[go: up one dir, main page]

JP4649819B2 - Manufacturing method of semiconductor integrated device - Google Patents

Manufacturing method of semiconductor integrated device Download PDF

Info

Publication number
JP4649819B2
JP4649819B2 JP2003059429A JP2003059429A JP4649819B2 JP 4649819 B2 JP4649819 B2 JP 4649819B2 JP 2003059429 A JP2003059429 A JP 2003059429A JP 2003059429 A JP2003059429 A JP 2003059429A JP 4649819 B2 JP4649819 B2 JP 4649819B2
Authority
JP
Japan
Prior art keywords
layer
semiconductor
semiconductor element
containing layer
integrated device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003059429A
Other languages
Japanese (ja)
Other versions
JP2004273588A (en
Inventor
義昭 渡部
啓修 成井
勇一 黒水
義則 山内
嘉幸 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2003059429A priority Critical patent/JP4649819B2/en
Publication of JP2004273588A publication Critical patent/JP2004273588A/en
Application granted granted Critical
Publication of JP4649819B2 publication Critical patent/JP4649819B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Element Separation (AREA)
  • Formation Of Insulating Films (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体集積素子の製造方法に関し、更に詳細には、電気的に確実に分離された複数個の半導体素子を2次元的又は3次元的に配置してなる半導体集積素子の製造方法に関するものである。
【0002】
【従来の技術】
半導体装置の高集積化及び微細化に伴い、同種類の複数個の半導体素子、或いは相互に種類の異なる複数個の半導体素子を共通基板上に集積した半導体集積素子が実用化されている。
半導体集積素子では、共通基板上に集積した半導体素子を相互に独立して機能させるために、半導体素子を相互に電気的に分離することが必要である。
【0003】
そこで、共通基板上に複数個の半導体素子を集積した半導体集積素子の各半導体素子を相互に電気的に分離するために、従来、以下のような素子分離構造が採用されている。
図7に示すように、共通のGaAs基板12上に第1の半導体素子14と第2の半導体素子16とを2次元的に配置した従来の半導体集積素子に適用する、従来の第1の素子分離構造10は、第1の半導体素子14と第2の半導体素子16との間のGaAs基板12に特定のイオンをイオン注入して高抵抗化した素子分離領域18を設け、第1の半導体素子14と第2の半導体素子16とを電気的に分離する構造である(US6392256B1、図13a参照)。図7は従来の第1の素子分離構造10の構成を示す模式的断面図である。
【0004】
また、従来の第2の素子分離構造20は、図8に示すように、第1の半導体素子14と第2の半導体素子16との間に素子分離溝22を設け、素子分離溝22を絶縁膜24で埋め込んだ素子分離領域26を設けて第1の半導体素子14と第2の半導体素子16とを電気的に分離する構造である。図8は従来の第2の素子分離構造の構成を示す模式的断面図である。
【0005】
更に、従来の第3の素子分離構造30は、図9に示すように、共通のGaAs基板12と第1の半導体素子14及び第2の半導体素子16の間にそれぞれ逆pn接合による逆耐圧特性を利用した逆pn接合分離層32を設けて第1の半導体素子14と第2の半導体素子16とを電気的に分離する構造である。図9は従来の第3の素子分離構造の構成を示す模式的断面図である。
【0006】
また、逆pn接合分離層を設けて半導体素子を電気的に分離する素子分離構造は、図10に示すように、第1の半導体素子14A上に更に第2の半導体素子42を設けた半導体集積素子にも適用できる。図10は従来の第3の素子分離構造の別の構成を示す模式的断面図である。
つまり、第1の半導体素子14Aと第2の半導体素子42との間に別の逆pn接合分離層44を設けた素子分離構造40とする。その際、別の第1の半導体素子14Bを形成するためには、先ず、第1の半導体素子14A上に第2の半導体素子42を設けた積層構造と同様に、別の逆pn接合分離層44を介して第1の半導体素子14B上に第2の半導体素子42を設けた積層構造を形成し、次いで第2の半導体素子42の積層構造及び別の逆pn接合分離層44をエッチングして除去することにより第1の半導体素子14Bを形成する。
尚、第1から第3の素子分離構造10、20、30、40は、異種の半導体素子の分離のみならず、同種の半導体素子の分離にも適用できる。
【0007】
【特許文献1】
US6392256B1公報(図13a)
【0008】
【発明が解決しようとする課題】
しかし、上述した従来の素子分離構造は、比較的作製容易な構造ではあるものの、以下の問題点を有している。
第1の素子分離構造10は、イオン注入に際し、数100kV以上の高い注入電圧を必要とするので、イオン注入装置の設備費や、維持管理費が嵩むという問題がある。その上に、通常のリソグラフィに用いられるフォトレジスト膜などより厚い膜厚、例えば4μm以上の膜厚の注入マスクが必要になるために、特別のリソグラフィ処理が必要になること、更には注入された半導体基板の領域の結晶性が劣化することなどの問題がある。また、半導体素子間の電流の短絡経路を部分的な高抵抗化によって遮蔽し、電気的にアイソレートする構造であるために、半導体素子間の完全な電気的絶縁が不可能であり、絶縁部分の耐電圧も10V以下と低いことも問題である。従って、半導体素子間の完全な電気的絶縁を行うためには、他に何らかの方法を併用する必要がある。
第2の素子分離構造20は、耐電圧が高い反面、素子分離溝の絶縁膜埋め込み工程が複雑である。
【0009】
第3の素子分離構造30は、逆pn接合による逆耐圧特性を利用しているので、逆バイアス状態でも僅かに電流(飽和電流)が流れるために、微小電流や微弱信号を扱う増幅デバイスでは、雑音やクロストーク、或いは接地不良などが大きな問題となる。また、逆pn接合分離層による素子分離では、耐圧が低く、しかも電圧の印加方向に制約されて配線設計に制限が生じる。
また、第3の素子分離構造の別例40も、第3の素子分離構造30と同じ問題を有する上に、第1の半導体素子の積層構造を形成した後、第2の半導体素子の積層構造を形成する手順で半導体集積素子を作製するので、積層構造の形成に際し、半導体素子の種類の数だけ異なる成長温度にウエハを曝すことになり、温度履歴による特性劣化が懸念され、従ってデバイスの設計に制限が生じる。更に、縦方向にデバイス構造を積み重ねて行く必要があるので、各半導体素子の配線構造の設計が難しく、また各半導体素子を形成する際のリソグラフィ処理が難しい。
【0010】
そこで、本発明の目的は、絶縁特性の良好な素子分離構造により素子分離した状態で半導体素子を集積した半導体集積素子の製造方法を提供することである。
【0011】
【課題を解決するための手段】
上記目的を達成するために、本発明に係る半導体集積素子の製造方法(以下、第1の発明方法と言う)は、複数個の同種の半導体素子を相互に電気的に分離して共通基板上に2次元的に配置してなる半導体集積素子の製造方法であって、
共通基板上に、AlAs層、AlGaAs層、及びInAlAs層のいずれかのAl含有層を成膜する工程と、
半導体素子を構成する積層構造をAl含有層上に形成する工程と、
積層構造及びAl含有層を共通基板までエッチングして、各半導体素子の形成領域に各半導体素子を相互に物理的に分離して形成し、かつ各半導体素子下のAl含有層の側面を露出させる工程と、
Al含有層を選択的に水蒸気酸化してAl酸化層に転化する工程と
を有することを特徴としている。
【0016】
また、本発明に係る別の半導体集積素子の製造方法(以下、第2の発明方法と言う)は、相互に構成及び機能の異なる複数種の半導体素子を共通基板上に2次元的に配置してなる半導体集積素子の製造方法であって、
AlAs層、AlGaAs層、及びInAlAs層のいずれかの第1のAl含有層を共通基板上に成膜する工程と、
第1の半導体素子を構成する第1の積層構造を第1のAl含有層上に形成する工程と、
第1の積層構造及び第1のAl含有層をエッチングして、第1の半導体素子の形成領域のみに第1の半導体素子を形成し、かつ第1の半導体素子下の第1のAl含有層の側面を露出させる工程と、
共通基板上に、AlAs層、AlGaAs層、及びInAlAs層のいずれかの第2のAl含有層を成膜し、次いで第2のAl含有層上に第2の半導体素子を構成する第2の積層構造を形成する工程と、
第2の積層構造及び第2のAl含有層をエッチングして、第2の半導体素子の形成領域のみに第2の半導体素子を形成し、かつ第2の半導体素子下の第2のAl含有層の側面を露出させる工程と、
以下、同様にして、第3、第4、・・・の半導体素子を共通基板上に形成し、かつ第3、第4、・・・のAl含有層の側面を露出させる工程と、
第1、第2、第3、第4、・・・のAl含有層を選択的に水蒸気酸化してAl酸化層に転化する工程と
を有することを特徴としている。
【0019】
第1から第2の発明に係る半導体集積素子の製造方法では、処理の容易な水蒸気酸化により、しかも1回の処理で電気的分離層を形成できるので、複数個の半導体素子を集積させた半導体集積素子の製造が容易である。
【0020】
【発明の実施の形態】
以下に、添付図面を参照して、実施形態例に基づいて本発明をより詳細に説明する。尚、以下の実施形態例で示した導電型、膜種、膜厚、成膜方法、その他寸法等は、本発明の理解を容易にするための例示であって、本発明はこれら例示に限定されるものではない。
半導体集積素子の実施形態例1
本実施形態例は第1の発明に係る半導体集積素子の実施形態の一例であって、図1は本実施形態例の半導体集積素子の構成を示す模式的断面図である。
本実施形態例の半導体集積素子50は、図1に示すように、共通の基板、例えばGaAs基板52上に、複数個の同種の半導体素子54(図1では2個の半導体素子54A、Bと表示)を集積させた半導体集積素子であって、例えばHEMTやFETなどの電子デバイス、或いは面発光半導体レーザ素子やフォトダイオードなどの光デバイスである。
【0021】
GaAs基板52と半導体素子54A、Bとの間には、それぞれ、絶縁膜として機能する膜厚40nmのAl酸化層(AlOx )56が個別に介在している。Al酸化層56は選択的にAlAs層のAlを水蒸気酸化させた層である。Al酸化層56は、完全な絶縁膜であって、耐圧も高く、例えば膜厚40nm厚のAlAs膜を酸化して得たAl酸化層の耐圧は30V以上である。
Al酸化層56を介在させることにより、半導体素子54A、Bは、あたかも酸化絶縁膜上に設けられた半導体素子のように、相互に電気的に確実に分離されている。Al酸化層56は、電気絶縁性に関し印加電圧に対する方向性がなく、どちらの方向から電圧を印加しても絶縁性が確保され、漏れ電流も少ない。また、Al酸化層56の機械的強度も高い。
【0022】
半導体集積素子の製造方法の実施形態例1
本実施形態例は第1の発明方法に係る半導体集積素子の製造方法を実施形態例1の半導体集積素子の製造に適用した実施形態の一例であって、図2(a)から(c)は、それぞれ、本実施形態例の方法により実施形態例1の半導体集積素子を製造する際の工程毎の模式的断面図である。
先ず、図2(a)に示すように、GaAs基板52上に、MOCVD法等により膜厚40nmのAlAs層58をエピタキシャル成長させ、次いでAlAs層58上に半導体素子54を構成する積層構造59を形成する。
次いで、図2(b)に示すように、積層構造59及びAlAs層58をGaAs基板52までエッチングして半導体素子形成領域上に各半導体素子54A、Bに物理的に分離、形成すると共にAlAs層58の側面を露出させる。
【0023】
次に、温度400℃の水蒸気雰囲気中で加熱処理を施してAlAs層58の水蒸気酸化を行うことにより、図2(c)に示すように、AlAs層58を選択酸化して全体的にAl酸化層56に転化する。酸化時間は膜厚及び平面積等のAlAs層58の寸法によるが、数分間から数十分間である。
これにより、半導体素子54A、BをGaAs基板52上に電気的に分離して集積させた半導体素子50を製造することができる。
【0024】
水蒸気酸化処理は、処理温度が400℃という比較的低い温度処理であり、時間も数分間から数十分間という比較的短時間で、しかも一回の水蒸気酸化処理で済むので、半導体素子54を構成する積層構造に対する熱履歴の影響が殆ど生じない。
【0025】
半導体集積素子の実施形態例2
本実施形態例は第2の発明に係る半導体集積素子の実施形態の一例であって、図3は本実施形態例の半導体集積素子の構成を示す模式的断面図である。
本実施形態例の半導体集積素子60は、図3に示すように、共通の基板、例えばGaAs基板62上に、複数種の半導体素子、例えば第1の半導体素子64と第2の半導体素子66(図3では2種類の半導体素子を表示)とを集積させた半導体集積素子である。
第1の半導体素子64及び第2の半導体素子66は、それぞれ、例えばHEMTやFETなどの電子デバイス、或いは面発光半導体レーザ素子やフォトダイオードなどの光デバイスである。
【0026】
GaAs基板62と第1の半導体素子64及び第2の半導体素子66との間には、それぞれ、絶縁膜として機能する膜厚40nmのAl酸化層(AlOx )68が個別に介在している。Al酸化層68はAlAs層を水蒸気酸化させた層である。
Al酸化層68を介在させることにより、実施形態例1と同様に、第1の半導体素子64及び第2の半導体素子66は、あたかも酸化絶縁膜上に設けられた半導体素子のように、相互に電気的に確実に分離されている。
【0027】
半導体集積素子の製造方法の実施形態例2
本実施形態例は第2の発明に係る半導体集積素子の製造方法を実施形態例2の半導体集積素子の製造に適用した実施形態の一例であって、図4(a)から(d)は、それぞれ、本実施形態例の方法により実施形態例2の半導体集積素子を製造する際の工程毎の模式的断面図である。
先ず、図4(a)に示すように、GaAs基板62上に、MOCVD法等により膜厚40nmのAlAs層70をエピタキシャル成長させ、次いでAlAs層70上に第1の半導体素子64を構成する第1の積層構造72を形成する。
次いで、図4(b)に示すように、第1の積層構造72及びAlAs層70をGaAs基板62までエッチングして、第1の半導体素子64の形成領域に第1の半導体素子64を物理的に分離、形成すると共にAlAs層70の側面を露出させる。
【0028】
次いで、第1の半導体素子64の形成領域以外の領域のGaAs基板62上に、MOCVD法等により膜厚40nmのAlAs層70をエピタキシャル成長させ、次いでAlAs層70上に第2の半導体素子66を構成する第2の積層構造74を形成する。続いて、図4(c)に示すように、第2の積層構造74及びAlAs層70をGaAs基板62までエッチングして、第2の半導体素子66の形成領域上に第2の半導体素子66を物理的に分離、形成すると共にAlAs層70の側面を露出させる。
次に、温度400℃の水蒸気雰囲気中で加熱処理を施してAlAs層70の水蒸気酸化を行うことにより、図4(d)に示すように、AlAs層70を選択酸化して全体的にAl酸化層68に転化する。酸化時間は膜厚、平面積等のAlAs層70の寸法によるが、数分間から数十分間である。
以上の工程を経て、実施形態例2の半導体集積素子60を製造することができる。
【0029】
水蒸気酸化処理は、400℃という比較的低い処理温度で、しかも時間も数分間から数十分間という比較的短時間である上に、1回の酸化処理でAl酸化層68を形成することができるので、第1の半導体素子64及び第2の半導体素子66の積層構造に対する熱履歴の影響も殆ど生じない。
【0030】
半導体集積素子の実施形態例3
本実施形態例は第3の発明に係る半導体集積素子の実施形態の一例であって、図5は本実施形態例の半導体集積素子の構成を示す模式的断面図である。
本実施形態例の半導体集積素子80は、図5に示すように、共通の基板、例えばGaAs基板82上に、複数個の第1の半導体素子84(図1では2個の第1の半導体素子84A、Bと表示)と、第1の半導体素子84の少なくとも一つの上に、例えば第1の半導体素子84A上に積層して形成された第2の半導体素子86とを集積させている。
GaAs基板82と第1の半導体素子84A、Bとの間には、それぞれ、絶縁膜として機能する膜厚40nmのAl酸化層(AlOx )88が個別に介在している。また、第1の半導体素子84Aと第2の半導体素子86との間には、絶縁膜として機能する膜厚40nmのAl酸化層(AlOx )90が介在している。Al酸化層88及びAl酸化層90は、選択的にAlAs層を水蒸気酸化させて得たAl酸化層である。
【0031】
Al酸化層88を介在させることにより、実施形態例1と同様に、第1の半導体素子84A、Bは、あたかも酸化絶縁膜上に設けられた半導体素子のように、相互に電気的に確実に分離されている。また、Al酸化層90を介在させることにより、第1の半導体素子84Aと第2の半導体素子86とは、同じく、相互に電気的に確実に分離されている。
【0032】
半導体集積素子の製造方法の実施形態例3
本実施形態例は第3の発明に係る半導体集積素子の製造方法を実施形態例3の半導体集積素子の製造に適用した実施形態の一例であって、図6(a)から(d)は、それぞれ、本実施形態例の方法により実施形態例3の半導体集積素子を製造する際の工程毎の模式的断面図である。
先ず、図6(a)に示すように、GaAs基板82上に、MOCVD法等により膜厚40nmのAlAs層92をエピタキシャル成長させ、次いでAlAs層92上に第1の半導体素子84を構成する第1の積層構造94を形成する。続いて、第1の積層構造94上にMOCVD法等により膜厚40nmのAlAs層96をエピタキシャル成長させ、次いでAlAs層96上に第2の半導体素子86を構成する第2の積層構造98を形成する。
【0033】
次いで、図6(b)に示すように、第2の積層構造98、AlAs層96、第1の積層構造94、及びAlAs層92をGaAs基板82までエッチングして、AlAs層92、第1の積層構造94、AlAs層96、及び第2の積層構造98からなる積層構造100をGaAs基板82の半導体素子形成領域上に物理的に分離すると共にAlAs層92、96の側面を露出させる。
次いで、図6(c)に示すように、第1の半導体素子84Bの形成領域上の積層構造100から第2の積層構造98及びAlAs層96をエッチングして除去し、第1の半導体素子84B及びAlAs層92のみを残す。
続いて、温度400℃の水蒸気雰囲気中で加熱処理を施してAlAs層92及び96の水蒸気酸化を行うことにより、図6(d)に示すように、それぞれ、Al酸化層88及び90に転化する。酸化時間はAlAs層92、96の寸法(膜厚、平面積)によるが、数分間から数十分間である。
以上の工程を経ることにより、実施形態例3の半導体集積素子80を製造することができる。
【0034】
上述の実施形態例では、Al含有層としてAlAs層を用いているが、AlAs層に限らず、Al含有層としてAl組成が0.9以上のAlGaAs層を用いることができる。
また、InPに格子整合するAl組成が0.8以上のInAlAs層をAl含有層として用いることにより、基板としてInP基板を用いることができる。
【0035】
【発明の効果】
第1から第2の発明方法によれば、基板と半導体素子、半導体素子と半導体素子との間に介在させたAl含有層を1回の水蒸気酸化処理によりAl酸化層に転化して電気的分離層を形成することができる。これにより、複数個の同種又は異種の半導体素子を確実に電気的に分離した状態で2次元的に又は3次元的に集積させた半導体集積素子を容易に製造することができる。
【図面の簡単な説明】
【図1】実施形態例1の半導体集積素子の構成を示す模式的断面図である。
【図2】図2(a)から(c)は、それぞれ、実施形態例1の方法により実施形態例1の半導体集積素子を製造する際の工程毎の模式的断面図である。
【図3】実施形態例2の半導体集積素子の構成を示す模式的断面図である。
【図4】図4(a)から(d)は、それぞれ、実施形態例2の方法により実施形態例2の半導体集積素子を製造する際の工程毎の模式的断面図である。
【図5】実施形態例3の半導体集積素子の構成を示す模式的断面図である。
【図6】図6(a)から(d)は、それぞれ、実施形態例3の方法により実施形態例3の半導体集積素子を製造する際の工程毎の模式的断面図である。
【図7】従来の第1の素子分離構造10の構成を示す模式的断面図である。
【図8】従来の第2の素子分離構造の構成を示す模式的断面図である。
【図9】従来の第3の素子分離構造の構成を示す模式的断面図である。
【図10】従来の第3の素子分離構造の別の構成を示す模式的断面図である。
【符号の説明】
12……GaAs基板、14……第1の半導体素子、16……第2の半導体素子、18……素子分離領域、20……従来の第2の素子分離構造、22……素子分離溝、24……絶縁膜、26……素子分離領域、30……従来の第3の素子分離構造、32……逆pn接合分離層、40……従来の第3の素子分離構造の別の例、42……第2の半導体素子、44……別の逆pn接合分離層、50……実施形態例1の半導体集積素子、52……GaAs基板、54……半導体素子、56……Al酸化層、58……AlAs層、59……積層構造、60……実施形態例2の半導体集積素子、64……第1の半導体素子、66……第2の半導体素子、68……Al酸化層、70……AlAs層、72……第1の積層構造、74……第2の積層構造、80……実施形態例3の半導体集積素子、82……GaAs基板、84……第1の半導体素子、86……第2の半導体素子、88、90……Al酸化層、92……AlAs層、94……第1の積層構造、96……AlAs層、98……第2の積層構造、100……積層構造。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a semiconductor integrated device and, more particularly, to a manufacturing method of securely electrically separated plurality of the semiconductor device formed by arranging two-dimensionally or three-dimensionally integrated semiconductor device Is.
[0002]
[Prior art]
Along with the high integration and miniaturization of semiconductor devices, semiconductor integrated devices in which a plurality of semiconductor elements of the same type or a plurality of semiconductor elements of different types are integrated on a common substrate have been put into practical use.
In a semiconductor integrated device, it is necessary to electrically isolate the semiconductor devices from each other so that the semiconductor devices integrated on the common substrate function independently of each other.
[0003]
Therefore, in order to electrically isolate each semiconductor element of a semiconductor integrated element in which a plurality of semiconductor elements are integrated on a common substrate, the following element isolation structure has been conventionally employed.
As shown in FIG. 7, a conventional first element applied to a conventional semiconductor integrated element in which a first semiconductor element 14 and a second semiconductor element 16 are two-dimensionally arranged on a common GaAs substrate 12. The isolation structure 10 is provided with an element isolation region 18 in which specific ions are ion-implanted into the GaAs substrate 12 between the first semiconductor element 14 and the second semiconductor element 16 to increase resistance, and the first semiconductor element 14 and the second semiconductor element 16 are electrically separated (see US Pat. No. 6,392,256B1, FIG. 13a). FIG. 7 is a schematic cross-sectional view showing the configuration of the conventional first element isolation structure 10.
[0004]
Further, as shown in FIG. 8, the conventional second element isolation structure 20 is provided with an element isolation groove 22 between the first semiconductor element 14 and the second semiconductor element 16 to insulate the element isolation groove 22 from each other. An element isolation region 26 embedded with a film 24 is provided to electrically isolate the first semiconductor element 14 and the second semiconductor element 16. FIG. 8 is a schematic cross-sectional view showing a configuration of a conventional second element isolation structure.
[0005]
Further, as shown in FIG. 9, the conventional third element isolation structure 30 has a reverse breakdown voltage characteristic due to a reverse pn junction between the common GaAs substrate 12 and the first semiconductor element 14 and the second semiconductor element 16, respectively. In this structure, the first and second semiconductor elements 14 and 16 are electrically separated from each other by providing a reverse pn junction isolation layer 32 utilizing the above. FIG. 9 is a schematic cross-sectional view showing a configuration of a conventional third element isolation structure.
[0006]
Further, as shown in FIG. 10, an element isolation structure in which a reverse pn junction isolation layer is provided to electrically isolate a semiconductor element is a semiconductor integrated circuit in which a second semiconductor element 42 is further provided on the first semiconductor element 14A. It can also be applied to elements. FIG. 10 is a schematic cross-sectional view showing another configuration of the conventional third element isolation structure.
That is, the element isolation structure 40 is provided in which another reverse pn junction isolation layer 44 is provided between the first semiconductor element 14A and the second semiconductor element 42. In this case, in order to form another first semiconductor element 14B, first, another reverse pn junction isolation layer is formed similarly to the stacked structure in which the second semiconductor element 42 is provided on the first semiconductor element 14A. A stacked structure in which the second semiconductor element 42 is provided on the first semiconductor element 14B is formed via 44, and then the stacked structure of the second semiconductor element 42 and another reverse pn junction isolation layer 44 are etched. By removing the first semiconductor element 14B, the first semiconductor element 14B is formed.
The first to third element isolation structures 10, 20, 30, and 40 can be applied not only to isolation of different types of semiconductor elements but also to isolation of the same type of semiconductor elements.
[0007]
[Patent Document 1]
US Pat. No. 6,392,256 B1 (FIG. 13a)
[0008]
[Problems to be solved by the invention]
However, the above-described conventional element isolation structure has the following problems although it is a relatively easy structure.
Since the first element isolation structure 10 requires a high injection voltage of several hundred kV or more at the time of ion implantation, there is a problem that the equipment cost and maintenance cost of the ion implantation apparatus increase. On top of that, since an implantation mask having a film thickness larger than a photoresist film used for normal lithography, for example, a film thickness of 4 μm or more is required, a special lithography process is necessary, and further, implantation is performed. There is a problem that the crystallinity of the region of the semiconductor substrate deteriorates. In addition, since the short circuit path of the current between the semiconductor elements is shielded by partially increasing the resistance and electrically isolated, it is impossible to completely insulate the semiconductor elements. It is also a problem that the withstand voltage is as low as 10 V or less. Therefore, in order to achieve complete electrical insulation between the semiconductor elements, some other method must be used in combination.
The second element isolation structure 20 has a high withstand voltage, but has a complicated insulating film filling process in the element isolation trench.
[0009]
Since the third element isolation structure 30 uses the reverse breakdown voltage characteristic due to the reverse pn junction, a slight current (saturation current) flows even in the reverse bias state. Therefore, in the amplification device that handles a minute current or a weak signal, Noise, crosstalk, poor grounding, etc. are major problems. Further, in element isolation using a reverse pn junction isolation layer, the withstand voltage is low, and the wiring design is restricted due to the restriction of the voltage application direction.
Further, another example 40 of the third element isolation structure has the same problem as the third element isolation structure 30, and after the first semiconductor element stacked structure is formed, the second semiconductor element stacked structure Since the semiconductor integrated device is manufactured by the procedure of forming the layer structure, the wafer is exposed to a growth temperature different in the number of types of the semiconductor device when forming the laminated structure, and there is a concern about the characteristic deterioration due to the temperature history. There will be restrictions. Furthermore, since it is necessary to stack device structures in the vertical direction, it is difficult to design the wiring structure of each semiconductor element, and it is difficult to perform lithography processing when forming each semiconductor element.
[0010]
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a semiconductor integrated device in which semiconductor elements are integrated in a state where the elements are isolated by an element isolation structure having good insulation characteristics.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, a method for manufacturing a semiconductor integrated device according to the present invention (hereinafter referred to as a first inventive method) is to electrically separate a plurality of similar semiconductor devices from each other on a common substrate. A method of manufacturing a semiconductor integrated device that is two-dimensionally arranged on a substrate,
Forming an Al-containing layer of any one of an AlAs layer, an AlGaAs layer, and an InAlAs layer on a common substrate;
Forming a laminated structure constituting the semiconductor element on the Al-containing layer;
The stacked structure and the Al-containing layer are etched to the common substrate, and each semiconductor element is physically separated from each other in the formation region of each semiconductor element, and the side surface of the Al-containing layer under each semiconductor element is exposed. Process,
A process of selectively steam-oxidizing the Al-containing layer to convert it into an Al-oxidized layer;
It is characterized by having .
[0016]
Further, another method for manufacturing a semiconductor integrated device according to the present invention (hereinafter referred to as a second method) arranges a plurality of types of semiconductor devices having different structures and functions on a common substrate in a two-dimensional manner. A method for manufacturing a semiconductor integrated device comprising:
Forming a first Al-containing layer of any one of an AlAs layer, an AlGaAs layer, and an InAlAs layer on a common substrate;
Forming a first laminated structure constituting the first semiconductor element on the first Al-containing layer;
The first stacked structure and the first Al-containing layer are etched to form the first semiconductor element only in the formation region of the first semiconductor element, and the first Al-containing layer under the first semiconductor element Exposing the side surface of
A second Al-containing layer of any one of an AlAs layer, an AlGaAs layer, and an InAlAs layer is formed on the common substrate , and then a second stacked layer that constitutes a second semiconductor element on the second Al-containing layer. Forming a structure;
The second laminated structure and the second Al-containing layer are etched to form the second semiconductor element only in the formation region of the second semiconductor element, and the second Al-containing layer under the second semiconductor element Exposing the side surface of
Hereinafter, similarly, forming the third, fourth,... Semiconductor elements on the common substrate and exposing the side surfaces of the third, fourth,.
The first, second, third, fourth,... Al-containing layers are selectively steam-oxidized and converted to an Al oxide layer.
[0019]
In the method for manufacturing a semiconductor integrated device according to the first to second inventions, an electrical separation layer can be formed by one-time treatment by water vapor oxidation, which is easy to process. Therefore, a semiconductor in which a plurality of semiconductor devices are integrated An integrated device can be easily manufactured.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail based on exemplary embodiments with reference to the accompanying drawings. It should be noted that the conductivity type, film type, film thickness, film forming method, and other dimensions shown in the following embodiments are examples for facilitating understanding of the present invention, and the present invention is limited to these examples. Is not to be done.
Embodiment 1 of Semiconductor Integrated Device
This embodiment is an example of an embodiment of a semiconductor integrated device according to the first invention, and FIG. 1 is a schematic cross-sectional view showing the configuration of the semiconductor integrated device of this embodiment.
As shown in FIG. 1, a semiconductor integrated device 50 according to this embodiment includes a plurality of similar semiconductor elements 54 (in FIG. 1, two semiconductor elements 54A and 54B) on a common substrate, for example, a GaAs substrate 52. A semiconductor integrated device integrated with a display), for example, an electronic device such as HEMT or FET, or an optical device such as a surface emitting semiconductor laser device or a photodiode.
[0021]
Between the GaAs substrate 52 and the semiconductor elements 54A and 54B, 40 nm thick Al oxide layers (AlO x ) 56 each functioning as an insulating film are individually interposed. The Al oxide layer 56 is a layer obtained by selectively steam-oxidizing Al of the AlAs layer. The Al oxide layer 56 is a complete insulating film and has a high breakdown voltage. For example, the breakdown voltage of an Al oxide layer obtained by oxidizing an AlAs film having a thickness of 40 nm is 30 V or more.
By interposing the Al oxide layer 56, the semiconductor elements 54A and 54B are electrically and reliably separated from each other as if they were semiconductor elements provided on the oxide insulating film. The Al oxide layer 56 has no directionality with respect to the applied voltage with respect to electrical insulation, and insulation is ensured regardless of which direction the voltage is applied, and the leakage current is small. Moreover, the mechanical strength of the Al oxide layer 56 is also high.
[0022]
Embodiment 1 of Manufacturing Method of Semiconductor Integrated Device
This embodiment is an example of an embodiment in which the semiconductor integrated device manufacturing method according to the first invention method is applied to the manufacture of the semiconductor integrated device of the first embodiment, and FIGS. FIG. 5 is a schematic cross-sectional view for each process in manufacturing the semiconductor integrated device of Embodiment 1 by the method of this embodiment.
First, as shown in FIG. 2A, an AlAs layer 58 having a thickness of 40 nm is epitaxially grown on a GaAs substrate 52 by MOCVD or the like, and then a laminated structure 59 constituting a semiconductor element 54 is formed on the AlAs layer 58. To do.
Next, as shown in FIG. 2B, the stacked structure 59 and the AlAs layer 58 are etched up to the GaAs substrate 52 to physically separate and form the semiconductor elements 54A and 54B on the semiconductor element formation region, and the AlAs layer. 58 side surfaces are exposed.
[0023]
Next, heat treatment is performed in a water vapor atmosphere at a temperature of 400 ° C. to perform water vapor oxidation of the AlAs layer 58, thereby selectively oxidizing the AlAs layer 58 as shown in FIG. Convert to layer 56. Although the oxidation time depends on the dimensions of the AlAs layer 58 such as the film thickness and the flat area, it is several minutes to several tens of minutes.
Thereby, the semiconductor element 50 in which the semiconductor elements 54A and 54B are electrically separated and integrated on the GaAs substrate 52 can be manufactured.
[0024]
The steam oxidation process is a relatively low temperature process at a processing temperature of 400 ° C., and the time is also a relatively short time of several minutes to several tens of minutes, and only one steam oxidation process is required. There is almost no influence of thermal history on the laminated structure.
[0025]
Embodiment 2 of a semiconductor integrated device
This embodiment is an example of an embodiment of a semiconductor integrated device according to the second invention, and FIG. 3 is a schematic cross-sectional view showing the configuration of the semiconductor integrated device of this embodiment.
As shown in FIG. 3, a semiconductor integrated device 60 according to the present embodiment includes a plurality of types of semiconductor elements such as a first semiconductor element 64 and a second semiconductor element 66 (on a GaAs substrate 62, for example. FIG. 3 shows a semiconductor integrated device in which two types of semiconductor devices are displayed.
Each of the first semiconductor element 64 and the second semiconductor element 66 is an electronic device such as a HEMT or FET, or an optical device such as a surface emitting semiconductor laser element or a photodiode.
[0026]
Between the GaAs substrate 62 and the first semiconductor element 64 and the second semiconductor element 66, 40 nm-thick Al oxide layers (AlO x ) 68 functioning as insulating films are individually interposed. The Al oxide layer 68 is a layer obtained by steam-oxidizing the AlAs layer.
By interposing the Al oxide layer 68, the first semiconductor element 64 and the second semiconductor element 66 are mutually connected like a semiconductor element provided on the oxide insulating film, as in the first embodiment. It is securely separated electrically.
[0027]
Second Embodiment of Manufacturing Method of Semiconductor Integrated Device
This embodiment is an example of an embodiment in which the method for manufacturing a semiconductor integrated device according to the second invention is applied to the manufacture of the semiconductor integrated device of Embodiment 2, and FIGS. 4 (a) to 4 (d) FIG. 10 is a schematic cross-sectional view for each process when manufacturing the semiconductor integrated device of Embodiment 2 by the method of this embodiment.
First, as shown in FIG. 4A, a 40 nm-thickness AlAs layer 70 is epitaxially grown on a GaAs substrate 62 by MOCVD or the like, and then a first semiconductor element 64 is formed on the AlAs layer 70. The laminated structure 72 is formed.
Next, as shown in FIG. 4B, the first stacked structure 72 and the AlAs layer 70 are etched to the GaAs substrate 62 to physically place the first semiconductor element 64 in the formation region of the first semiconductor element 64. Then, the side surface of the AlAs layer 70 is exposed.
[0028]
Next, an AlAs layer 70 having a thickness of 40 nm is epitaxially grown on the GaAs substrate 62 in a region other than the region where the first semiconductor element 64 is formed by MOCVD or the like, and then a second semiconductor element 66 is formed on the AlAs layer 70. A second laminated structure 74 is formed. Subsequently, as shown in FIG. 4C, the second stacked structure 74 and the AlAs layer 70 are etched to the GaAs substrate 62, and the second semiconductor element 66 is formed on the formation region of the second semiconductor element 66. While physically separating and forming, the side surface of the AlAs layer 70 is exposed.
Next, heat treatment is performed in a steam atmosphere at a temperature of 400 ° C. to perform steam oxidation of the AlAs layer 70, thereby selectively oxidizing the AlAs layer 70 as shown in FIG. Convert to layer 68. The oxidation time depends on the dimensions of the AlAs layer 70 such as the film thickness and the flat area, but is between several minutes and several tens of minutes.
Through the above steps, the semiconductor integrated device 60 of the second embodiment can be manufactured.
[0029]
The steam oxidation treatment is performed at a relatively low processing temperature of 400 ° C. and for a relatively short time of several minutes to several tens of minutes, and the Al oxide layer 68 can be formed by one oxidation treatment. Therefore, the influence of the thermal history on the stacked structure of the first semiconductor element 64 and the second semiconductor element 66 hardly occurs.
[0030]
Embodiment 3 of Semiconductor Integrated Device
This embodiment is an example of an embodiment of a semiconductor integrated device according to the third invention, and FIG. 5 is a schematic cross-sectional view showing the configuration of the semiconductor integrated device of this embodiment.
As shown in FIG. 5, the semiconductor integrated device 80 according to the present embodiment includes a plurality of first semiconductor elements 84 (two first semiconductor elements in FIG. 1) on a common substrate, for example, a GaAs substrate 82. 84A and B), and at least one of the first semiconductor elements 84, for example, a second semiconductor element 86 formed by being stacked on the first semiconductor element 84A is integrated.
Between the GaAs substrate 82 and the first semiconductor elements 84A and 84B, an Al oxide layer (AlO x ) 88 having a thickness of 40 nm functioning as an insulating film is individually interposed. In addition, an Al oxide layer (AlO x ) 90 having a thickness of 40 nm that functions as an insulating film is interposed between the first semiconductor element 84A and the second semiconductor element 86. The Al oxide layer 88 and the Al oxide layer 90 are Al oxide layers obtained by selectively steam oxidizing the AlAs layer.
[0031]
By interposing the Al oxide layer 88, as in the first embodiment, the first semiconductor elements 84A and 84B are electrically and reliably connected to each other as if they were semiconductor elements provided on the oxide insulating film. It is separated. Further, by interposing the Al oxide layer 90, the first semiconductor element 84A and the second semiconductor element 86 are also electrically reliably separated from each other.
[0032]
Embodiment 3 of Manufacturing Method for Semiconductor Integrated Device
This embodiment is an example of an embodiment in which the method for manufacturing a semiconductor integrated device according to the third invention is applied to the manufacture of the semiconductor integrated device of Embodiment 3, and FIGS. 6 (a) to 6 (d) FIG. 11 is a schematic cross-sectional view for each process when manufacturing the semiconductor integrated device of Embodiment 3 by the method of this embodiment.
First, as shown in FIG. 6A, an AlAs layer 92 having a thickness of 40 nm is epitaxially grown on a GaAs substrate 82 by MOCVD or the like, and then a first semiconductor element 84 is formed on the AlAs layer 92. The laminated structure 94 is formed. Subsequently, an AlAs layer 96 having a thickness of 40 nm is epitaxially grown on the first laminated structure 94 by MOCVD or the like, and then a second laminated structure 98 constituting the second semiconductor element 86 is formed on the AlAs layer 96. .
[0033]
Next, as shown in FIG. 6B, the second stacked structure 98, the AlAs layer 96, the first stacked structure 94, and the AlAs layer 92 are etched to the GaAs substrate 82, so that the AlAs layer 92, the first The laminated structure 100 including the laminated structure 94, the AlAs layer 96, and the second laminated structure 98 is physically separated on the semiconductor element formation region of the GaAs substrate 82, and the side surfaces of the AlAs layers 92 and 96 are exposed.
Next, as shown in FIG. 6C, the second stacked structure 98 and the AlAs layer 96 are removed by etching from the stacked structure 100 on the formation region of the first semiconductor element 84B, and the first semiconductor element 84B is removed. And only the AlAs layer 92 is left.
Subsequently, heat treatment is performed in a steam atmosphere at a temperature of 400 ° C. to perform steam oxidation of the AlAs layers 92 and 96 to convert them into Al oxide layers 88 and 90, respectively, as shown in FIG. 6 (d). . The oxidation time depends on the dimensions (film thickness and plane area) of the AlAs layers 92 and 96, but is from several minutes to several tens of minutes.
Through the above steps, the semiconductor integrated device 80 of the third embodiment can be manufactured.
[0034]
In the above-described embodiment, an AlAs layer is used as the Al-containing layer. However, the present invention is not limited to the AlAs layer, and an AlGaAs layer having an Al composition of 0.9 or more can be used as the Al-containing layer.
Moreover, an InP substrate can be used as the substrate by using, as the Al-containing layer, an InAlAs layer having an Al composition that is lattice-matched to InP and having an Al composition of 0.8 or more.
[0035]
【The invention's effect】
According to the first and second invention methods , the Al-containing layer interposed between the substrate and the semiconductor element and between the semiconductor element and the semiconductor element is converted into an Al oxide layer by one water vapor oxidation treatment, and is electrically separated. A layer can be formed. As a result, a semiconductor integrated device in which a plurality of semiconductor devices of the same type or different types are integrated two-dimensionally or three-dimensionally in a state of being electrically separated reliably can be easily manufactured.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing a configuration of a semiconductor integrated device according to Embodiment 1;
FIGS. 2A to 2C are schematic cross-sectional views for each process in manufacturing the semiconductor integrated device of Example 1 by the method of Example 1. FIG.
3 is a schematic cross-sectional view showing a configuration of a semiconductor integrated device according to Embodiment 2. FIG.
FIGS. 4A to 4D are schematic cross-sectional views for each process when manufacturing the semiconductor integrated device of Example 2 by the method of Example 2. FIG.
5 is a schematic cross-sectional view showing a configuration of a semiconductor integrated device according to Embodiment 3. FIG.
FIGS. 6A to 6D are schematic cross-sectional views for each process in manufacturing the semiconductor integrated device of Example 3 by the method of Example 3. FIG.
7 is a schematic cross-sectional view showing a configuration of a conventional first element isolation structure 10. FIG.
FIG. 8 is a schematic cross-sectional view showing a configuration of a conventional second element isolation structure.
FIG. 9 is a schematic cross-sectional view showing a configuration of a conventional third element isolation structure.
FIG. 10 is a schematic cross-sectional view showing another configuration of the conventional third element isolation structure.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 12 ... GaAs substrate, 14 ... 1st semiconductor element, 16 ... 2nd semiconductor element, 18 ... Element isolation region, 20 ... Conventional 2nd element isolation structure, 22 ... Element isolation groove, 24 …… Insulating film, 26 …… Element isolation region, 30 …… Conventional third element isolation structure, 32 …… Reverse pn junction isolation layer, 40 …… Another example of the conventional third element isolation structure, 42... Second semiconductor element 44. Another reverse pn junction isolation layer 50. Semiconductor integrated element according to Embodiment 1 52... GaAs substrate 54... Semiconductor element 56. , 58... AlAs layer, 59... Laminated structure, 60... Semiconductor integrated device of Embodiment 2 64... First semiconductor element 66... Second semiconductor element 68. 70... AlAs layer, 72... First laminated structure, 74... Second laminated structure, 80 ... Semiconductor integrated device according to the third embodiment, 82 ... GaAs substrate, 84 ... first semiconductor device, 86 ... second semiconductor device, 88, 90 ... Al oxide layer, 92 ... AlAs layer, 94 ... First laminated structure, 96... AlAs layer, 98... Second laminated structure, 100.

Claims (2)

複数個の同種の半導体素子を相互に電気的に分離して共通基板上に2次元的に配置してなる半導体集積素子の製造方法であって、
共通基板上に、AlAs層、AlGaAs層、及びInAlAs層のいずれかのAl含有層を成膜する工程と、
半導体素子を構成する積層構造をAl含有層上に形成する工程と、
積層構造及びAl含有層を共通基板までエッチングして、各半導体素子の形成領域に各半導体素子を相互に物理的に分離して形成し、かつ各半導体素子下のAl含有層の側面を露出させる工程と、
Al含有層を選択的に水蒸気酸化してAl酸化層に転化する工程と
を有する半導体集積素子の製造方法。
A method for manufacturing a semiconductor integrated device, wherein a plurality of semiconductor devices of the same type are electrically separated from each other and two-dimensionally arranged on a common substrate,
Forming an Al-containing layer of any one of an AlAs layer, an AlGaAs layer, and an InAlAs layer on a common substrate;
Forming a laminated structure constituting the semiconductor element on the Al-containing layer;
The stacked structure and the Al-containing layer are etched to the common substrate, and each semiconductor element is physically separated from each other in the formation region of each semiconductor element, and the side surface of the Al-containing layer under each semiconductor element is exposed. Process,
And a step of selectively steam-oxidizing the Al-containing layer to convert it into an Al oxide layer.
相互に構成及び機能の異なる複数種の半導体素子を共通基板上に2次元的に配置してなる半導体集積素子の製造方法であって、
AlAs層、AlGaAs層、及びInAlAs層のいずれかの第1のAl含有層を共通基板上に成膜する工程と、
第1の半導体素子を構成する第1の積層構造を第1のAl含有層上に形成する工程と、
第1の積層構造及び第1のAl含有層をエッチングして、第1の半導体素子の形成領域のみに第1の半導体素子を形成し、かつ第1の半導体素子下の第1のAl含有層の側面を露出させる工程と、
共通基板上に、AlAs層、AlGaAs層、及びInAlAs層のいずれかの第2のAl含有層を成膜し、次いで第2のAl含有層上に第2の半導体素子を構成する第2の積層構造を形成する工程と、
第2の積層構造及び第2のAl含有層をエッチングして、第2の半導体素子の形成領域のみに第2の半導体素子を形成し、かつ第2の半導体素子下の第2のAl含有層の側面を露出させる工程と、
以下、同様にして、第3、第4、・・・の半導体素子を共通基板上に形成し、かつ第3、第4、・・・のAl含有層の側面を露出させる工程と、
第1、第2、第3、第4、・・・のAl含有層を選択的に水蒸気酸化してAl酸化層に転化する工程と
を有する半導体集積素子の製造方法。
A method of manufacturing a semiconductor integrated device in which a plurality of types of semiconductor devices having different configurations and functions are arranged two-dimensionally on a common substrate,
Forming a first Al-containing layer of any one of an AlAs layer, an AlGaAs layer, and an InAlAs layer on a common substrate;
Forming a first laminated structure constituting the first semiconductor element on the first Al-containing layer;
The first stacked structure and the first Al-containing layer are etched to form the first semiconductor element only in the formation region of the first semiconductor element, and the first Al-containing layer under the first semiconductor element Exposing the side surface of
A second Al-containing layer of any one of an AlAs layer, an AlGaAs layer, and an InAlAs layer is formed on the common substrate, and then a second stack that constitutes the second semiconductor element on the second Al-containing layer. Forming a structure;
The second stacked structure and the second Al-containing layer are etched to form the second semiconductor element only in the formation region of the second semiconductor element, and the second Al-containing layer under the second semiconductor element Exposing the side surface of
Hereinafter, similarly, forming the third, fourth,... Semiconductor elements on the common substrate and exposing the side surfaces of the third, fourth,.
A method of selectively oxidizing the Al-containing layer of the first, second, third, fourth,... By steam to convert it into an Al oxide layer.
JP2003059429A 2003-03-06 2003-03-06 Manufacturing method of semiconductor integrated device Expired - Fee Related JP4649819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003059429A JP4649819B2 (en) 2003-03-06 2003-03-06 Manufacturing method of semiconductor integrated device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003059429A JP4649819B2 (en) 2003-03-06 2003-03-06 Manufacturing method of semiconductor integrated device

Publications (2)

Publication Number Publication Date
JP2004273588A JP2004273588A (en) 2004-09-30
JP4649819B2 true JP4649819B2 (en) 2011-03-16

Family

ID=33122242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003059429A Expired - Fee Related JP4649819B2 (en) 2003-03-06 2003-03-06 Manufacturing method of semiconductor integrated device

Country Status (1)

Country Link
JP (1) JP4649819B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9177967B2 (en) * 2013-12-24 2015-11-03 Intel Corporation Heterogeneous semiconductor material integration techniques

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03240244A (en) * 1990-02-19 1991-10-25 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacture
JPH08143398A (en) * 1994-11-15 1996-06-04 Korea Electron Telecommun Method for producing semiconductor thin film of defect-free compound on dielectric thin film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03240244A (en) * 1990-02-19 1991-10-25 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacture
JPH08143398A (en) * 1994-11-15 1996-06-04 Korea Electron Telecommun Method for producing semiconductor thin film of defect-free compound on dielectric thin film

Also Published As

Publication number Publication date
JP2004273588A (en) 2004-09-30

Similar Documents

Publication Publication Date Title
US7800097B2 (en) Semiconductor device including independent active layers and method for fabricating the same
JP5237535B2 (en) Semiconductor device
US10950543B2 (en) Semiconductor device and method of manufacturing the same
JP2008235740A (en) GaN-BASED SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF
JP2008263146A (en) Semiconductor device and manufacturing method thereof
JP3610951B2 (en) Semiconductor device and manufacturing method of semiconductor device
TWI276226B (en) Semiconductor device with high structural reliability and low parasitic capacitance
US9576898B2 (en) Resistance structure, integrated circuit, and method of fabricating resistance structure
JP2013179116A (en) Semiconductor device, semiconductor device manufacturing method, protective element, and protective element manufacturing method
US9917171B2 (en) Low-resistive, CMOS-compatible, Au-free ohmic contact to N—InP
JP4649819B2 (en) Manufacturing method of semiconductor integrated device
JP2006339606A (en) Semiconductor device and manufacturing method thereof
US7132729B2 (en) Semiconductor device and method of manufacturing same
JPWO2002056381A1 (en) Semiconductor device and manufacturing method thereof
JPH05102615A (en) Semiconductor device and manufacture thereof
JP5447872B2 (en) Optoelectronic semiconductor body and method of manufacturing optoelectronic semiconductor body
JP4043246B2 (en) Optical semiconductor integrated circuit device
JP2758509B2 (en) Semiconductor device and manufacturing method thereof
JPH01290235A (en) Semiconductor integrated circuit device
JP2011512682A5 (en)
TWI458046B (en) Semiconductor device manufacturing method and electrical machine
JP2723539B2 (en) Master slice type semiconductor device
JP2583793B2 (en) Semiconductor substrate
JPH11150288A (en) Optical sensor and manufacturing method thereof
KR20240040504A (en) integrated circuit semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101004

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101129

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees