JP4665109B2 - ポリマーベースのステントアセンブリ - Google Patents
ポリマーベースのステントアセンブリ Download PDFInfo
- Publication number
- JP4665109B2 JP4665109B2 JP2007505390A JP2007505390A JP4665109B2 JP 4665109 B2 JP4665109 B2 JP 4665109B2 JP 2007505390 A JP2007505390 A JP 2007505390A JP 2007505390 A JP2007505390 A JP 2007505390A JP 4665109 B2 JP4665109 B2 JP 4665109B2
- Authority
- JP
- Japan
- Prior art keywords
- cylindrical device
- polymer
- stent
- diameter
- polymeric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/95—Instruments specially adapted for placement or removal of stents or stent-grafts
- A61F2/9522—Means for mounting a stent or stent-graft onto or into a placement instrument
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/04—Macromolecular materials
- A61L31/06—Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/04—Polyesters derived from hydroxycarboxylic acids, e.g. lactones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/95—Instruments specially adapted for placement or removal of stents or stent-grafts
- A61F2/958—Inflatable balloons for placing stents or stent-grafts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2210/00—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2210/0004—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof bioabsorbable
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Veterinary Medicine (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Cardiology (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Surgery (AREA)
- Epidemiology (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Gastroenterology & Hepatology (AREA)
- Pulmonology (AREA)
- Materials For Medical Uses (AREA)
- Media Introduction/Drainage Providing Device (AREA)
- Prostheses (AREA)
- Surgical Instruments (AREA)
- Dental Preparations (AREA)
Description
本発明は、哺乳動物被験体(好ましくは、ヒト被験体)の管(tube)、管路(duct)、または脈管(vessel)(尿道、胆管、血管、リンパ管、気管支、または前立腺管が挙げられるが、これらに限定されない)の形状を維持するための、ポリマーベースのステントアセンブリに関し、このアセンブリは、膨張可能なバルーンカテーテルと、ポリマーベースのステントとを、備える。より具体的には、本発明は、哺乳動物被験体の管、管路、または脈管中に移植された場合に、緩和関連性の負の反動をほとんど示さないかまたは全く示さない、分解性のポリマーステントを備えるアセンブリに関する。
アテローム性動脈硬化症は、コレステロール結晶、壊死性細胞、脂質プール、過剰な線維エレメント、およびカルシウム沈着物からなる脈管病変またはプラークが、個体の動脈内壁に蓄積する疾患である。動脈におけるそのようなプラークの存在は、動脈壁の肥厚および管腔の狭窄をもたらす。最終的には、そのようなプラークの増大は、その病変部位における動脈管腔の閉塞をもたらし得る。冠状動脈のアテローム性動脈硬化症を処置するための最も成功する処置のうちの1つは、経皮的経管的冠状動脈形成術(本明細書中で、以後「PTC血管形成術」と呼ばれる)である。PTC血管形成術は、アテローム性動脈の管腔中へと収縮したバルーンを導入する工程;そのバルーンを、プラークまたはアテローム性動脈硬化症性病変の部位に近接して配置する工程;そのバルーンを、約6atm〜約20atmの圧力まで膨張させ、それによってそのプラークを「破壊」し、その動脈の管腔の断面積を増加させる工程;からなる。
Lafontら,Restenosis After Experimental Angioplasty,Circulation Res.(1995)76:996〜1002
本発明は、膨張可能なバルーンカテーテルと、ポリマーベースのステントとを備える、ポリマーベースのステントアセンブリを調製するための方法を提供し、このポリマーベースのステントは、哺乳動物被験体(特に、ヒト被験体)の血管または管路に移植された場合に、緩和関連の負の反動に対して抵抗性である。そのポリマーベースのステントは、ポリマー(好ましくは、分解性かつ生体吸収性のポリマー)から形成された壁を備える、中空の円筒状デバイスの形態である。そのような壁は、第一開放端、第二開放端、およびその第一開放端からその第二開放端まで延びるチャネルを規定する。その壁は、その壁の厚みを実質的には変化させることなくその円筒状デバイスの直径減少および直径増加を許容する、開放空間またはスリットを中に組み込んでいる。
(定義)
「生体吸収性ポリマー」とは、本明細書中で使用される場合、その分解副産物が、人体において自然の経路を介して生体同化または排出され得る、ポリマーを指す。
本発明のアセンブリのステントは、37℃よりも少なくとも8℃高いTg、好ましくは37℃よりも少なくとも20℃高いTgを有する分解性かつ生体吸収性のポリマーから形成される。上記ステントの壁を形成するポリマーは、ホモポリマーであっても、コポリマーであってもよい。好ましくは、このポリマーは、分解の間に小さい炎症結晶残渣の形成のリスクを最小にするために、全体的に非晶質である。このポリマーの鎖は、架橋していない。しかし、上記デバイスの教育、クリンピング、および展開を許容する熱的特徴および粘弾性特徴が維持される条件下では、軽度の架橋が許容される。特定の実施形態において、このポリマーは、約45℃〜約120℃のTgを有する。本発明のステントにとって適切なポリマーの型の例としては、乳酸ベースステレオコポリマー(L単位とD単位とから構成されるPLAxコポリマー(Xは、L−ラクチル単位の割合である)(55<Tg<60)、乳酸とグリコール酸とのコポリマー(PLAxGAy(X(L−ラクチル単位の割合)およびY(グリコリル単位の割合)は、コポリマーのTgが約45℃であるようになっている)、ならびにポリ(乳酸−co−グリコール酸−co−グルコン酸)(そのグルコニル単位のOH基は、多少置換され得る(PLAxGayGLx(X(L−ラクチル単位の割合)およびY(グリコリル単位の割合)およびZ(グルコニル単位の割合)は、そのターポリマーのTgが45℃よりも高いようになっている))が挙げられるが、これらに限定されない。他の適切なポリマーとしては、ポリ乳酸(PLA)、ポリグリコール酸(PGA)、ポリグラクチン(PLAGAコポリマー)、ポリグリコネート(トリメチレンカーボネートとグリコリドとのコポリマー、ならびにポリグリコリドまたは乳酸もしくはポリ乳酸とε−カプロラクトンとのコポリマー)が挙げられるが、これらに限定されず、但し、上記ポリマーは、少なくとも45℃以上のTgを有する。
別の局面において、本発明は、本発明のポリマーベースのステントおよびステントアセンブリを調製するための方法に関する。初期ポリマー性円筒状デバイスが、所定の最終的な直径よりも小さい直径を有する場合、スリットまたは開口部が、上記の円筒状デバイス中に形成され、その後、その円筒状デバイスは、最終的な形状および直径になるように変形または拡張される。これは、バルーンをそのポリマー性円筒状デバイス(本明細書中で、以後、「事前切断された円筒状デバイス」と呼ばれる)中に挿入し、その事前切断された円筒状デバイスをその事前切断された円筒状デバイスを形成するために使用されるポリマーのTg以上の温度まで加熱し、そして移植されたステントの所定の最終的な内径とほぼ等しいかまたはわずかにそれよりも大きいサイズになるまでそのバルーンを膨張させることによって、達成される。その拡張された事前切断された円筒状デバイスを、例えば、その事前切断された円筒状デバイスを固体支持体に取り付けることによって所定の最終的な形状、サイズ、および直径にて維持するが、その事前切断された円筒状デバイスは、あらゆる事前プロセスに関連する記憶を消して所定の最終的な形状、サイズ、および直径の記憶を獲得するように、教育される。初期円筒状デバイスが所定の最終的な形状、サイズ、および直径において形成される場合において、そのような変形工程または拡張工程は、必要とされない。初期円筒状デバイスが所定の最終的な形状、サイズ、および直径において形成される場合において、その円筒状デバイス中のスリットまたは開口部は、下記のような教育工程の前または後に作製され得る。
上記円筒状でデバイスを教育するため、そしてそれによって緩和関連反動に対して抵抗性であるステントを開発するために適切な、温度および時間は、本発明のステントアセンブリのバルーンカテーテルを所定の最終的な直径になるまで膨張させること、収縮後のバルーンカテーテルを除去すること、そして拡張したステントを37℃にて保存することによって、評価され得る。ステントが、これらの条件下で4〜6週間、または好ましくは経皮的経管的冠状動脈(PTC)形成術から動脈壁を除去するために見積もられる時間保存された場合にほとんど反動を示さないかもしくは全く反動を示さない場合に、そのステントを教育するために使用される時間および温度が、適切である。そのポリマーステントが少しの反動を示す場合において、上記円筒状デバイスは、その少しの負の反動を補償するために、所定の最終的な直径よりもわずかに大きな直径で教育され得る。
本発明のポリマーベースのステントアセンブリは、哺乳動物皮被験体の管路、管、または脈管(例えば、血管)中に、好ましくはガイドカテーテルと組み合わせて導入され、そして標的部位(例えば、狭窄病変部位)へと前進される。上記のポリマーベースのステントアセンブリが、その標的部位に配置された後、バルーンが急速に膨張され、それによって、上記ステントが、望ましい最終的な直径またはその最終的な直径よりもわずかに小さい直径まで拡張させられる。必要に応じて、上記の膨張流体、バルーン、およびステントは、拡張を補助するために体温よりも高い温度まで加熱される。このプロセスの間に、そのステントの直径は増加するが、そのステントの壁厚は、実質的には同じままである。
ポリマーチューブを、PLA75(サイズ排除クロマトグラフィーによって決定した場合に、Mw=約130,000、Mw/Mn=1.8、Tg約58℃)から、1.2mm/1・4mmの内径/外径の色素を通して押出すことによって形成した。その後、スリットを、壁厚を変えることなく小さい直径のポリマー性円筒状デバイスの拡張を可能にする設計に従って、フェムト秒パルスレーザーを使用して、その押出したチューブ中に切り込んだ。その小さい直径の円筒状デバイスを、収縮した4mmのバルーンに取り付け、加熱浴において65℃まで加熱し、そしてそのバルーンを膨張することによって4mmまで拡張させた。その後、得られたアセンブリを、ほぼ室温まで急速に冷却した。そのバルーンを取り出し、4mmのステンレス鋼支持体を、上記円筒状デバイス中に挿入して、そのデバイスがその所定の最終的な直径および形状になるように固定した。事前加工のあらゆる記憶を消すため、そしてその円筒状デバイスに対してこの最終的な直径および形状の記憶を付与するために、上記ステンレス鋼支持体に取り付けたデバイスを、80℃に予熱したオーブンにおいて30分間加熱した。その後、この教育された円筒状デバイスを、温度20℃の流水中に挿入することによって室温まで急速に冷却した。一方で、このデバイスは、依然として上記支持体上に取り付けられていた。この冷却は、上記ポリマー性デバイスを硬化する効果を有する。その後、この新たに成形されたステントを、新たな収縮したバルーンに取り付け、その後、このバルーンおよびステントの両方を、65℃まで加熱した。65℃とは、このデバイスの変形を可能にするためには十分に高いが、短時間でその鎖を再構成させるために十分に高いものではない、温度である。その後、このステントを、そのステントの外部表面に対して等しい圧力を適用することによって、上記バルーンにクリンピングした。このステントを、金属製ステントのクリンピングのために代表的に使用される標準的システムを使用することによって、収縮したバルーンにクリンピングした。そのようなシステムは、そのデバイスの外部表面に等しい半径方向の圧力を適用する。一旦、その直径が、収縮したバルーンに安定に適合するために十分に小さいサイズまで減少した後で、この圧力を、維持し、一方で、縮小した取り付けられたステントを急速に冷却して、このステントをクリンピングされた形状および減少した直径にて硬化させた。この硬化によって、バルーンにおけるステントのぴったりした適合が確保された。
ポリマーチューブを、PLA75(サイズ排除クロマトグラフィーによって決定した場合に、Mw=約130,000、Mw/Mn=1.8、Tg約55℃)から、4.0mm/4.2mmの内径/外径の色素を通して押出すことによって形成した。その後、間隙空間を、得られた教育されたポリマー性円筒状デバイスを壁厚を改変することなく小さい直径まで縮小することを可能にする設計に従って、フェムト秒パルスレーザーを使用して、その押出したチューブ中に切り込んだ。4mmのステンレス鋼支持体を、上記円筒状デバイス中に挿入して、そのデバイスがその所定の最終的な直径および形状になるように固定した。事前加工のあらゆる記憶を消すため、そしてその円筒状デバイスに対してこの最終的な直径および形状の記憶を付与するために、上記ステンレス鋼支持体に取り付けたデバイスを、80℃に予熱したオーブンにおいて30分間加熱した。その後、この教育された円筒状デバイスを、温度20℃の流水中に挿入することによって室温まで急速に冷却した。一方で、このデバイスは、依然として上記支持体上に取り付けられていた。この冷却は、上記ポリマー性デバイスを硬化する効果を有する。その後、この教育されたステントを、新たな収縮したバルーンに取り付け、その後、このバルーンおよびステントの両方を、65℃まで加熱した。65℃とは、このデバイスの変形を可能にするためには十分に高いが、短時間でその鎖を再構成させるために十分に高いものではない、温度である。その後、このステントを、そのステントの外部表面に対して等しい圧力を適用することによって、上記バルーンにクリンピングした。一旦、その直径が、収縮したバルーンに安定に適合するために十分に小さいサイズまで減少した後で、この圧力を、維持し、一方で、縮小した取り付けられたステントを急速に冷却して、このステントをクリンピングされた形状および減少した直径にて硬化させた。この硬化によって、バルーンにおけるステントのぴったりした適合が確保された。
ポリマーチューブを、PLA50(サイズ排除クロマトグラフィーによって決定した場合に、Mw=約145,000、Mw/Mn=1.6、Tg約58℃)から、1.2mm/1.4mmの内径/外径の色素を通して押出すことによって形成した。このチューブを、上記実施例1において記載されるように加工して、本発明のステントアセンブリを提供した。
ポリマーチューブを、PLA50(サイズ排除クロマトグラフィーによって決定した場合に、Mw=約145,000、Mw/Mn=1.6、Tg約55℃)から、4.0mm/4.2mmの内径/外径の色素を通して押出すことによって形成した。このチューブを、上記実施例2において記載されるように加工して、本発明のステントアセンブリを提供した。
ポリマーチューブを、PLA62.5(サイズ排除クロマトグラフィーによって決定した場合に、Mw=約165,000、Mw/Mn=1.7、Tg約56℃)から、1.2mm/1.4mmの内径/外径の色素を通して押出すことによって形成した。このチューブを、上記実施例1において記載されるように加工して、本発明のステントアセンブリを提供した。
ポリマーチューブを、PLA62.5(サイズ排除クロマトグラフィーによって決定した場合に、Mw=約165,000、Mw/Mn=1.7、Tg約56℃)から、4.0mm/4.2mmの内径/外径の色素を通して押出すことによって形成した。このチューブを、上記実施例2において記載されるように加工して、本発明のステントアセンブリを提供した。
ポリマーチューブを、PLA96GA4(サイズ排除クロマトグラフィーによって決定した場合に、Mw=約185,000、Mw/Mn=1.8、Tg約51℃)から、1.2mm/1.4mmの内径/外径の色素を通して押出すことによって形成した。このチューブを、上記実施例1において記載されるように加工して、本発明のステントアセンブリを提供した。
ポリマーチューブを、PLA96G4(サイズ排除クロマトグラフィーによって決定した場合に、Mw=約185,000、Mw/Mn=1.8、Tg約51℃)から、4.0mm/4.2mmの内径/外径の色素を通して押出すことによって形成した。このチューブを、上記実施例2において記載されるように加工して、本発明のステントアセンブリを提供した。
Claims (10)
- 緩和関連の負の反動に対して抵抗性である分解性かつ生体吸収性のポリマーステントを哺乳動物被験体に送達するためのアセンブリを調製するための方法であって、該方法は、
(a)所定の最終的な半径および形状であるポリマー性円筒状デバイスを、該ポリマーのガラス転移温度(Tg)よりも高い温度まで、該ポリマー性デバイスの事前加工の記憶を消すために十分な時間の間、加熱する工程であって、該ポリマー性円筒状デバイスは、壁を有し、該壁は、第一開放端、第二開放端、および該第一開放端と該第二開放端とを接続するチャネルを規定する、工程;
(b)該ポリマー性円筒状デバイスを、該ポリマーのTgよりも低い温度にて急速に冷却して、該ポリマー性円筒状デバイスを急冷し、そして該所定の最終的な直径および形状の記憶を有するポリマー性円筒状デバイスを提供する工程;
(c)工程(a)の前または工程(b)の後に、該ポリマー性円筒状デバイスの壁においてスリット、間隙、または開放空間を形成する工程であって、該スリット、間隙、または開放空間は、該デバイスの壁厚を実質的には変化させることなく該デバイスの直径の減少を可能にするような構成である、工程;
(d)該所定の最終的な直径および形状の記憶を有するポリマー性円筒状デバイスを、膨張可能なバルーンカテーテルに取り付ける工程;
(e)該円筒状デバイスを該ポリマーのTgの温度またはTgよりも高い温度まで加熱しつつ、該円筒状デバイスの壁の外部表面に圧力を一様に付与することによって、該円筒状デバイスの直径を減少させる工程;および
(f)その後、該円筒状デバイスを該ポリマーのTgよりも低くなるまで急速に冷却して、膨張可能なバルーンカテーテルと拡張可能なポリマーステントとを備えるアセンブリを提供する工程であって、該ポリマーステントは、該哺乳動物被験体の管、管路、もしくは脈管の管腔中に移植された場合にかまたは拡張されて37℃で4週間以上保存された場合、緩和関連の負の反動に対して実質的に抵抗性である、工程;
を包含し、ここで、該工程(e)の加熱に用いられる温度が、該工程(a)の加熱に用いられる温度よりも低い、方法。 - 請求項1に記載の方法であって、前記円筒状デバイスは、工程(a)および工程(b)の間に、該デバイスの直径および形状を維持するための支持体に取り付けられる、方法。
- 請求項1に記載の方法であって、前記ステントは、PLAおよびステレオコポリマー(L単位とD単位とから構成されるコポリマー)、PLAGA、ポリ(乳酸−co−グリコール酸−co−グルコン酸)から選択されるポリマーから形成される、方法。
- 請求項1に記載の方法であって、前記円筒状デバイスの膜厚は、工程(e)の間に、標的の管、管路、または脈管の管腔の直径よりも小さい直径まで縮小される、方法。
- 請求項1に記載の方法であって、前記円筒状デバイスは、工程(e)の前後で同じである、方法。
- 請求項1に記載の方法に従って調製される、膨張可能なバルーンとポリマーステントとを備えるアセンブリ。
- 哺乳動物被験体の管、管路、または脈管の管腔中に移植するための分解性かつ生体吸収性のポリマーステントを調製するための方法であって、該方法は、
(a)所定の最終的な半径および形状であるポリマー性円筒状デバイスを、該ポリマーのガラス転移温度(Tg)よりも高い温度まで、該ポリマー性デバイスの事前加工の記憶を消すために十分な時間の間、加熱する工程であって、該ポリマー性円筒状デバイスは、壁を有し、該壁は、第一開放端、第二開放端、および該第一開放端と該第二開放端とを接続するチャネルを規定する、工程;
(b)該ポリマー性円筒状デバイスを該ポリマーのTgよりも低い温度になるまで急速に冷却して、該ポリマー性円筒状デバイスを急冷し、そして該所定の最終的な直径および形状の記憶を有するポリマー性円筒状デバイスを提供する工程;
(c)工程(a)の前または工程(b)の後に、該ポリマー性円筒状デバイスの壁においてスリット、間隙、または開放空間を形成する工程;
を包含し、該ステントは、被験体の血管中で展開された場合にかまたは所定の最終的な形状および直径まで拡張されて37℃にて4週間以上保存された場合には、緩和関連の負の反動に対して抵抗性である、方法。 - 請求項7に記載の方法であって、前記円筒状デバイスは、工程(a)および工程(b)の間に、該デバイスの直径および形状を維持するための支持体に取り付けられる、方法。
- 請求項7に記載の方法であって、前記ステントは、PLAおよびステレオコポリマー(L単位とD単位とから構成されるコポリマー)、PLAGA、ポリ(乳酸−co−グリコール酸−co−グルコン酸)から選択されるポリマーから形成される、方法。
- 請求項7に記載の方法に従って作製された、ステント。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/EP2004/004133 WO2005096992A1 (en) | 2004-04-02 | 2004-04-02 | Polymer-based stent assembly |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010115763A Division JP5282069B2 (ja) | 2010-05-19 | 2010-05-19 | ポリマーベースのステントアセンブリ |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2007530187A JP2007530187A (ja) | 2007-11-01 |
JP2007530187A5 JP2007530187A5 (ja) | 2008-07-10 |
JP4665109B2 true JP4665109B2 (ja) | 2011-04-06 |
Family
ID=34957299
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007505390A Expired - Fee Related JP4665109B2 (ja) | 2004-04-02 | 2004-04-02 | ポリマーベースのステントアセンブリ |
Country Status (13)
Country | Link |
---|---|
US (2) | US7731740B2 (ja) |
EP (1) | EP1737387B1 (ja) |
JP (1) | JP4665109B2 (ja) |
KR (1) | KR101098267B1 (ja) |
CN (1) | CN1960684B (ja) |
AT (1) | ATE442822T1 (ja) |
AU (1) | AU2004318159B8 (ja) |
BR (1) | BRPI0418712B8 (ja) |
CA (1) | CA2563023C (ja) |
DE (1) | DE602004023237D1 (ja) |
ES (1) | ES2330849T3 (ja) |
HK (1) | HK1102420A1 (ja) |
WO (1) | WO2005096992A1 (ja) |
Families Citing this family (73)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6863683B2 (en) | 2001-09-19 | 2005-03-08 | Abbott Laboratoris Vascular Entities Limited | Cold-molding process for loading a stent onto a stent delivery system |
KR20060028695A (ko) * | 2003-06-16 | 2006-03-31 | 난양 테크놀러지컬 유니버시티 | 고분자 스텐트 및 이의 제조 방법 |
CA2563023C (en) | 2004-04-02 | 2012-01-24 | Arterial Remodelling Technologies, Inc. | Polymer-based stent assembly |
US8999364B2 (en) | 2004-06-15 | 2015-04-07 | Nanyang Technological University | Implantable article, method of forming same and method for reducing thrombogenicity |
US20060013853A1 (en) * | 2004-07-19 | 2006-01-19 | Richard Robert E | Medical devices having conductive substrate and covalently bonded coating layer |
US7971333B2 (en) | 2006-05-30 | 2011-07-05 | Advanced Cardiovascular Systems, Inc. | Manufacturing process for polymetric stents |
US8747879B2 (en) | 2006-04-28 | 2014-06-10 | Advanced Cardiovascular Systems, Inc. | Method of fabricating an implantable medical device to reduce chance of late inflammatory response |
US9517149B2 (en) | 2004-07-26 | 2016-12-13 | Abbott Cardiovascular Systems Inc. | Biodegradable stent with enhanced fracture toughness |
US7731890B2 (en) * | 2006-06-15 | 2010-06-08 | Advanced Cardiovascular Systems, Inc. | Methods of fabricating stents with enhanced fracture toughness |
WO2006125215A2 (en) * | 2005-05-19 | 2006-11-23 | Biophan Technologies, Inc. | Electromagnetic resonant circuit sleeve for implantable medical device |
US20070038290A1 (en) * | 2005-08-15 | 2007-02-15 | Bin Huang | Fiber reinforced composite stents |
US20090076594A1 (en) * | 2006-03-14 | 2009-03-19 | Patrick Sabaria | Method of monitoring positioning of polymer stents |
US8333000B2 (en) | 2006-06-19 | 2012-12-18 | Advanced Cardiovascular Systems, Inc. | Methods for improving stent retention on a balloon catheter |
US7833260B2 (en) | 2006-07-20 | 2010-11-16 | Orbusneich Medical, Inc. | Bioabsorbable polymeric medical device |
WO2008011614A2 (en) | 2006-07-20 | 2008-01-24 | Orbusneich Medical, Inc. | Bioabsorbable polymeric medical device |
US7846361B2 (en) | 2006-07-20 | 2010-12-07 | Orbusneich Medical, Inc. | Bioabsorbable polymeric composition for a medical device |
US7959942B2 (en) | 2006-10-20 | 2011-06-14 | Orbusneich Medical, Inc. | Bioabsorbable medical device with coating |
CN103212115B (zh) | 2006-10-20 | 2016-09-14 | 奥巴斯尼茨医学公司 | 可生物吸收的聚合物组合物和医疗设备 |
US8636787B2 (en) | 2006-10-25 | 2014-01-28 | Arterial Remodeling Technologies, S.A. | Method for expansion and deployment of polymeric structures including stents |
US20080177373A1 (en) * | 2007-01-19 | 2008-07-24 | Elixir Medical Corporation | Endoprosthesis structures having supporting features |
US8814930B2 (en) | 2007-01-19 | 2014-08-26 | Elixir Medical Corporation | Biodegradable endoprosthesis and methods for their fabrication |
US20130150943A1 (en) | 2007-01-19 | 2013-06-13 | Elixir Medical Corporation | Biodegradable endoprostheses and methods for their fabrication |
US8002817B2 (en) * | 2007-05-04 | 2011-08-23 | Abbott Cardiovascular Systems Inc. | Stents with high radial strength and methods of manufacturing same |
US20090163985A1 (en) * | 2007-12-19 | 2009-06-25 | Vipul Dave | Method of Retaining a Polymeric Stent on an Expansion Member |
US8414638B2 (en) * | 2008-03-12 | 2013-04-09 | Abbott Cardiovascular Systems Inc. | Method for fabricating a polymer stent with break-away links for enhanced stent retenton |
US8206636B2 (en) | 2008-06-20 | 2012-06-26 | Amaranth Medical Pte. | Stent fabrication via tubular casting processes |
US8206635B2 (en) | 2008-06-20 | 2012-06-26 | Amaranth Medical Pte. | Stent fabrication via tubular casting processes |
US10898620B2 (en) | 2008-06-20 | 2021-01-26 | Razmodics Llc | Composite stent having multi-axial flexibility and method of manufacture thereof |
US20110319987A1 (en) | 2009-05-20 | 2011-12-29 | Arsenal Medical | Medical implant |
US8137396B2 (en) * | 2009-05-20 | 2012-03-20 | 480 Biomedical, Inc | Medical implant |
US8992601B2 (en) | 2009-05-20 | 2015-03-31 | 480 Biomedical, Inc. | Medical implants |
US9265633B2 (en) | 2009-05-20 | 2016-02-23 | 480 Biomedical, Inc. | Drug-eluting medical implants |
US8888840B2 (en) * | 2009-05-20 | 2014-11-18 | Boston Scientific Scimed, Inc. | Drug eluting medical implant |
US9309347B2 (en) | 2009-05-20 | 2016-04-12 | Biomedical, Inc. | Bioresorbable thermoset polyester/urethane elastomers |
CA2775505C (en) | 2009-10-06 | 2018-01-02 | Arterial Remodeling Technologies, Sa | Bioresorbable vascular implant having homogenously distributed stresses under a radial load |
US8568471B2 (en) | 2010-01-30 | 2013-10-29 | Abbott Cardiovascular Systems Inc. | Crush recoverable polymer scaffolds |
JP5914938B2 (ja) * | 2010-01-30 | 2016-05-11 | アボット カーディオヴァスキュラー システムズ インコーポレイテッド | 圧縮復元可能な高分子スキャフォールド |
US8808353B2 (en) | 2010-01-30 | 2014-08-19 | Abbott Cardiovascular Systems Inc. | Crush recoverable polymer scaffolds having a low crossing profile |
US8844113B2 (en) * | 2010-04-30 | 2014-09-30 | Abbott Cardiovascular Systems, Inc. | Methods for crimping a polymeric stent scaffold onto a delivery balloon |
US8261423B2 (en) | 2010-04-30 | 2012-09-11 | Abbott Cardiovascular Systems Inc. | Methods for crimping a polymeric stent onto a delivery balloon |
US9345602B2 (en) * | 2010-09-23 | 2016-05-24 | Abbott Cardiovascular Systems Inc. | Processes for making crush recoverable polymer scaffolds |
CN102429749A (zh) * | 2011-07-27 | 2012-05-02 | 微创医疗器械(上海)有限公司 | 一种新的生物可降解支架的加工方法 |
US8726483B2 (en) | 2011-07-29 | 2014-05-20 | Abbott Cardiovascular Systems Inc. | Methods for uniform crimping and deployment of a polymer scaffold |
CN102379762B (zh) * | 2011-08-02 | 2015-03-25 | 上海微创医疗器械(集团)有限公司 | 一种带凹槽的生物可降解支架及其制备方法 |
CN102247623B (zh) * | 2011-08-17 | 2014-07-23 | 上海微创医疗器械(集团)有限公司 | 一种具备形状记忆性能的多层可降解支架及其制备方法 |
CN102327652A (zh) * | 2011-09-28 | 2012-01-25 | 微创医疗器械(上海)有限公司 | 一种生物可降解支架及其制备方法 |
US8968387B2 (en) | 2012-07-23 | 2015-03-03 | Abbott Cardiovascular Systems Inc. | Shape memory bioresorbable polymer peripheral scaffolds |
EP2911622B1 (en) * | 2012-10-25 | 2017-06-21 | Arterial Remodeling Technologies S.A. | Crimping method for bioresorbable stents |
EP2916901B1 (en) | 2012-11-12 | 2020-06-24 | Hollister Incorporated | Intermittent catheter assembly |
LT2919825T (lt) | 2012-11-14 | 2018-12-10 | Hollister Incorporated | Vienkartinis kateteris su selektyviai skaidoma vidine šerdimi |
EP2999493B1 (en) | 2013-05-23 | 2022-09-07 | S.T.S. Medical Ltd. | Shape change structure |
DK3065793T3 (da) | 2013-11-08 | 2021-05-17 | Hollister Inc | Oleofile smurte katetre |
LT3079752T (lt) | 2013-12-12 | 2020-04-27 | Hollister Incorporated | Praplaunamas kateteris |
AU2014363920B2 (en) | 2013-12-12 | 2017-08-31 | Hollister Incorporated | Flushable catheters |
US10420859B2 (en) | 2013-12-12 | 2019-09-24 | Hollister Incorporated | Flushable catheters |
LT3079748T (lt) | 2013-12-12 | 2020-07-27 | Hollister Incorporated | Srove nuplaunamas suyrantis kateteris |
US9730819B2 (en) | 2014-08-15 | 2017-08-15 | Elixir Medical Corporation | Biodegradable endoprostheses and methods of their fabrication |
US9855156B2 (en) | 2014-08-15 | 2018-01-02 | Elixir Medical Corporation | Biodegradable endoprostheses and methods of their fabrication |
US9259339B1 (en) | 2014-08-15 | 2016-02-16 | Elixir Medical Corporation | Biodegradable endoprostheses and methods of their fabrication |
US9480588B2 (en) | 2014-08-15 | 2016-11-01 | Elixir Medical Corporation | Biodegradable endoprostheses and methods of their fabrication |
US9931787B2 (en) | 2014-09-18 | 2018-04-03 | Abbott Cardiovascular Systems Inc. | Crimping polymer scaffolds |
US9795497B2 (en) | 2014-09-18 | 2017-10-24 | Abbott Cardiovascular Systems Inc. | Thermal processing of polymer scaffolds |
US10912663B2 (en) | 2014-11-26 | 2021-02-09 | S.T.S. Medical Ltd. | Shape change structure for treatment of nasal conditions including sinusitis |
US9999527B2 (en) * | 2015-02-11 | 2018-06-19 | Abbott Cardiovascular Systems Inc. | Scaffolds having radiopaque markers |
LT3310404T (lt) | 2015-06-17 | 2024-04-10 | Hollister Incorporated | Selektyviai vandenyje tirpstančios medžiagos ir iš tokių medžiagų kateteriai |
US20160374838A1 (en) * | 2015-06-29 | 2016-12-29 | Abbott Cardiovascular Systems Inc. | Drug-eluting coatings on poly(dl-lactide)-based scaffolds |
US9956099B2 (en) | 2015-12-17 | 2018-05-01 | Abbott Cardiovascular Systems Inc. | Thin-walled scaffolds having reduced crimp profile and carrying radiopaque markers |
US9861507B2 (en) * | 2015-12-17 | 2018-01-09 | Abbott Cardiovascular Systems Inc. | Thin-walled scaffolds having modified marker structure near distal end |
US10143573B2 (en) * | 2015-12-17 | 2018-12-04 | Abbott Cardiovascular Systems Inc. | Thin-walled scaffolds having flexible distal end |
US10010653B2 (en) * | 2016-02-05 | 2018-07-03 | Abbott Cardiovascular Systems Inc. | Methods for increasing coating strength to improve scaffold crimping yield |
US11622872B2 (en) | 2016-05-16 | 2023-04-11 | Elixir Medical Corporation | Uncaging stent |
EP3457985B1 (en) | 2016-05-16 | 2021-02-17 | Elixir Medical Corporation | Uncaging stent |
CN116115835A (zh) * | 2022-11-30 | 2023-05-16 | 浙江介尔欣医疗科技有限公司 | 一种生物可吸收聚合物支架及其制备方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0809981A1 (en) * | 1996-05-28 | 1997-12-03 | BioEngineered Materials, Inc. | Biodegradable stent |
Family Cites Families (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4927838A (en) * | 1987-07-10 | 1990-05-22 | Hoffman-La Roche Inc. | Pyridine compounds which are useful in treating a disease state characterized by an excess of platelet activating factors |
JP2561853B2 (ja) * | 1988-01-28 | 1996-12-11 | 株式会社ジェイ・エム・エス | 形状記憶性を有する成形体及びその使用方法 |
US6248129B1 (en) * | 1990-09-14 | 2001-06-19 | Quanam Medical Corporation | Expandable polymeric stent with memory and delivery apparatus and method |
US5258020A (en) * | 1990-09-14 | 1993-11-02 | Michael Froix | Method of using expandable polymeric stent with memory |
US5163952A (en) * | 1990-09-14 | 1992-11-17 | Michael Froix | Expandable polymeric stent with memory and delivery apparatus and method |
AU650700B2 (en) * | 1991-03-08 | 1994-06-30 | Keiji Igaki | Luminal stent, holding structure therefor and device for attaching luminal stent |
CA2087132A1 (en) * | 1992-01-31 | 1993-08-01 | Michael S. Williams | Stent capable of attachment within a body lumen |
US5212188A (en) * | 1992-03-02 | 1993-05-18 | R. J. Reynolds Tabacco Company | Method for treatment of neurodegenerative diseases |
US5716410A (en) * | 1993-04-30 | 1998-02-10 | Scimed Life Systems, Inc. | Temporary stent and method of use |
US5629077A (en) * | 1994-06-27 | 1997-05-13 | Advanced Cardiovascular Systems, Inc. | Biodegradable mesh and film stent |
AU3783295A (en) * | 1994-11-16 | 1996-05-23 | Advanced Cardiovascular Systems Inc. | Shape memory locking mechanism for intravascular stent |
US5604231A (en) * | 1995-01-06 | 1997-02-18 | Smith; Carr J. | Pharmaceutical compositions for prevention and treatment of ulcerative colitis |
US5824692A (en) * | 1995-01-06 | 1998-10-20 | Lippiello; Patrick Michael | Pharmaceutical compositions for prevention and treatment of central nervous system disorders |
US5597919A (en) * | 1995-01-06 | 1997-01-28 | Dull; Gary M. | Pyrimidinyl or Pyridinyl alkenyl amine compounds |
US5616707A (en) * | 1995-01-06 | 1997-04-01 | Crooks; Peter A. | Compounds which are useful for prevention and treatment of central nervous system disorders |
US5731314A (en) * | 1995-01-06 | 1998-03-24 | Bencherif; Merouane | Pharamceutical compositions for prevention and treatment of tourette's syndrome |
US5585388A (en) * | 1995-04-07 | 1996-12-17 | Sibia Neurosciences, Inc. | Substituted pyridines useful as modulators of acetylcholine receptors |
US5616717A (en) * | 1995-04-20 | 1997-04-01 | Boehringer Ingelheim Pharmaceuticals, Inc. | Process for the preparation of pure enantiomers of 1-(2-pyridyl)-2-cyclohexylethylamine |
US5616716A (en) * | 1996-01-06 | 1997-04-01 | Dull; Gary M. | (3-(5-ethoxypyridin)yl)-alkenyl 1 amine compounds |
US6979695B2 (en) * | 1996-04-23 | 2005-12-27 | Targacept, Inc. | Compounds capable of activating cholinergic receptors |
US6166048A (en) * | 1999-04-20 | 2000-12-26 | Targacept, Inc. | Pharmaceutical compositions for inhibition of cytokine production and secretion |
US20020052497A1 (en) * | 2000-03-09 | 2002-05-02 | Targacept, Inc. | Compounds capable of activating cholinergic receptors |
US5663356A (en) * | 1996-04-23 | 1997-09-02 | Ruecroft; Graham | Method for preparation of aryl substituted alefinic secondary amino compounds |
EP1997806A1 (en) * | 1996-04-23 | 2008-12-03 | Targacept, Inc. | Pahrmaceutical compositions for prevention and treatment of central nervous system disorders |
US5629325A (en) * | 1996-06-06 | 1997-05-13 | Abbott Laboratories | 3-pyridyloxymethyl heterocyclic ether compounds useful in controlling chemical synaptic transmission |
US5868781A (en) * | 1996-10-22 | 1999-02-09 | Scimed Life Systems, Inc. | Locking stent |
US5833651A (en) * | 1996-11-08 | 1998-11-10 | Medtronic, Inc. | Therapeutic intraluminal stents |
US5980551A (en) * | 1997-02-07 | 1999-11-09 | Endovasc Ltd., Inc. | Composition and method for making a biodegradable drug delivery stent |
US6531606B1 (en) * | 1997-02-21 | 2003-03-11 | Targacept, Inc. | Pharmaceutical compositions incorporating aryl substituted olefinic amine compounds |
US5861423A (en) * | 1997-02-21 | 1999-01-19 | Caldwell; William Scott | Pharmaceutical compositions incorporating aryl substituted olefinic amine compounds |
US5811442A (en) * | 1997-02-21 | 1998-09-22 | Bencherif; Merouane | Pharmaceutical compositions for the treatment of conditions associated with decreased blood flow |
US5957975A (en) * | 1997-12-15 | 1999-09-28 | The Cleveland Clinic Foundation | Stent having a programmed pattern of in vivo degradation |
DE69917224T2 (de) * | 1998-02-23 | 2004-09-09 | Massachusetts Institute Of Technology, Cambridge | Bioabbaubare polymere mit formgedächtnis |
TR200002451T2 (tr) * | 1998-02-23 | 2001-03-21 | Mnemo Science Gmbh | Şekil Belleği olan polimerler |
US6287314B1 (en) * | 1998-04-21 | 2001-09-11 | Advanced Cardiovascular Systems, Inc. | Stent deploying catheter system |
US6232316B1 (en) * | 1998-06-16 | 2001-05-15 | Targacept, Inc. | Methods for treatment of CNS disorders |
US20050131034A1 (en) * | 1998-06-16 | 2005-06-16 | Caldwell William S. | Compounds capable of activating cholinergic receptors |
US6218383B1 (en) * | 1998-08-07 | 2001-04-17 | Targacept, Inc. | Pharmaceutical compositions for the prevention and treatment of central nervous system disorders |
JP4889151B2 (ja) * | 1998-09-08 | 2012-03-07 | 株式会社 京都医療設計 | 脈管用ステント |
US6262124B1 (en) * | 1998-10-22 | 2001-07-17 | Gary Maurice Dull | Pharmaceutical compositions and methods for use |
US6455554B1 (en) * | 1999-06-07 | 2002-09-24 | Targacept, Inc. | Oxopyridinyl pharmaceutical compositions and methods for use |
US6338739B1 (en) * | 1999-12-22 | 2002-01-15 | Ethicon, Inc. | Biodegradable stent |
US6527801B1 (en) * | 2000-04-13 | 2003-03-04 | Advanced Cardiovascular Systems, Inc. | Biodegradable drug delivery material for stent |
US6485512B1 (en) * | 2000-09-27 | 2002-11-26 | Advanced Cardiovascular Systems, Inc. | Two-stage light curable stent and delivery system |
US6607553B1 (en) * | 2000-11-17 | 2003-08-19 | B. Braun Medical, Inc. | Method for deploying a thermo-mechanically expandable stent |
US7048939B2 (en) * | 2001-04-20 | 2006-05-23 | The Board Of Trustees Of The Leland Stanford Junior University | Methods for the inhibition of neointima formation |
US7128755B2 (en) * | 2001-06-01 | 2006-10-31 | Texas Stent Technologies, Inc. | Expandable biodegradable polymeric stents for combined mechanical support and pharmacological or radiation therapy |
JP4335002B2 (ja) * | 2001-08-02 | 2009-09-30 | コーネル・リサーチ・ファンデーション・インコーポレイテッド | 生分解性多価アルコールエステル |
US7572287B2 (en) * | 2001-10-25 | 2009-08-11 | Boston Scientific Scimed, Inc. | Balloon expandable polymer stent with reduced elastic recoil |
US20030216804A1 (en) * | 2002-05-14 | 2003-11-20 | Debeer Nicholas C. | Shape memory polymer stent |
US20040034405A1 (en) * | 2002-07-26 | 2004-02-19 | Dickson Andrew M. | Axially expanding polymer stent |
US20040045645A1 (en) * | 2002-09-10 | 2004-03-11 | Scimed Life Systems, Inc. | Shaped reinforcing member for medical device and method for making the same |
CA2501643C (en) * | 2002-10-11 | 2013-12-31 | University Of Connecticut | Shape memory polymers based on semicrystalline thermoplastic polyurethanes bearing nanostructured hard segments |
CA2563023C (en) * | 2004-04-02 | 2012-01-24 | Arterial Remodelling Technologies, Inc. | Polymer-based stent assembly |
-
2004
- 2004-04-02 CA CA2563023A patent/CA2563023C/en not_active Expired - Fee Related
- 2004-04-02 DE DE602004023237T patent/DE602004023237D1/de not_active Expired - Lifetime
- 2004-04-02 EP EP04725381A patent/EP1737387B1/en not_active Expired - Lifetime
- 2004-04-02 ES ES04725381T patent/ES2330849T3/es not_active Expired - Lifetime
- 2004-04-02 AT AT04725381T patent/ATE442822T1/de not_active IP Right Cessation
- 2004-04-02 BR BRPI0418712A patent/BRPI0418712B8/pt not_active IP Right Cessation
- 2004-04-02 US US10/508,739 patent/US7731740B2/en not_active Expired - Fee Related
- 2004-04-02 JP JP2007505390A patent/JP4665109B2/ja not_active Expired - Fee Related
- 2004-04-02 CN CN200480043183XA patent/CN1960684B/zh not_active Expired - Fee Related
- 2004-04-02 WO PCT/EP2004/004133 patent/WO2005096992A1/en active Application Filing
- 2004-04-02 KR KR1020067021212A patent/KR101098267B1/ko active IP Right Grant
- 2004-04-02 AU AU2004318159A patent/AU2004318159B8/en not_active Ceased
-
2007
- 2007-06-28 HK HK07106937.6A patent/HK1102420A1/xx not_active IP Right Cessation
-
2010
- 2010-04-21 US US12/764,447 patent/US9283094B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0809981A1 (en) * | 1996-05-28 | 1997-12-03 | BioEngineered Materials, Inc. | Biodegradable stent |
Also Published As
Publication number | Publication date |
---|---|
CN1960684B (zh) | 2013-11-06 |
KR101098267B1 (ko) | 2011-12-26 |
US20060058863A1 (en) | 2006-03-16 |
US20100204778A1 (en) | 2010-08-12 |
EP1737387A1 (en) | 2007-01-03 |
BRPI0418712B1 (pt) | 2019-06-18 |
CA2563023A1 (en) | 2005-10-20 |
KR20070018910A (ko) | 2007-02-14 |
BRPI0418712B8 (pt) | 2021-06-22 |
HK1102420A1 (en) | 2007-11-23 |
AU2004318159A1 (en) | 2005-10-20 |
AU2004318159B8 (en) | 2011-05-26 |
EP1737387B1 (en) | 2009-09-16 |
WO2005096992A1 (en) | 2005-10-20 |
ATE442822T1 (de) | 2009-10-15 |
CA2563023C (en) | 2012-01-24 |
ES2330849T3 (es) | 2009-12-16 |
BRPI0418712A (pt) | 2007-09-11 |
US7731740B2 (en) | 2010-06-08 |
CN1960684A (zh) | 2007-05-09 |
US9283094B2 (en) | 2016-03-15 |
DE602004023237D1 (de) | 2009-10-29 |
JP2007530187A (ja) | 2007-11-01 |
AU2004318159B2 (en) | 2011-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4665109B2 (ja) | ポリマーベースのステントアセンブリ | |
EP2004104B1 (en) | Improved methods of polymeric stent surface smoothing and resurfacing to reduce biologically active sites | |
US20090105800A1 (en) | Methods of minimizing stent contraction following deployment | |
US9326869B2 (en) | Method for expansion and development of polymeric structures including stents | |
JP2007530187A5 (ja) | ||
JP2006516466A (ja) | 吸収性/生分解性管状ステント及びその製造方法 | |
US20090133817A1 (en) | Stent manufacturing methods | |
JP5282069B2 (ja) | ポリマーベースのステントアセンブリ | |
JP5675756B2 (ja) | ポリマーベースのステントアセンブリ | |
JP2013046829A (ja) | ポリマーベースのステントアセンブリ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080526 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091120 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20100215 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20100222 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100519 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101112 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101203 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101206 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140121 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4665109 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |