[go: up one dir, main page]

JP2008234915A - Current collector material of solid oxide fuel cell, cathode current collector, and solid oxide fuel cell - Google Patents

Current collector material of solid oxide fuel cell, cathode current collector, and solid oxide fuel cell Download PDF

Info

Publication number
JP2008234915A
JP2008234915A JP2007070570A JP2007070570A JP2008234915A JP 2008234915 A JP2008234915 A JP 2008234915A JP 2007070570 A JP2007070570 A JP 2007070570A JP 2007070570 A JP2007070570 A JP 2007070570A JP 2008234915 A JP2008234915 A JP 2008234915A
Authority
JP
Japan
Prior art keywords
current collector
powder
fuel cell
air electrode
solid oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007070570A
Other languages
Japanese (ja)
Inventor
Teruhiko Misono
輝彦 三其
Kenji Murata
憲司 村田
Takehisa Fukui
武久 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hosokawa Powder Technology Research Institute
Original Assignee
Hosokawa Powder Technology Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hosokawa Powder Technology Research Institute filed Critical Hosokawa Powder Technology Research Institute
Priority to JP2007070570A priority Critical patent/JP2008234915A/en
Publication of JP2008234915A publication Critical patent/JP2008234915A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】 集電ロスを低くするために不可欠な高い導電率と電解質材料に近い値で整合性の取れた熱膨張率を両立させた固体酸化物形燃料電池の空気極集電体材料を提供する。
【解決手段】 一般式ABOで表され、AがLa及び希土類元素及びアルカリ土類金属の群から選ばれる1つ以上の元素と、Sr,Ca及びBaの群から選ばれる1つ以上の元素とからなり、BがCo,Fe,Ni及びCuの群から選ばれる1つ以上の元素からなるペロブスカイト複合酸化物粉体にドープセリア粉体を複合化した複合粉体である。具体的には、ペロブスカイト複合酸化物粉体がランタンストロンチウムコバルト酸化物(LSC)粉体であり、ドープセリア粉体がガドリニウムドープセリア(GDC)粉体で、ペロブスカイト複合酸化物粉体とドープセリア粉体の体積比が7:3〜4:6の範囲が好ましい。
【選択図】 図4
PROBLEM TO BE SOLVED: To provide an air electrode current collector material for a solid oxide fuel cell that achieves both a high conductivity essential for reducing current collection loss and a thermal expansion coefficient that is consistent with a value close to that of an electrolyte material. To do.
One or more elements selected from the group consisting of La, rare earth elements and alkaline earth metals, and one or more elements selected from the group of Sr, Ca and Ba, represented by the general formula ABO 3 And B is a composite powder obtained by combining dope ceria powder with a perovskite composite oxide powder made of one or more elements selected from the group consisting of Co, Fe, Ni and Cu. Specifically, the perovskite composite oxide powder is a lanthanum strontium cobalt oxide (LSC) powder, the dope ceria powder is a gadolinium doped ceria (GDC) powder, and the perovskite composite oxide powder and the dope ceria powder. The volume ratio is preferably in the range of 7: 3 to 4: 6.
[Selection] Figure 4

Description

本発明は、固体酸化物形燃料電池の集電体材料、この集電体材料を用いて作製した空気極集電体、及び固体酸化物形燃料電池に関する。   The present invention relates to a current collector material for a solid oxide fuel cell, an air electrode current collector produced using the current collector material, and a solid oxide fuel cell.

固体酸化物形燃料電池(以下、適宜、SOFCと略す)において空気極(カソード)の上に形成する集電体は、集電性能から高い導電性が必要である一方、反応用空気(酸素含有ガス)を空気極に透過させる構造上、気孔率を高くする必要がある。すなわち、実質的な断面積を大きくして導電率を高くするために集電体の気孔率を低くすると、反応用空気が空気極の反応場に供給されにくくなるので、反応過電圧が上昇し、電池性能が低下するからである。   The current collector formed on the air electrode (cathode) in a solid oxide fuel cell (hereinafter, abbreviated as SOFC as appropriate) requires high conductivity from the current collecting performance, while the reaction air (containing oxygen) It is necessary to increase the porosity because of the structure that allows gas) to pass through the air electrode. That is, if the porosity of the current collector is decreased to increase the substantial cross-sectional area and increase the conductivity, the reaction air becomes difficult to be supplied to the reaction field of the air electrode, so that the reaction overvoltage increases, It is because battery performance falls.

上記SOFCの空気極の集電体材料として、従来、金属又は合金のマトリックス粒子の表面にペロブスカイト型酸化物の高導電性の導電材を被覆した複合材料(特許文献1参照)や、高導電性の炭化物等の粉体に成膜性を改善するための導電性酸化物粉体を添加させた混合物(特許文献2参照)などが提案されている。   As a current collector material for the SOFC air electrode, a composite material obtained by coating a metal or alloy matrix particle surface with a highly conductive conductive material of a perovskite oxide (see Patent Document 1), or a high conductivity A mixture obtained by adding a conductive oxide powder for improving film formability to a powder such as carbide (see Patent Document 2) has been proposed.

具体的に説明すると、上記特許文献1では、ランタンストロンチウムガリウムマグネシウム酸化物(LaSrGaMgO)からなる電解質の片面に、サマリウムストロンチウムコバルト酸化物(SmSrCoO)の空気極を形成し、この空気極上にAg粒子をペロブスカイト型酸化物であるランタンストロンチウムコバルト酸化物(LaSrCoO、以下、適宜、LSCと略す)で被覆した集電体材料からなる集電体層を形成している。また、特許文献2では、8モル%イットリウム添加安定化ジルコニア(8YSZと略す)を電解質とし、その片面に形成したランタンストロンチウムマンガン酸化物(LaSrMnO)の空気極上に、炭化クロム(Cr)粉体とビスマス等の酸化物(Bi、SiO、B)の粉体との混合物を成膜、焼成して気孔率が58%及び67%の集電体層を形成している。 Specifically, in Patent Document 1, an air electrode of samarium strontium cobalt oxide (SmSrCoO 3 ) is formed on one surface of an electrolyte made of lanthanum strontium gallium magnesium oxide (LaSrGaMgO 3 ), and Ag is formed on the air electrode. A current collector layer made of a current collector material in which particles are coated with lanthanum strontium cobalt oxide (LaSrCoO 3 , hereinafter, abbreviated as LSC as appropriate), which is a perovskite oxide, is formed. In Patent Document 2, 8 mol% yttrium-added stabilized zirconia (abbreviated as 8YSZ) is used as an electrolyte, and chromium carbide (Cr 3 C 2 ) is formed on the air electrode of lanthanum strontium manganese oxide (LaSrMnO 3 ) formed on one surface thereof. ) A mixture of powder and powder of oxide such as bismuth (Bi 2 O 3 , SiO 2 , B 2 O 3 ) is formed and fired to form a current collector layer having a porosity of 58% and 67%. Forming.

その他の空気極の集電体材料として、インターコネクタ(セパレータ)材料であって多孔質材料ではないが、ランタンクロマイト系(例えばLaSrCrCoZrO)の材料も知られている(特許文献3参照)。 Other current collector materials for the air electrode are interconnector (separator) materials and not porous materials, but lanthanum chromite materials (for example, LaSrCrCoZrO 3 ) are also known (see Patent Document 3).

また、SOFCの高出力密度化のため、高度に集積されたマイクロチューブ(円筒)型SOFCが提案されている。このマイクロチューブ型SOFCは円筒管状のアノード(燃料極)の外面上に薄膜の電解質と空気極を形成したアノード支持型の円筒セルを基本単位とし、この個々の単位セルを集積した構造である(非特許文献1参照)。   Also, highly integrated microtube (cylindrical) SOFCs have been proposed for increasing the power density of SOFCs. This micro tube type SOFC has an anode supported cylindrical cell in which a thin film electrolyte and an air electrode are formed on the outer surface of a cylindrical tubular anode (fuel electrode) as a basic unit, and these unit cells are integrated ( Non-patent document 1).

特開2004−165074号公報Japanese Patent Laid-Open No. 2004-165074 特開2006−32183号公報JP 2006-32183 A 特開2007−39279号公報JP 2007-39279 A 月刊 MaterialStage Vol.6,No.6,Page.59-63Monthly MaterialStage Vol.6, No.6, Page.59-63

上記SOFCの集電体では、高い気孔率のために実際の導電パスとなる部分の断面積が実質的に小さくなって導電率が材料自体の値よりも小さくなるので、大電流を流す際の電気抵抗による電圧降下(オーミックロス)が無視できない場合がある。そこで導電性の高い材料(例えばコバルト(Co)含有ペロブスカイト型酸化物)を用いることにより高い気孔率のままでも電気抵抗によるオーミックロスの低減は可能であるが、この場合、集電体の熱膨張率(以下、熱膨張係数ともいう)と他の構成材料(電解質、空気極)の熱膨張率の差が大きくなると(因みにコバルト(Co)ペロブスカイト型酸化物の熱膨張率は比較的大きい)、SOFCは作動温度が高温であるので、運転時に応力によって構成部材にクラックなどが生じ機械的信頼性が低くなる可能性がある。したがって、このような不都合を避けるために上記集電体と他の構成材料の熱膨張率の差を極力小さくして整合させる必要がある。   In the SOFC current collector, the cross-sectional area of the portion that becomes the actual conductive path is substantially reduced due to the high porosity, and the conductivity is smaller than the value of the material itself. The voltage drop (ohmic cross) due to electrical resistance may not be negligible. Therefore, by using a highly conductive material (for example, cobalt (Co) -containing perovskite oxide), it is possible to reduce ohmic loss due to electrical resistance even with a high porosity, but in this case, the thermal expansion of the current collector When the difference between the coefficient of thermal expansion (hereinafter also referred to as the thermal expansion coefficient) and the thermal expansion coefficient of other constituent materials (electrolyte, air electrode) becomes large (by the way, the thermal expansion coefficient of cobalt (Co) perovskite oxide is relatively large), Since the operating temperature of the SOFC is high, cracks or the like may occur in the constituent members due to stress during operation, and mechanical reliability may be lowered. Therefore, in order to avoid such inconvenience, it is necessary to make the difference between the current collector and the other constituent materials as small as possible to match.

上記従来技術のうち、特許文献1では、集電体材料を構成する導電材であるLSCの熱膨張率が比較的大きく、またマトリックス粒子に使用する金属等の熱膨張率が大きい場合があるため、集電体の熱膨張率が特に電解質に対して大き過ぎるおそれがある。特許文献2では、炭化物等の熱膨張率が小さいので、集電体の熱膨張率が電解質に対して逆に小さくなり過ぎるおそれがある。また特許文献3のランタンクロマイト系材料では、組成を調整して熱膨張率を電解質に一致させるようにしているが、材料自体の導電率が低すぎるため集電体としたときオーミックロスが大きくなる不利がある。   Among the above prior arts, in Patent Document 1, the thermal expansion coefficient of the LSC, which is a conductive material constituting the current collector material, is relatively large, and the thermal expansion coefficient of the metal used for the matrix particles may be large. The thermal expansion coefficient of the current collector may be too large particularly for the electrolyte. In Patent Document 2, since the coefficient of thermal expansion of carbide or the like is small, the coefficient of thermal expansion of the current collector may be excessively small with respect to the electrolyte. In the lanthanum chromite material of Patent Document 3, the composition is adjusted so that the thermal expansion coefficient matches that of the electrolyte. However, since the electrical conductivity of the material itself is too low, the ohmic cross becomes large when the current collector is used. There are disadvantages.

なお、非特許文献1に記載のアノード支持型のマイクロチューブ型SOFCでは、集電体材料に課される条件がカソード支持型に比べて厳しくなる。即ち、カソード支持型では集電を還元雰囲気のアノード側で行うため集電体材料として導電率の高いNiなどの金属材料を使うことが可能であるのに対して、集電をカソード(空気極)側で行うため集電体材料として導電性の高い金属材料でも耐高温性・耐酸化性に優れた高価な貴金属を除くと使用できないという問題がある。   In the anode-supported microtube SOFC described in Non-Patent Document 1, the conditions imposed on the current collector material are stricter than those of the cathode-supported type. That is, in the cathode support type, current collection is performed on the anode side of the reducing atmosphere, so that it is possible to use a metal material such as Ni having high conductivity as the current collector material, whereas current collection is performed on the cathode (air electrode). However, there is a problem that even if a highly conductive metal material is used as a current collector material, it cannot be used unless an expensive noble metal excellent in high temperature resistance and oxidation resistance is removed.

本発明は、上記実情に鑑みてなされたものであり、その目的は、集電ロスを低くするために不可欠な高い導電率と電解質材料に近い値で整合性の取れた熱膨張率を両立させた集電体材料、当該集電体材料を用いて作製した空気極集電体、及び、当該空気極集電体を用いた高性能・高出力密度の固体酸化物形燃料電池を提供することにある。   The present invention has been made in view of the above circumstances, and its purpose is to achieve both a high electrical conductivity that is indispensable for reducing current collection loss and a thermal expansion coefficient that is consistent with a value close to that of an electrolyte material. Current collector material, an air electrode current collector produced using the current collector material, and a high-performance, high-power density solid oxide fuel cell using the air electrode current collector It is in.

上記目的を達成するための本発明に係る固体酸化物形燃料電池の集電体材料の第一特徴構成は、一般式ABOで表され、AがLa及び希土類元素及びアルカリ土類金属の群から選ばれる1つ以上の元素と、Sr,Ca及びBaの群から選ばれる1つ以上の元素とからなり、BがCo,Fe,Ni及びCuの群から選ばれる1つ以上の元素からなるペロブスカイト複合酸化物粉体にドープセリア粉体を複合化した複合粉体である点にある。 In order to achieve the above object, the first characteristic configuration of the current collector material of the solid oxide fuel cell according to the present invention is represented by the general formula ABO 3 , wherein A is a group of La, a rare earth element, and an alkaline earth metal And one or more elements selected from the group of Sr, Ca and Ba, and B consists of one or more elements selected from the group of Co, Fe, Ni and Cu. This is a composite powder obtained by combining a perovskite composite oxide powder with a dope ceria powder.

空気極の材料としても使用される上記ペロブスカイト複合酸化物は高い導電率を有し、反応用空気を円滑に空気極の反応場に供給するよう高い気孔率の集電体に形成しても、電圧降下(オーミックロス)の低減は可能であるが、一方でペロブスカイト複合酸化物の熱膨張率は比較的大きいので、熱膨張率がペロブスカイト複合酸化物よりも小さく電解質材料としても使用されるドープセリア粉体をペロブスカイト複合酸化物粉体に複合化させることで熱膨張率を低減し、高導電率であって熱膨張率が電解質に近づいた集電体となる。即ち上記複合粉体を用いて作製した集電体はペロブスカイト型複合酸化物のネットワークにより導電パスが確保されるとともに、ドープセリアのネットワークにより熱膨張率を抑制することが可能となる。
従って、集電ロスを低くするために不可欠な高導電率と、電解質材料に近い値で整合性の取れた熱膨張率を両立させた固体酸化物形燃料電池の集電体材料が提供される。
The perovskite composite oxide used also as a material for the air electrode has high conductivity, and even if formed into a high-porosity current collector so as to smoothly supply the reaction air to the reaction field of the air electrode, Although the voltage drop (ohmic cross) can be reduced, the thermal expansion coefficient of the perovskite composite oxide is relatively large, so that the thermal expansion coefficient is smaller than that of the perovskite composite oxide, and the doped ceria powder is used as an electrolyte material. The thermal expansion coefficient is reduced by combining the body with the perovskite complex oxide powder, and the current collector has a high conductivity and a thermal expansion coefficient close to that of the electrolyte. That is, the current collector manufactured using the composite powder can secure a conductive path by the network of the perovskite complex oxide, and can suppress the thermal expansion coefficient by the network of the dope ceria.
Accordingly, there is provided a current collector material for a solid oxide fuel cell that achieves both high electrical conductivity, which is indispensable for reducing current collection loss, and a thermal expansion coefficient that is consistent with a value close to that of an electrolyte material. .

同第二特徴構成は、上記第一特徴構成において、前記ペロブスカイト複合酸化物粉体がランタンストロンチウムコバルト酸化物粉体である点にある。   The second characteristic configuration is that, in the first characteristic configuration, the perovskite composite oxide powder is a lanthanum strontium cobalt oxide powder.

すなわち、ランタンストロンチウムコバルト酸化物(LSC)は、前記ペロブスカイト複合酸化物の材料中でも導電率が特に高いので集電体材料として有利である。
従って、高い導電性と電解質材料に近い熱膨張率を有する集電体材料の好適な実施形態が得られる。
That is, lanthanum strontium cobalt oxide (LSC) is advantageous as a current collector material because of its particularly high conductivity among the materials of the perovskite composite oxide.
Therefore, a preferred embodiment of the current collector material having high conductivity and a thermal expansion coefficient close to that of the electrolyte material can be obtained.

同第三特徴構成は、上記第一又は第二特徴構成において、前記ドープセリア粉体がガドリニウムドープセリア粉体である点にある。
すなわち、ガドリニウムドープセリアはドープセリアの中でも高い導電性を示し、電解質材料として用いられることが多い。
従って、高い導電性と電解質材料に近い熱膨張率を有する集電体材料の好適な実施形態が得られる。
The third characteristic configuration is that, in the first or second characteristic configuration, the doped ceria powder is a gadolinium-doped ceria powder.
That is, gadolinium-doped ceria exhibits high conductivity among doped ceria and is often used as an electrolyte material.
Therefore, a preferred embodiment of the current collector material having high conductivity and a thermal expansion coefficient close to that of the electrolyte material can be obtained.

同第四特徴構成は、上記第一又は第二特徴構成において、前記ドープセリア粉体がランタンドープセリア粉体である点にある。
すなわち、ランタンドープセリアはドープセリアの中でもLSCと組み合わせて使う場合、ランタン(La)の拡散による組成の変化が起こりにくいため化学的な長期安定性が高くなる。
従って、高い導電性と電解質材料に近い熱膨張率を有し、さらに長期安定性に優れる集電体材料の好適な実施形態が得られる。
The fourth characteristic configuration is that, in the first or second characteristic configuration, the doped ceria powder is a lanthanum-doped ceria powder.
That is, lanthanum-doped ceria, when used in combination with LSC among doped ceria, has a high chemical long-term stability because the composition does not easily change due to diffusion of lanthanum (La).
Therefore, a preferred embodiment of a current collector material having high conductivity and a thermal expansion coefficient close to that of an electrolyte material and excellent in long-term stability can be obtained.

同第五特徴構成は、上記第一から第四のいずれかの特徴構成において、前記ペロブスカイト複合酸化物粉体と前記ドープセリア粉体の体積比が7:3〜4:6の範囲にある点にある。   The fifth feature configuration is that, in any one of the first to fourth feature configurations, a volume ratio of the perovskite composite oxide powder to the dope ceria powder is in a range of 7: 3 to 4: 6. is there.

すなわち、ペロブスカイト複合酸化物粉体の割合が上記体積比の上限値7:3より多いと導電率が高く集電ロスの少ない集電体とはなるが、熱膨張率が高くなり過ぎて、他の構成材料との熱膨張率の差が大きくなり部材の機械的強度及び信頼性が低下する可能性がある。一方、ペロブスカイト複合酸化物粉体の割合が上記体積比の下限値4:6より少ないと導電率が低くなり過ぎて、集電ロスが大きくなる。
従って、集電ロスが少なく、機械的強度と信頼性の高い集電体が得られる組成比の集電体材料についての好適な実施形態が得られる。
That is, when the ratio of the perovskite composite oxide powder is larger than the upper limit 7: 3 of the volume ratio, the current collector has a high conductivity and a small current collection loss, but the coefficient of thermal expansion becomes too high. There is a possibility that the difference in the coefficient of thermal expansion with the constituent material of the material will increase, and the mechanical strength and reliability of the member will decrease. On the other hand, when the ratio of the perovskite complex oxide powder is less than the lower limit value 4: 6 of the volume ratio, the conductivity becomes too low and the current collection loss increases.
Therefore, it is possible to obtain a preferred embodiment of the current collector material having a composition ratio with which a current collector loss is small and a current collector with high mechanical strength and reliability can be obtained.

同第六特徴構成は、上記第一から第五のいずれかの特徴構成において、前記ペロブスカイト複合酸化物粉体と前記ドープセリア粉体を乾式状態で機械的に複合化して作製された点にある。   The sixth characteristic configuration is that, in any one of the first to fifth characteristic configurations, the perovskite composite oxide powder and the dope ceria powder are mechanically combined in a dry state.

すなわち、乾式状態で機械的に複合化することにより、複合化過程においてペロブスカイト複合酸化物粉体とドープセリア粉体の複合粉体に対して複合粉体の構造を直接制御することが可能となり、より良好なネットワーク構造を構築できる。
従って、ペロブスカイト複合酸化物粉体とドープセリア粉体の複合粉体を良好な状態で作製して本来の性能を確保することができる集電体材料の好適な実施形態が得られる。
That is, by mechanically compositing in a dry state, it becomes possible to directly control the structure of the composite powder with respect to the composite powder of the perovskite composite oxide powder and the dope ceria powder in the composite process. A good network structure can be constructed.
Therefore, a preferred embodiment of a current collector material capable of producing a composite powder of a perovskite composite oxide powder and a dope ceria powder in a good state and ensuring the original performance can be obtained.

本発明に係る空気極集電体の特徴構成は、上記第一から第六特徴構成のいずれかの集電体材料を成形及び焼成して作製した点にある。   The characteristic configuration of the air electrode current collector according to the present invention is that the current collector material of any one of the first to sixth characteristic configurations is formed and fired.

すなわち、上記のように高い導電性と電解質材料に近い熱膨張率を有する集電体材料を成形及び焼成して空気極集電体を作製することにより、オーミックロス(集電ロス)を低減し、固体電解質との熱膨張率の整合性が取れた固体酸化物形燃料電池の空気極集電体が提供される。   That is, by forming and firing a current collector material having high conductivity and a thermal expansion coefficient close to that of the electrolyte material as described above, an air electrode current collector is produced, thereby reducing ohmic cross (current collection loss). An air electrode current collector for a solid oxide fuel cell having a thermal expansion coefficient consistency with a solid electrolyte is provided.

本発明に係る固体酸化物形燃料電池の特徴構成は、固体電解質の一方の面に形成した空気極の上にさらに上記特徴構成の空気極集電体を形成し、固体電解質の他方の面に燃料極を形成した点にある。   The characteristic configuration of the solid oxide fuel cell according to the present invention is that an air electrode current collector having the above characteristic configuration is further formed on the air electrode formed on one surface of the solid electrolyte, and the other surface of the solid electrolyte is formed. The fuel electrode is formed.

すなわち、空気極の上に上記空気極集電体を形成することにより、電池本来の性能を十分に発揮させ、また熱膨張率の整合性が取れ機械的信頼性を高めた固体酸化物形燃料電池が提供される。   In other words, by forming the air electrode current collector on the air electrode, the solid oxide fuel that exhibits the original performance of the battery sufficiently, has a consistent thermal expansion coefficient, and has improved mechanical reliability. A battery is provided.

本発明に係る固体酸化物形燃料電池の集電体材料、当該集電体材料を用いて作製した空気極及び固体酸化物形燃料電池の実施形態について、以下、図面に基づいて説明する。   Embodiments of a current collector material for a solid oxide fuel cell according to the present invention, an air electrode produced using the current collector material, and a solid oxide fuel cell will be described below with reference to the drawings.

本発明に係る集電体材料は、一般式ABOで表され、AがLa(ランタン)及び希土類元素及びアルカリ土類金属の群から選ばれる1つ以上の元素と、Sr(ストロンチウム),Ca(カルシウム)及びBa(バリウム)の群から選ばれる1つ以上の元素とからなり、Bが、Co(コバルト),Fe(鉄),Ni(ニッケル)及びCu(銅)の群から選ばれる1つ以上の元素からなるペロブスカイト複合酸化物粉体にドープセリア粉体を複合化した複合粉体である。 The current collector material according to the present invention is represented by the general formula ABO 3 , wherein A is one or more elements selected from the group of La (lanthanum), rare earth elements and alkaline earth metals, Sr (strontium), Ca 1 or more elements selected from the group of (calcium) and Ba (barium), and B is selected from the group of Co (cobalt), Fe (iron), Ni (nickel) and Cu (copper) This is a composite powder in which a dope ceria powder is combined with a perovskite composite oxide powder composed of two or more elements.

上記ペロブスカイト複合酸化物粉体は、例えばランタンストロンチウムコバルト鉄酸化物(LaSrCoFeO、以下、LSCFと略す)、ランタンストロンチウムコバルト酸化物(LSC)、サマリウムストロンチウムコバルト酸化物(SmSrCoO)等の粉体である。ここで、上記ABOのBサイトにコバルトを含むと導電性が高くなり特に好ましい。因みに、公表されたデータの一例を示すと、LSC:La0.5Sr0.5CoOの導電率は1448(S/cm、T=1063K)、熱膨張係数は18.4(10-6/℃)であり、LSCF:La0.5Sr0.5Co0.2Fe0.8の導電率は200〜300(S/cm)、多孔質の場合は100(S/cm)未満であり、熱膨張係数は13〜14(10-6/℃)程度である。 The perovskite composite oxide powder is, for example, a powder of lanthanum strontium cobalt iron oxide (LaSrCoFeO 3 , hereinafter abbreviated as LSCF), lanthanum strontium cobalt oxide (LSC), samarium strontium cobalt oxide (SmSrCoO 3 ), or the like. is there. Here, it is particularly preferable that cobalt is contained in the B site of the ABO 3 because of high conductivity. Incidentally, when an example of published data is shown, the conductivity of LSC: La 0.5 Sr 0.5 CoO 3 is 1448 (S / cm, T = 1063K), and the thermal expansion coefficient is 18.4 (10 −6. The electrical conductivity of LSCF: La 0.5 Sr 0.5 Co 0.2 Fe 0.8 O 3 is 200 to 300 (S / cm), and 100 (S / cm) when porous. The thermal expansion coefficient is about 13 to 14 (10 −6 / ° C.).

また、ドープセリア粉体は例えばガドリニウムドープセリア(GDC)、サマリウムドープセリア(SDC)、イットリウムドープセリア(YDC)、ランタンドープセリア(LDC)等の粉体である。因みに、公表データによると、GDC:Ce0.8Gd0.21.9の導電率は0.32(S/cm、T=1273K)、熱膨張係数は9.25(10-6/℃、T=273K)である。 The doped ceria powder is a powder such as gadolinium doped ceria (GDC), samarium doped ceria (SDC), yttrium doped ceria (YDC), lanthanum doped ceria (LDC), or the like. Incidentally, according to the published data, the conductivity of GDC: Ce 0.8 Gd 0.2 O 1.9 is 0.32 (S / cm, T = 1273K), and the thermal expansion coefficient is 9.25 (10 −6 / 10 ° C, T = 273K).

本発明の集電体材料を構成する複合粉体は、前記ペロブスカイト複合酸化物粉体と前記ドープセリア粉体を乾式状態で機械的に複合化して作製される。具体的には、乾式複合化装置として、ホソカワミクロン(株)製:ノビルタNOB-130を使用した。   The composite powder constituting the current collector material of the present invention is produced by mechanically compositing the perovskite composite oxide powder and the dope ceria powder in a dry state. Specifically, Hosokawa Micron Co., Ltd .: Nobilta NOB-130 was used as a dry compounding device.

そして、固体電解質の一方の面に形成した空気極の上に、上記集電体材料を成形及び焼成して空気極集電体を形成し、固体電解質の他方の面に燃料極を形成して固体酸化物形燃料電池を構成する。   Then, on the air electrode formed on one surface of the solid electrolyte, the current collector material is molded and fired to form an air electrode current collector, and a fuel electrode is formed on the other surface of the solid electrolyte. A solid oxide fuel cell is constructed.

図1に本発明に係る集電体材料を空気極集電体に使用した平板型の固体酸化物形燃料電池の概略構造を示す。図中、1は燃料極(アノード)、2は電解質、3は空気極(カソード)、4は燃料極集電体、5は空気極集電体、6はセパレータであり、これら部材を積層している。図1では、燃料(水素等)は燃料極集電体4を通して燃料極1に供給され、反応用空気(酸素含有ガス)は空気極集電体5を通して空気極3に供給される。   FIG. 1 shows a schematic structure of a flat plate type solid oxide fuel cell using a current collector material according to the present invention for an air electrode current collector. In the figure, 1 is a fuel electrode (anode), 2 is an electrolyte, 3 is an air electrode (cathode), 4 is a fuel electrode current collector, 5 is an air electrode current collector, and 6 is a separator. ing. In FIG. 1, fuel (hydrogen or the like) is supplied to the fuel electrode 1 through the fuel electrode current collector 4, and reaction air (oxygen-containing gas) is supplied to the air electrode 3 through the air electrode current collector 5.

図2に本発明に係る集電体材料を空気極集電体に使用した円筒チューブ型の固体酸化物形燃料電池セル10の構造を示す。図中、11は円筒形状に成形加工された燃料極(アノード)で支持部材を兼ね、12は電解質、13は空気極(カソード)、14は空気極の集電体である。そして、図3に示すように、上下左右に並ぶように集積配置された複数の円筒チューブ型の燃料電池セル10が多孔質の集電体14によって保持されている。燃料(水素等)はチューブ内側から燃料極11に直接供給され、反応用空気(酸素含有ガス)はチューブ外側の集電体14を通して空気極13に供給される。上記構造の各材料は、例えば、燃料極11はNi−GDCの複合材料、電解質12はGDC等のドープセリアや8YSZ、空気極13はLSCF−GDCの複合材料、集電体14はLSC−GDCの複合材料である。   FIG. 2 shows the structure of a cylindrical tube type solid oxide fuel cell 10 in which the current collector material according to the present invention is used for an air electrode current collector. In the figure, 11 is a fuel electrode (anode) molded into a cylindrical shape and also serves as a support member, 12 is an electrolyte, 13 is an air electrode (cathode), and 14 is a current collector of the air electrode. As shown in FIG. 3, a plurality of cylindrical tube fuel cells 10 that are arranged in an integrated manner so as to be aligned vertically and horizontally are held by a porous current collector 14. Fuel (hydrogen or the like) is directly supplied to the fuel electrode 11 from the inside of the tube, and reaction air (oxygen-containing gas) is supplied to the air electrode 13 through a current collector 14 outside the tube. Each material of the above structure includes, for example, a fuel electrode 11 made of Ni-GDC composite material, an electrolyte 12 made of doped ceria such as GDC or 8YSZ, an air electrode 13 made of LSCF-GDC composite material, and a current collector 14 made of LSC-GDC. It is a composite material.

次に、本発明に係る集電体材料の実施例と比較例について表1を参照しながら説明する。   Next, examples and comparative examples of the current collector material according to the present invention will be described with reference to Table 1.

実施例1では、以下の工程により試料を作製した。
(1)市販のLSC(粒度D50:2.46μm、BET値3.9(m/g)、組成La0.6Sr0.4CoO3)粉体70vol%に対し市販のGDC(粒度D50:0.22μm、BET値11(m/g)、組成Ce0.9Gd0.1O2)粉体30vol%をホソカワミクロン(株)製ノビルタNOB-130を用い、ローター回転速度3500rpm、ローターと容器内壁との間隙1.5mm、処理時間10minの条件で複合化処理し、LSC-GDC複合粉体を作製した。
(2)得られたLSC-GDC複合粉体に対し、造孔材としてPVB(ポリビニルブチラール)を体積比50%となるよう乳鉢で混合した。
(3)加圧成形機により1軸加圧2kN/cm2で直径11mm、長さ5〜10mmの円柱状に成形した。
(4)箱型電気炉により1200℃、4hで焼結を行った。
(5)得られた焼結体を島津製作所製比重測定装置SGM-300Pを用いアルキメデス法により気孔率を測定し、SIIナノテクノロジー(株)製TMA/SS6300により熱膨張係数の測定を行った。
(6)直流4端子法(自作装置)により導電率の測定を行った。
In Example 1, a sample was prepared by the following steps.
(1) Commercially available LDC (particle size D 50 : 2.46 μm, BET value 3.9 (m 2 / g), composition La 0.6 Sr 0.4 CoO 3 ) 70% by volume of powder, commercially available GDC (particle size D 50 : 0 .22 μm, BET value 11 (m 2 / g), composition Ce 0.9 Gd 0.1 O 2 ) 30 vol% powder using Nobilta NOB-130 manufactured by Hosokawa Micron Corporation, rotor rotation speed 3500 rpm, gap between rotor and container inner wall The composite was processed under conditions of 1.5 mm and a processing time of 10 min to produce an LSC-GDC composite powder.
(2) The resulting LSC-GDC composite powder was mixed with PVB (polyvinyl butyral) as a pore former in a mortar so that the volume ratio was 50%.
(3) It was formed into a cylindrical shape having a diameter of 11 mm and a length of 5 to 10 mm with a uniaxial pressure of 2 kN / cm 2 using a pressure molding machine.
(4) Sintering was performed at 1200 ° C. for 4 hours in a box-type electric furnace.
(5) The porosity of the obtained sintered body was measured by the Archimedes method using a specific gravity measuring device SGM-300P manufactured by Shimadzu Corporation, and the coefficient of thermal expansion was measured by TMA / SS6300 manufactured by SII Nanotechnology.
(6) Conductivity was measured by the DC 4 terminal method (self-made device).

実施例2、3では、上記実施例1と同様の工程で実施したが、(1)のLSCとGDCの体積比(vol%)のみ、それぞれ60:40、40:60として実施した。
また、比較例1,2も同様に(1)のLSCとGDCの体積比(vol%)のみ、それぞれ90:10、30:70として実施した。なお、比較例3,4,5についてはそれぞれ表1記載の組成の単一材料について試料を作製した。
In Examples 2 and 3, the same steps as in Example 1 were performed, but only the volume ratio (vol%) of LSC and GDC in (1) was set to 60:40 and 40:60, respectively.
Similarly, in Comparative Examples 1 and 2, only the volume ratio (vol%) of LSC and GDC in (1) was 90:10 and 30:70, respectively. For Comparative Examples 3, 4, and 5, samples were prepared for single materials having the compositions shown in Table 1.

気孔率、熱膨張係数、導電率の測定結果を表1に示し、GDC添加率(vol%)に対する熱膨張係数と導電率の変化を図4のグラフに示す。また、図5に実施例2のLSC+GDC複合粉体を用いて作製した集電体の多孔質構造を示し、図6に比較例5のLSC粉体を用いて作製した集電体の多孔質構造を示す。   The measurement results of porosity, thermal expansion coefficient, and electrical conductivity are shown in Table 1, and the change in thermal expansion coefficient and electrical conductivity with respect to GDC addition rate (vol%) is shown in the graph of FIG. 5 shows the porous structure of the current collector produced using the LSC + GDC composite powder of Example 2, and FIG. 6 shows the porous structure of the current collector produced using the LSC powder of Comparative Example 5. Indicates.

表1より、実施例1〜3では熱膨張係数が前述のLSCFのデータと同等で導電率は1.5〜2.2倍高くなっている。比較例1では導電率はLSCFの3倍以上と高いが、熱膨張係数も高く、比較例2では熱膨張係数はLSCF同等であるが導電率が大幅に低下している。
上記実施例1〜3によれば、LSCの熱膨張係数は比較例5より18.2(10-6/℃)と高いが、低熱膨張係数9(10-6/℃)程度のGDCをGDC添加率で30〜60vol%の範囲で配合して複合化することにより、導電率の低下を抑制しつつ、熱膨張係数が13.5(10-6/℃)程度に低下して電解質(ドープセリア材料、例えば上記GDC)の熱膨張係数に近づくことがわかる。
以上のことから、本発明の集電体材料により、熱膨張係数が低く、導電率の高い集電体が得られ、LSCとGDCの体積比が7:3〜4:6の範囲が好ましいことがわかる。
From Table 1, in Examples 1 to 3, the thermal expansion coefficient is equivalent to the above-mentioned LSCF data, and the conductivity is 1.5 to 2.2 times higher. In Comparative Example 1, the conductivity is as high as three times or more that of LSCF, but the coefficient of thermal expansion is also high. In Comparative Example 2, the coefficient of thermal expansion is equivalent to LSCF, but the conductivity is greatly reduced.
According to the above Examples 1 to 3, although the thermal expansion coefficient of LSC is 18.2 (10 −6 / ° C.) higher than that of Comparative Example 5, GDC having a low thermal expansion coefficient of about 9 (10 −6 / ° C.) By adding and compounding in the range of 30-60 vol% in addition rate, the thermal expansion coefficient is reduced to about 13.5 (10 -6 / ° C) while suppressing the decrease in conductivity, and the electrolyte (dope ceria) It can be seen that it approaches the coefficient of thermal expansion of the material, eg GDC).
From the above, the current collector material of the present invention provides a current collector having a low coefficient of thermal expansion and high conductivity, and the volume ratio of LSC to GDC is preferably in the range of 7: 3 to 4: 6. I understand.

本発明に係る集電体材料を用いた燃料電池の構造を示す概略断面図Schematic sectional view showing the structure of a fuel cell using a current collector material according to the present invention 本発明に係る集電体材料を用いた他の燃料電池の構造を示す概略断面図Schematic sectional view showing the structure of another fuel cell using the current collector material according to the present invention 図2の単位セルを集積した固体酸化物形燃料電池構造を示す斜視図The perspective view which shows the solid oxide fuel cell structure which integrated the unit cell of FIG. 本発明に係る集電体材料の導電率と熱膨張率を示すグラフThe graph which shows the electrical conductivity and thermal expansion coefficient of the electrical power collector material which concern on this invention 本発明に係る集電体の多孔質構造を示す電子顕微鏡写真Electron micrograph showing the porous structure of the current collector according to the present invention 比較例の集電体の多孔質構造を示す電子顕微鏡写真Electron micrograph showing the porous structure of the current collector of the comparative example

符号の説明Explanation of symbols

1 燃料極
2 電解質
3 空気極
4 燃料極集電体
5 空気極集電体
6 セパレータ
10 燃料電池セル
11 燃料極
12 電解質
13 空気極
14 集電体
DESCRIPTION OF SYMBOLS 1 Fuel electrode 2 Electrolyte 3 Air electrode 4 Fuel electrode current collector 5 Air electrode current collector 6 Separator 10 Fuel cell 11 Fuel electrode 12 Electrolyte 13 Air electrode 14 Current collector

Claims (8)

一般式ABOで表され、AがLa及び希土類元素及びアルカリ土類金属の群から選ばれる1つ以上の元素と、Sr,Ca及びBaの群から選ばれる1つ以上の元素とからなり、BがCo,Fe,Ni及びCuの群から選ばれる1つ以上の元素からなるペロブスカイト複合酸化物粉体にドープセリア粉体を複合化した複合粉体である固体酸化物形燃料電池の集電体材料。 Represented by the general formula ABO 3 , wherein A comprises one or more elements selected from the group of La and rare earth elements and alkaline earth metals, and one or more elements selected from the group of Sr, Ca and Ba, A current collector for a solid oxide fuel cell, wherein B is a composite powder obtained by combining a perovskite composite oxide powder composed of one or more elements selected from the group consisting of Co, Fe, Ni, and Cu with a doped ceria powder. material. 前記ペロブスカイト複合酸化物粉体がランタンストロンチウムコバルト酸化物粉体である請求項1に記載の集電体材料。   The current collector material according to claim 1, wherein the perovskite composite oxide powder is a lanthanum strontium cobalt oxide powder. 前記ドープセリア粉体がガドリニウムドープセリア粉体である請求項1又は2に記載の集電体材料。   The current collector material according to claim 1, wherein the doped ceria powder is a gadolinium-doped ceria powder. 前記ドープセリア粉体がランタンドープセリア粉体である請求項1又は2に記載の集電体材料。   The current collector material according to claim 1, wherein the doped ceria powder is a lanthanum-doped ceria powder. 前記ペロブスカイト複合酸化物粉体と前記ドープセリア粉体の体積比が7:3〜4:6の範囲にある請求項1〜4のいずれか1項に記載の集電体材料。   The current collector material according to any one of claims 1 to 4, wherein a volume ratio of the perovskite complex oxide powder and the dope ceria powder is in a range of 7: 3 to 4: 6. 前記ペロブスカイト複合酸化物粉体と前記ドープセリア粉体を乾式状態で機械的に複合化して作製された請求項1〜5のいずれか1項に記載の集電体材料。   The current collector material according to claim 1, wherein the current collector material is produced by mechanically compounding the perovskite complex oxide powder and the dope ceria powder in a dry state. 請求項1〜6のいずれか1項に記載の集電体材料を成形及び焼成して作製した固体酸化物形燃料電池の空気極集電体。   An air electrode current collector of a solid oxide fuel cell produced by molding and firing the current collector material according to any one of claims 1 to 6. 固体電解質の一方の面に形成した空気極の上にさらに請求項7に記載の空気極集電体を形成し、固体電解質の他方の面に燃料極を形成した固体酸化物形燃料電池。   A solid oxide fuel cell in which the air electrode current collector according to claim 7 is further formed on an air electrode formed on one surface of the solid electrolyte, and a fuel electrode is formed on the other surface of the solid electrolyte.
JP2007070570A 2007-03-19 2007-03-19 Current collector material of solid oxide fuel cell, cathode current collector, and solid oxide fuel cell Pending JP2008234915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007070570A JP2008234915A (en) 2007-03-19 2007-03-19 Current collector material of solid oxide fuel cell, cathode current collector, and solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007070570A JP2008234915A (en) 2007-03-19 2007-03-19 Current collector material of solid oxide fuel cell, cathode current collector, and solid oxide fuel cell

Publications (1)

Publication Number Publication Date
JP2008234915A true JP2008234915A (en) 2008-10-02

Family

ID=39907491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007070570A Pending JP2008234915A (en) 2007-03-19 2007-03-19 Current collector material of solid oxide fuel cell, cathode current collector, and solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP2008234915A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2178145A1 (en) * 2008-10-16 2010-04-21 Toto Ltd. Solid Oxide Fuel Cell and Fuel Cell Module Comprising such a Solid Oxide Fuel Cell
JP2011154806A (en) * 2010-01-26 2011-08-11 Kyocera Corp Fuel battery cell, cell stack device, fuel battery module, and fuel battery device
JP2014503959A (en) * 2010-12-16 2014-02-13 コリア インスティチュート オブ エナジー リサーチ Flat tube or flat solid oxide fuel cell
JP2017123231A (en) * 2016-01-05 2017-07-13 株式会社日本触媒 Single cell for solid oxide fuel cell and method for manufacturing the same, and cathode for solid oxide fuel cell and method for manufacturing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004512651A (en) * 2000-10-25 2004-04-22 セレス・パワー・リミテッド Fuel cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004512651A (en) * 2000-10-25 2004-04-22 セレス・パワー・リミテッド Fuel cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2178145A1 (en) * 2008-10-16 2010-04-21 Toto Ltd. Solid Oxide Fuel Cell and Fuel Cell Module Comprising such a Solid Oxide Fuel Cell
US8722278B2 (en) 2008-10-16 2014-05-13 Toto Ltd. Solid oxide fuel cell and fuel cell module comprising the solid oxide fuel cell
JP2011154806A (en) * 2010-01-26 2011-08-11 Kyocera Corp Fuel battery cell, cell stack device, fuel battery module, and fuel battery device
JP2014503959A (en) * 2010-12-16 2014-02-13 コリア インスティチュート オブ エナジー リサーチ Flat tube or flat solid oxide fuel cell
JP2017123231A (en) * 2016-01-05 2017-07-13 株式会社日本触媒 Single cell for solid oxide fuel cell and method for manufacturing the same, and cathode for solid oxide fuel cell and method for manufacturing the same
JP7089838B2 (en) 2016-01-05 2022-06-23 株式会社日本触媒 Single cell for solid oxide fuel cell and its manufacturing method, and cathode for solid oxide fuel cell and its manufacturing method

Similar Documents

Publication Publication Date Title
JP6018639B2 (en) Solid oxide fuel cell half-cell and solid oxide fuel cell
JP6398647B2 (en) Method for producing anode for solid oxide fuel cell and method for producing electrolyte layer-electrode assembly for fuel cell
JP6573243B2 (en) Air electrode composition, air electrode and fuel cell including the same
KR20130123189A (en) Anode support for solid oxide fuel cell and manufacturing method thereof, and solid oxide fuel cell including the anode support
JP4928642B1 (en) Solid oxide fuel cell
JP5209359B2 (en) Solid oxide fuel cell
JP6370696B2 (en) Cell structure, electrolyte membrane-electrode assembly, and fuel cell
JP5242840B1 (en) Fuel cell
JP2008226653A (en) Fuel cell and fuel cell stack, and fuel cell
JP4332639B2 (en) Fuel cell and method for producing the same
JP5288686B2 (en) Conductive sintered body for fuel cell, fuel cell, fuel cell
CN100508259C (en) A kind of composite electrocatalytic material and preparation method thereof
JP2011142042A (en) Power generation cell for solid oxide fuel battery and its manufacturing method
JP2010238431A (en) Power generation cell of fuel battery
JP2008234915A (en) Current collector material of solid oxide fuel cell, cathode current collector, and solid oxide fuel cell
JP2009230929A (en) Current collector material of solid oxide fuel cell, air pole current collector, and solid oxide fuel cell
CN107646151B (en) Oxide particles, cathode comprising the same, and fuel cell comprising the same
JP5079991B2 (en) Fuel cell and fuel cell
JP4828104B2 (en) Fuel cell
JP2017157553A (en) Fuel cell
JP2009076310A (en) Current collector material, current collector using the same, and solid oxide fuel cell
JP4849774B2 (en) Solid electrolyte fuel cell and solid electrolyte fuel cell
JP7136185B2 (en) cell structure
KR20120085488A (en) Solid electrolyte for solid oxide fuel cell, and solid oxide fuel cell including the solid electrolyte
KR102109730B1 (en) Method for fabricating solid oxide fuel cell

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090722

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130326