[go: up one dir, main page]

JP4656994B2 - Hot water storage hot water supply device - Google Patents

Hot water storage hot water supply device Download PDF

Info

Publication number
JP4656994B2
JP4656994B2 JP2005120827A JP2005120827A JP4656994B2 JP 4656994 B2 JP4656994 B2 JP 4656994B2 JP 2005120827 A JP2005120827 A JP 2005120827A JP 2005120827 A JP2005120827 A JP 2005120827A JP 4656994 B2 JP4656994 B2 JP 4656994B2
Authority
JP
Japan
Prior art keywords
hot water
flow rate
path
tank
water storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005120827A
Other languages
Japanese (ja)
Other versions
JP2006300387A (en
Inventor
拓朗 早野
和也 山口
幹雄 高橋
祥明 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Tokyo Gas Co Ltd
Original Assignee
Takenaka Corp
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp, Tokyo Gas Co Ltd filed Critical Takenaka Corp
Priority to JP2005120827A priority Critical patent/JP4656994B2/en
Publication of JP2006300387A publication Critical patent/JP2006300387A/en
Application granted granted Critical
Publication of JP4656994B2 publication Critical patent/JP4656994B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、貯湯槽と循環水加熱手段を備え、貯湯槽内の温水が持つ熱量を床暖房や風呂の追い炊きのような熱負荷側との温水と熱交換する機構を少なくとも備えた貯湯式温水供給装置に関する。   The present invention comprises a hot water storage tank and circulating water heating means, and has at least a mechanism for exchanging heat with the hot water on the heat load side such as floor heating or bathing in the hot water in the hot water tank. The present invention relates to a hot water supply device.

貯湯式温水供給装置は知られている。通常、貯湯式温水供給装置は、貯湯槽と、貯湯槽の下部と上部とを繋ぐ第1の温水循環路と、第1の温水循環路に備えられた循環水加熱手段と、貯湯槽内の温水を直接風呂などに給湯する給湯路と、給湯された分の水を槽内に補給する給水路を備えている。さらに、第2の温水循環路を備え、そこに配置した熱負荷(床暖房や風呂の追い焚きなど)に貯湯槽内の温水の熱を供給するものもある。   Hot water storage type hot water supply devices are known. Usually, a hot water storage type hot water supply device includes a hot water storage tank, a first hot water circulation path connecting the lower and upper parts of the hot water storage tank, circulating water heating means provided in the first hot water circulation path, It has a hot water supply channel that supplies hot water directly to a bath and the like, and a water supply channel that supplies the hot water in the tank. In addition, there is also a device that includes a second hot water circulation path and supplies the heat of the hot water in the hot water tank to a heat load (floor heating, bathing, etc.) arranged there.

貯湯槽内の温水は、槽上部は高温、槽下部は低温である温度成層を形成する。槽下部の低温水は、第1の温水循環路を下部から上部に向けて循環する過程で、そこに備えた循環水加熱手段により所定温度(例えば60℃)に加熱され、槽上部に再び流入する。   The hot water in the hot water storage tank forms a temperature stratification in which the upper part of the tank is hot and the lower part of the tank is cold. The low-temperature water in the lower part of the tank is heated to a predetermined temperature (for example, 60 ° C.) by the circulating water heating means provided in the first hot water circulation path from the lower part to the upper part, and flows into the upper part of the tank again. To do.

貯湯槽内の温水は給湯路から槽上部から直接風呂などに給湯され、供給した分の水量は給水路を介して槽下部から貯湯槽内に補給される。第2の温水循環路は槽上部に温水出口を、槽下部に温水戻り口を持ち、貯湯槽内の高温の温水は、第2の温水循環路を循環する過程で、床暖房のような適宜の熱負荷と熱交換により放熱し、低温となった温水は再び貯湯槽内に戻される。   Hot water in the hot water tank is supplied directly from the hot water supply path to the bath or the like from the upper part of the tank, and the amount of water supplied is replenished into the hot water storage tank from the lower part of the tank through the water supply path. The second hot water circulation path has a hot water outlet at the top of the tank and a hot water return opening at the bottom of the tank, and hot water in the hot water tank is suitably used as in floor heating in the process of circulating through the second hot water circulation path. The heat water is radiated by heat exchange and heat exchange, and the hot water that has become low temperature is returned to the hot water tank again.

このような貯湯式温水供給装置において、加熱源としてヒートポンプユニットが多く用いられており、貯湯槽への給湯や外部熱負荷との熱交換性を向上させるため、あるいはヒートポンプユニットの沸き上げ性能低下を防止するため、などを目的に種々の提案がなされている(特許文献1,特許文献2など参照)。   In such a hot water storage type hot water supply device, a heat pump unit is often used as a heating source, so as to improve heat exchange with hot water supply to a hot water storage tank or an external heat load, or to reduce the boiling performance of the heat pump unit. In order to prevent this, various proposals have been made for the purpose (see Patent Document 1, Patent Document 2, etc.).

特許文献1に記載のものでは、熱負荷側に供給する温水を、貯湯槽上部の温水と加熱手段で加熱された温水に切り替える可能とするとともに、熱負荷側からの戻り水である低温水を加熱源側に直接供給できるようにしている。特許文献2に記載のものでは、熱負荷側からの戻り湯が中温の湯であることに鑑みて、戻り湯を貯湯槽の中間部位から貯湯槽内に戻すようにして下部にある低温水と戻り湯との混合を防止し、ヒートポンプユニットが貯湯槽の最下部にある自ら優先的に加熱するようにして、ヒートポンプユニットの沸き上げ性能が低下するのを防止している。   In the thing of patent document 1, while enabling the hot water supplied to the heat load side to be switched to the hot water at the upper part of the hot water tank and the hot water heated by the heating means, the low temperature water that is the return water from the heat load side is changed. It can be supplied directly to the heating source. In the thing of patent document 2, in view of the return hot water from the heat load side being medium temperature hot water, the return hot water is returned to the hot water storage tank from the intermediate part of the hot water storage tank, Mixing with return hot water is prevented, and the heat pump unit preferentially heats itself at the lowermost part of the hot water storage tank, thereby preventing the boiling performance of the heat pump unit from deteriorating.

特開2000−121157号公報JP 2000-121157 A 特開2004−183920号公報JP 2004-183920 A

貯湯式温水供給装置を効率よく運転するには、貯湯槽内の温水を加熱する加熱手段の形態に応じて、温水循環系などに種々の工夫をすることが必要であり、上記のように、加熱源がヒートポンプの場合には既に提案がなされている。近年、環境に対する負荷が小さいことから、燃料電池を動力源として用いることが種々の分野で注目されており、上記した貯湯式温水供給装置の分野でも、その加熱源として燃料電池、特に常温〜100℃程度の温度で運転可能なPEFC(高分子電解質形燃料電池)を運転するときに発生する熱を用いることが試みられている。この方法は、燃料電池の運転で作られる電気を無駄なく利用できる利点もある。   In order to efficiently operate the hot water storage type hot water supply device, it is necessary to make various contrivances in the hot water circulation system, etc. according to the form of the heating means for heating the hot water in the hot water tank, Proposals have already been made when the heat source is a heat pump. In recent years, since the load on the environment is small, the use of a fuel cell as a power source has attracted attention in various fields. In the field of the hot water storage type hot water supply device described above, a fuel cell, particularly room temperature to 100 Attempts have been made to use the heat generated when operating a PEFC (Polymer Electrolyte Fuel Cell) that can be operated at a temperature of about 0C. This method also has an advantage that the electricity generated by the operation of the fuel cell can be used without waste.

ところで、燃料電池(例えば、高分子電解質形燃料電池)を貯湯式温水供給装置の貯湯槽に貯留した温水の加熱に用いる場合、燃料電池出口温度(すなわち燃料電池の運転時に生成される熱を熱回収した後の温水温度)が一定の温度(例えば60℃程度)となるように流量を制御して装置の運転を行うようにしており、貯湯槽の下部から供給される温水の温度が低い場合には、燃料電池への入り口流量(すなわち燃料電池の運転によって生じる熱を回収するために燃料電池側に入り込むときの流量)が絞られる。そのために、燃料電池側循環流量が低い状態で運転を行わざるを得なくなる。そのために、貯湯槽内に供給される温水の流量が少なくなり、貯湯槽内の高温水が減少して低温水が増加し、熱負荷側へ十分な熱を供給できなくなる恐れがある。   By the way, when a fuel cell (for example, a polymer electrolyte fuel cell) is used for heating hot water stored in a hot water storage tank of a hot water storage type hot water supply device, the fuel cell outlet temperature (that is, heat generated during operation of the fuel cell is heated). When the temperature of the hot water supplied from the lower part of the hot water tank is low, the flow rate is controlled so that the temperature of the recovered hot water becomes a constant temperature (for example, about 60 ° C). The flow rate at the inlet to the fuel cell (that is, the flow rate when entering the fuel cell side to recover the heat generated by the operation of the fuel cell) is reduced. Therefore, operation must be performed in a state where the fuel cell-side circulation flow rate is low. Therefore, the flow rate of the hot water supplied into the hot water storage tank is reduced, the high temperature water in the hot water storage tank is decreased, the low temperature water is increased, and there is a possibility that sufficient heat cannot be supplied to the heat load side.

本発明は、燃料電池の運転時に発生する熱を貯湯式温水供給装置の貯湯槽に貯留した温水の加熱に用いる場合に生じる上記のような不都合を解消することを目的としており、貯湯槽内の温水温度を安定的に所定温度に維持した状態で長時間運転することを可能とした貯湯式温水供給装置を提供することを目的とする。   An object of the present invention is to eliminate the inconvenience as described above when heat generated during operation of a fuel cell is used for heating hot water stored in a hot water storage tank of a hot water storage type hot water supply device. It is an object of the present invention to provide a hot water storage type hot water supply device that can be operated for a long time while the hot water temperature is stably maintained at a predetermined temperature.

本発明による貯湯式温水供給装置は、貯湯槽と、貯湯槽の下部と上部とを繋ぐ第1と第2の温水循環路と、第1の温水循環路に備えられた循環水加熱手段と、第2の温水循環路に備えられた熱負荷と、運転を制御する制御手段とを少なくとも備えた貯湯式温水供給装置であって、第1の温水循環路に備えられる循環水加熱手段は燃料電池の運転時に発生する熱を回収して循環水を加熱する手段であり、かつ、第2の温水循環路は熱負荷から貯湯槽下部への温水戻り回路部分に分岐温水路を有していて、該分岐温水路は第1の温水循環路の貯湯槽下部から加熱手段に至る温水循環路に流量調整弁を介して接続しており、制御手段は分岐温水路から第1の温水循環路に流入する温水量を制御する信号を流量調整弁に与えるように構成されていることを特徴とする。   A hot water storage type hot water supply apparatus according to the present invention includes a hot water storage tank, first and second hot water circulation paths connecting the lower and upper parts of the hot water storage tank, and circulating water heating means provided in the first hot water circulation path, A hot water storage type hot water supply device comprising at least a heat load provided in the second hot water circulation path and a control means for controlling operation, wherein the circulating water heating means provided in the first hot water circulation path is a fuel cell. The second hot water circulation path has a branch hot water path in the hot water return circuit portion from the heat load to the lower part of the hot water tank, and recovers the heat generated during the operation to heat the circulating water. The branch hot water passage is connected to the hot water circulation passage from the lower part of the hot water tank of the first hot water circulation passage to the heating means via a flow rate adjusting valve, and the control means flows into the first hot water circulation passage from the branch hot water passage. It is configured to give a signal to control the amount of hot water to be supplied to the flow control valve. The features.

上記の装置では、貯湯槽内の温水を加熱するための熱源、すなわち第1の温水循環路に備えられる循環水加熱手段の熱源として、燃料電池の運転時に発生する熱を用いるようにしており、環境負荷の低い運転が可能となる。   In the above apparatus, heat generated during operation of the fuel cell is used as a heat source for heating the hot water in the hot water tank, that is, a heat source for the circulating water heating means provided in the first hot water circulation path, Operation with low environmental impact is possible.

また、運転中、熱負荷側からの戻り温水の温度が貯湯槽下部の貯留水の温度よりも高い場合には、その全部または一部を分岐温水路を介して燃料電池側に直接供給することにより、燃料電池出口側の高温水の流量を大きくすることができ、結果的に、貯湯槽内部に多量の高温水を短時間で供給することが可能となる。それにより、継続的に熱負荷側へ高温水の供給が可能となる。逆に、熱負荷側からの戻り温水の温度が貯湯槽下部の貯留水の温度よりも低い場合には、燃料電池側に戻すことなくその全量または多くの量を貯湯槽に戻す。   Also, during operation, if the temperature of the return hot water from the heat load side is higher than the temperature of the stored water in the lower part of the hot water tank, supply all or part of it directly to the fuel cell side via the branch hot water channel. As a result, the flow rate of the high-temperature water on the fuel cell outlet side can be increased, and as a result, a large amount of high-temperature water can be supplied into the hot water tank in a short time. Thereby, high temperature water can be continuously supplied to the heat load side. On the contrary, when the temperature of the return hot water from the heat load side is lower than the temperature of the stored water at the lower part of the hot water tank, the entire amount or a large amount is returned to the hot water tank without returning to the fuel cell side.

いずれの場合も、熱負荷側からの戻り温水の全部または一部を燃料電池側に直接戻すことにより、貯湯槽内の温度成層の乱れを抑えることができる。   In any case, the turbulence of temperature stratification in the hot water tank can be suppressed by returning all or part of the return hot water from the heat load side directly to the fuel cell side.

本発明の装置において、流量調整弁は、第2の温水循環路と分岐温水路との分岐部に配置してもよく、分岐温水路と第1の温水循環路との合流部に配置してもよい。双方に設置して、運転環境に応じて、選択的に使い分けるあるいは双方同時に使用するようにしてもよい。   In the apparatus of the present invention, the flow rate adjusting valve may be disposed at a branch portion between the second hot water circulation path and the branch hot water path, or may be disposed at a junction portion between the branch hot water path and the first hot water circulation path. Also good. You may install in both and selectively use according to an operating environment, or you may make it use both simultaneously.

本発明の装置において、閉じた温水循環路(第2の温水循環路)のみで運転する環境では必要ないが、好ましくは、貯湯槽の温水を風呂などに温湯として供給する給湯路と貯湯槽に水道水を供給する給水路とが備えられる。この場合、水道水が貯湯槽内に供給されることにより貯湯槽下部の貯留水の温度は低くなり、熱負荷側からの戻り温水との温度差が大きくなるので、分岐温水路を備える本発明による貯湯式温水供給装置は、特に有効に機能を発揮する。   In the apparatus of the present invention, it is not necessary in an environment where only a closed hot water circulation path (second hot water circulation path) is operated, but preferably, a hot water supply path and a hot water tank for supplying hot water from a hot water tank as hot water to a bath or the like are preferable. And a water supply channel for supplying tap water. In this case, since tap water is supplied into the hot water tank, the temperature of the stored water at the lower part of the hot water tank is lowered, and the temperature difference from the return hot water from the heat load side is increased. The hot water storage type hot water supply device according to FIG.

本発明によれば、燃料電池の運転時に発生する熱を貯湯槽に貯留した温水の加熱に用いる形態の貯湯式温水供給装置において、貯湯槽内部に多量の高温水を短時間で供給することが可能となり、それにより、継続的に熱負荷側へ高温水の供給が可能となる。   According to the present invention, in a hot water storage type hot water supply apparatus in which heat generated during operation of a fuel cell is used for heating hot water stored in a hot water tank, a large amount of high temperature water can be supplied into the hot water tank in a short time. This makes it possible to continuously supply hot water to the heat load side.

以下、図面を参照しながら。本発明を実施の形態に基づき説明する。図1は、本発明による貯湯式温水供給装置を説明する概略構成図であり、図2および図3は、本発明による貯湯式温水供給装置を用いた給湯システムを説明する2つの概略構成図である。   Hereinafter, referring to the drawings. The present invention will be described based on an embodiment. FIG. 1 is a schematic configuration diagram illustrating a hot water storage type hot water supply device according to the present invention, and FIGS. 2 and 3 are two schematic configuration diagrams illustrating a hot water supply system using the hot water storage type hot water supply device according to the present invention. is there.

図1に示す貯湯式温水供給装置は、貯湯槽10と、燃料電池20と、熱負荷側との熱交換器30を備える。貯湯槽10は従来の貯湯式温水供給装置で使用されている貯湯槽であってよく、仮想線で示すように、貯湯槽10の上部に給湯路11が、また貯湯槽10の下部に給水路12が備えられていてもよい。   The hot water storage type hot water supply apparatus shown in FIG. 1 includes a hot water storage tank 10, a fuel cell 20, and a heat exchanger 30 on the heat load side. The hot water storage tank 10 may be a hot water storage tank used in a conventional hot water storage type hot water supply apparatus, and as indicated by a virtual line, a hot water supply path 11 is provided above the hot water storage tank 10 and a water supply path is provided below the hot water storage tank 10. 12 may be provided.

燃料電池20は、この例では、従来知られたPEFC(高分子電解質形燃料電池)でありそれ自体の詳細な説明は省略する。燃料電池20には運転時(発電時)に生成する熱を回収するための熱回収路21が備えられ、該熱回収路21の入り口側は貯湯槽10の下部と入り口管路22で接続し、熱回収路21の出口側は貯湯槽10の上部と出口管路23で接続している。入り口管路22と熱回収路21と出口管路23とが本発明でいう「第1の温水循環路」を構成し、熱回収路21は「第1の温水循環路に備えられた循環水加熱手段」を構成する。   In this example, the fuel cell 20 is a conventionally known PEFC (Polymer Electrolyte Fuel Cell) and will not be described in detail. The fuel cell 20 is provided with a heat recovery path 21 for recovering heat generated during operation (power generation). The inlet side of the heat recovery path 21 is connected to the lower part of the hot water tank 10 through an inlet pipe line 22. The outlet side of the heat recovery path 21 is connected to the upper part of the hot water tank 10 by an outlet pipe 23. The inlet pipe 22, the heat recovery path 21 and the outlet pipe 23 constitute the “first hot water circulation path” in the present invention, and the heat recovery path 21 is “circulated water provided in the first hot water circulation path”. Constitutes "heating means".

図示しないポンプの作動により、例えば20℃程度である貯湯槽10内の下層の低温水は、入り口管路21から熱回収路21に送り込まれ、そこで、燃料電池20から発電熱を回収して60℃程度に昇温し、出口管路23を通って、貯湯槽10の上部から槽内に流入する。   By the operation of a pump (not shown), for example, low-temperature water in the lower layer of the hot water tank 10 having a temperature of about 20 ° C. is sent from the inlet pipe 21 to the heat recovery path 21, where the generated heat is recovered from the fuel cell 20. The temperature is raised to about 0 ° C., and flows into the tank from the upper part of the hot water tank 10 through the outlet pipe 23.

熱交換器30の熱交換路31の入り口部には、貯湯槽10の上部からの温水送り込み管路32が接続し、熱交換路31の出口部には、貯湯槽10の下部へ接続する温水戻り管路33が接続している。温水送り込み管路32と熱交換路31と温水戻り管路33とが本発明でいう「第2の温水循環路」を構成する。なお、熱交換器30には、図1には示されない適宜の熱負荷側からの温水循環路40が入り込んでおり、熱交換路31との間で熱交換を行う。図示しないが、熱交換路31自体が、熱負荷側の温水循環路を形成するようにしてもよい。   A hot water feed pipe 32 from the upper part of the hot water tank 10 is connected to the inlet of the heat exchange path 31 of the heat exchanger 30, and hot water connected to the lower part of the hot water tank 10 is connected to the outlet of the heat exchanger 31. A return line 33 is connected. The hot water feed pipe 32, the heat exchange path 31, and the hot water return pipe 33 constitute the “second hot water circulation path” in the present invention. Note that a hot water circulation path 40 from an appropriate heat load side (not shown in FIG. 1) enters the heat exchanger 30, and performs heat exchange with the heat exchange path 31. Although not shown, the heat exchange path 31 itself may form a hot water circulation path on the heat load side.

温水戻り管路33は流量調整弁を備えた分岐部34を有しており、そこから分岐温水路35を分岐している。分岐温水路35は第1の温水循環路を構成する入り口管路22に合流部24において接続している。合流部24にも流量調整弁が備えられる。温水戻り管路33の分岐部34よりも上流側に温度センサSが取り付けてあり、その温度信号は制御手段Cに送られる。制御手段Cは、温度センサSからの温度信号に応じた信号を分岐部34およびまたは合流部24に与え、分岐温水路35への分岐流量を制御する。また、制御手段Cは温度センサSからの温度信号に応じた信号を合流部24に与え、入り口管路22での、貯湯槽10からの温水流量と分岐温水路35からの温水流量を制御する。   The hot water return pipe 33 has a branch portion 34 having a flow rate adjusting valve, and a branch hot water path 35 is branched therefrom. The branch hot water passage 35 is connected to the inlet conduit 22 constituting the first hot water circulation passage at the junction 24. The junction 24 is also provided with a flow rate adjusting valve. A temperature sensor S is attached upstream of the branch portion 34 of the hot water return pipe 33, and the temperature signal is sent to the control means C. The control means C gives a signal corresponding to the temperature signal from the temperature sensor S to the branching section 34 and / or the merging section 24 to control the branch flow rate to the branch hot water passage 35. Further, the control means C gives a signal corresponding to the temperature signal from the temperature sensor S to the junction 24, and controls the hot water flow rate from the hot water tank 10 and the hot water flow rate from the branch hot water channel 35 in the inlet conduit 22. .

上記の装置の運転態様を具体例に基づき説明する。上記したそれぞれの流路における流量を図1に示すように、Q1〜Q6(L/min)で示す。すなわち、第1の温水循環路の循環流量をQ1、第2の温水循環路の循環流量をQ2、貯湯槽10下部への戻り流量をQ3、分岐温水路35を流れる流量をQ4、合流部24から入り口管路22を通って貯湯槽10に戻る流量をQ5、入り口管路22の合流部24から燃料電池20への戻り流量をQ6とする。また、循環する温水の、燃料電池20の入り口温度(℃)をT1,出口温度をT2、熱交換器30での入り口温度をT3,出口温度をT4とする。   The operation mode of the above apparatus will be described based on a specific example. As shown in FIG. 1, the flow rates in the respective flow paths described above are indicated by Q1 to Q6 (L / min). That is, the circulation flow rate of the first hot water circulation channel is Q1, the circulation flow rate of the second hot water circulation channel is Q2, the return flow rate to the lower part of the hot water tank 10 is Q3, the flow rate flowing through the branch hot water channel 35 is Q4, and the junction 24 Q5 is the flow rate returning to the hot water storage tank 10 from the inlet pipe 22 to Q5, and Q6 is the return flow rate from the junction 24 of the inlet pipe line 22 to the fuel cell 20. Further, the temperature of the circulating hot water at the inlet (° C.) of the fuel cell 20 is T1, the outlet temperature is T2, the inlet temperature at the heat exchanger 30 is T3, and the outlet temperature is T4.

そして、表1に示すように、4つのケースについて、装置の運転状況を説明する。   And as shown in Table 1, the driving | running state of an apparatus is demonstrated about four cases.

Figure 0004656994
Figure 0004656994

なお、ケース1〜4において、燃料電池20からはその運転により1.5kWの熱が出ているものと仮定する。また、ケース1と2の熱交換器30での熱負荷は同じ、ケース3と4の熱交換器30での熱負荷は同じと仮定する。   In cases 1 to 4, it is assumed that 1.5 kW of heat is generated from the fuel cell 20 due to its operation. Further, it is assumed that the heat loads in the heat exchangers 30 of the cases 1 and 2 are the same and the heat loads in the heat exchangers 30 of the cases 3 and 4 are the same.

ケース1は、分岐温水流路35に熱交換器30を出た温水を全く流さない(分流しない)場合である。このケース1では、貯湯槽10の下部からT1:20℃の温水が、燃料電池20側へ流量(第1温水循環路の流量)Q1:0.5L/minで送り込まれ、それが燃料電池20の運転時に発生する熱を回収してT2:60℃に上昇し、貯湯槽10に戻される。熱負荷側(熱交換器30)には、貯湯槽10の上部からT3:60℃の高温水が第2温水循環路流量Q2:2L/minで送り込まれ、熱負荷側と熱交換後に、T4:35℃まで降温した状態で、貯湯槽10にそのすべて(流量Q3)が戻される。この運転状態では、運転継続中、貯湯槽10の下部から出て、燃料電池20側に送られる温水の温度T1は、給水路12から槽内に水道水が供給されることも考えると、20℃前後であり、T2の温度を60℃に維持するためには、第1温水循環路流量Q1は0.5L/min前後であり、それ以上の流量を流すことはできない。   Case 1 is a case in which the hot water that has exited the heat exchanger 30 is not flowed (not diverted) into the branch warm water flow path 35. In this case 1, T1: 20 ° C. warm water is sent from the lower part of the hot water tank 10 to the fuel cell 20 side at a flow rate (flow rate of the first hot water circulation path) Q1: 0.5 L / min. The heat generated during the operation is recovered, T2 rises to 60 ° C., and is returned to the hot water tank 10. To the heat load side (heat exchanger 30), high temperature water at T3: 60 ° C. is fed from the upper part of the hot water tank 10 at the second hot water circulation flow rate Q2: 2 L / min, and after heat exchange with the heat load side, T4 : All of them (flow rate Q3) are returned to the hot water storage tank 10 in a state where the temperature is lowered to 35 ° C. In this operation state, the temperature T1 of the hot water that comes out from the lower part of the hot water tank 10 and is sent to the fuel cell 20 side during the operation is considered that the tap water is supplied into the tank from the water supply path 12. In order to maintain the temperature of T2 at 60 ° C., the first hot water circuit flow rate Q1 is around 0.5 L / min, and a flow rate higher than that cannot be flowed.

ケース2は、温水戻り管路32の分岐部34に設けた流量調整弁を制御して、熱交換器30から出てくる戻り流量(第2温水循環路流量)Q2:2L/minの全量を分岐温水路35の流量Q4とする場合である。従って、貯湯槽戻り流量Q3は0L/minである。この場合、燃料電池20側に送られる温水の温度T1:35℃となるので、T2の温度を60℃に維持するのに必要な流量Q1は0.8L/min程度となり、ケース1よりも、貯湯槽10内で60℃の湯が1.6倍の早くできることとなる。なお、この場合、分岐温水路35の流量Q4:2L/minは、制御手段Cからの信号により、合流部24に配置した流量調整弁が調整されて、燃料電池20側への流量Q6:0.8L/min、貯湯槽10側へ戻る流量Q5:1.2L/minに分けられる。 Case 2 controls the flow rate adjustment valve provided in the branch part 34 of the hot water return pipe 32, and the return flow (second hot water circuit flow rate) Q2 coming out of the heat exchanger 30 is 2L / min. This is a case where the flow rate Q4 of the branch hot water passage 35 is set. Therefore, the hot water tank return flow rate Q3 is 0 L / min. In this case, since the temperature T1 of the hot water sent to the fuel cell 20 side is 35 ° C., the flow rate Q1 required to maintain the temperature of T2 at 60 ° C. is about 0.8 L / min. In the hot water tank 10, hot water at 60 ° C. can be made 1.6 times faster. In this case, the flow rate Q4: 2 L / min of the branch warm water channel 35 is adjusted by the flow rate adjusting valve arranged in the junction 24 by a signal from the control means C, so that the flow rate Q6: 0 to the fuel cell 20 side is adjusted. .8 L / min, flow rate Q5 returning to the hot water tank 10 side: 1.2 L / min.

ケース3は、ケース1と同様に、熱交換器30から出てくる戻り流量(第2温水循環路流量)Q2:2L/minの全量を、貯湯槽10に流量Q3:2L/minとして戻す場合であるが、ここでは、熱負荷容量との関係で熱交換器30の出口温度T4:45℃としている。ここでも、ケース1と同様、運転継続中、貯湯槽10の下部から出て、燃料電池20側に送られる温水の温度T1は、給水路12から槽内に水道水が供給されることも考えると、20℃前後であり、T2の温度を60℃に維持するためには、第1温水循環路流量Q1は0.5L/min前後となる。   Case 3 is the same as Case 1 in the case of returning the entire return flow rate (second hot water circuit flow rate) Q2: 2 L / min from the heat exchanger 30 to the hot water tank 10 as a flow rate Q3: 2 L / min. However, here, the outlet temperature T4 of the heat exchanger 30 is set to 45 ° C. in relation to the heat load capacity. Here, as in the case 1, the temperature T1 of the hot water that comes out from the lower part of the hot water storage tank 10 and is sent to the fuel cell 20 side during the operation is considered to be supplied from the water supply channel 12 into the tank. In order to maintain the temperature of T2 at 60 ° C., the first hot water circuit flow rate Q1 is about 0.5 L / min.

ケース4は、ケース3において、熱交換器30から出てくる出口温度T4:45℃の温水の流量(第2温水循環路流量Q2)を、温水戻り管路32の分岐部34に設けた流量調整弁と、合流部24に配置した流量調整弁とを適宜制御して、燃料電池20側へ流入する温水温度T1:40℃となるように制御した場合である。T1が40℃になるように制御すれば、T2を60℃に維持するための流量Q1を1.0L/minまで引き上げることができ、ケース3の2倍のスピードで60℃の湯ができることとなる。具体的な制御としては、例えば、分岐部34に設けた流量調整弁を制御して、貯湯槽10への戻り流量Q3:1.2L/min、分岐温水路35への流量Q4:0.8L/minに分配し、合流部24に配置した流量調整弁とを適宜制御して、貯湯槽10の下部から流量Q5:0.2L/minの温水を、Q4に加えて、燃料電池20への流量Q6すなわちQ1を1.0L/minとする。   The case 4 is a flow rate in which the flow rate of the hot water (second hot water circulation path flow rate Q2) at the outlet temperature T4: 45 ° C. exiting from the heat exchanger 30 in the case 3 is provided in the branch portion 34 of the hot water return line 32. This is a case where the adjustment valve and the flow rate adjustment valve arranged in the junction 24 are appropriately controlled so that the hot water temperature T1: 40 ° C. flowing into the fuel cell 20 is controlled. If T1 is controlled to be 40 ° C., the flow rate Q1 for maintaining T2 at 60 ° C. can be increased to 1.0 L / min, and 60 ° C. hot water can be produced at twice the speed of case 3. Become. As specific control, for example, a flow rate adjusting valve provided in the branching section 34 is controlled, and the return flow rate Q3 to the hot water tank 10 is 1.2 L / min, and the flow rate Q4 to the branch hot water passage 35 is 0.8 L. To the fuel cell 20 by adding hot water at a flow rate Q5: 0.2 L / min from the lower part of the hot water tank 10 to Q4. The flow rate Q6, that is, Q1 is set to 1.0 L / min.

上記のように、加熱源として燃料電池の運転により生じる熱を回収して用いる貯湯式温水供給装置において、第2の温水循環路の熱交換器(熱負荷)30から貯湯槽10の下部への温水戻り回路部分33に分岐温水路35を設け、該分岐温水路35の下流側を第1の温水循環路の貯湯槽10の下部から燃料電池20に至る温水循環路22に流量調整弁を介して接続させ、分岐温水路35から第1の温水循環路22に流入する温水量Q4を適宜制御することにより、より短い時間で貯湯槽10内に所定温度の降温水を貯留することが可能となる。   As described above, in the hot water storage type hot water supply apparatus that recovers and uses the heat generated by the operation of the fuel cell as a heating source, the heat exchanger (heat load) 30 in the second hot water circulation path is connected to the lower part of the hot water tank 10. A branch hot water passage 35 is provided in the hot water return circuit portion 33, and a downstream side of the branch hot water passage 35 is connected to the hot water circulation passage 22 from the lower part of the hot water storage tank 10 of the first hot water circulation passage to the fuel cell 20 via a flow rate adjustment valve. And by appropriately controlling the amount of warm water Q4 flowing into the first warm water circulation path 22 from the branch warm water path 35, it is possible to store the warm water at a predetermined temperature in the hot water storage tank 10 in a shorter time. Become.

上記では、熱交換機出口温度T4が35℃と45℃の2つの態様について説明したが、実機の運転に当たっては、熱負荷側の容量などに応じて、T4は変動する。その変動する温度を温度センサSが常時監視し、その信号を受けて、制御手段は最適な運転状況となるように流量調整弁に対して開度信号を発信する。また、T4が水道水温度よりも低温となる場合には、戻り水の全量または多くの量を貯湯槽10の底部に戻すようにする。   In the above description, two modes in which the heat exchanger outlet temperature T4 is 35 ° C. and 45 ° C. have been described. However, when the actual machine is operated, T4 varies depending on the capacity on the heat load side. The temperature sensor S constantly monitors the fluctuating temperature, and upon receiving the signal, the control means transmits an opening degree signal to the flow rate adjusting valve so as to obtain an optimum operation state. Further, when T4 is lower than the tap water temperature, the entire amount or a large amount of return water is returned to the bottom of the hot water tank 10.

図2は、上記の貯湯式温水供給装置を実際に使用するシステムの一例を示している。図1に示した部材と同じ部材には同じ符号を付し、重複を避けるために説明は省略する。ここでは、熱負荷41として床暖房と風呂追焚等を例示している。貯湯槽10からの給湯路11には三方弁14が備えられ、その一方は貯湯槽10への給水路12と管路15で接続し、他方は補助熱源機43を介して風呂44等の給湯場に接続している。補助熱源機43は、給湯路11を流れる温水の追加的加熱と熱負荷41側の温水循環路40を流れる温水の追加的加熱を必要に応じて行う。燃料電池20が発電した電気は商用電源45とともに電力負荷46に供給される。34a、34bは分岐部34に配置した流量調整弁であり、Pは循環用のポンプである。   FIG. 2 shows an example of a system that actually uses the hot water storage type hot water supply apparatus. The same members as those shown in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted to avoid duplication. Here, floor heating, bath remembrance, etc. are illustrated as the thermal load 41. The hot water supply passage 11 from the hot water storage tank 10 is provided with a three-way valve 14, one of which is connected to the hot water supply path 12 to the hot water storage tank 10 by a pipe line 15, and the other is supplied with hot water such as a bath 44 through an auxiliary heat source device 43. Connected to the field. The auxiliary heat source unit 43 performs additional heating of hot water flowing through the hot water supply passage 11 and additional heating of hot water flowing through the hot water circulation passage 40 on the heat load 41 side as necessary. The electricity generated by the fuel cell 20 is supplied to the power load 46 together with the commercial power supply 45. Reference numerals 34a and 34b denote flow rate adjusting valves arranged in the branch portion 34, and P denotes a circulation pump.

上記のシステムにおいて、熱交換器30からの循環水の出口温度T4が温度センサSにより測定され、その温度情報が制御手段Cに送られる。温度情報に基づき制御手段Cは、分岐部34に設けた2つの流量制御弁34aと34bの開度を調整して、温水戻り管路32を流れる流量Q2を、貯湯槽10下部への戻り流量Q3と分岐温水流路35への流量Q4とに、それぞれ0〜100の範囲で振り分ける。どのような割合で振り分けるかは、給湯量や熱負荷側の状況に応じて、さらには電力負荷に基づく燃料電池20の運転状況に応じて最適に設定されるが、前記ケース1と2に基づき説明したようにして、そのような振り分けを行うことにより、貯湯槽10内に所要温度の高温水を短時間で貯湯することが可能となり、補助熱源機43の稼働時間を少なくできるなど、全体として省エネルギー運転が可能となる。   In the above system, the outlet temperature T4 of the circulating water from the heat exchanger 30 is measured by the temperature sensor S, and the temperature information is sent to the control means C. Based on the temperature information, the control means C adjusts the opening degree of the two flow control valves 34 a and 34 b provided in the branch section 34, and changes the flow rate Q 2 flowing through the hot water return pipe 32 to the lower flow rate of the hot water tank 10. It distributes in the range of 0-100 each to Q3 and the flow volume Q4 to the branch warm water flow path 35. The distribution ratio is optimally set according to the amount of hot water supply and the state of the heat load, and further according to the operating state of the fuel cell 20 based on the power load. As described, by performing such distribution, it becomes possible to store hot water at a required temperature in the hot water storage tank 10 in a short time, and the operation time of the auxiliary heat source unit 43 can be reduced. Energy-saving operation is possible.

図3は、上記の貯湯式温水供給装置を実際に使用するシステムの他の例を示している。ここでは、図2に示したシステムと違い、分岐部34は単に分岐温水流路35を分岐するのみであって、流量制御弁34a、34bは備えない。代わりに、合流部24に流量調整機能を備えた三方弁50が備えられており、温度センサSからの温度情報に基づき制御手段Cは、三方弁50のそれぞれの開度を調節して、分岐温水流路35への流量Q4、燃料電池戻り流量Q6,貯湯槽戻り流量Q5を適宜調整する。結果として、貯湯槽戻り流量Q3も、Q2−Q4として設定される。なお、他の構成は、図2に示したものと同じであり、同じ部材には同じ符号を付して、説明は省略する。このシステムは、前記したケース3と4に基づき説明したように、燃料電池入り口温度T1を所望温度に設定して運転する場合に好適に用いられる。   FIG. 3 shows another example of a system that actually uses the hot water storage type hot water supply apparatus. Here, unlike the system shown in FIG. 2, the branch section 34 merely branches the branch hot water flow path 35, and does not include the flow rate control valves 34 a and 34 b. Instead, the merging portion 24 is provided with a three-way valve 50 having a flow rate adjusting function, and the control means C adjusts the opening degree of the three-way valve 50 based on the temperature information from the temperature sensor S to branch. The flow rate Q4 to the hot water flow path 35, the fuel cell return flow rate Q6, and the hot water tank return flow rate Q5 are appropriately adjusted. As a result, the hot water tank return flow rate Q3 is also set as Q2-Q4. The other configurations are the same as those shown in FIG. 2, and the same members are denoted by the same reference numerals, and the description thereof is omitted. As described based on the cases 3 and 4 described above, this system is preferably used when the fuel cell inlet temperature T1 is set to a desired temperature for operation.

図示しないが、図1の概略構成図に示しかつ説明したように、分岐部34と合流部24の双方に流量調整機能を備えた弁を配置し、双方を、温度センサSが検知する熱交換機30からの出口温度T4に基づいて、制御手段Cにより適宜制御するようにしてもよい。また、熱負荷側からの戻り温水温度T4がある温度範囲で一定しており、温水戻り管路33と分岐温水路35との分岐部34で分流した全流量Q4をそのまま燃料電池20側に供給できるような運転態様の場合には、合流部24側に流量調整機能を備えることは不要であり、分岐部34にのみ流量調整機能を持たせればよい。   Although not shown in the drawing, as shown and described in the schematic configuration diagram of FIG. 1, a valve having a flow rate adjusting function is arranged in both the branching section 34 and the merging section 24, and both are detected by the temperature sensor S. Based on the outlet temperature T4 from 30, the control means C may control the temperature appropriately. Further, the return hot water temperature T4 from the heat load side is constant in a certain temperature range, and the total flow rate Q4 divided by the branch portion 34 of the hot water return pipe 33 and the branch hot water path 35 is supplied to the fuel cell 20 side as it is. In the case of such an operation mode, it is not necessary to provide a flow rate adjusting function on the merging portion 24 side, and only the branching portion 34 has a flow rate adjusting function.

本発明による貯湯式温水供給装置を説明する概略構成図。BRIEF DESCRIPTION OF THE DRAWINGS The schematic block diagram explaining the hot water storage type hot water supply apparatus by this invention. 本発明による貯湯式温水供給装置を用いた給湯システムの一例を説明する概略構成図。BRIEF DESCRIPTION OF THE DRAWINGS The schematic block diagram explaining an example of the hot water supply system using the hot water storage type hot water supply apparatus by this invention. 本発明による貯湯式温水供給装置を用いた給湯システムのさらに他の例を説明する概略構成図。The schematic block diagram explaining the further another example of the hot water supply system using the hot water storage type hot water supply apparatus by this invention.

符号の説明Explanation of symbols

10…貯湯槽、11…給湯路、12…給水路、20…燃料電池、21…熱回収路、22…入り口管路、23…出口管路、24…合流部、30…熱交換器、31…熱交換路、32…温水送り込み管路、33…温水戻り管路、34…分岐部、35…分岐温水路、S…温度センサ、C…制御手段   DESCRIPTION OF SYMBOLS 10 ... Hot water storage tank, 11 ... Hot water supply path, 12 ... Water supply path, 20 ... Fuel cell, 21 ... Heat recovery path, 22 ... Inlet pipe line, 23 ... Outlet pipe line, 24 ... Junction part, 30 ... Heat exchanger, 31 DESCRIPTION OF SYMBOLS ... Heat exchange path, 32 ... Warm water infeed line, 33 ... Warm water return line, 34 ... Branch part, 35 ... Branch warm water path, S ... Temperature sensor, C ... Control means

Claims (3)

貯湯槽と、貯湯槽の上部に備えられ貯湯槽の温水を供給する給湯路と、貯湯槽の下部に備えられる給水路と、貯湯槽の下部と上部とを繋ぐ第1と第2の温水循環路と、第1の温水循環路に備えられた循環水加熱手段と、第2の温水循環路に備えられた熱負荷と、運転を制御する制御手段とを少なくとも備えた貯湯式温水供給装置であって、
第1の温水循環路に備えられる循環水加熱手段は燃料電池の運転時に発生する熱を回収して循環水を加熱する手段であり、かつ、第2の温水循環路は熱負荷から貯湯槽下部への温水戻り回路部分に分岐温水路を有していて、該分岐温水路は第1の温水循環路の貯湯槽下部から加熱手段に至る温水循環路に流量調整弁を介して接続しており、制御手段は分岐温水路から第1の温水循環路に流入する温水量を制御する信号を流量調整弁に与えるように構成されており、さらに、貯湯槽の上部に備えられる給湯路には三方弁が備えられ、その一方は貯湯槽への給水路と管路で接続し、他方は補助熱源機を介して風呂等の給湯場に接続していることを特徴とする貯湯式温水供給装置。
First and second hot water circulations connecting the hot water storage tank , the hot water supply path provided in the upper part of the hot water storage tank for supplying hot water in the hot water storage tank, the water supply path provided in the lower part of the hot water storage tank, and the lower and upper parts of the hot water storage tank A hot water storage type hot water supply device comprising at least a path, a circulating water heating means provided in the first hot water circulation path, a heat load provided in the second hot water circulation path, and a control means for controlling operation There,
The circulating water heating means provided in the first hot water circulation path is a means for recovering heat generated during operation of the fuel cell to heat the circulating water, and the second hot water circulation path is heated from the heat load to the lower part of the hot water tank. The hot water return circuit part has a branch hot water passage, and the branch hot water passage is connected to the hot water circulation passage from the lower part of the hot water storage tank of the first hot water circulation passage to the heating means via a flow rate adjusting valve. The control means is configured to provide a signal for controlling the amount of hot water flowing into the first hot water circulation path from the branch hot water path to the flow rate adjusting valve, and further, the hot water supply path provided at the upper part of the hot water tank has three sides. A hot water storage type hot water supply apparatus, characterized in that a valve is provided, one of which is connected to a hot water tank with a water supply channel and a pipe, and the other is connected to a hot water supply station such as a bath via an auxiliary heat source .
流量調整弁は、第2の温水循環路と分岐温水路との分岐部に配置されていることを特徴とする請求項1に記載の貯湯式温水供給装置。   The hot water storage type hot water supply apparatus according to claim 1, wherein the flow rate adjusting valve is arranged at a branch portion between the second hot water circulation path and the branch hot water path. 流量調整弁は、分岐温水路と第1の温水循環路との合流部に配置されていることを特徴とする請求項1に記載の貯湯式温水供給装置。   The hot water storage type hot water supply device according to claim 1, wherein the flow rate adjusting valve is disposed at a junction between the branch hot water passage and the first hot water circulation passage.
JP2005120827A 2005-04-19 2005-04-19 Hot water storage hot water supply device Expired - Fee Related JP4656994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005120827A JP4656994B2 (en) 2005-04-19 2005-04-19 Hot water storage hot water supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005120827A JP4656994B2 (en) 2005-04-19 2005-04-19 Hot water storage hot water supply device

Publications (2)

Publication Number Publication Date
JP2006300387A JP2006300387A (en) 2006-11-02
JP4656994B2 true JP4656994B2 (en) 2011-03-23

Family

ID=37468886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005120827A Expired - Fee Related JP4656994B2 (en) 2005-04-19 2005-04-19 Hot water storage hot water supply device

Country Status (1)

Country Link
JP (1) JP4656994B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4937052B2 (en) * 2007-09-12 2012-05-23 三菱電機株式会社 Hot water storage water heater
JP5228605B2 (en) * 2007-11-27 2013-07-03 株式会社デンソー Water heater
JP5058036B2 (en) * 2008-03-17 2012-10-24 三菱電機株式会社 Heat pump type water heater
JP5436933B2 (en) * 2009-05-26 2014-03-05 株式会社長府製作所 Hot water system
JP5302154B2 (en) * 2009-09-28 2013-10-02 株式会社コロナ Hot water storage hot water heater
JP5774973B2 (en) * 2011-12-02 2015-09-09 大阪瓦斯株式会社 Hot water storage heat source machine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000121157A (en) * 1998-10-15 2000-04-28 Osaka Gas Co Ltd Hot water storage type hot water supply heat source device
JP2002364916A (en) * 2001-06-12 2002-12-18 Tokyo Gas Co Ltd Hot water supply system with hot water tank

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000121157A (en) * 1998-10-15 2000-04-28 Osaka Gas Co Ltd Hot water storage type hot water supply heat source device
JP2002364916A (en) * 2001-06-12 2002-12-18 Tokyo Gas Co Ltd Hot water supply system with hot water tank

Also Published As

Publication number Publication date
JP2006300387A (en) 2006-11-02

Similar Documents

Publication Publication Date Title
JP5174950B2 (en) Temperature adjusting device, fluid supply system, heating system, temperature adjusting device mounting method, and fluid supply method
KR100740542B1 (en) Fuel Cell Waste Heat Recovery System
JP5295257B2 (en) Heat recovery device for fuel cell system
JP4513754B2 (en) Hybrid hot water supply system
JP2008145096A (en) Hot water supply system and hot water supply method
JP2010236713A (en) Hot water storage type hot water supply system
JP4656994B2 (en) Hot water storage hot water supply device
JP5598083B2 (en) Waste heat recovery system and cogeneration system
JP2013036648A (en) Device and method for heat storage and hot-water supply
JP4273640B2 (en) Cogeneration system
JP3933543B2 (en) Heat medium supply device
JP2003314894A (en) Fuel cell cogeneration system
US20180205097A1 (en) Fuel cell system
JP4152384B2 (en) Waste heat utilization heat source system
JP5882160B2 (en) Hot water system
JP3990600B2 (en) Power generation heat utilization system
JP4091046B2 (en) Cogeneration system
JP2014095489A (en) Cogeneration system, and hot-water supply facility
JP4784824B2 (en) Storage heat source device
JP4953436B2 (en) Thermal storage and heat dissipation system
JP4685553B2 (en) Cogeneration system
JP2004053151A (en) Hot water supply device
JP2005207618A (en) Storage type hot water supply device and cogeneration system
JP4408269B2 (en) Waste heat recovery system and cogeneration system
JP5549372B2 (en) Waste heat recovery system and cogeneration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4656994

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees