the CCD camera 5 captures a microscope image.
When capturing a dark field image, the control box 11 is operated via the computer 10 to cause the laser light source to emit light, irradiate the laser beam onto the sample surface from diagonally above, and the CCD camera 5 captures a microscope image. With respect to the foreign substances whose existence was confirmed by the initial inspection, the high-sensitivity CCD camera 4 showed a high-magnification dark-field image or a scanning electron microscope image to detect the foreign substances including fine foreign particles that could not be observed in the first inspection. The shape and size are observed and evaluated. The fine foreign particles can be observed at a high magnification after being located at a low magnification. Fine positional information that cannot be treated as positional information of the sample stage can also be treated as information on screen coordinates. Further, the composition of foreign particles of interest cannot be analyzed from a high-magnification optical image or a scanning electron microscope image of secondary electron detection, but this cannot be analyzed by secondary X-ray detection (ED
S) It can be analyzed by using an electron microscope having a function. By the way, when observing the laser scattered light with an optical microscope, the amount of the laser scattered light greatly differs depending on the size of the defect. This scattered light is imaged by a CCD camera, but a high-sensitivity CCD (Imag is set to have a high detection sensitivity in order to observe weak scattered light due to minute particles or the like.
The e intensifier CCD (ICCD) is designed to stop the operation by receiving a high scattered light from a relatively large foreign substance or the like, or by operating a safety device for high voltage protection when the stage is moved. Therefore, there is a problem that the work is interrupted each time and the work efficiency is deteriorated.
【0005】[0005]
【発明が解決しようとする課題】本発明の課題は、上記
の問題すなわち、レーザ欠陥検出を行う高感度CCDカ
メラを備えた走査型電子顕微鏡において、高感度CCD
カメラを稼動させる際に、比較的大きな異物等からの強
い散乱光を受光することにより安全装置が作動して頻繁
にその稼動を停止させてしまうことがないシステムを構
築して作業効率を向上させることにある。SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems, namely, in a scanning electron microscope equipped with a high-sensitivity CCD camera for detecting a laser defect, a high-sensitivity CCD is used.
Improve the work efficiency by constructing a system that does not frequently stop the operation of the safety device by receiving strong scattered light from a relatively large foreign object when operating the camera. Especially.
【0006】[0006]
【課題を解決するための手段】本発明のレーザ欠陥検出
機能を備えた走査型電子顕微鏡におけるCCDカメラ自
動切替方式は、欠陥位置にレーザを斜め上方から照射す
るレーザ光学系と欠陥からの散乱光を観察する光学顕微
鏡を備えたウエハ表面観察用走査型電子顕微鏡におい
て、光学顕微鏡に高感度用と標準タイプのCCDカメラ
を取付け、予め測定された欠陥位置情報に基いて光学軸
を位置決めして光学顕微鏡の標準CCDカメラで欠陥観
察を行うステップと、該標準CCDカメラで欠陥観察を
観察出来なかった際には高感度CCDカメラに切替えて
欠陥観察を行うステップを踏む手法を採用した。A CCD camera automatic switching system in a scanning electron microscope having a laser defect detection function according to the present invention is a laser optical system for irradiating a defect position with a laser obliquely from above and a scattered light from the defect. In a scanning electron microscope for observing wafer surfaces equipped with an optical microscope for observing, the high-sensitivity and standard-type CCD cameras are attached to the optical microscope, and the optical axis is positioned based on the defect position information measured in advance. A method of observing a defect with a standard CCD camera of a microscope and a step of observing the defect by switching to a high sensitivity CCD camera when the standard CCD camera could not observe the defect was adopted.
【0007】[0007]
【発明の実施の形態】レーザ欠陥検出機能を備えた走査
型電子顕微鏡を用いてシリコンウエハ等平面状の試料表
面に存在する微小異物を検出し、検査評価しようとする
際、走査型電子顕微鏡での観察に先立ち、微小異物をレ
ーザ照射による暗視野像を高感度CCDカメラで観察し
その位置特定しようとするとき、安全装置が作動してす
ぐに稼動が停止して作業が中断されてしまう。その理由
は前述したように高感度CCDカメラの場合、検出感度
を高く設定しているため比較的大きな異物等による強い
光を受光した場合、出力信号が高圧となることから回路
の高圧保護の安全装置が作動することに起因する。そこ
で、本発明は、予め標準のCCDカメラによる観察で乱
反射光が受光されなかった場合のみ、この高感度CCD
カメラの稼動をさせるようにしようというものである。
すなわち大きな欠陥サイズであっても出力信号が高圧に
なることが無い標準のCCDカメラによる観察で比較的
大きな異物が無いことを確認してから高感度CCDカメ
ラの稼動をさせることになるので、該高感度CCDカメ
ラの出力が高圧に成ることは無いのである。したがっ
て、高感度CCDカメラの使用によっても作業が中断さ
れるようなことがなく作業効率を上げることが出来る。BEST MODE FOR CARRYING OUT THE INVENTION Scanning electron microscopes are used to detect and inspect minute foreign substances present on a flat sample surface such as a silicon wafer by using a scanning electron microscope equipped with a laser defect detection function. Prior to the above observation, when observing a dark field image of a minute foreign substance by laser irradiation with a high-sensitivity CCD camera and attempting to identify its position, the safety device is activated and the operation is immediately stopped, and the work is interrupted. The reason for this is that in the case of a high-sensitivity CCD camera, as described above, the detection sensitivity is set high, so that when strong light from a relatively large foreign object is received, the output signal becomes a high voltage, so the safety of high-voltage circuit protection is high. Due to the operation of the device. Therefore, the present invention provides the high-sensitivity CCD only when the diffuse reflection light is not received by the observation with the standard CCD camera in advance.
The idea is to make the camera work.
That is, even if the defect size is large, the high sensitivity CCD camera is operated after confirming that there is no relatively large foreign matter by observation with a standard CCD camera in which the output signal does not become high voltage. The output of the high-sensitivity CCD camera never becomes high voltage. Therefore, even if the high sensitivity CCD camera is used, the work is not interrupted and the work efficiency can be improved.
【0008】本発明のレーザ欠陥検出機能を備えた走査
型電子顕微鏡におけるCCDカメラ切替え方式のフロー
チャートを図2に示しその動作を説明する。まず、(S
T1)使用する走査型電子顕微鏡における光学顕微鏡の
光学軸と走査型電子顕微鏡の電子光学軸との相対位置関
係を記憶する。(ST2)続いて他の検査装置によって
測定された欠陥位置情報を記憶する。以上が事前の準備
作業である。(ST3)ウエハ等の被検査試料を試料ス
テージに載置し、チャンバー内の環境を整える。なお、
以上のステップは順序が入れ替わってもよい。(ST
4)先に記憶してある欠陥位置情報に基き試料ステージ
の駆動機構(一般にはx,y軸駆動機構)を駆動制御し
て着目欠陥を光学顕微鏡の光学軸位置に位置決めする。
(ST5)まず、標準CCDカメラで欠陥画像を観察す
る。(ST6)標準CCDカメラの観察像で欠陥画像が
見えるか否かを判定する。(ST7)欠陥画像が観察で
きた場合はその画像上で装置の基準位置に対する欠陥位
置情報を測定して記憶する。(ST8)欠陥画像が観察
できなかった場合は高感度CCDカメラで欠陥を観察す
る。(ST9)続いてその観察画像上で装置の基準位置
に対する欠陥位置情報を測定して記憶する。(ST10)
ステップ7若しくは9で測定した位置情報に基き試料ス
テージの駆動機構(一般にはx,y軸駆動機構)を駆動
制御して着目欠陥を走査型電子顕微鏡の光学軸位置に位
置決めする。(ST11)走査型電子顕微鏡による観察・
分析を実行する。(ST12)全ての欠陥に対して観察・
分析が終了していないときはステップ4に戻り作業を繰
返し、全ての欠陥に対して観察・分析が終ったならば一
連の作業を終了する。The operation of the CCD camera switching system in the scanning electron microscope having the laser defect detecting function of the present invention will be described with reference to FIG. First, (S
T1) The relative positional relationship between the optical axis of the optical microscope in the scanning electron microscope to be used and the electron optical axis of the scanning electron microscope is stored. (ST2) Subsequently, defect position information measured by another inspection device is stored. The above is the preparatory work. (ST3) An inspected sample such as a wafer is placed on the sample stage to prepare the environment in the chamber. In addition,
The above steps may be interchanged in order. (ST
4) Based on the previously stored defect position information, the drive mechanism of the sample stage (generally the x and y axis drive mechanism) is drive-controlled to position the defect of interest at the optical axis position of the optical microscope.
(ST5) First, a defect image is observed with a standard CCD camera. (ST6) It is determined whether or not a defect image can be seen in the observation image of the standard CCD camera. (ST7) When the defect image can be observed, the defect position information with respect to the reference position of the device is measured and stored on the image. (ST8) When the defect image cannot be observed, the defect is observed with the high sensitivity CCD camera. (ST9) Then, the defect position information with respect to the reference position of the apparatus is measured and stored on the observed image. (ST10)
Based on the position information measured in step 7 or 9, the drive mechanism (generally the x and y axis drive mechanism) of the sample stage is drive-controlled to position the defect of interest at the optical axis position of the scanning electron microscope. (ST11) Observation with a scanning electron microscope
Perform analysis. (ST12) Observation of all defects
When the analysis is not completed, the process is returned to step 4 and the work is repeated. When the observation / analysis is completed for all the defects, the series of work is completed.
【0009】[0009]
【実施例】更に本発明は、レーザ欠陥検出機能を備えた
走査型電子顕微鏡を用いて行う微小欠陥検査における上
記のCCDカメラ自動切替え手法を自動的に実行するシ
ステムの実現と、欠陥の認識も自動的に行うシステムを
提供する。本発明のシステムは、図1に示すようにレー
ザ光源7からのレーザビームを斜め上方から欠陥位置に
照射するレーザ光学系と欠陥からの散乱光を観察する光
学顕微鏡3を備えたウエハ表面観察用走査型電子顕微鏡
において、前記光学顕微鏡3には高感度用CCDカメラ
4と標準タイプのCCDカメラ5を備え、予め他の検査
装置によって測定された欠陥位置情報に基いて光学顕微
鏡の光学軸を位置決めする手段を備えるようにした。こ
の手段はコンピュータ10内の機能として記憶装置に記憶
された欠陥位置情報に基き、試料ステージのx,y駆動
機構に制御信号を出力して該試料ステージのx,y駆動
機構を稼動させて光学顕微鏡3の光学軸位置に着目欠陥
がくるように位置決めさせるものである。この状態とな
ったところでコンピュータ10は光学顕微鏡の標準CCD
カメラを稼動させて欠陥観察を実行させる。これを受け
た該標準CCDカメラは稼動を開始し試料面を撮像する
が、この画像信号はコンピュータ10に送信され、更にC
RTの如きディスプレイ9に送信されて画像表示され
る。表示画面上で欠陥部からのレーザ散乱光の有無をマ
ニュアルで検知することができるが、本発明において好
ましくはコンピュータ10に標準CCDカメラからの画像
情報中に閾値以上の輝度信号が有るか無いかを検知する
機能を備えるようにする。システムとしてこの機能を備
えることにより、画像中に欠陥情報があるか無いかを自
動判別することができる。Further, the present invention realizes a system for automatically executing the above-mentioned CCD camera automatic switching method in micro defect inspection performed using a scanning electron microscope having a laser defect detection function, and also recognizes defects. Provide an automated system. As shown in FIG. 1, the system of the present invention is for observing a wafer surface including a laser optical system for irradiating a defect position with a laser beam from a laser light source 7 obliquely from above and an optical microscope 3 for observing scattered light from the defect. In the scanning electron microscope, the optical microscope 3 is provided with a high sensitivity CCD camera 4 and a standard type CCD camera 5, and the optical axis of the optical microscope is positioned based on defect position information measured in advance by another inspection device. It was equipped with the means to do. This means outputs a control signal to the x, y drive mechanism of the sample stage to operate the x, y drive mechanism of the sample stage based on the defect position information stored in the storage device as a function of the computer 10 to perform optical operation. The microscope 3 is positioned so that the defect of interest comes to the optical axis position of the microscope 3. In this state, the computer 10 is the standard CCD of the optical microscope.
Operate the camera to perform defect observation. The standard CCD camera that receives this starts operation and images the sample surface, but this image signal is transmitted to the computer 10, and C
It is transmitted to a display 9 such as RT and displayed as an image. Although it is possible to manually detect the presence or absence of laser scattered light from the defective portion on the display screen, it is preferable in the present invention that the computer 10 has a luminance signal above a threshold value in the image information from the standard CCD camera. Provide a function to detect By providing this function as the system, it is possible to automatically determine whether or not there is defect information in the image.
【0010】上記の段階で、欠陥信号が認識されたな
ら、その欠陥位置をこのシステムの基準点に対する位置
情報として測定し、該位置情報をコンピュータ10の記憶
装置に記憶させる。引き続きその欠陥の走査型電子顕微
鏡1による観察に移行するが、光学顕微鏡3の光学軸と
該電子顕微鏡1の光学軸とは位置的に数十mm離れてい
るので、認識された着目欠陥を電子顕微鏡1で観察する
ためにはその距離分試料ステージを移動させなくてはな
らない。両光学系の相対位置関係は装置が組まれた時点
で一義的に決まる固定値であるが、この情報は予めコン
ピュータ10の記憶装置に記憶させておく。先の光学顕微
鏡の観察によりこのシステムの基準点に対する位置情報
が測定され、記憶されているのでこれらの記憶情報から
試料ステージのx,y駆動機構に移動すべき制御信号を
出力して該試料ステージのx,y駆動機構を稼動させて
走査型電子顕微鏡1の電子光学軸位置に着目欠陥がくる
ように位置決めさせる。If a defect signal is recognized in the above step, the defect position is measured as position information with respect to the reference point of the system, and the position information is stored in the storage device of the computer 10. Subsequently, the defect is observed by the scanning electron microscope 1. However, since the optical axis of the optical microscope 3 and the optical axis of the electron microscope 1 are separated from each other by several tens of millimeters in position, the recognized defect of interest is detected as an electron. In order to observe with the microscope 1, the sample stage must be moved by that distance. The relative positional relationship between the two optical systems is a fixed value that is uniquely determined when the device is assembled, but this information is stored in the storage device of the computer 10 in advance. The position information with respect to the reference point of this system is measured and stored by the observation with the optical microscope, so that the control signal to be moved to the x, y drive mechanism of the sample stage is output from the stored information and the sample stage is output. The x and y drive mechanisms are operated to position the scanning electron microscope 1 so that the defect of interest comes to the electron optical axis position.
【0011】先の標準CCDカメラ5からの画像情報中
に欠陥情報がなかったときには、コンピュータ10からの
指令により標準CCDカメラ5の稼動を停止させ、代わ
りに高感度CCDカメラ4を稼動させる。そしてこの高
感度CCDカメラ4によって欠陥観察を行うのである
が、この領域のレーザ散乱光は光量レベルが低いこと、
すなわち大きな欠陥はないことが確認されているので、
検出感度が高く設定されている高感度CCDカメラ4か
らの暗視野像出力信号が高圧となることはない。この画
像情報はコンピュータ10に送信され、更にディスプレイ
9に送信されて画像表示される。この観察画像から、上
記の場合と同様にこのシステムの基準点に対する位置情
報が測定され、記憶される。また、光学顕微鏡3の光学
軸と該電子顕微鏡1の光学軸との相対位置情報は記憶装
置に記憶されているのでいるのでこれらの記憶情報から
試料ステージのx,y駆動機構に移動すべき制御信号を
出力して該試料ステージのx,y駆動機構を稼動させて
走査型電子顕微鏡1の電子光学軸位置に着目欠陥がくる
ように位置決めさせる作動も先の場合と同様である。When there is no defect information in the image information from the standard CCD camera 5, the standard CCD camera 5 is stopped by a command from the computer 10, and the high sensitivity CCD camera 4 is operated instead. Then, the defect is observed by the high-sensitivity CCD camera 4, and the laser scattered light in this region has a low light quantity level.
In other words, since it has been confirmed that there are no major defects,
The dark-field image output signal from the high-sensitivity CCD camera 4 whose detection sensitivity is set high does not become high voltage. This image information is transmitted to the computer 10 and further transmitted to the display 9 for image display. From this observed image, the positional information with respect to the reference point of this system is measured and stored as in the above case. Further, since the relative position information of the optical axis of the optical microscope 3 and the optical axis of the electron microscope 1 is stored in the storage device, control to move to the x, y drive mechanism of the sample stage from these stored information. The operation of outputting a signal to operate the x, y drive mechanism of the sample stage to position the scanning electron microscope 1 so that the defect of interest comes to the electron optical axis position of the scanning electron microscope 1 is similar to the above case.
【0012】[0012]
【発明の効果】本発明のレーザ欠陥検出機能を備えた走
査型電子顕微鏡におけるCCDカメラ自動切替方法は、
欠陥位置にレーザを斜め上方から照射するレーザ光学系
と欠陥からの散乱光を観察する光学顕微鏡を備えたウエ
ハ表面観察用走査型電子顕微鏡において、光学顕微鏡に
高感度用と標準タイプのCCDカメラを取付け、予め測
定された欠陥位置情報に基いて光学軸を位置決めして光
学顕微鏡の標準CCDカメラで欠陥観察を行うステップ
と、該標準CCDカメラで欠陥観察を観察出来なかった
際には高感度CCDカメラに切替えて欠陥観察を行うス
テップを踏むようにしたので、高感度CCDカメラに切
替えた際にその出力信号が高電圧となって回路保護層装
置を作動させて作業を中断してしまうことがなくなり、
この種の検査分析作業の効率化を実現できる。The CCD camera automatic switching method in the scanning electron microscope having the laser defect detecting function of the present invention is as follows:
In the scanning electron microscope for observing the wafer surface, which is equipped with a laser optical system that irradiates a defect position with a laser obliquely from above and an optical microscope that observes scattered light from the defect, a high sensitivity and standard type CCD camera is used for the optical microscope. Mounting and positioning the optical axis based on previously measured defect position information to observe defects with a standard CCD camera of the optical microscope; and high sensitivity CCD when the defect observation cannot be observed with the standard CCD camera. Since the camera is switched to the step of observing defects, the output signal becomes high voltage when switching to the high-sensitivity CCD camera, and the work is not interrupted by operating the circuit protection layer device. ,
This type of inspection / analysis work can be made more efficient.
【0013】また、本発明のレーザ欠陥検出機能を備え
た走査型電子顕微鏡におけるCCDカメラ自動切替シス
テムは、欠陥位置にレーザを斜め上方から照射するレー
ザ光学系と欠陥からの散乱光を観察する光学顕微鏡を備
えたウエハ表面観察用走査型電子顕微鏡であって、前記
光学顕微鏡には高感度用と標準タイプのCCDカメラを
備え、予め測定された欠陥位置情報に基いて光学顕微鏡
の光学軸を位置決めする手段と、光学顕微鏡の標準CC
Dカメラを稼動させて欠陥観察を行う手段と、該標準C
CDカメラの画像情報中に欠陥情報の有無を検知する手
段と、該検知手段により欠陥情報が検出出来なかったと
きに高感度CCDカメラを稼動させて欠陥観察を行う手
段とからなるものであるから、CCDカメラ自動切替を
自動的に行うことができ、また、標準CCDカメラの画
像情報中に欠陥情報が有るか無いかを、該画像情報中に
閾値以上の輝度信号の有無を検知するような手段を備え
ることで作業の容易性と時間短縮を促進でき更に効率を
高めることができるものである。しかも、システムとし
ての構成は従来装置に特別なハードを付け加える必要は
なく、単に、ソフトだけを備えることで実現できる。Further, the CCD camera automatic switching system in the scanning electron microscope having the laser defect detecting function of the present invention is a laser optical system for irradiating the defect position with a laser obliquely from above and an optical system for observing scattered light from the defect. A scanning electron microscope for observing a wafer surface equipped with a microscope, wherein the optical microscope is equipped with a high sensitivity CCD camera and a standard type CCD camera, and the optical axis of the optical microscope is positioned based on previously measured defect position information. Means and standard CC of optical microscope
A means for observing defects by operating the D camera, and the standard C
It is composed of means for detecting the presence or absence of defect information in the image information of the CD camera, and means for observing the defect by operating the high sensitivity CCD camera when the defect information cannot be detected by the detecting means. , CCD cameras can be automatically switched, and whether or not there is defect information in image information of a standard CCD camera is detected by detecting the presence or absence of a luminance signal above a threshold value in the image information. By providing the means, the workability and the time reduction can be promoted, and the efficiency can be further improved. Moreover, the system configuration does not require any special hardware to be added to the conventional device, and can be realized simply by providing software.
【図1】本発明のオートフォーカス方式を実現するレー
ザ欠陥検出機能を備えた走査型電子顕微鏡システムの基
本構成を示す図である。FIG. 1 is a diagram showing a basic configuration of a scanning electron microscope system having a laser defect detection function that realizes an autofocus system of the present invention.
【図2】本発明の作動をフローチャートで示したもので
ある。FIG. 2 is a flow chart showing the operation of the present invention.
1 走査型電子顕微鏡 7 レーザ光源
11 鏡筒部 8 ライト
12 二次電子検出器 9 CRT
3 光学顕微鏡 10 コンピュータ
4 高感度CCDカメラ 15 コントロールボッ
クス
5 CCDカメラ
6 試料1 Scanning Electron Microscope 7 Laser Light Source 11 Lens Barrel 8 Light 12 Secondary Electron Detector 9 CRT 3 Optical Microscope 10 Computer 4 High Sensitivity CCD Camera 15 Control Box 5 CCD Camera 6 Sample
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G001 AA03 AA07 AA10 BA07 BA14 CA03 CA07 FA06 GA04 HA09 HA13 JA12 KA04 LA11 MA05 PA11 2G051 AA51 AB01 BA01 BA10 CA03 CA07 CB05 DA07 EA14 EB01 5C054 CA06 CD03 FE02 HA01 HA05 ─────────────────────────────────────────────────── ─── Continued front page F-term (reference) 2G001 AA03 AA07 AA10 BA07 BA14 CA03 CA07 FA06 GA04 HA09 HA13 JA12 KA04 LA11 MA05 PA11 2G051 AA51 AB01 BA01 BA10 CA03 CA07 CB05 DA07 EA14 EB01 5C054 CA06 CD03 FE02 HA01 HA05
Claims (3)
るレーザ光学系と欠陥からの散乱光を観察する光学顕微
鏡を備えたウエハ表面観察用走査型電子顕微鏡におい
て、光学顕微鏡に高感度用と標準タイプのCCDカメラ
を取付け、予め測定された欠陥位置情報に基いて光学軸
を位置決めして光学顕微鏡の標準CCDカメラで欠陥観
察を行うステップと、該標準CCDカメラで欠陥観察を
観察出来なかった際には高感度CCDカメラに切替えて
欠陥観察を行うステップを踏むことを特徴とするレーザ
欠陥検出機能を備えた走査型電子顕微鏡におけるCCD
カメラ自動切替方法。1. A scanning electron microscope for observing a wafer surface, comprising a laser optical system for irradiating a defect position with a laser obliquely from above and an optical microscope for observing scattered light from the defect. Type CCD camera is attached, the optical axis is positioned based on the defect position information measured in advance, and the defect observation is performed by the standard CCD camera of the optical microscope; and when the defect observation cannot be observed by the standard CCD camera. Is a CCD in a scanning electron microscope having a laser defect detection function, characterized by switching to a high-sensitivity CCD camera and performing a step of observing defects.
Automatic camera switching method.
るレーザ光学系と欠陥からの散乱光を観察する光学顕微
鏡を備えたウエハ表面観察用走査型電子顕微鏡であっ
て、前記光学顕微鏡には高感度用と標準タイプのCCD
カメラを備え、予め測定された欠陥位置情報に基いて光
学顕微鏡の光学軸を位置決めする手段と、光学顕微鏡の
標準CCDカメラを稼動させて欠陥観察を行う手段と、
該標準CCDカメラの画像情報中に欠陥情報の有無を検
知する手段と、該検知手段により欠陥情報が検出出来な
かったときに高感度CCDカメラを稼動させて欠陥観察
を行う手段とからなるレーザ欠陥検出機能を備えた走査
型電子顕微鏡におけるCCDカメラ自動切替システム。2. A scanning electron microscope for observing a wafer surface, comprising a laser optical system for irradiating a defect position with a laser obliquely from above and an optical microscope for observing scattered light from the defect, wherein the optical microscope has a high CCD for sensitivity and standard type
A means for positioning the optical axis of the optical microscope based on the defect position information measured in advance, and a means for observing the defect by operating a standard CCD camera of the optical microscope;
Laser defect comprising means for detecting the presence or absence of defect information in the image information of the standard CCD camera, and means for observing the defect by operating the high sensitivity CCD camera when the defect information cannot be detected by the detecting means. Automatic CCD camera switching system for scanning electron microscopes with detection function.
報の有無を検知する手段は、標準CCDカメラの画像情
報中に閾値以上の輝度信号の有無を検知するものである
請求項2に記載の走査型電子顕微鏡におけるCCDカメ
ラ自動切替システム。3. The means for detecting the presence / absence of defect information in the image information of the standard CCD camera is for detecting the presence / absence of a luminance signal above a threshold value in the image information of the standard CCD camera. Automatic CCD camera switching system for scanning electron microscopes.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001184696A JP4681153B2 (en) | 2001-06-19 | 2001-06-19 | CCD camera automatic switching method and system in scanning electron microscope with laser defect detection function |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001184696A JP4681153B2 (en) | 2001-06-19 | 2001-06-19 | CCD camera automatic switching method and system in scanning electron microscope with laser defect detection function |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003004653A true JP2003004653A (en) | 2003-01-08 |
JP4681153B2 JP4681153B2 (en) | 2011-05-11 |
Family
ID=19024412
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001184696A Expired - Fee Related JP4681153B2 (en) | 2001-06-19 | 2001-06-19 | CCD camera automatic switching method and system in scanning electron microscope with laser defect detection function |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4681153B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006201044A (en) * | 2005-01-21 | 2006-08-03 | Hitachi High-Technologies Corp | Defect inspection method and apparatus |
WO2011132766A1 (en) * | 2010-04-23 | 2011-10-27 | 株式会社日立ハイテクノロジーズ | Reviewing method and reviewing device |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
HUP1400542A2 (en) * | 2014-11-18 | 2017-01-30 | Femtonics Kft | Combined imaging system and mri compatible laser scanning microscope |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01147513A (en) * | 1987-12-04 | 1989-06-09 | Hitachi Ltd | Foreign matter analysis device |
JPH0357241A (en) * | 1989-07-26 | 1991-03-12 | Hitachi Ltd | Automatic visual inspection equipment |
JPH08122252A (en) * | 1994-10-26 | 1996-05-17 | Matsushita Electric Works Ltd | Dust sensor |
JPH11160330A (en) * | 1997-12-01 | 1999-06-18 | Seiko Instruments Inc | Surface-analyzing apparatus |
JPH11201909A (en) * | 1998-01-16 | 1999-07-30 | Hitachi Ltd | Foreign matter inspection method and apparatus |
JP2000088563A (en) * | 1998-09-08 | 2000-03-31 | Hitachi Ltd | Appearance inspection method and appearance inspection apparatus |
JP2001133417A (en) * | 1999-06-15 | 2001-05-18 | Applied Materials Inc | Apparatus and method for re-inspecting defects on an object |
-
2001
- 2001-06-19 JP JP2001184696A patent/JP4681153B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01147513A (en) * | 1987-12-04 | 1989-06-09 | Hitachi Ltd | Foreign matter analysis device |
JPH0357241A (en) * | 1989-07-26 | 1991-03-12 | Hitachi Ltd | Automatic visual inspection equipment |
JPH08122252A (en) * | 1994-10-26 | 1996-05-17 | Matsushita Electric Works Ltd | Dust sensor |
JPH11160330A (en) * | 1997-12-01 | 1999-06-18 | Seiko Instruments Inc | Surface-analyzing apparatus |
JPH11201909A (en) * | 1998-01-16 | 1999-07-30 | Hitachi Ltd | Foreign matter inspection method and apparatus |
JP2000088563A (en) * | 1998-09-08 | 2000-03-31 | Hitachi Ltd | Appearance inspection method and appearance inspection apparatus |
JP2001133417A (en) * | 1999-06-15 | 2001-05-18 | Applied Materials Inc | Apparatus and method for re-inspecting defects on an object |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006201044A (en) * | 2005-01-21 | 2006-08-03 | Hitachi High-Technologies Corp | Defect inspection method and apparatus |
WO2011132766A1 (en) * | 2010-04-23 | 2011-10-27 | 株式会社日立ハイテクノロジーズ | Reviewing method and reviewing device |
Also Published As
Publication number | Publication date |
---|---|
JP4681153B2 (en) | 2011-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4610798B2 (en) | Scanning electron microscope with laser defect detection function and its autofocus method | |
US7660036B2 (en) | Method for particle analysis and particle analysis system | |
US8045145B1 (en) | Systems and methods for acquiring information about a defect on a specimen | |
JP4312910B2 (en) | Review SEM | |
WO2015159641A1 (en) | Defect observation method and device | |
JP5946751B2 (en) | Defect detection method and apparatus, and defect observation method and apparatus | |
US5761336A (en) | Aperture optimization method providing improved defect detection and characterization | |
WO2000003413A1 (en) | Method for observing specimen and device therefor | |
JP3802716B2 (en) | Sample inspection method and apparatus | |
JP3938227B2 (en) | Foreign object inspection method and apparatus | |
JP2010080969A (en) | Method and apparatus for observation of sample | |
US20070165938A1 (en) | Pattern inspection apparatus and method and workpiece tested thereby | |
JP2000161948A (en) | Circuit pattern inspection apparatus and circuit pattern inspection method | |
CN119688708A (en) | System, method and computer readable storage medium for detecting wafer cracks | |
JP4876744B2 (en) | Inspection device | |
JP3482425B2 (en) | Inspection device | |
KR100532238B1 (en) | Thin film inspection method, apparatus and inspection system used therein | |
US20090316981A1 (en) | Method and device for inspecting a disk-shaped object | |
JP4681153B2 (en) | CCD camera automatic switching method and system in scanning electron microscope with laser defect detection function | |
JP3665194B2 (en) | Circuit pattern inspection method and inspection apparatus | |
JP2006227026A (en) | Pattern test method and device | |
JP2002122552A (en) | Defect inspection device and method | |
JP4924931B2 (en) | Stencil mask inspection method and apparatus | |
JPH11274256A (en) | Sample checking device | |
KR102762562B1 (en) | Apparatus detecting fine particle and automatic optical inspector including the same, and method detecting fine particle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20040303 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20040526 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080212 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20091113 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20091124 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100804 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100817 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101014 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101102 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101228 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110201 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110204 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4681153 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140210 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140210 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140210 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |