JP4644326B2 - Lanthanum gallate sintered body - Google Patents
Lanthanum gallate sintered body Download PDFInfo
- Publication number
- JP4644326B2 JP4644326B2 JP30652399A JP30652399A JP4644326B2 JP 4644326 B2 JP4644326 B2 JP 4644326B2 JP 30652399 A JP30652399 A JP 30652399A JP 30652399 A JP30652399 A JP 30652399A JP 4644326 B2 JP4644326 B2 JP 4644326B2
- Authority
- JP
- Japan
- Prior art keywords
- lanthanum gallate
- sintered body
- oxide
- weight
- parts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910052746 lanthanum Inorganic materials 0.000 title claims description 60
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 title claims description 60
- LNTHITQWFMADLM-UHFFFAOYSA-N gallic acid Chemical compound OC(=O)C1=CC(O)=C(O)C(O)=C1 LNTHITQWFMADLM-UHFFFAOYSA-N 0.000 title claims description 59
- 229910052751 metal Inorganic materials 0.000 claims description 22
- 239000002184 metal Substances 0.000 claims description 22
- 239000002245 particle Substances 0.000 claims description 19
- 229910052723 transition metal Inorganic materials 0.000 claims description 13
- 239000013078 crystal Substances 0.000 claims description 8
- 229910052733 gallium Inorganic materials 0.000 claims description 8
- 229910052738 indium Inorganic materials 0.000 claims description 8
- 229910052747 lanthanoid Inorganic materials 0.000 claims description 6
- 150000002602 lanthanoids Chemical class 0.000 claims description 6
- 229910052788 barium Inorganic materials 0.000 claims description 3
- 229910052791 calcium Inorganic materials 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 3
- 229910052706 scandium Inorganic materials 0.000 claims description 3
- 229910052712 strontium Inorganic materials 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- 229910052727 yttrium Inorganic materials 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 239000000446 fuel Substances 0.000 description 26
- 239000000843 powder Substances 0.000 description 23
- 239000000203 mixture Substances 0.000 description 16
- 230000000052 comparative effect Effects 0.000 description 15
- 239000003792 electrolyte Substances 0.000 description 15
- 239000002994 raw material Substances 0.000 description 14
- 239000000463 material Substances 0.000 description 12
- 229910001233 yttria-stabilized zirconia Inorganic materials 0.000 description 10
- 239000012528 membrane Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 150000001768 cations Chemical class 0.000 description 6
- 230000005484 gravity Effects 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 229910044991 metal oxide Inorganic materials 0.000 description 6
- 150000004706 metal oxides Chemical class 0.000 description 6
- 238000010248 power generation Methods 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 238000005452 bending Methods 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000013001 point bending Methods 0.000 description 4
- 150000003624 transition metals Chemical class 0.000 description 4
- 229910002080 8 mol% Y2O3 fully stabilized ZrO2 Inorganic materials 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 3
- 238000009694 cold isostatic pressing Methods 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 238000002407 reforming Methods 0.000 description 3
- 239000007784 solid electrolyte Substances 0.000 description 3
- 229910000314 transition metal oxide Inorganic materials 0.000 description 3
- 238000007088 Archimedes method Methods 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 101100371219 Pseudomonas putida (strain DOT-T1E) ttgE gene Proteins 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000003487 electrochemical reaction Methods 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- AHKZTVQIVOEVFO-UHFFFAOYSA-N oxide(2-) Chemical compound [O-2] AHKZTVQIVOEVFO-UHFFFAOYSA-N 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 239000011164 primary particle Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910000416 bismuth oxide Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 1
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- TYIXMATWDRGMPF-UHFFFAOYSA-N dibismuth;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Bi+3].[Bi+3] TYIXMATWDRGMPF-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000002001 electrolyte material Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000006057 reforming reaction Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Conductive Materials (AREA)
- Fuel Cell (AREA)
Description
【発明の属する技術分野】
本発明は固体電解質として好適なランタンガレート系焼結体に関する。
【0001】
【従来の技術】
燃料電池は、水素または炭化水素燃料類を改質して得られる燃料と、空気を代表とする酸化剤との電気化学反応により、燃料の持つ化学エネルギーを直接電気エネルギーに変換できる発電システムである。このため、近時、この燃料電池が、高効率なエネルギー変換機器として、省エネルギー、環境保護の観点から注目されている。
【0002】
このような燃料電池の中で、固体酸化物型燃料電池(Solid OxideFuel Cell:以下SOFCと記す)は、以下のような特長を有することから、次世代の燃料電池としてオンサイト小型コージェネレーションシステムから大規模電源に至る幅広い応用が期待され、国内外で積極的に研究開発が行なわれている。
【0003】
(1)動作温度が典型的には900〜1000℃と高く、したがって、電極における電気化学反応が円滑に進行するためにエネルギーロスが少なく、発電効率が高い。
(2)動作温度が高いことにより、排熱温度も高いので、多段に利用すること(ボトミングサイクル)により、さらに発電効率を高めることが可能であり、60〜70%もの高効率を得ることができる。
(3)作動温度が、天然ガスなどの炭化水素燃料を改質(つまり水素と一酸化炭素に分解)させるのに十分なほど高いので、改質反応を電池内部で行なうことができる(内部改質)。したがって、従来のリン酸塩型やポリマー型のような低温作動型燃料電池システムにおいて炭化水素燃料の改質に用いられていた燃料処理系(改質器+シフトコンバーター)を大幅に簡素化することができる。
(4)従来の低温作動型燃料電池システムにおいては利用することができなかったCOも発電反応に関与させることができる(燃料の多様性)。
(5)全体が固体により構成されるので、リン酸塩型や溶融炭酸塩型のように部材の腐食や電解質の揮発および流出の心配がない。
【0004】
これまでにSOFCの電解質として検討された材料系には、イットリア安定化ジルコニア(以下YSZと示す)、安定化セリア、酸化ビスマスなどが挙げられる。これらの中では、主に還元雰囲気に対する安定性や取り扱いの容易さなどから、YSZが最も優れることが知られている。既に、YSZを電解質とした燃料電池では数万時間の実証実験により、高い発電効率が得られている。
【0005】
しかし、YSZを電解質として用いる場合、動作温度は約1000℃を要するために、上述したように効率が高いという利点がある反面、燃料電池を含む発電装置全体を高価なセラミックスで製造しなければならないという問題がある。また、YSZ電解質膜の厚みを薄くすることで、動作温度を下げることは可能であるが、そのような薄い電解質膜を欠陥を含まないように作製するにはいまだ課題が多い。
【0006】
そこで、YSZよりも低温での酸化物イオン伝導が可能で、酸化物イオン伝導の活性化エネルギーが低く、YSZと同等以上の導電率を有する電解質材料を用いることにより、電解質の厚みを薄くすることに伴なう問題を解消することが検討されている。この目的に適した材料としてはベロブスカイト型酸化物、特に、ランタンガレート系酸化物(La1−sSrsGa1−mMgmOx:以下LSGMと示すことがある)が優れることが知られている。
【0007】
【発明が解決しようとする課題】
しかし、LSGMは材料強度が低いために、燃料電池用電解質として適当な厚みのシートを作製することが困難であった。
本発明は、かかる事情に鑑みてなされたものであって、強度を向上したランタンガレート系焼結体を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、LSGMの組成(陽イオン構成比)を維持しつつ、所定量のGa、Inを含有させることにより、従来のLSGMよりも強度が向上することを見出した。
【0009】
また、本発明者らは、LSGMの組成(陽イオン構成比)を維持しつつ、所定量の第一系列主要遷移金属元素、二価金属元素、または三価金属元素を含有させることにより、従来のLSGMよりも強度が向上するのみならず、さらに靭性も向上することを見出した。
【0010】
本発明は、上記の知見に基づいてなされたものであって、以下の(1)〜(7)を提供する。
(1) ランタンガレート系酸化物100重量部に対して、GaとInのうち少なくとも1種を酸化物換算で1重量部以上6重量部以下含有するランタンガレート系焼結体であって、前記ランタンガレート系焼結体におけるランタンガレート系結晶粒の平均粒径が3μm以下であることを特徴とするランタンガレート系焼結体。
【0011】
(2) ランタンガレート系酸化物100重量部に対して、酸化物換算で1重量部以上6重量部以下の第一系列主要遷移金属元素を含有するランタンガレート系焼結体であって、前記ランタンガレート系焼結体におけるランタンガレート系結晶粒の平均粒径が3μm以下であることを特徴とするランタンガレート系焼結体。
【0012】
(3) 前記第一系列主要遷移金属元素が、V,Cr,Mn,Fe,Co,Niのうち少なくとも1種であることを特徴とする前記(2)に記載のランタンガレート系焼結体。
【0013】
(4) ランタンガレート系酸化物100重量部に対して、酸化物換算で1重量部以上6重量部以下の二価金属元素を含有するランタンガレート系焼結体であって、前記ランタンガレート系焼結体におけるランタンガレート系結晶粒の平均粒径が3μm以下であることを特徴とするランタンガレート系焼結体。
【0014】
(5) 前記二価金属元素が、Mg,Ca,Sr,Ba,Znのうち少なくとも1種であることを特徴とする前記(4)に記載のランタンガレート系焼結体。
【0015】
(6) ランタンガレート系酸化物100重量部に対して、酸化物換算で1重量部以上6重量部以下の三価金属元素を含有するランタンガレート系焼結体であって、前記ランタンガレート系焼結体におけるランタンガレート系結晶粒の平均粒径が3μm以下であることを特徴とするランタンガレート系焼結体。
【0016】
(7) 前記三価金属元素が、希土類元素であるSc,Y,La,ランタノイドのうち少なくとも1種であることを特徴とする前記(6)に記載のランタンガレート系焼結体。
【0018】
【発明の実施の形態】
以下、本発明について具体的に説明する。
本発明に係るランタンガレート系焼結体は、LSGM100重量部に対して、酸化物換算で1重量部以上6重量部以下の特定元素を含有するものである。つまり、LSGMがその組成を変えることなく存在し、さらに特定元素を含有している。
【0019】
本発明で用いるLSGMの組成(陽イオン構成比)はLa1-sSrsGa1-mMgmOxの組成比を満たしていれば特に限定されるものではないが、導電率や雰囲気に対する安定性等の各特性を考慮すると、La0.9Sr0.1Ga0.8Mg0.2Ox、あるいはLa0.8Sr0.2Ga0.8Mg0.2Oxのような組成を有するものが好適である。
【0020】
本発明において、上記LSGMに含有させる成分としては、
(1)GaとInのうち少なくとも1種
(2)第一系列主要遷移金属
(3)二価金属
(4)三価金属
の化合物を用いることができる。
【0021】
上記(1)のようにGaとInのうち少なくとも1種を含有させることにより、ランタンガレート系焼結体の強度を向上することができる。
【0022】
上記(2)のように第一系列主要遷移金属元素を含有させることにより、ランタンガレート系焼結体の強度と靭性を向上させることができる。上記第一系列主要遷移金属としては、V,Cr,Mn,Fe,Co,Niが例示され、これらのうち少なくとも1種を含むことが好ましい
【0023】
また、上記(3)のように二価金属元素を含有させることによっても、ランタンガレート系焼結体の強度と靭性を向上させることができる。上記二価金属元素としては、2A族元素のうちMg,Ca,Sr,Ba、2B族元素のうちZnの中のうち少なくとも1種を含むことが好ましい。
【0024】
さらに、上記(4)のように三価金属元素を含有させることによっても、ランタンがレート系焼結体の強度と靭性を向上させることができる。上記三価金属元素としては、希土類元素であるSc,Y,La,ランタノイドのうち少なくとも1種を含むことが好ましい。
【0025】
これらの効果を比較すると、強度については上記(1)ないし(4)を含有させることにより、室温ではLSGMの2ないし3倍程度の高い値が得られる。また、靭性については、上記(2)ないし(4)を含有させることにより、いずれも、代表的な電解質膜材料である8YSZの破壊靭性値である1.5MPa・m0.5と同等以上の、従来のLSGMより高い値を得ることができる。中でも、第一系列主要遷移金属元素を含有させることにより、より高い靭性値が得られる。
【0026】
以上のような特定元素を含有させる量は、LSGM100重量部に対して、酸化物換算で1重量部以上6重量部以下とする。これらの元素の酸化物換算での含有量が1重量部未満ではランタンガレート系焼結体の強度や靭性を向上する効果が十分に認められず、6重量部を超えるとLSGMの組成が変化したり、LSGM以外の化合物が析出すること等により酸化物イオン伝導性の低下が認められることから望ましくない。特定元素を含有させる量のより好ましい範囲は、酸化物換算で2重量部以上5重量部以下である。
【0027】
また、本発明のランタンガレート系焼結体におけるLSGM粒子の平均粒径は3μm以下であることが好ましい。LSGM粒子の平均粒径が3μmを大きく超えると強度が低下するため好ましくない。なお、焼結体における粒子の平均粒径は、インターセプト法により単位線分長さを横切る粒子数Pを用いて、次式により算出するものとする。
平均粒径<L>=1/P
【0028】
なお、本発明においては、LSGMに、前記GaおよびInのうち少なくとも1種、前記第一系列遷移金属元素、前記二価金属元素、前記三価金属元素のうちの2種類以上を複合して含有させてもよい。
【0029】
次に、本発明のランタンガレート系焼結体を製造する方法について説明する。
本発明のランタンガレート系焼結体は、LSGM酸化物の粉末100重量部に、第一系列主要遷移金属酸化物、二価金属酸化物、または三価金属酸化物の粉末を1ないし6重量部含有させた原料、または、焼成により前記特定元素の酸化物を生じる化合物の粉末を酸化物換算で1ないし6重量部含有させた原料を焼結することにより製造することができる。
【0030】
本発明の原料に用いるLSGM酸化物粉末の平均一次粒径は特に規定されるものではないが、0.2μm以上5μm以下であることが望ましい。0.2μm未満では粉末の取り扱い性が悪くなり、また、雰囲気中の水分などと反応して水酸化物を生成しやすくなる。一方、5μmを超えると焼結に高温を要するために分解を生じたり、粉砕工程による粒度調整が必要となる。
【0031】
また、本発明の原料に用いる、Ga、In、前記第一系列主要遷移金属、二価金属、三価金属の酸化物や化合物の粉末については、その純度、種類および粒径は特に規定されるものではないが、これらを構成する陽イオン中の前記特定元素イオンの割合が99%以上であり、酸化物、水酸化物、炭酸塩等の粉末であれば平均一次粒径が3μm以下であることが望ましい。陽イオン中の特定元素イオンの割合が99%未満では、不純物の種類にも影響されるが、緻密化が阻害されて強度の向上が困難になる他、不純物が電気抵抗の高い絶縁粒界を形成する等の問題が生じる。また、酸化物、水酸化物、炭酸塩等の粒径が3μmを超える場合には、分散状態が不均一になり易くなり、部分的に特定元素の割合が高くなって、その部分で導電率が低下するなどの問題が生じる。
【0032】
以上のような原料粉末の成形および焼成は常法に従って行なえばよく、その条件は特に限定されない。例えば、冷間静圧プレス(CIP)した後、1200〜1400℃程度の温度範囲で焼成する。焼成は空気中で行ってもよいし、還元雰囲気中で行なってもよい。このようにして、LSGM組成(陽イオン構成比)を変化させずに、前記特定元素を含有するランタンガレート系焼結体を得ることができる。
【0033】
【実施例】
以下に、本発明の実施例を比較例とともに説明する。なお、本発明は以下の実施例に限定されるものではない。
[実施例1ないし4]
表1に示す配合に従い、LSGM粉末と、Ga酸化物(Ga2O3)粉末またはIn酸化物(In2O3)粉末を原料として、エタノール中で粉砕・混合した。これを乾燥後、CIPして得られた成形体を、空気中で、1200ないし1400℃で焼成して緻密な焼結体とした。
【0034】
以上のようにして得られた実施例1ないし4に係る焼結体について、(1)相対比重、(2)室温および800℃における曲げ強度(三点曲げ)、(3)酸素雰囲気中における600ないし1000℃での導電率、(4)4%H2−N2中における800℃での導電率、(5)空気中および4%H2−N2中における室温ないし800℃の熱膨脹率を測定した。これらのうち(1)、(2)、(3)の測定結果を表1に併せて示す。
【0035】
なお、比重はアルキメデス法により求めた嵩比重を用いた。曲げ強度はJISR 1601/1604に準拠した3点曲げ試験法によって測定した。さらに、導電率は直流4端子法により測定した。
【0036】
[比較例1ないし4]
表1の配合に従い、比較例1および2においてはLSGM酸化物粉末のみを原料とし、比較例3および4においてはLSGM酸化物粉末と本発明範囲外のIn酸化物(In2O3)粉末を原料とし、上記実施例1ないし4と同様の方法により得られた焼結体の試験片を用いて物性を測定した。その結果を表1に併せて示す。
【0037】
表1より、GaとInの少なくとも1種を本発明範囲内で含有させた実施例1ないし4の強度は、これらの元素を含有しない比較例1および2や、Inを含有させる量が本発明範囲外である比較例3および4よりも、高い値を示すことが確認された。
【0038】
また、個々には示さないが、実施例1ないし4では、いずれの場合も導電率の変化が測定誤差とみなされる範囲内に収まっており、導電率に雰囲気依存性は認められなかった。さらに、熱膨脹率についてもランタンガレート系焼結体として問題のない値であり、燃料電池の固体電解質膜として用いるのに好適な特性を有していた。
【0039】
以上のように、この実施例に係るランタンガレート系焼結体は、強度が従来のLSGM系材料よりも高く、また、LSGM系材料はYSZ系材料とは異なり薄膜化による特性劣化が起き難いので、燃料電池用電解質として好適な厚みと特性の薄膜を作成することができる。したがって、この実施例に係るランタンガレート系焼結体によれば、コストと信頼性に優れた低温動作燃料電池システムを構成することができる。
【0040】
【表1】
【0041】
[実施例5ないし23]
表1に示す配合に従い、実施例5ないし11についてはLSGM粉末と第一系列主要遷移金属酸化物の粉末を原料とし、実施例12ないし17についてはLSGM粉末と二価金属酸化物の粉末を原料とし、実施例18ないし23についてはLSGM粉末と三価金属酸化物の粉末を原料として、エタノール中で粉砕・混合した。これを乾燥後、CIPして得られた成形体を、空気中で、1200ないし1400℃で焼成して緻密な焼結体とした。
【0042】
以上のようにして得られた実施例5ないし23に係る焼結体について、(1)相対比重、(2)室温および800℃における曲げ強度(三点曲げ)、(3)室温破壊靭性(SEPB法)、(4)酸素雰囲気中における600ないし1000℃での導電率、(5)4%H2−N2中における800℃での導電率、(6)空気中および4%H2−N2中における室温ないし800℃の熱膨脹率を測定した。これらのうち(1)、(2)、(3)、(4)の測定結果を表2に併せて示す。
【0043】
なお、比重はアルキメデス法により求めた嵩比重を用いた。曲げ強度はJISR 1601/1604に準拠した3点曲げ試験法によって測定した。破壊靭性はJIS R 1607に準拠したSEPB法によって測定した。さらに、導電率は直流4端子法により測定した。
【0044】
[比較例5ないし10]
表2の配合に従い、比較例5および6においてはLSGM酸化物粉末と本発明範囲外の第一系列主要遷移金属酸化物を原料とし、比較例7および8においてはLSGM酸化物粉末と本発明範囲外の二価金属酸化物を原料とし、比較例9および10においてはLSGM酸化物粉末と本発明範囲外の三価金属酸化物を原料として、上記実施例5ないし23と同様の方法により焼結体とした。得られた焼結体の物性を測定した結果を表2に示す。また、表2には、前述した比較例1および2の物性を併せて示す。
【0045】
表2より、第一系列主要遷移金属元素、二価金属元素、または三価金属元素を本発明の範囲内で含有させた実施例5ないし23では、いずれも上記元素を含有しない比較例1および2よりも高い値を示すことが確認された。
【0046】
また、同表より、これら実施例5ないし23は、いずれも比較例1および2よりも高い靭性を示すことが確認され、その値は代表的な電解質膜材料である8YSZの破壊靭性値である1.5MPa・m0.5と同等以上であった。その中でも、第一系列主要遷移金属の酸化物を含有させた実施例5ないし11の靭性値は、そのほとんどが8YSZの破壊靭性値である1.5MPa・m0.5よりも高く、より優れた靭性値が得られることが確認された。
【0047】
さらに、個々には示さないが、実施例5ないし23は、いずれの場合も導電率の変化が測定誤差とみなされる範囲内に収まっており、導電率に雰囲気依存性は認められなかった。さらに、上記(6)で得られた熱膨脹率についてもランタンガレート系焼結体として問題のない値であり、燃料電池の固体電解質膜として用いるのに好適な特性を有していた。
【0048】
一方、比較例5、7および9では、前記特定元素を含有する量が本発明範囲よりも少ないため、強度や靭性を向上する効果を十分に得ることができなかった。また、比較例6,8,および10は、前記特定元素を本発明範囲を超えて含有させているため、強度と靭性が十分に向上していないだけでなく、導電率も大きく低下しており、電解質膜材料として好ましい特性を有していなかった。
【0049】
以上のように、この実施例に係るランタンガレート系焼結体は、強度と靭性の双方が従来のLSGM系材料よりも高く、また、LSGM系材料はYSZ系材料と異なり薄膜化による特性劣化が起き難いので、電解質膜厚を薄くすることにより機械的信頼性(可撓性)に優れた燃料電池用電解質を作製することができる。したがって、この実施例に係るランタンガレート系焼結体によれば、コストと信頼性に優れた低温動作燃料電池システムを構成することができ、また、セルないし燃料電池システムの取り扱い性・安定性を向上することができる。
【0050】
【表2】
【0051】
【発明の効果】
以上説明した通り、本発明によれば、強度を向上し、あるいはさらに靭性を向上したランタンガレート系焼結体を得ることができる。このようなランタンガレート系焼結体によれば燃料電池用として好適な薄さの電解質薄膜を作製することができ、燃料電池のシステムやセルの取り扱い性・安定性を向上することができる。BACKGROUND OF THE INVENTION
The present invention relates to a lanthanum gallate sintered body suitable as a solid electrolyte.
[0001]
[Prior art]
A fuel cell is a power generation system that can directly convert the chemical energy of a fuel into electrical energy by an electrochemical reaction between a fuel obtained by reforming hydrogen or hydrocarbon fuels and an oxidant such as air. . For this reason, recently, this fuel cell has attracted attention as a highly efficient energy conversion device from the viewpoint of energy saving and environmental protection.
[0002]
Among such fuel cells, a solid oxide fuel cell (hereinafter referred to as SOFC) has the following features, and therefore is an on-site small cogeneration system as a next-generation fuel cell. A wide range of applications up to large-scale power supplies is expected, and research and development are actively conducted in Japan and overseas.
[0003]
(1) The operating temperature is typically as high as 900 to 1000 ° C. Therefore, since the electrochemical reaction at the electrode proceeds smoothly, energy loss is small and power generation efficiency is high.
(2) Since the exhaust heat temperature is high due to the high operating temperature, it is possible to further increase the power generation efficiency by using multiple stages (bottoming cycle), and to obtain a high efficiency of 60 to 70%. it can.
(3) Since the operating temperature is high enough to reform a hydrocarbon fuel such as natural gas (that is, decompose into hydrogen and carbon monoxide), the reforming reaction can be performed inside the battery (internal reforming). quality). Therefore, the fuel processing system (reformer + shift converter) used for reforming hydrocarbon fuels in conventional low-temperature fuel cell systems such as phosphate and polymer types will be greatly simplified. Can do.
(4) CO that could not be used in the conventional low-temperature operating fuel cell system can also participate in the power generation reaction (fuel diversity).
(5) Since the whole is composed of a solid, there is no fear of member corrosion, electrolyte volatilization and outflow unlike the phosphate type and molten carbonate type.
[0004]
Examples of material systems that have been studied as SOFC electrolytes include yttria stabilized zirconia (hereinafter referred to as YSZ), stabilized ceria, and bismuth oxide. Among these, YSZ is known to be the most excellent mainly because of its stability in a reducing atmosphere and ease of handling. A fuel cell using YSZ as an electrolyte has already achieved high power generation efficiency through tens of thousands of hours of demonstration experiments.
[0005]
However, when YSZ is used as an electrolyte, the operating temperature requires about 1000 ° C., so that there is an advantage that the efficiency is high as described above. On the other hand, the entire power generation device including the fuel cell must be manufactured with expensive ceramics. There is a problem. Although the operating temperature can be lowered by reducing the thickness of the YSZ electrolyte membrane, there are still many problems in producing such a thin electrolyte membrane so as not to include defects.
[0006]
Therefore, it is possible to reduce the thickness of the electrolyte by using an electrolyte material that can conduct oxide ions at a lower temperature than YSZ, has low activation energy for oxide ion conduction, and has a conductivity equal to or higher than that of YSZ. It is being considered to solve the problems associated with. Perovskite-type oxide as a material suitable for this purpose, in particular, lanthanum gallate-based oxide (La 1-s Sr s Ga 1-m Mg m O x: hereinafter sometimes referred to as LSGM) that is excellent knowledge It has been.
[0007]
[Problems to be solved by the invention]
However, since LSGM has low material strength, it has been difficult to produce a sheet having an appropriate thickness as an electrolyte for a fuel cell.
This invention is made | formed in view of this situation, Comprising: It aims at providing the lanthanum gallate type sintered compact which improved the intensity | strength.
[0008]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present inventors have included a predetermined amount of Ga and In while maintaining the composition (cation composition ratio) of LSGM, so that the conventional LSGM can be incorporated. Has also been found to improve strength.
[0009]
In addition, the present inventors have conventionally included a predetermined amount of a first series main transition metal element, a divalent metal element, or a trivalent metal element while maintaining the composition (cation composition ratio) of LSGM. It was found that not only the strength is improved but also the toughness is improved as compared with LSGM.
[0010]
This invention is made | formed based on said knowledge, Comprising: The following (1)-( 7 ) is provided.
(1) A lanthanum gallate-based sintered body containing 1 to 6 parts by weight of at least one of Ga and In in terms of oxide with respect to 100 parts by weight of a lanthanum gallate-based oxide, A lanthanum gallate-based sintered body, wherein the lanthanum gallate-based crystal grains have an average particle size of 3 μm or less .
[0011]
(2) A lanthanum gallate sintered body containing 1 to 6 parts by weight of a first series main transition metal element in terms of oxide with respect to 100 parts by weight of a lanthanum gallate oxide, A lanthanum gallate-based sintered body, wherein the lanthanum gallate-based crystal grains have an average particle size of 3 μm or less .
[0012]
(3) The lanthanum gallate-based sintered body according to (2), wherein the first series main transition metal element is at least one of V, Cr, Mn, Fe, Co, and Ni.
[0013]
(4) A lanthanum gallate-based sintered body containing 1 to 6 parts by weight of a divalent metal element in terms of oxide with respect to 100 parts by weight of a lanthanum gallate-based oxide, A lanthanum gallate-based sintered body, wherein the lanthanum gallate-based crystal grains have an average particle size of 3 μm or less .
[0014]
(5) The lanthanum gallate-based sintered body according to (4), wherein the divalent metal element is at least one of Mg, Ca, Sr, Ba, and Zn.
[0015]
(6) A lanthanum gallate-based sintered body containing 1 to 6 parts by weight of a trivalent metal element in terms of oxide with respect to 100 parts by weight of a lanthanum gallate-based oxide, A lanthanum gallate-based sintered body, wherein the lanthanum gallate-based crystal grains have an average particle size of 3 μm or less .
[0016]
(7) The lanthanum gallate-based sintered body according to (6), wherein the trivalent metal element is at least one of Sc, Y, La, and lanthanoid , which are rare earth elements .
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be specifically described.
The lanthanum gallate-based sintered body according to the present invention contains 1 to 6 parts by weight of a specific element in terms of oxide with respect to 100 parts by weight of LSGM. That is, LSGM exists without changing its composition, and further contains a specific element.
[0019]
The composition (cation composition ratio) of LSGM used in the present invention is not particularly limited as long as the composition ratio of La 1-s Sr s Ga 1-m Mg m O x is satisfied. In consideration of each characteristic such as stability, those having a composition such as La 0.9 Sr 0.1 Ga 0.8 Mg 0.2 O x or La 0.8 Sr 0.2 Ga 0.8 Mg 0.2 O x are preferable.
[0020]
In the present invention, as the component to be contained in the LSGM,
(1) A compound of at least one of Ga and In, (2) a first series main transition metal, (3) a divalent metal, and (4) a trivalent metal can be used.
[0021]
By containing at least one of Ga and In as in (1) above, the strength of the lanthanum gallate sintered body can be improved.
[0022]
By including the first series main transition metal element as in (2) above, the strength and toughness of the lanthanum gallate sintered body can be improved. Examples of the first series main transition metals include V, Cr, Mn, Fe, Co, and Ni, and preferably include at least one of these.
Moreover, the intensity | strength and toughness of a lanthanum gallate type sintered compact can be improved also by containing a bivalent metal element like said (3). The divalent metal element preferably includes at least one of Zn, among Mg, Ca, Sr, Ba, and 2B elements among the 2A group elements.
[0024]
Furthermore, lanthanum can also improve the strength and toughness of the rate-based sintered body by including a trivalent metal element as in (4) above. The trivalent metal element preferably contains at least one of Sc, Y, La and lanthanoids which are rare earth elements .
[0025]
Comparing these effects, by including the above (1) to (4) in strength, a high value about 2 to 3 times that of LSGM can be obtained at room temperature. In addition, with regard to toughness, by including the above (2) to (4), both are equal to or higher than 1.5 MPa · m 0.5 which is the fracture toughness value of 8YSZ which is a typical electrolyte membrane material. A value higher than that of the conventional LSGM can be obtained. Among them, a higher toughness value can be obtained by including the first series main transition metal element.
[0026]
The amount of the specific element as described above is 1 part by weight or more and 6 parts by weight or less in terms of oxide with respect to 100 parts by weight of LSGM. When the content of these elements in terms of oxide is less than 1 part by weight, the effect of improving the strength and toughness of the lanthanum gallate sintered body is not sufficiently observed, and when it exceeds 6 parts by weight, the composition of LSGM changes. Or a decrease in oxide ion conductivity due to precipitation of a compound other than LSGM is undesirable. A more preferable range of the amount containing the specific element is 2 parts by weight or more and 5 parts by weight or less in terms of oxide.
[0027]
Moreover, it is preferable that the average particle diameter of the LSGM particle | grain in the lanthanum gallate type sintered compact of this invention is 3 micrometers or less. If the average particle size of the LSGM particles greatly exceeds 3 μm, the strength decreases, which is not preferable. In addition, the average particle diameter of the particles in the sintered body is calculated by the following formula using the number P of particles crossing the unit line segment length by the intercept method.
Average particle size <L> = 1 / P
[0028]
In the present invention, LSGM contains a composite of at least one of Ga and In, two or more of the first series transition metal element, the divalent metal element, and the trivalent metal element. You may let them.
[0029]
Next, a method for producing the lanthanum gallate sintered body of the present invention will be described.
In the lanthanum gallate-based sintered body of the present invention, 1 to 6 parts by weight of the first series main transition metal oxide, divalent metal oxide, or trivalent metal oxide powder is added to 100 parts by weight of the LSGM oxide powder. It can be produced by sintering the contained raw material or the raw material containing 1 to 6 parts by weight of a powder of a compound that generates an oxide of the specific element by firing.
[0030]
The average primary particle size of the LSGM oxide powder used for the raw material of the present invention is not particularly defined, but is desirably 0.2 μm or more and 5 μm or less. If it is less than 0.2 μm, the handleability of the powder is deteriorated, and it becomes easy to generate hydroxide by reacting with moisture in the atmosphere. On the other hand, if the thickness exceeds 5 μm, the sintering requires a high temperature, so that decomposition occurs or particle size adjustment by a pulverization process is required.
[0031]
In addition, the purity, type, and particle size of the powders of oxides and compounds of Ga, In, the first series main transition metal, divalent metal, and trivalent metal used as the raw material of the present invention are specifically defined. Although it is not a thing, the ratio of the said specific element ion in the cation which comprises these is 99% or more, and an average primary particle diameter will be 3 micrometers or less if it is powders, such as an oxide, a hydroxide, and carbonate. It is desirable. If the ratio of the specific element ion in the cation is less than 99%, it is affected by the type of impurity, but densification is hindered to make it difficult to improve the strength, and the impurity has an insulating grain boundary with high electrical resistance. Problems such as formation occur. In addition, when the particle size of oxide, hydroxide, carbonate, etc. exceeds 3 μm, the dispersion state tends to be non-uniform, and the proportion of the specific element is partially increased, and the conductivity is increased in that portion. Problems such as lowering.
[0032]
The molding and firing of the raw material powder as described above may be performed according to a conventional method, and the conditions are not particularly limited. For example, after cold isostatic pressing (CIP), firing is performed in a temperature range of about 1200 to 1400 ° C. Firing may be performed in air or in a reducing atmosphere. In this way, a lanthanum gallate sintered body containing the specific element can be obtained without changing the LSGM composition (cation composition ratio).
[0033]
【Example】
Examples of the present invention will be described below together with comparative examples. In addition, this invention is not limited to a following example.
[Examples 1 to 4]
According to the formulation shown in Table 1, LSGM powder and Ga oxide (Ga 2 O 3 ) powder or In oxide (In 2 O 3 ) powder were used as raw materials and pulverized and mixed in ethanol. After drying this, the molded body obtained by CIP was fired in air at 1200 to 1400 ° C. to obtain a dense sintered body.
[0034]
Regarding the sintered bodies according to Examples 1 to 4 obtained as described above, (1) relative specific gravity, (2) bending strength at room temperature and 800 ° C. (three-point bending), and (3) 600 in an oxygen atmosphere. Conductivity at 1000 ° C., (4) conductivity at 800 ° C. in 4% H 2 —N 2 , (5) coefficient of thermal expansion from room temperature to 800 ° C. in air and 4% H 2 —N 2. It was measured. Among these, the measurement results of (1), (2), and (3) are also shown in Table 1.
[0035]
In addition, the specific gravity used the bulk specific gravity calculated | required by the Archimedes method. The bending strength was measured by a three-point bending test method based on JISR 1601/1604. Furthermore, the conductivity was measured by a direct current four-terminal method.
[0036]
[Comparative Examples 1 to 4]
According to the composition of Table 1, in Comparative Examples 1 and 2, only LSGM oxide powder is used as a raw material, and in Comparative Examples 3 and 4, LSGM oxide powder and In oxide (In 2 O 3 ) powder outside the scope of the present invention are used. The physical properties were measured using a test piece of a sintered body obtained by the same method as in Examples 1 to 4 as a raw material. The results are also shown in Table 1.
[0037]
From Table 1, the strengths of Examples 1 to 4 containing at least one of Ga and In within the scope of the present invention are the same as those of Comparative Examples 1 and 2 that do not contain these elements, and the amount of In contained in the present invention. It was confirmed that the value was higher than those of Comparative Examples 3 and 4 which were out of the range.
[0038]
Although not shown individually, in Examples 1 to 4, in all cases, the change in conductivity was within the range considered as a measurement error, and no dependence on the atmosphere was observed in the conductivity. Further, the coefficient of thermal expansion is a value that does not cause a problem as a lanthanum gallate sintered body, and has characteristics suitable for use as a solid electrolyte membrane of a fuel cell.
[0039]
As described above, the lanthanum gallate-based sintered body according to this example is higher in strength than the conventional LSGM-based material, and the LSGM-based material is unlikely to deteriorate due to thinning unlike the YSZ-based material. A thin film having a thickness and characteristics suitable for an electrolyte for a fuel cell can be produced. Therefore, according to the lanthanum gallate sintered body according to this embodiment, a low temperature operation fuel cell system excellent in cost and reliability can be configured.
[0040]
[Table 1]
[0041]
[Examples 5 to 23]
In accordance with the formulation shown in Table 1, LSGM powder and first series main transition metal oxide powder are used as raw materials for Examples 5 to 11, and LSGM powder and divalent metal oxide powder are used as raw materials for Examples 12 to 17. In Examples 18 to 23, LSGM powder and trivalent metal oxide powder were used as raw materials and pulverized and mixed in ethanol. After drying this, the molded body obtained by CIP was fired in air at 1200 to 1400 ° C. to obtain a dense sintered body.
[0042]
For the sintered bodies according to Examples 5 to 23 obtained as described above, (1) relative specific gravity, (2) bending strength at room temperature and 800 ° C. (three-point bending), (3) room temperature fracture toughness (SEPB Method), (4) conductivity at 600 to 1000 ° C. in an oxygen atmosphere, (5) conductivity at 800 ° C. in 4% H 2 —N 2 , (6) in air and 4% H 2 —N The thermal expansion coefficient from room temperature to 800 ° C. in 2 was measured. Among these, the measurement results of (1), (2), (3) and (4) are also shown in Table 2.
[0043]
In addition, the specific gravity used the bulk specific gravity calculated | required by the Archimedes method. The bending strength was measured by a three-point bending test method based on JISR 1601/1604. Fracture toughness was measured by the SEPB method according to JIS R 1607. Furthermore, the conductivity was measured by a direct current four-terminal method.
[0044]
[Comparative Examples 5 to 10]
According to the composition of Table 2, in Comparative Examples 5 and 6, the LSGM oxide powder and the first series main transition metal oxide outside the scope of the present invention are used as raw materials, and in Comparative Examples 7 and 8, the LSGM oxide powder and the scope of the present invention are used. The outer divalent metal oxide was used as a raw material, and in Comparative Examples 9 and 10, LSGM oxide powder and a trivalent metal oxide outside the scope of the present invention were used as raw materials, and sintered in the same manner as in Examples 5 to 23 above. The body. Table 2 shows the results of measuring the physical properties of the obtained sintered body. Table 2 also shows the physical properties of Comparative Examples 1 and 2 described above.
[0045]
From Table 2, in Examples 5 to 23 in which the first series main transition metal element, divalent metal element, or trivalent metal element was contained within the scope of the present invention, none of the comparative examples 1 and It was confirmed that the value was higher than 2.
[0046]
Also, from the table, it was confirmed that all of Examples 5 to 23 showed higher toughness than Comparative Examples 1 and 2, and the value is the fracture toughness value of 8YSZ which is a typical electrolyte membrane material. It was equal to or higher than 1.5 MPa · m 0.5 . Among them, the toughness values of Examples 5 to 11 containing the oxide of the first series main transition metal are higher than 1.5 MPa · m 0.5 which is the fracture toughness value of 8YSZ, and more excellent. It was confirmed that a high toughness value was obtained.
[0047]
Further, although not shown individually, in Examples 5 to 23, in all cases, the change in conductivity was within the range considered as a measurement error, and the conductivity was not dependent on the atmosphere. Further, the thermal expansion coefficient obtained in the above (6) is also a value that does not cause a problem as a lanthanum gallate sintered body, and has characteristics suitable for use as a solid electrolyte membrane of a fuel cell.
[0048]
On the other hand, in Comparative Examples 5, 7 and 9, the amount of the specific element contained was less than the range of the present invention, so that the effect of improving the strength and toughness could not be sufficiently obtained. Further, Comparative Examples 6, 8, and 10 contain the specific element beyond the scope of the present invention, so that not only the strength and toughness are not sufficiently improved, but also the conductivity is greatly reduced. The electrolyte membrane material did not have favorable characteristics.
[0049]
As described above, the lanthanum gallate-based sintered body according to this example has both strength and toughness higher than those of conventional LSGM-based materials, and the LSGM-based materials, unlike YSZ-based materials, have characteristics deterioration due to thinning. Since it is difficult to occur, an electrolyte for a fuel cell excellent in mechanical reliability (flexibility) can be produced by reducing the electrolyte film thickness. Therefore, according to the lanthanum gallate-based sintered body according to this embodiment, a low-temperature operating fuel cell system excellent in cost and reliability can be configured, and the handling and stability of the cell or fuel cell system can be improved. Can be improved.
[0050]
[Table 2]
[0051]
【The invention's effect】
As described above, according to the present invention, a lanthanum gallate-based sintered body with improved strength or further improved toughness can be obtained. According to such a lanthanum gallate sintered body, an electrolyte thin film having a thickness suitable for a fuel cell can be produced, and the handling and stability of the fuel cell system and cells can be improved.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30652399A JP4644326B2 (en) | 1999-10-28 | 1999-10-28 | Lanthanum gallate sintered body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30652399A JP4644326B2 (en) | 1999-10-28 | 1999-10-28 | Lanthanum gallate sintered body |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001126533A JP2001126533A (en) | 2001-05-11 |
JP4644326B2 true JP4644326B2 (en) | 2011-03-02 |
Family
ID=17958062
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30652399A Expired - Fee Related JP4644326B2 (en) | 1999-10-28 | 1999-10-28 | Lanthanum gallate sintered body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4644326B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003112973A (en) * | 2001-09-28 | 2003-04-18 | Ngk Spark Plug Co Ltd | LaGaO3 BASED SINTERED COMPACT |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11335164A (en) * | 1997-08-29 | 1999-12-07 | Yusaku Takita | Oxide ionic conductor and use thereof |
-
1999
- 1999-10-28 JP JP30652399A patent/JP4644326B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11335164A (en) * | 1997-08-29 | 1999-12-07 | Yusaku Takita | Oxide ionic conductor and use thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2001126533A (en) | 2001-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20130295484A1 (en) | Material for solid oxide fuel cell, cathode for solid oxide fuel cell and solid oxide fuel cell including the same, and method of manufacture thereof | |
KR20130099704A (en) | Functional layer material for solid oxide fuel cell, functional layer manufactured using the material and solid oxide fuel cell including the functional layer | |
WO2011081417A2 (en) | Composite ceramic material and a production method therefor | |
JP2790653B2 (en) | Conductive intermediate connector and fuel cell having the same | |
EP2506351A2 (en) | Material for solid oxide fuel cell, cathode including the material, and solid oxide fuel cell including the same | |
JP2009037872A (en) | Ceramic powder, laminated member of air electrode and electrolyte layer of medium temperature operating solid oxide fuel cell using the powder, and method for producing the same | |
CN108390087B (en) | Composite solid electrolyte and preparation method thereof | |
Devi et al. | Solid oxide fuel cell materials: a review | |
JP3661676B2 (en) | Solid oxide fuel cell | |
JP4191821B2 (en) | Lanthanum gallate sintered body for solid electrolyte, method for producing the same, and fuel cell using the same as solid electrolyte | |
WO2007086346A1 (en) | Conductive sintered body, conductive member for fuel cell, fuel-cell cell, and fuel cell | |
JP3339983B2 (en) | Solid oxide fuel cell and method of manufacturing the same | |
JP4889166B2 (en) | Low-temperature sinterable solid electrolyte material, electrolyte electrode assembly and solid oxide fuel cell using the same | |
JP4644326B2 (en) | Lanthanum gallate sintered body | |
JP2003217597A (en) | Solid electrolyte type fuel cell | |
JP2836852B2 (en) | Solid oxide fuel cell separator | |
JP2009076310A (en) | Current collector material, current collector using this, and solid oxide fuel cell | |
JP2008234915A (en) | Collector material of solid oxide fuel cell, air electrode collector, and the solid oxide fuel cell | |
JP3573519B2 (en) | Single cell of solid oxide fuel cell and method of manufacturing the same | |
JP6717331B2 (en) | Solid oxide fuel cell | |
JP3342541B2 (en) | Solid oxide fuel cell | |
JP2005108719A (en) | Solid oxide fuel cell | |
EP3203563A1 (en) | Electrolyte membrane, fuel cell including same, battery module including fuel cell, and method for manufacturing electrolyte membrane | |
JP2001072465A (en) | Solid electrolyte, its production, and fuel cell and oxygen sensor each using the same | |
JP4450179B2 (en) | NiO-cerium-containing oxide mixed material and solid oxide fuel cell having the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061012 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090522 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090616 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090811 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100817 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101012 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101130 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101206 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4644326 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131210 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |