[go: up one dir, main page]

JP4654567B2 - Solid oxide fuel cell and method of operating the same - Google Patents

Solid oxide fuel cell and method of operating the same Download PDF

Info

Publication number
JP4654567B2
JP4654567B2 JP2003126204A JP2003126204A JP4654567B2 JP 4654567 B2 JP4654567 B2 JP 4654567B2 JP 2003126204 A JP2003126204 A JP 2003126204A JP 2003126204 A JP2003126204 A JP 2003126204A JP 4654567 B2 JP4654567 B2 JP 4654567B2
Authority
JP
Japan
Prior art keywords
gas
power generation
preheating
fuel
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003126204A
Other languages
Japanese (ja)
Other versions
JP2004335163A (en
Inventor
隆 宮澤
克武 北原
努 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Materials Corp
Original Assignee
Kansai Electric Power Co Inc
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Mitsubishi Materials Corp filed Critical Kansai Electric Power Co Inc
Priority to JP2003126204A priority Critical patent/JP4654567B2/en
Publication of JP2004335163A publication Critical patent/JP2004335163A/en
Application granted granted Critical
Publication of JP4654567B2 publication Critical patent/JP4654567B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、固体酸化物形燃料電池に関し、特に、固体酸化物形燃料電池の予熱構造およびその予熱方法に関するものである。
【0002】
【従来の技術】
酸化物イオン伝導体からなる固体電解質層を空気極層と燃料極層との間に挟んだ積層構造の発電セルを持つ固体電解質型燃料電池は、第三世代の発電用燃料電池として開発が進んでいる。発電セルでは、空気極側に酸化剤ガスとしての酸素(空気)が、燃料極側には燃料ガス(H2 、CO等)が供給される。空気極と燃料極は、ガスが固体電解質との界面に到達することができるように、いずれも多孔質とされている。
【0003】
空気極側に供給された酸素は、空気極層内の気孔を通って固体電解質層との界面近傍に到達し、この部分で、空気極から電子を受け取って酸化物イオン(O2-)にイオン化される。この酸化物イオンは、燃料極の方向に向かって固体電解質層内を拡散移動する。燃料極との界面近傍に到達した酸化物イオンは、この部分で、燃料ガスと反応して反応生成物(H2 O、CO2 等)を生じ、燃料極に電子を放出する。
【0004】
燃料に水素を用いた場合の電極反応は次のようになる。
空気極: 1/2 O2 + 2e- → O2-
燃料極: H2 + O2- → H2 O+2e-
全体 : H2 + 1/2 O2 → H2
【0005】
固体電解質層は、酸化物イオンの移動媒体であると同時に、燃料ガスと空気を直接接触させないための隔壁としても機能するので、ガス不透過性の緻密な構造となっている。この固体電解質層は、酸化物イオン伝導性が高く、空気極側の酸化性雰囲気から燃料極側の還元性雰囲気までの条件下で化学的に安定で、熱衝撃に強い材料から構成する必要があり、かかる要件を満たす材料として、イットリアを添加した安定化ジルコニア(YSZ)が一般的に使用されている。
【0006】
一方、電極である空気極(カソード)層と燃料極(アノード)層はいずれも電子伝導性の高い材料から構成する必要がある。空気極材料は、少なくとも700℃前後の高温の酸化性雰囲気中で化学的に安定でなければならないため、金属は不適当であり、電子伝導性を持つペロブスカイト型酸化物材料、具体的にはLaMnO3 もしくはLaCoO3 、または、これらのLaの一部をSr、Ca等に置換した固溶体が一般に使用されている。また、燃料極材料は、Ni、Coなどの金属、或いはNi−YSZ、Co−YSZなどのサーメットが一般的である。
【0007】
固体電解質型燃料電池には、1000℃前後の高温で作動させる高温作動型のものと、700℃前後の低温で作動させる低温作動型のものとがある。低温作動型の固体電解質型燃料電池は、例えば電解質であるイットリアを添加した安定化ジルコニア(YSZ)の厚さを10μm程度まで薄膜化して電解質の抵抗を低くすることにより、低温でも燃料電池として発電するように改良された固体電解質層を使用する。
【0008】
高温の固体電解質型燃料電池では、セパレータには、例えば、ランタンクロマイト(LaCrO3 )等の電子伝導性を有するセラミックスが用いられるが、低温作動型の固体電解質型燃料電池では、ステンレス等の金属材料を使用することができる。
【0009】
また、固体電解質型燃料電池の構造には、円筒型、モノリス型、及び平板積層型の3種類が提案されている。それらの構造の内、低温作動型の固体酸化物型燃料電池には、金属のセパレータを使用できることから、金属のセパレータに形状付与しやすい平板積層型の構造が適している。
【0010】
平板積層型の固体電解質型燃料電池のスタックは、発電セル、集電体、セパレータを交互に積層した構造を持つ。一対のセパレータが発電セルを両面から挟んで、一方は空気極集電体を介して空気極と、他方は燃料極集電体を介して燃料極と接している。燃料極集電体には、Ni基合金等のスポンジ状の多孔質体を使用することができ、空気極集電体には、Ag基合金等の同じくスポンジ状の多孔質体を使用することができる。スポンジ状多孔質体は、集電機能、ガス透過機能、均一ガス拡散機能、クッション機能、熱膨脹差吸収機能等を兼ね備えるので、多機能の集電体材料として適している。
【0011】
セパレータは、発電セル間を電気接続すると共に、発電セルに対してガスを供給する機能を有するもので、燃料ガスをセパレータ外周面から導入してセパレータの燃料極層に対向する面から吐出させる燃料ガス通路と、酸化剤ガスとしての空気をセパレータ外周面から導入してセパレータの空気極層に対向する面から吐出させる酸化剤ガス通路とをそれぞれ有している。
【0012】
ところで、上記した固体電解質型燃料電池を運転する場合には、発電セルを上記した発電反応温度まで予熱してから運転を開始する必要があり(特許文献1参照)、従来では、燃料電池スタックの外周に配置したヒータで昇温させる方法や、外部より加熱したガスを燃料電池スタックの周囲に導入する方法が採られている。これらは、何れも、発電セルを外周部より加熱するというものである。
【0013】
【特許文献】
特開平6−124721号公報
【0014】
【発明が解決しようとする課題】
しかしながら、発電セルの予熱を行う場合、燃料電池スタック全体の均熱性を保ちながら昇温させないと、発電セル内に温度分布が生じて熱応力が生まれ、発電セルの破損につながる恐れがある。このため、発電セルを外周部から加熱する方法では、均熱性を保ち難いがために非常に長い時間をかけて徐々に昇温させなくてはならず、運転開始までの待機時間が長くなるという問題がある。また、運転停止の際の降温動作においても、運転温度から一気に降温すると昇温時と同様に発電セルの破損等の問題が発生するため、適度に加熱しながら徐々に降温していくという過程を経ている。
【0015】
加えて、従来、燃料極層の材料として主にNiが用いられることから、起動時の昇温動作や、運転停止時の降温動作が繰り返えし行われることにより、燃料極層のNiが酸化し、発電時の還元による焼結収縮で電解質層との界面で剥離が生じるといった問題がある。このような燃料極層の剥離現象は、電極活性を失うため発電特性を悪化し、耐久性を著しく低下させる。このようなことから、従来では、予熱時に燃料極層のNiの酸化を防止するため、不活性ガスボンベよりN2 等を導入し、燃料極側を還元性雰囲気に維持しながら昇温するといった対策が講じられている。
【0016】
本発明は、上記問題に鑑みて成されたもので、発電セルの破損や燃料極の酸化による剥離を防止しつつ、短時間で効率的に予熱を行うことができる好適な固体酸化物形燃料電池、およびその運転方法を提供することを目的としている。
【0017】
【課題を解決するための手段】
すなわち、請求項1に記載の本発明は、発電セルとセパレータを交互に積層して構成した燃料電池スタックを発電反応室に収納すると共に、運転時に当該燃料電池スタック内へ燃料ガス供給管および酸化剤ガス供給管から各々燃料ガスおよび酸化剤ガスを供給して発電反応を生じさせる固体酸化物形燃料電池であって、前記発電反応室の下部にバーナを備えたガス予熱室を設け、当該ガス予熱室内に、昇温時および/または降温時に水蒸気とメタンガス或いは炭化水素ガスとが供給される予熱用燃料ガス管および空気が供給される予熱用酸化剤ガス管を配設し、前記予熱用燃料ガス管内に水蒸気改質触媒を配置するとともに、前記予熱用燃料ガスを前記燃料ガス供給管に接続し、かつ前記予熱用酸化剤ガス管を前記酸化剤ガス供給管に接続したことを特徴としている。
【0018】
上記構成では、予熱用燃料ガスに導入した炭化水素ガスと水蒸気の混合ガスが管内の改質触媒と接触して炭化水素ガスの改質反応が行われ、改質ガス(H2、CO、CO2)を得る。この改質反応は吸熱反応であって、改質反応に必要な熱は、バーナの燃焼熱を使用することができる。
【0019】
また、請求項2に記載の本発明は、請求項1に記載の固体酸化物形燃料電池において、前記発電反応室と前記ガス予熱室との隔壁に前記バーナの燃焼ガスを発電反応室に導入するための通気路を備えたことを特徴としている。
上記構成では、昇温時、バーナの燃焼運転で生じた熱気(燃焼ガス)が通気路を通して発電反応室に導入され、発電反応室内を上昇する過程で燃料電池スタックを外部より加熱する。
【0020】
また、請求項3に記載の本発明は、請求項2に記載の固体酸化物形燃料電池において、前記燃料電池スタックの周囲に前記通気路を複数配設したことを特徴としている。
上記構成では、通気路から導入される燃焼ガスにより、燃料電池スタックが全域に亘って均一に加熱される。
【0021】
また、請求項4に記載の本発明は、請求項1から請求項3までの何れかに記載の固体酸化物形燃料電池の運転方法であって、予熱の際に、前記バーナの燃焼運転を開始して予熱用酸化剤ガスの予熱用空気を加熱し、前記セパレータを通して前記発電セルの酸化剤極層に供給すると共に、前記予熱用燃料ガスに水蒸気と炭化水素ガスとの混合ガスを導入し、改質反応により爆発下限界未満の水素を含むガスを発生し、前記セパレータを通して前記発電セルの燃料極層に供給することにより、発電セルを内部から加熱し、且つ、前記バーナの燃焼ガスで発電セルを外部から加熱することを特徴としている。
上記運転方法では、昇温の際、発電セルを外部と内部から並行して加熱することができるので、燃料電池スタックの外周部と内部との温度差を小さく抑えながら、発電セルの昇温を促進することができる。従って、発電セルの割れを防ぎながら、発電セルを効率良く短時間で昇温することができる。また、加熱中は燃料極層側に供給される水素により、還元性雰囲気が維持されるため、燃料極層のNiの酸化が防止できる。
【0022】
【発明の実施の形態】
以下、図1〜図3に基づいて本発明の実施形態を説明する。
図1は本発明の固体酸化物形燃料電池の内部構成を示し、図2は熱交換用配管の構成を示し、図3は燃料電池スタックの要部概略構成を示している。
【0023】
図1において、符号1は固体酸化物形燃料電池、符号2は内部に断熱材26を付装したハウジング、符号3は積層方向を縦にしてハウジング2の内部に配置された燃料電池スタックである。図3に示すように、この燃料電池スタック3は固体電解質層4の両面に燃料極層5および空気極層(酸化剤極層)6を配した発電セル7と、燃料極層5の外側の燃料極集電体8と、空気極層6の外側の空気極集電体(酸化剤極集電体)9と、各集電体8、9の外側のセパレータ10を順番に積層した構造を有する。
【0024】
ここで、固体電解質層4はイットリアを添加した安定化ジルコニア(YSZ)等で構成され、燃料極層5はNi、Co等の金属あるいはNi−YSZ、Co−YSZ等のサーメットで構成され、空気極層6はLaMnO3 、LaCoO3 等で構成され、燃料極集電体8はNi基合金等のスポンジ状の多孔質焼結金属板で構成され、空気極集電体9はAg基合金等のスポンジ状の多孔質焼結金属板で構成され、セパレータ10はステンレス等で構成されている。
【0025】
また、燃料電池スタック3の側方には、各セパレータ10の燃料ガス通路17(図3参照)に接続管11を通して燃料ガスを供給する燃料用マニホールド13と、各セパレータ10の酸化剤ガス通路18(図3参照)に接続管12を通して酸化剤ガスとしての空気を供給する酸化剤用マニホールド14とが、発電セル7の積層方向に延在して設けられている。
【0026】
また、燃料用マニホールド13のほぼ中央部に、運転時の発電反応に必要な外部燃料ガスを供給するための燃料ガス供給管15が、また、酸化剤用マニホールド14のほぼ中央部に、発電反応に必要な外部酸化剤ガス(空気)を供給するための酸化剤ガス供給管16が接続されている。
【0027】
また、この固体酸化物形燃料電池1は、発電セル7の外周部にガス漏れ防止シールを設けないシールレス構造とされており、運転時には、図3に示すように、燃料ガス通路17および酸化剤ガス通路18を通してセパレータ10の略中心部から発電セル7に向けて吐出される燃料ガスおよび酸化剤ガス(空気)を、発電セル7の外周方向に拡散させながら燃料極層5および空気極層6の全面に良好な分布で行き渡らせて発電反応を生じさせると共に、発電反応で消費されなかった残余のガスを、発電セル7の外周部から外に自由に放出するようになっている。また、ハウジング2には、その内部に形成された発電反応室20に放出される余剰ガスをハウジング2の外に排出するための排気管(排気穴)19が設けられている。
【0028】
ところで、本実施形態の固体酸化物形燃料電池1では、上記した発電反応室20の下部に断熱材26を付装して形成された隔壁25を介し、運転開始時の昇温時や運転停止時の降温時に燃料電池スタック3を効率良く予熱するためのガス予熱室30が配設されており、断熱材26で囲まれた内部にバーナ21が設置されている。
バーナ21は、昇温時、ガス予熱室30の外部よりバーナ21に配管されたバーナ用燃焼ガス供給管22を通して燃料ガスが供給されるように構成されており、ガス予熱室30底部の適所に設けた複数の吸気孔23より供給される空気と共にバーナ21での燃焼運転が行われるようになっている。
【0029】
また、燃焼運転時に、このバーナ21が形成する火炎に近接して予熱時の熱交換用配管となる予熱用燃料ガス管27と予熱用酸化剤ガス管28が配設されている。図2に示すように、これら予熱用燃料ガス管27と予熱用酸化剤ガス管28は何れも渦巻状に形成された金属製の管体で構成されており、これらの管体が平面上で入れ子状態に組み合わせられて熱交換効率の良い熱交換用配管構造体31を構成しており、且つ、上記管体の内予熱用燃料ガス管27の内部には、図示しない水蒸気改質触媒(例えば、Ni、Ru、Pt、Rh、Ce、Ir等)が配置されている。
【0030】
予熱用燃料ガス管27は、その外側端部がハウジング2の外に向けて配管されていると共に、中央端部は上方の隔壁25に厚み方向に設けた通気孔25aを挿通して発電反応室20内に誘導されており、その端部が発電反応室20内において燃料ガス供給管15に接続されている。一方、予熱用酸化剤ガス管28は、その外側端部がハウジング2の外に向けて配管されていると共に、中央端部が上部隔壁25の通気孔25aを挿通して発電反応室20内に誘導されており、発電反応室20内において酸化剤ガス供給管16に接続されている。
尚、ガス予熱室30の側部には、バーナ21の燃焼状態、即ち、火炎の状態を外部より監視できるように、透視性の覗き窓29が設けてある。
また、上記したガス予熱室30の構成において、バーナ21は1台に限らず複数台設置しても良く、且つ、隔壁25の通気孔25aは、バーナ21の熱気(燃焼ガス)を発電反応室20側に効率的に誘導できるよう、燃料電池スタック3を囲むように複数個が輪状に配設されている。
【0031】
次に、上記構成の予熱機構による運転開始時の予熱動作を説明する。
【0032】
運転開始の際の予熱時に、先ず、ガス予熱室30のバーナ用燃焼ガス供給管22より外部のメタンガス、或いは炭化水素ガス等の燃料ガスがバーナ21へ供給される。この燃焼ガスと吸気孔23から供給される燃焼用空気の混合ガスでバーナ21が燃焼動作を開始し、その火炎によってバーナ21の上方近傍に配設された渦巻状の予熱用燃料ガス管27および予熱用酸化剤ガス管28による熱交換用配管構造体31が加熱される。因みに、実施形態の予熱動作では、覗き窓29からバーナ21が形成する火炎を監視しながら、予熱開始時はとろ火で徐々に加熱し、その後、火力を増加していって所定の温度まで昇温する。
【0033】
予熱時、予熱用酸化剤ガス管28には、外部より予熱用の空気が供給されており、この予熱用空気は渦巻状のガス管28を通過する過程で熱交換されると共に、加熱空気は予熱用酸化剤ガス管28により発電反応室20へ誘導されて、酸化剤ガス供給管16から、酸化剤用マニホールド14、多数の接続管12等を通して各セパレータ10に導入され、セパレータ10の外周部より内部の酸化剤ガス通路18を通して空気極側に吐出し、空気極集電体9内を拡散移動して空気極層6に達する。係るガス流通路は図3で示した通りであり、加熱空気はセパレータ10の酸化剤ガス通路18を通過する過程で金属製のセパレータ10と熱交換し、セパレータ10を内部より加熱する。
【0034】
これと並行して、予熱時、予熱用燃料ガス管27には、水蒸気とメタンガス、或いは炭化水素ガス(燃料電池用の燃料ガスを流用する)の混合ガスが供給されており、この混合ガスは渦巻状の管内で改質触媒と接触して炭化水素ガスやメタンガスの水蒸気改質反応が起こり、改質ガス(H2 、CO、CO2 )を発生する。この改質反応は吸熱反応であって、改質反応に必要な熱は、バーナ21の燃焼熱を使用することができる。
ここで、改質反応により得られる水素は安全性等より爆発限界未満とされており、因みに、改質ガス中の水素の量は3%以下程度とされている。従って、予熱時に予熱用燃料ガス管27に供給される燃料ガスの量は極めて少量である。
【0035】
この改質反応で生じた改質ガスは、予熱用燃料ガス管27を通して発電反応室20へ誘導され、燃料ガス供給管15から、燃料用マニホールド13、多数の接続管11等を通して各セパレータ10に導入され、セパレータ側部より内部の燃料ガス通路17を通して燃料極側に吐出し、燃料極集電体8内を拡散移動して燃料極層5に達する。加熱された改質ガスは、上記した加熱空気の作用効果と同じように、燃料ガス通路17を通過する過程で金属製のセパレータ10と熱交換してセパレータ10を内部より加熱すると共に、燃料極側に水素が導入されることにより、昇温中、燃料極層5を還元性雰囲気とすることができ、結果、燃料極層5の材料であるNiの酸化が防止される。従って、予熱用燃料ガス管27内において改質反応により得られた水素は従来公知の内部改質のように発電のための燃料ガスとして使用されることはない。
【0036】
また、上記のように、発電セル内部からの予熱が行われている一方で、バーナ21から発生する燃焼ガスは、上方の通気孔25aより発電反応室20内に侵入し、且つ、反応室内を上方に向かって流通する過程で発電セルの外周部に接触し、発電セル7を外周部からも加熱することになる。既述したように、この通気孔25aは燃料電池スタック3の周囲に複数配置されているので、燃料電池スタック3の外周部全体を下方から上方に向けて均一に加熱することができる。この燃焼ガスは図示しないブロア等で上方に吸引され、上部排気穴19より外部に排気される。
【0037】
燃料電池スタック3が発電反応可能温度に昇温されると、燃料ガスの供給が断たれてバーナ21の燃焼運転が停止し、且つ、予熱用燃料ガス管27や予熱用酸化剤ガス管28への加熱用ガスおよび空気の供給も停止される。昇温後は、燃料ガス供給管15より燃料ガスが供給され、酸化剤ガス供給管16より空気が供給されて燃料電池の運転(発電)が開始されることになる。
【0038】
上記運転方法によれば、昇温の際、発電反応室20に導入されたバーナ21の燃焼ガスによって燃料電池スタック3を外周部から加熱すると共に、予熱用燃料ガス管27と予熱用酸化剤ガス管28より導入される加熱ガス(改質ガスおよび空気)により、燃料電池スタック3を内部からも加熱するので、燃料電池スタック3の外周部と内部との温度差を小さく抑えながら、発電セル7の昇温を促進することができる。これにより、発電セル7の割れを防ぎながら、発電セル7を効率良く昇温させることができる。尚、係る、予熱動作は、運転開始時の昇温時だけでなく運転停止時の降温時にも適用できることは勿論である。
【0039】
また、予熱用燃料ガス管27内の改質反応で生じた水素を含むガスを燃料極層5に供給することにより、燃料極層5を還元性雰囲気とすることができ、繰り返し行われる燃料電池の昇温、降温動作において燃料極層5の材料であるNiの酸化による燃料極層5の剥離現象を防止することができ、安定した発電特性を維持することができる。
【0040】
【発明の効果】
以上説明したように、本発明によれば、昇温の際、発電セルを外部と内部から同時に加熱するので、燃料電池スタックの外周部と内部との温度差を小さく抑えながら、発電セルの昇温を促進することができる。従って、発電セルの割れを防ぎながら、発電セルを効率良く昇温させることができる。
また、昇温中、燃料極側には爆発限界未満の水素が供給されるので、燃料極層の材料であるNiの酸化による燃料極層の剥離現象が防止され、耐久性が向上すると共に、繰り返し行われる燃料電池の昇温、降温動作においても安定した発電特性を維持することができる。
【図面の簡単な説明】
【図1】 本発明に係る固体酸化物形燃料電池の内部構成を示す断面図。
【図2】 本発明の実施形態の説明に用いる燃料電池スタックの要部概略構成図で、運転時のガスの流れを示す。
【図3】 本発明の熱交換用配管構造体の構成を示す図。
【符号の説明】
1 固体酸化物形燃料電池
3 燃料電池スタック
5 燃料極層
7 発電セル
10 セパレータ
20 発電反応室
21 バーナ
25 隔壁
25a 通気路(通気孔)
27 予熱用燃料ガス
28 予熱用酸化剤ガス
30 ガス予熱室
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a solid oxide fuel cell, and more particularly to a preheating structure of a solid oxide fuel cell and a preheating method thereof.
[0002]
[Prior art]
A solid oxide fuel cell having a power generation cell with a laminated structure in which a solid electrolyte layer made of an oxide ion conductor is sandwiched between an air electrode layer and a fuel electrode layer is being developed as a fuel cell for third generation power generation. It is out. In the power generation cell, oxygen (air) as an oxidant gas is supplied to the air electrode side, and fuel gas (H 2 , CO, etc.) is supplied to the fuel electrode side. The air electrode and the fuel electrode are both porous so that the gas can reach the interface with the solid electrolyte.
[0003]
Oxygen supplied to the air electrode side passes through the pores in the air electrode layer and reaches the vicinity of the interface with the solid electrolyte layer. At this part, it receives electrons from the air electrode and converts them into oxide ions (O 2− ). Ionized. The oxide ions diffuse and move in the solid electrolyte layer toward the fuel electrode. Oxide ions that have reached the vicinity of the interface with the fuel electrode react with the fuel gas at this portion to generate reaction products (H 2 O, CO 2, etc.), and emit electrons to the fuel electrode.
[0004]
The electrode reaction when hydrogen is used as the fuel is as follows.
Air electrode: 1/2 O 2 + 2e → O 2−
Fuel electrode: H 2 + O 2− → H 2 O + 2e
Overall: H 2 +1/2 O 2 → H 2 O
[0005]
The solid electrolyte layer is a moving medium for oxide ions and at the same time functions as a partition for preventing direct contact between the fuel gas and air, and thus has a dense structure that is impermeable to gas. This solid electrolyte layer should have a high oxide ion conductivity, be chemically stable under conditions from the oxidizing atmosphere on the air electrode side to the reducing atmosphere on the fuel electrode side, and be made of a material that is resistant to thermal shock. There is generally used stabilized zirconia (YSZ) to which yttria is added as a material satisfying such requirements.
[0006]
On the other hand, both the air electrode (cathode) layer and the fuel electrode (anode) layer, which are electrodes, must be made of a material having high electron conductivity. Since the air electrode material must be chemically stable in a high-temperature oxidizing atmosphere of at least around 700 ° C., the metal is unsuitable, and a perovskite type oxide material having electron conductivity, specifically LaMnO. 3 or LaCoO 3 or a solid solution obtained by substituting a part of these La with Sr, Ca, or the like is generally used. The fuel electrode material is generally a metal such as Ni or Co, or a cermet such as Ni—YSZ or Co—YSZ.
[0007]
Solid oxide fuel cells include a high temperature operation type that operates at a high temperature of about 1000 ° C. and a low temperature operation type that operates at a low temperature of about 700 ° C. A low temperature operation type solid oxide fuel cell can generate power as a fuel cell even at low temperatures by, for example, reducing the thickness of stabilized zirconia (YSZ) to which the electrolyte yttria is added to about 10 μm to reduce the resistance of the electrolyte. Use a solid electrolyte layer modified to:
[0008]
In a high-temperature solid electrolyte fuel cell, for example, ceramics having electronic conductivity such as lanthanum chromite (LaCrO 3 ) are used as a separator. In a low-temperature operation solid oxide fuel cell, a metal material such as stainless steel is used. Can be used.
[0009]
Also, three types of solid oxide fuel cell structures have been proposed: a cylindrical type, a monolith type, and a flat plate type. Among these structures, since a metal separator can be used for a low temperature operation type solid oxide fuel cell, a flat plate type structure that is easy to give a shape to the metal separator is suitable.
[0010]
A stack of flat plate type solid oxide fuel cells has a structure in which power generation cells, current collectors, and separators are alternately stacked. A pair of separators sandwich the power generation cell from both sides, one being in contact with the air electrode via the air electrode current collector and the other being in contact with the fuel electrode via the fuel electrode current collector. A sponge-like porous body such as a Ni-based alloy can be used for the fuel electrode current collector, and a sponge-like porous body such as an Ag-based alloy can be used for the air electrode current collector. Can do. The sponge-like porous body has a current collecting function, a gas permeation function, a uniform gas diffusion function, a cushion function, a thermal expansion difference absorption function, and the like, and is therefore suitable as a multifunctional current collector material.
[0011]
The separator has a function of electrically connecting the power generation cells and supplying gas to the power generation cells. The fuel is introduced from the outer peripheral surface of the separator and discharged from the surface facing the separator fuel electrode layer. Each has a gas passage and an oxidant gas passage which introduces air as an oxidant gas from the outer peripheral surface of the separator and discharges it from the surface facing the air electrode layer of the separator.
[0012]
By the way, when operating the above-described solid oxide fuel cell, it is necessary to start the operation after preheating the power generation cell to the above-described power generation reaction temperature (see Patent Document 1). A method of raising the temperature with a heater arranged on the outer periphery or a method of introducing a gas heated from the outside around the fuel cell stack is employed. These are all heating the power generation cell from the outer periphery.
[0013]
[Patent Literature]
Japanese Patent Laid-Open No. 6-124721
[Problems to be solved by the invention]
However, when preheating the power generation cell, if the temperature is not increased while maintaining the uniform temperature of the entire fuel cell stack, a temperature distribution is generated in the power generation cell and thermal stress is generated, which may lead to damage of the power generation cell. For this reason, in the method of heating the power generation cell from the outer peripheral portion, it is difficult to maintain the thermal uniformity, so it is necessary to gradually raise the temperature over a very long time, and the standby time until the start of operation becomes longer. There's a problem. Also, in the temperature lowering operation when the operation is stopped, if the temperature is lowered from the operating temperature at once, problems such as breakage of the power generation cell occur as in the case of the temperature increase. It has passed.
[0015]
In addition, conventionally, Ni is mainly used as a material for the fuel electrode layer. Therefore, the temperature rising operation at the time of start-up and the temperature lowering operation at the time of operation stop are repeatedly performed. There is a problem that oxidization causes peeling at the interface with the electrolyte layer due to sintering shrinkage due to reduction during power generation. Such a peeling phenomenon of the fuel electrode layer loses electrode activity, thereby deteriorating the power generation characteristics and significantly lowering the durability. For this reason, conventionally, in order to prevent oxidation of Ni in the fuel electrode layer during preheating, N 2 or the like is introduced from an inert gas cylinder and the temperature is raised while maintaining the fuel electrode side in a reducing atmosphere. Has been taken.
[0016]
The present invention has been made in view of the above problems, and is a suitable solid oxide fuel that can efficiently perform preheating in a short time while preventing damage to the power generation cell and separation due to oxidation of the fuel electrode. It aims at providing a battery and its operating method.
[0017]
[Means for Solving the Problems]
That is, according to the present invention, the fuel cell stack configured by alternately stacking the power generation cells and the separators is housed in the power generation reaction chamber, and the fuel gas supply pipe and the oxidation are put into the fuel cell stack during operation. A solid oxide fuel cell in which a fuel gas and an oxidant gas are respectively supplied from an agent gas supply pipe to cause a power generation reaction, and a gas preheating chamber having a burner is provided at a lower portion of the power generation reaction chamber, and the gas In the preheating chamber, a preheating fuel gas pipe to which water vapor and methane gas or hydrocarbon gas are supplied at the time of temperature rise and / or temperature drop and a preheating oxidant gas pipe to which air is supplied are arranged, and the preheating fuel is provided. with arranging the steam reforming catalyst in the gas tube, connecting the preheating fuel gas pipe to the fuel gas supply pipe, and connecting the preheating oxidizer gas pipe to the oxidant gas supply pipe It is characterized in that was.
[0018]
In the above configuration, the hydrocarbon gas introduced into the preheating fuel gas pipe and the steam are brought into contact with the reforming catalyst in the pipe to perform the reforming reaction of the hydrocarbon gas, and the reformed gas (H 2 , CO, CO 2 ) is obtained. This reforming reaction is an endothermic reaction, and the heat required for the reforming reaction can be the combustion heat of the burner.
[0019]
Further, the invention of claim 2 is introduced in the solid oxide fuel cell according to claim 1, the power generation reaction chamber combustion gas of the burner in the partition wall between the gas preheating chamber and the power generation reaction chamber It is characterized by having an air passage for doing this.
In the above-described configuration, hot air (combustion gas) generated in the burner combustion operation is introduced into the power generation reaction chamber through the air passage when the temperature rises, and the fuel cell stack is heated from the outside in the process of rising in the power generation reaction chamber.
[0020]
Further, the invention according to claim 3, in a solid oxide fuel cell according to claim 2 is characterized in that arranging a plurality of said air passage around the fuel cell stack.
In the above configuration, the fuel cell stack is uniformly heated over the entire area by the combustion gas introduced from the air passage.
[0021]
Further, the present invention according to claim 4 is the operation method of the solid oxide fuel cell according to any one of claims 1 to 3 , wherein the combustion operation of the burner is performed during preheating. The preheating air in the preheating oxidant gas pipe is heated and supplied to the oxidant electrode layer of the power generation cell through the separator, and a mixed gas of water vapor and hydrocarbon gas is supplied to the preheating fuel gas pipe. Introducing, generating a gas containing hydrogen below the lower limit of explosion by a reforming reaction, supplying the fuel electrode layer of the power generation cell through the separator, heating the power generation cell from the inside, and burning the burner The power generation cell is heated from the outside with gas.
In the above operation method, since the power generation cell can be heated in parallel from the outside and the inside during the temperature increase, the temperature increase of the power generation cell is suppressed while keeping the temperature difference between the outer peripheral portion and the inside of the fuel cell stack small. Can be promoted. Therefore, it is possible to efficiently raise the temperature of the power generation cell in a short time while preventing cracking of the power generation cell. Further, during heating, since the reducing atmosphere is maintained by hydrogen supplied to the fuel electrode layer side, oxidation of Ni in the fuel electrode layer can be prevented.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
FIG. 1 shows an internal configuration of a solid oxide fuel cell according to the present invention, FIG. 2 shows a configuration of heat exchange piping, and FIG. 3 shows a schematic configuration of a main part of a fuel cell stack.
[0023]
In FIG. 1, reference numeral 1 is a solid oxide fuel cell, reference numeral 2 is a housing in which a heat insulating material 26 is attached, and reference numeral 3 is a fuel cell stack disposed inside the housing 2 with the stacking direction being vertical. . As shown in FIG. 3, the fuel cell stack 3 includes a power generation cell 7 in which a fuel electrode layer 5 and an air electrode layer (oxidant electrode layer) 6 are disposed on both surfaces of a solid electrolyte layer 4, and an outer side of the fuel electrode layer 5. A structure in which a fuel electrode current collector 8, an air electrode current collector (oxidant electrode current collector) 9 outside the air electrode layer 6, and a separator 10 outside each current collector 8, 9 are laminated in order. Have.
[0024]
Here, the solid electrolyte layer 4 is composed of stabilized zirconia (YSZ) or the like to which yttria is added, and the fuel electrode layer 5 is composed of a metal such as Ni or Co or a cermet such as Ni—YSZ or Co—YSZ, and air. The electrode layer 6 is made of LaMnO 3 , LaCoO 3 or the like, the fuel electrode current collector 8 is made of a sponge-like porous sintered metal plate such as a Ni-based alloy, and the air electrode current collector 9 is made of an Ag-based alloy or the like. The separator 10 is made of stainless steel or the like.
[0025]
Further, on the side of the fuel cell stack 3, a fuel manifold 13 that supplies fuel gas to the fuel gas passages 17 (see FIG. 3) of each separator 10 through the connection pipe 11, and an oxidant gas passage 18 of each separator 10. An oxidant manifold 14 for supplying air as an oxidant gas through the connecting pipe 12 is provided extending in the stacking direction of the power generation cells 7 (see FIG. 3).
[0026]
Further, a fuel gas supply pipe 15 for supplying an external fuel gas necessary for a power generation reaction during operation is provided at a substantially central portion of the fuel manifold 13, and a power generation reaction is provided at a substantially central portion of the oxidant manifold 14. An oxidant gas supply pipe 16 for supplying external oxidant gas (air) necessary for the operation is connected.
[0027]
Further, the solid oxide fuel cell 1 has a sealless structure in which a gas leakage prevention seal is not provided on the outer peripheral portion of the power generation cell 7, and during operation, as shown in FIG. The fuel electrode layer 5 and the air electrode layer are diffused while the fuel gas and the oxidant gas (air) discharged from the substantially central portion of the separator 10 through the agent gas passage 18 toward the power generation cell 7 are diffused in the outer peripheral direction of the power generation cell 7. The power generation reaction is caused to spread over the entire surface of 6 with a good distribution, and the remaining gas that has not been consumed in the power generation reaction is freely released from the outer periphery of the power generation cell 7 to the outside. Further, the housing 2 is provided with an exhaust pipe (exhaust hole) 19 for discharging excess gas discharged into the power generation reaction chamber 20 formed inside the housing 2 to the outside of the housing 2.
[0028]
By the way, in the solid oxide fuel cell 1 of the present embodiment, the temperature rise at the start of operation or the operation stop is performed via the partition wall 25 formed by attaching the heat insulating material 26 to the lower part of the power generation reaction chamber 20 described above. A gas preheating chamber 30 for efficiently preheating the fuel cell stack 3 at the time of temperature drop is disposed, and a burner 21 is installed inside the heat insulating material 26.
The burner 21 is configured so that fuel gas is supplied from the outside of the gas preheating chamber 30 through the burner combustion gas supply pipe 22 piped to the burner 21 when the temperature is raised. The combustion operation in the burner 21 is performed together with the air supplied from the plurality of intake holes 23 provided.
[0029]
Further, during the combustion operation, a preheating fuel gas pipe 27 and a preheating oxidant gas pipe 28 which are heat exchange pipes for preheating are disposed in the vicinity of the flame formed by the burner 21. As shown in FIG. 2, each of the preheating fuel gas pipe 27 and the preheating oxidant gas pipe 28 is formed of a metal pipe formed in a spiral shape, and these pipes are formed on a plane. A heat exchanging piping structure 31 having a high heat exchanging efficiency combined with a nested state is configured, and a steam reforming catalyst (not shown) (for example, not shown) is disposed inside the inner preheating fuel gas pipe 27 of the pipe. , Ni, Ru, Pt, Rh, Ce, Ir, etc.).
[0030]
The preheating fuel gas pipe 27 has an outer end piped to the outside of the housing 2, and a central end inserted through a vent 25 a provided in the thickness direction of the upper partition wall 25 to generate a power generation reaction chamber. The end of the power generation reaction chamber 20 is connected to the fuel gas supply pipe 15. On the other hand, the preheating oxidant gas pipe 28 has an outer end piped to the outside of the housing 2, and a central end inserted through the vent 25 a of the upper partition wall 25 into the power generation reaction chamber 20. Inducted and connected to the oxidant gas supply pipe 16 in the power generation reaction chamber 20.
A side window of the gas preheating chamber 30 is provided with a see-through viewing window 29 so that the combustion state of the burner 21, that is, the state of flame can be monitored from the outside.
In the configuration of the gas preheating chamber 30 described above, the number of burners 21 is not limited to one, and a plurality of burners 21 may be installed. A plurality of fuel cell stacks 3 are arranged in a ring shape so as to surround the fuel cell stack 3 so as to be efficiently guided to the side 20.
[0031]
Next, the preheating operation at the start of operation by the preheating mechanism having the above configuration will be described.
[0032]
During preheating at the start of operation, first, fuel gas such as external methane gas or hydrocarbon gas is supplied to the burner 21 from the burner combustion gas supply pipe 22 of the gas preheating chamber 30. The burner 21 starts a combustion operation with a mixed gas of the combustion gas and combustion air supplied from the intake hole 23, and a spiral preheating fuel gas pipe 27 disposed in the vicinity of the upper portion of the burner 21 by the flame and The heat exchange piping structure 31 by the preheating oxidant gas pipe 28 is heated. Incidentally, in the preheating operation of the embodiment, while monitoring the flame formed by the burner 21 from the observation window 29, the preheating is gradually heated by the melting fire, and then the heating power is increased to a predetermined temperature. To do.
[0033]
During preheating, preheating air is supplied to the preheating oxidant gas pipe 28 from the outside. The preheating air is heat-exchanged in the process of passing through the spiral gas pipe 28, and the heated air is It is guided to the power generation reaction chamber 20 by the preheating oxidant gas pipe 28 and is introduced from the oxidant gas supply pipe 16 to each separator 10 through the oxidant manifold 14, the numerous connection pipes 12, and the like. The air is further discharged to the air electrode side through the oxidant gas passage 18 inside, and diffuses and moves in the air electrode current collector 9 to reach the air electrode layer 6. Such a gas flow passage is as shown in FIG. 3, and the heated air exchanges heat with the metallic separator 10 in the process of passing through the oxidant gas passage 18 of the separator 10 to heat the separator 10 from the inside.
[0034]
In parallel with this, at the time of preheating, the preheating fuel gas pipe 27 is supplied with a mixed gas of water vapor and methane gas or hydrocarbon gas (fuel gas for fuel cells is diverted). A steam reforming reaction of hydrocarbon gas or methane gas occurs in contact with the reforming catalyst in a spiral tube, and reformed gas (H 2 , CO, CO 2 ) is generated. This reforming reaction is an endothermic reaction, and the heat necessary for the reforming reaction can use the combustion heat of the burner 21.
Here, the hydrogen obtained by the reforming reaction is less than the explosion limit for safety and the like, and the amount of hydrogen in the reformed gas is about 3% or less. Therefore, the amount of fuel gas supplied to the preheating fuel gas pipe 27 during preheating is extremely small.
[0035]
The reformed gas generated by this reforming reaction is guided to the power generation reaction chamber 20 through the preheating fuel gas pipe 27 and is supplied from the fuel gas supply pipe 15 to each separator 10 through the fuel manifold 13, a large number of connection pipes 11, and the like. It is introduced and discharged from the separator side portion through the internal fuel gas passage 17 to the fuel electrode side, diffuses and moves in the fuel electrode current collector 8 and reaches the fuel electrode layer 5. The heated reformed gas exchanges heat with the metallic separator 10 in the process of passing through the fuel gas passage 17 and heats the separator 10 from the inside in the process of passing through the fuel gas passage 17 as well as the above-described effect of the heated air. By introducing hydrogen to the side, the fuel electrode layer 5 can be made a reducing atmosphere during the temperature rise, and as a result, oxidation of Ni which is the material of the fuel electrode layer 5 is prevented. Therefore, the hydrogen obtained by the reforming reaction in the preheating fuel gas pipe 27 is not used as a fuel gas for power generation unlike the conventionally known internal reforming.
[0036]
Further, as described above, while the preheating from the inside of the power generation cell is performed, the combustion gas generated from the burner 21 enters the power generation reaction chamber 20 through the upper vent 25a, and the reaction chamber is filled with the combustion gas. In the process of flowing upward, the outer periphery of the power generation cell is contacted, and the power generation cell 7 is also heated from the outer periphery. As described above, since the plurality of vent holes 25a are arranged around the fuel cell stack 3, the entire outer periphery of the fuel cell stack 3 can be uniformly heated from below to above. The combustion gas is sucked upward by a blower (not shown) and exhausted to the outside through the upper exhaust hole 19.
[0037]
When the temperature of the fuel cell stack 3 is raised to the temperature at which power generation reaction is possible, the supply of the fuel gas is cut off, the combustion operation of the burner 21 is stopped, and the preheating fuel gas pipe 27 and the preheating oxidant gas pipe 28 are stopped. The supply of the heating gas and air is also stopped. After the temperature rise, the fuel gas is supplied from the fuel gas supply pipe 15 and the air is supplied from the oxidant gas supply pipe 16 to start the operation (power generation) of the fuel cell.
[0038]
According to the above operation method, the fuel cell stack 3 is heated from the outer periphery by the combustion gas of the burner 21 introduced into the power generation reaction chamber 20 at the time of temperature rise, and the preheating fuel gas pipe 27 and the preheating oxidant gas are used. Since the fuel cell stack 3 is also heated from the inside by the heated gas (reformed gas and air) introduced from the pipe 28, the temperature difference between the outer peripheral portion and the inside of the fuel cell stack 3 is kept small, and the power generation cell 7. The temperature rise can be promoted. Thereby, it is possible to efficiently raise the temperature of the power generation cell 7 while preventing the power generation cell 7 from cracking. Of course, the preheating operation can be applied not only when the temperature is increased at the start of operation but also when the temperature is decreased when operation is stopped.
[0039]
Further, by supplying a gas containing hydrogen generated by the reforming reaction in the preheating fuel gas pipe 27 to the fuel electrode layer 5, the fuel electrode layer 5 can be made a reducing atmosphere, and the fuel cell is repeatedly performed. In the temperature rising / falling operation, the peeling phenomenon of the fuel electrode layer 5 due to oxidation of Ni which is the material of the fuel electrode layer 5 can be prevented, and stable power generation characteristics can be maintained.
[0040]
【The invention's effect】
As described above, according to the present invention, when the temperature is raised, the power generation cell is heated from the outside and the inside at the same time. Therefore, while the temperature difference between the outer peripheral portion and the inside of the fuel cell stack is kept small, Can promote temperature. Accordingly, it is possible to efficiently raise the temperature of the power generation cell while preventing the power generation cell from cracking.
In addition, during the temperature rise, hydrogen below the explosion limit is supplied to the fuel electrode side, so that the peeling phenomenon of the fuel electrode layer due to oxidation of Ni which is the material of the fuel electrode layer is prevented, and the durability is improved. Stable power generation characteristics can be maintained even during repeated heating and cooling operations of the fuel cell.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an internal configuration of a solid oxide fuel cell according to the present invention.
FIG. 2 is a schematic configuration diagram of a main part of a fuel cell stack used for explaining an embodiment of the present invention, and shows a gas flow during operation.
FIG. 3 is a diagram showing a configuration of a heat exchange piping structure according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Solid oxide fuel cell 3 Fuel cell stack 5 Fuel electrode layer 7 Power generation cell 10 Separator 20 Power generation reaction chamber 21 Burner 25 Partition 25a Vent (vent)
27 Preheating fuel gas pipe 28 Preheating oxidant gas pipe 30 Gas preheating chamber

Claims (4)

発電セルとセパレータを交互に積層して構成した燃料電池スタックを発電反応室に収納すると共に、運転時に当該燃料電池スタック内へ燃料ガス供給管および酸化剤ガス供給管から各々燃料ガスおよび酸化剤ガスを供給して発電反応を生じさせる固体酸化物形燃料電池であって、
前記発電反応室の下部にバーナを備えたガス予熱室を設け、当該ガス予熱室内に、昇温時および/または降温時に水蒸気とメタンガス或いは炭化水素ガスとが供給される予熱用燃料ガス管および空気が供給される予熱用酸化剤ガス管を配設し、前記予熱用燃料ガス管内に水蒸気改質触媒を配置するとともに、前記予熱用燃料ガスを前記燃料ガス供給管に接続し、かつ前記予熱用酸化剤ガス管を前記酸化剤ガス供給管に接続したことを特徴とする固体酸化物形燃料電池。
A fuel cell stack configured by alternately stacking power generation cells and separators is housed in a power generation reaction chamber, and fuel gas and oxidant gas are respectively supplied from the fuel gas supply pipe and the oxidant gas supply pipe into the fuel cell stack during operation. A solid oxide fuel cell that generates a power generation reaction by supplying
A gas preheating chamber provided with a burner is provided in the lower part of the power generation reaction chamber, and a preheating fuel gas pipe and air to which water vapor and methane gas or hydrocarbon gas are supplied when the temperature is raised and / or lowered. A preheating oxidant gas pipe is provided, a steam reforming catalyst is disposed in the preheating fuel gas pipe , the preheating fuel gas pipe is connected to the fuel gas supply pipe, and the preheating is performed. A solid oxide fuel cell comprising an oxidant gas pipe connected to the oxidant gas supply pipe.
前記発電反応室と前記ガス予熱室との隔壁に前記バーナの燃焼ガスを発電反応室に導入するための通気路を備えたことを特徴とする請求項1に記載の固体酸化物形燃料電池。  2. The solid oxide fuel cell according to claim 1, further comprising an air passage for introducing combustion gas of the burner into the power generation reaction chamber in a partition wall between the power generation reaction chamber and the gas preheating chamber. 前記燃料電池スタックの周囲に前記通気路を複数配設したことを特徴とする請求項2に記載の固体酸化物形燃料電池。 3. The solid oxide fuel cell according to claim 2, wherein a plurality of the air passages are disposed around the fuel cell stack. 請求項1から請求項3までの何れかに記載の固体酸化物形燃料電池の運転方法であって、予熱の際に、前記バーナの燃焼運転を開始して予熱用酸化剤ガス管の予熱用空気を加熱し、前記セパレータを通して前記発電セルの酸化剤極層に供給すると共に、前記予熱用燃料ガス管に水蒸気と炭化水素ガスとの混合ガスを導入し、改質反応により爆発下限界未満の水素を含むガスを発生し、前記セパレータを通して前記発電セルの燃料極層に供給することにより、発電セルを内部から加熱し、且つ、前記バーナの燃焼ガスで発電セルを外部から加熱することを特徴とする固体酸化物形燃料電池の運転方法。  A method for operating a solid oxide fuel cell according to any one of claims 1 to 3, wherein, during preheating, the burner is started for combustion operation to preheat an oxidant gas pipe for preheating. The air is heated and supplied to the oxidant electrode layer of the power generation cell through the separator, and a mixed gas of water vapor and hydrocarbon gas is introduced into the preheating fuel gas pipe, and the lower limit of explosion is reached by a reforming reaction A gas containing hydrogen is generated and supplied to the fuel electrode layer of the power generation cell through the separator, whereby the power generation cell is heated from the inside, and the power generation cell is heated from the outside by the combustion gas of the burner. A method for operating a solid oxide fuel cell.
JP2003126204A 2003-05-01 2003-05-01 Solid oxide fuel cell and method of operating the same Expired - Fee Related JP4654567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003126204A JP4654567B2 (en) 2003-05-01 2003-05-01 Solid oxide fuel cell and method of operating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003126204A JP4654567B2 (en) 2003-05-01 2003-05-01 Solid oxide fuel cell and method of operating the same

Publications (2)

Publication Number Publication Date
JP2004335163A JP2004335163A (en) 2004-11-25
JP4654567B2 true JP4654567B2 (en) 2011-03-23

Family

ID=33503204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003126204A Expired - Fee Related JP4654567B2 (en) 2003-05-01 2003-05-01 Solid oxide fuel cell and method of operating the same

Country Status (1)

Country Link
JP (1) JP4654567B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007018966A (en) * 2005-07-11 2007-01-25 Mitsubishi Materials Corp Fuel cell
JP5007045B2 (en) * 2005-12-28 2012-08-22 Jx日鉱日石エネルギー株式会社 Indirect internal reforming type solid oxide fuel cell
US7951500B2 (en) * 2006-05-25 2011-05-31 Siemens Energy, Inc. Anode gas stack start-up heater and purge gas generator
JP2008021596A (en) * 2006-07-14 2008-01-31 Ngk Spark Plug Co Ltd Solid-oxide fuel cell module
JP5175456B2 (en) * 2006-07-14 2013-04-03 日本特殊陶業株式会社 Solid electrolyte fuel cell module
JP5377835B2 (en) * 2007-03-30 2013-12-25 東邦瓦斯株式会社 Fuel cell module
JP5147301B2 (en) * 2007-06-13 2013-02-20 関西電力株式会社 Fuel cell system
JP5254588B2 (en) * 2007-10-12 2013-08-07 日本特殊陶業株式会社 Solid oxide fuel cell module
JP2009146647A (en) * 2007-12-12 2009-07-02 Hitachi Ltd Solid oxide fuel cell power generation system
JP5295629B2 (en) * 2008-05-12 2013-09-18 日本特殊陶業株式会社 Solid oxide fuel cell
FI122476B (en) * 2008-07-10 2012-02-15 Waertsilae Finland Oy Process and arrangement for reducing the consumption of shielding gas in a fuel cell system
JP5731357B2 (en) * 2011-11-09 2015-06-10 Jx日鉱日石エネルギー株式会社 Solid oxide fuel cell system and startup control method thereof
CN103918117A (en) * 2011-11-09 2014-07-09 吉坤日矿日石能源株式会社 Solid-oxide fuel-cell system and startup-control method for same
US20140315112A1 (en) * 2011-11-09 2014-10-23 Jx Nippon Oil & Energy Corporation Solid-oxide fuel cell system, and method for starting same
JP6940539B2 (en) * 2019-02-25 2021-09-29 三菱パワー株式会社 Fuel cell module and power generation system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03163761A (en) * 1989-11-20 1991-07-15 Nkk Corp Solid electrolyte type fuel cell power generating system
JPH11162492A (en) * 1997-12-02 1999-06-18 Tokyo Gas Co Ltd Starting and stopping method of solid electrolyte fuel cell
JP2002358989A (en) * 2001-06-01 2002-12-13 Mitsubishi Materials Corp Gas preheating device for fuel cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03163761A (en) * 1989-11-20 1991-07-15 Nkk Corp Solid electrolyte type fuel cell power generating system
JPH11162492A (en) * 1997-12-02 1999-06-18 Tokyo Gas Co Ltd Starting and stopping method of solid electrolyte fuel cell
JP2002358989A (en) * 2001-06-01 2002-12-13 Mitsubishi Materials Corp Gas preheating device for fuel cell

Also Published As

Publication number Publication date
JP2004335163A (en) 2004-11-25

Similar Documents

Publication Publication Date Title
JP3731650B2 (en) Fuel cell
EP1852930B1 (en) Solid oxide type fuel cell and operation method thereof
US8309270B2 (en) Solid oxide fuel cell systems with improved gas channeling and heat exchange
JP4654567B2 (en) Solid oxide fuel cell and method of operating the same
JP2006269419A (en) Solid oxide type fuel cell and operation method thereof
EP1294036B1 (en) Fuel cell
JP4736309B2 (en) Preheating method at the start of operation of solid oxide fuel cell
JP4745618B2 (en) Operation method of fuel cell structure
JP4706190B2 (en) Solid oxide fuel cell
TW200415817A (en) Fuel cell with catalytic combustor seal
JP2009099267A (en) Solid oxide fuel cell module
JP2007128717A (en) Operation method of fuel cell
JP4300947B2 (en) Solid oxide fuel cell
JP4389493B2 (en) Fuel cell
JP4639574B2 (en) Solid oxide fuel cell
JP2006086019A (en) Solid oxide fuel cell and preheating method at the time of start up
JP4438315B2 (en) Preheating method at the start of operation of solid oxide fuel cell
JP4461705B2 (en) Operation method of solid oxide fuel cell
JP4814497B2 (en) Fuel cell
JP5301540B2 (en) Solid oxide fuel cell system with improved gas channel transport and heat exchange
JP2005019034A (en) Solid oxide fuel cell
JP2007080761A (en) Fuel cell and its starting method
JP2004335161A (en) Solid state oxide fuel cell, separator and operation method
JP4485859B2 (en) Fuel cell stack and fuel cell
JP4654631B2 (en) Solid oxide fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees