[go: up one dir, main page]

JP4638682B2 - Manufacturing method of crystal unit - Google Patents

Manufacturing method of crystal unit Download PDF

Info

Publication number
JP4638682B2
JP4638682B2 JP2004083752A JP2004083752A JP4638682B2 JP 4638682 B2 JP4638682 B2 JP 4638682B2 JP 2004083752 A JP2004083752 A JP 2004083752A JP 2004083752 A JP2004083752 A JP 2004083752A JP 4638682 B2 JP4638682 B2 JP 4638682B2
Authority
JP
Japan
Prior art keywords
etching
leg
metal film
crystal
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004083752A
Other languages
Japanese (ja)
Other versions
JP2005277483A (en
JP2005277483A5 (en
Inventor
泉 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Holdings Co Ltd
Citizen Watch Co Ltd
Original Assignee
Citizen Holdings Co Ltd
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Holdings Co Ltd, Citizen Watch Co Ltd filed Critical Citizen Holdings Co Ltd
Priority to JP2004083752A priority Critical patent/JP4638682B2/en
Publication of JP2005277483A publication Critical patent/JP2005277483A/en
Publication of JP2005277483A5 publication Critical patent/JP2005277483A5/ja
Application granted granted Critical
Publication of JP4638682B2 publication Critical patent/JP4638682B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

本発明は、時計や移動体通信機の基準信号源として用いられる水晶振動子の製造方法に関する。   The present invention relates to a method for manufacturing a crystal resonator used as a reference signal source for a timepiece or a mobile communication device.

時計や移動体通信機の基準信号源として2本の振動する脚を持った、いわゆる音叉型の水晶振動子が広く用いられている。音叉型の水晶振動子は図7に示すように一つの基部5と、基部5から伸びる2本の振動脚7によって構成されている。振動脚7の脚幅9である音叉型の水晶振動子の短辺は、水晶の結晶軸の一つであるX軸(電気軸)に一致しており、脚長11である長辺は、水晶の結晶軸のY軸(機械軸)からX軸の周りに0°〜5°回転した方向であるY’軸に向いている。厚み方向であるZ’軸はX軸とY’軸のそれぞれに直交する方向である。このような水晶振動子は振動脚7の脚幅9および脚長11によってその共振周波数が決まるため、均一な脚幅9と脚長11を得るためにフォトリソグラフィーの技術によって製造されている(例えば、特許文献1参照。)。   A so-called tuning-fork type crystal resonator having two vibrating legs is widely used as a reference signal source for a timepiece or a mobile communication device. As shown in FIG. 7, the tuning fork type crystal resonator includes one base portion 5 and two vibrating legs 7 extending from the base portion 5. The short side of the tuning-fork type crystal unit having the leg width 9 of the vibrating leg 7 coincides with the X axis (electrical axis) which is one of crystal axes of the crystal, and the long side of the leg length 11 is a crystal. It is directed to the Y ′ axis, which is a direction rotated by 0 ° to 5 ° around the X axis from the Y axis (mechanical axis) of the crystal axis. The Z ′ axis, which is the thickness direction, is a direction perpendicular to the X axis and the Y ′ axis. Since the resonance frequency of such a crystal resonator is determined by the leg width 9 and leg length 11 of the vibrating leg 7, it is manufactured by a photolithography technique in order to obtain a uniform leg width 9 and leg length 11 (for example, a patent). Reference 1).

図8は水晶振動子の製造工程の概要を示した流れ図である。水晶振動子は水晶原石より切り出され、研磨加工が施されて所定の厚みに調整された矩形の水晶ウエハを出発点として順次フォトリソグラフィの技術を用いて形成される。図8の工程(a)において、水晶ウエハにはまず、表裏の両面に金属膜としてCrを下地にAu膜がスパッタリングによって形成される。工程(b)において、Au膜の上にはフォトレジストが両面に塗布される。塗布には例えばスピンコータが用いられる。工程(c)において、所定の温度でフォトレジストを乾燥させる工程(プリベーク)の後、工程(d)において、水晶振動子の完成体パターンが露光される。工程(e)において、フォトレジストに露光されたパターンは現像液中で現像される。工程(f)において、現像されたフォトレジストのパターンをマスクとして金属膜(Au、Cr)のエッチングが施される。この時残った金属膜(Au、Cr)のパターンが水晶振動子の外形となる。工程(g)において、フォトレジストは剥離される。工程(h)において、新たなフォトレジストが両面全面に塗布され、工程(i)において、フォトレジストがプリベークされた後、工程(j)において、周波数調整に使われる金メッキ膜のパターンが露光、現像され、工程(k)において金メッキが施される。   FIG. 8 is a flowchart showing an outline of the manufacturing process of the crystal unit. The quartz oscillator is cut out from a quartz crystal, and is formed by using a photolithography technique sequentially starting from a rectangular quartz wafer that has been polished and adjusted to a predetermined thickness. In step (a) of FIG. 8, a quartz wafer is first formed by sputtering on both sides of the front and back with a metal film as a Cr film and an Au film as a base. In step (b), a photoresist is applied on both sides of the Au film. For example, a spin coater is used for coating. In step (c), after the step of drying the photoresist at a predetermined temperature (pre-baking), in step (d), the completed pattern of the crystal unit is exposed. In step (e), the pattern exposed to the photoresist is developed in a developer. In step (f), the metal film (Au, Cr) is etched using the developed photoresist pattern as a mask. The pattern of the metal film (Au, Cr) remaining at this time becomes the outer shape of the crystal resonator. In step (g), the photoresist is stripped. In step (h), a new photoresist is applied on both surfaces, and in step (i), the photoresist is pre-baked, and then in step (j), the pattern of the gold plating film used for frequency adjustment is exposed and developed. In step (k), gold plating is performed.

工程(l)において、金メッキ膜を形成したフォトレジストは剥離され、工程(m)において、新たにフォトレジストが両面に塗布される。工程(n)においてプリベークの後、工程(o)において、このフォトレジスト膜には電極となるパターンが露光される。工程(p)で現像後、工程(q)において、先に工程(f)で形成された金属膜(Crを下地とするAu膜)のパターンをマスクとして水晶がフッ酸とフッ化アンモニウム溶液の混合液によってエッチングされ、水晶振動子の外形が形成される。工程(r)において、先に工程(o)、工程(p)で形成した電極パタ−ン用のフォトレジスト膜に覆われた部分を残し、金属膜(Au,Cr膜)がエッチングによって除去される。工程(s)において、ウエハを回転しながらTiを下地としてPdが蒸着される。これによって表裏面、および側面の電極膜が形成される。工程(t)において電極用のフォトレジスト膜が剥離され、いわゆるリフトオフによって電極となる部分のみにTi、Pd膜が残る。工程(u)において、不要なAu、Cr膜がエッチングによって除去される。この際、Pd膜を残すために、エッチング液にはAuは溶解するが、Pdは溶解しないヨウ素をヨウ化カリウム溶液中に溶かしたエッチング液を用いる。以上で電極が形成されかつ音叉型の外形を持った水晶振動子が完成する。   In the step (l), the photoresist on which the gold plating film is formed is peeled off, and in the step (m), a new photoresist is applied to both surfaces. After pre-baking in the step (n), in the step (o), the photoresist film is exposed with a pattern serving as an electrode. After the development in the step (p), in the step (q), the crystal is made of hydrofluoric acid and ammonium fluoride solution using the pattern of the metal film (Au film with Cr as a base) previously formed in the step (f) as a mask. The outer shape of the crystal unit is formed by etching with the mixed solution. In the step (r), the metal film (Au, Cr film) is removed by etching while leaving the portion covered with the electrode pattern photoresist film formed in the steps (o) and (p). The In step (s), Pd is vapor-deposited using Ti as a base while rotating the wafer. As a result, the front and back and side electrode films are formed. In the step (t), the photoresist film for the electrode is peeled off, and the Ti and Pd films remain only in the portion that becomes the electrode by so-called lift-off. In step (u), unnecessary Au and Cr films are removed by etching. At this time, in order to leave the Pd film, an etching solution is used in which iodine is dissolved in an etching solution, but iodine that does not dissolve Pd is dissolved in a potassium iodide solution. Thus, a crystal resonator having electrodes and a tuning fork-shaped outer shape is completed.

上述のように、水晶ウエハをエッチング加工する際のマスクとなるパターンは、水晶ウエハ上に形成された金属膜(Au、Cr膜)のパターンであり、その金属膜パターン形成は、水晶振動子の完成体パターンが露光、現像されたフォトレジストをマスクとしてAu、Crのエッチング液によって行われる。水晶ウエハはエッチングによって厚さ方向だけでなく、横方向(側面)もエッチングされるので、金属膜パターンの幅は、エッチングによる減少分も考慮して少し大きくしてある。しかし、フォトレジスト現像時の温度、時間、液流れの状態およびAu、Crエッチングの際のサイドエッチング等により、形成された金属膜のパターンの寸法は、露光マスクの寸法と必ずしも一致しない。また、形成された金属膜のパターンの寸法と露光マスクの寸法との差はいつも一定ではなく、露光、現像時の状態、やAu、Crエッチング時の状態等により変動する。このため、形成された金属膜のパターン寸法、特に共振周波数への影響が大きい脚幅を測定し、この脚幅の測定値と設計値とを比較して、脚幅が設計値となるように測定値と設計値との差に基づいて水晶ウエハのエッチング時間を決定している。金属膜のパターン寸法の測定は通常(g)フォトレジスト剥離の後に行われる。   As described above, the pattern used as a mask when etching the crystal wafer is a pattern of a metal film (Au, Cr film) formed on the crystal wafer, and the metal film pattern formation is performed on the crystal resonator. The finished pattern is exposed and developed with a photoresist as a mask, and etching is performed using Au and Cr etching solutions. Since the quartz wafer is etched not only in the thickness direction but also in the lateral direction (side surface) by etching, the width of the metal film pattern is slightly increased in consideration of the decrease due to the etching. However, the dimension of the pattern of the formed metal film does not necessarily match the dimension of the exposure mask due to the temperature, time, the state of liquid flow at the time of developing the photoresist, and the side etching at the time of Au and Cr etching. Further, the difference between the dimension of the formed metal film pattern and the dimension of the exposure mask is not always constant, and varies depending on the state during exposure and development, the state during etching of Au and Cr, and the like. Therefore, measure the pattern width of the formed metal film, especially the leg width, which has a large influence on the resonance frequency, and compare the measured value of this leg width with the design value so that the leg width becomes the design value. The etching time of the crystal wafer is determined based on the difference between the measured value and the design value. Measurement of the pattern dimension of the metal film is usually performed after (g) photoresist stripping.

ところで、水晶は三方晶系に属する異方性の単結晶であり、このため結晶方位によってエッチング速度が異なり、エッチング後の脚の断面形状は矩形とはならず、図10に示すような+X方向に凸部3を有する形状となる。上記の実験によって測定されるエッチング後の脚幅W’は図中に示すように表面近傍の脚幅である。測定は金属顕微鏡を用いて行うので、深さ方向にある凸部を測定することが困難なためである。
特開平5−315881号公報(第3−4頁、第1−2図)
By the way, quartz crystal is an anisotropic single crystal belonging to the trigonal system. Therefore, the etching rate differs depending on the crystal orientation, and the cross-sectional shape of the legs after etching is not rectangular, but the + X direction as shown in FIG. It becomes the shape which has the convex part 3. The post-etching leg width W ′ measured by the above experiment is the leg width in the vicinity of the surface as shown in the figure. This is because it is difficult to measure the convex portion in the depth direction because the measurement is performed using a metal microscope.
JP-A-5-315881 (page 3-4, Fig. 1-2)

しかしながら、上述した従来の技術では、脚幅を管理するだけなので、たとえ完成した脚幅が同じでもエッチング時間の違いにより前記凸部の大きさが異なるため、完成した水晶振動子の周波数のバラツキが大きく、歩留りが悪いという課題があった。   However, in the above-described conventional technique, only the leg width is managed, so even if the completed leg width is the same, the size of the convex portion is different due to the difference in etching time. There was a problem that it was large and the yield was poor.

例えば図11に示す様に、金属膜パターン1が形成された2本の脚A、Bの脚幅がW1、W2でありW1>W2であったとすると、従来の技術ではW1のエッチング時間t1、W2のエッチング時間t2はt1>t2となる。仮にエッチングが理想的に行われ、エッチング後の脚幅が両者とも図11に示すように設計値通りWとなったとしても、それぞれの凸部3の大きさδ1、δ2はエッチング時間が長いほど小さくなるのでδ1<δ2となり、実効的な脚幅であるW+δ1、W+δ2の関係は、W+δ1<W+δ2となって、エッチング時間が長い方の実効的な脚幅が小さくなる。よって今の場合、従来の技術を用いたのでは完成したそれぞれの周波数f1、f2はf1<f2となり、異なってしまう。よって完成した水晶振動子の周波数のバラツキが大きく、歩留まりが悪いという課題があった。なお、水晶は異方性により+X側からの減少量の方が大きく、−X側からの減少量は非常に小さいので図では−X側からの減少量をないものとして表している。他の図も同様とする。   For example, as shown in FIG. 11, if the leg widths of the two legs A and B on which the metal film pattern 1 is formed are W1 and W2 and W1> W2, the conventional technique uses the etching time t1 of W1, The etching time t2 for W2 is t1> t2. Even if the etching is ideally performed and both the leg widths after etching become W as designed as shown in FIG. 11, the sizes δ1 and δ2 of the respective protrusions 3 are longer as the etching time is longer. Since it becomes smaller, δ1 <δ2, and the relationship between the effective leg widths W + δ1 and W + δ2 becomes W + δ1 <W + δ2, and the effective leg width becomes smaller when the etching time is longer. Therefore, in this case, when the conventional technique is used, the completed frequencies f1 and f2 are different from each other as f1 <f2. Therefore, there are problems that the frequency variation of the completed crystal resonator is large and the yield is poor. Note that the amount of reduction from the + X side is larger due to anisotropy, and the amount of reduction from the −X side is very small due to anisotropy, so the figure shows that there is no reduction from the −X side. The same applies to other figures.

上記の課題を解決するために、本発明の目的は周波数のバラツキが小さく歩留りの良い水晶振動子の製造方法を提供することにある。   In order to solve the above-described problems, an object of the present invention is to provide a method for manufacturing a crystal resonator with a small frequency variation and a high yield.

上記目的を達成するために、本発明の水晶振動子の製造方法は、所定の周波数で振動する振動脚を有する水晶振動子の製造方法において、水晶ウエハの両面に前記水晶振動子の外形に応じた形状の金属膜を形成する金属膜形成工程と、前記振動脚の脚幅に応じた箇所の前記金属膜の寸法を測定する測定工程と、予め試料用水晶振動子に基づいて求めた振動脚の脚幅と周波数との第一の相関関係と、エッチングによる脚幅の減少量と周波数との第二の相関関係と、エッチング時間と脚幅の減少量との第三の相関関係とを用いて、前記測定工程で測定した寸法と前記所定の周波数とからエッチング時間を求める算出工程と、前記金属膜をマスクとして、前記算出工程で求めたエッチング時間、前記水晶ウエハをエッチングするエッチング工程と、を有することを特徴とするIn order to achieve the above object, a method for manufacturing a crystal resonator according to the present invention is a method for manufacturing a crystal resonator having a vibration leg that vibrates at a predetermined frequency. Metal film forming step of forming a metal film having a different shape, a measuring step of measuring the dimension of the metal film at a location corresponding to the leg width of the vibrating leg, and a vibrating leg previously obtained based on a crystal resonator for a sample The first correlation between the leg width and the frequency of the etching, the second correlation between the decrease in the leg width by etching and the frequency, and the third correlation between the etching time and the decrease in the leg width are used. Te, a calculation step of calculating an etching time and a dimension measured in the measuring step and the predetermined frequency, the metal film as a mask, the etching time calculated by the calculating step, an etching step of etching the quartz wafer, Characterized in that it has.

本発明の水晶振動子の製造方法は、前記振動脚の短辺方向は前記水晶ウエハのX軸と一致することを特徴とする。 The method for manufacturing a crystal resonator according to the present invention is characterized in that a short side direction of the vibration leg coincides with an X axis of the crystal wafer .

前記の製造方法によれば、振動脚幅のみならず振動脚断面の凸部の大きさをエッチング時間の決定に考慮することができるので、エッチングによって製造した直後の水晶振動子の周波数バラツキが小さくなるという効果がある。   According to the above manufacturing method, not only the vibration leg width but also the size of the convex part of the vibration leg cross section can be considered in determining the etching time, so the frequency variation of the crystal unit immediately after manufacturing by etching is small. There is an effect of becoming.

また、前記の製造方法によれば、エッチング時間と振動脚幅および周波数の関係式が簡便に求められ、エッチング時間の計算式が導き出せるという効果がある。   Further, according to the above manufacturing method, the relational expression between the etching time, the vibration leg width, and the frequency can be easily obtained, and the etching time calculation formula can be derived.

以下に、本発明を実施するための最良の形態を図面を用いて説明する。最初に、予め製造した複数の試料用水晶振動子に基づいて、水晶振動子の所定部位の寸法と周波数との関係を示す第一の相関関係と、前記所定部位のエッチングによる減少量と周波数との関係を示す第二の相関関係と、エッチング時間と前記所定部位のエッチングによる減少量との関係を示す第三の相関関係とをそれぞれ求める工程を説明する。
図2〜図4は試料用水晶振動子として、量産品におけるデータを用いてプロットしたものである。図2は、エッチング後の脚幅W’と周波数fとの関係をプロットしたグラフである。エッチング後の脚幅W’と周波数fにはほぼ直線で近似できる相関関係が見られる。図3は脚幅のエッチングによる減少量dと周波数fとの関係をプロットしたグラフである。エッチング前の金属膜パターン上の脚幅は一定でないにもかかわらず、脚幅のエッチングによる減少量dと周波数fにはほぼ直線で近似できる相関関係が見られる。これは、脚幅のエッチングによる減少量dが凸部の大きさを反映しており、dが大きくなると凸部が小さくなるため、周波数が減少することによると考えられる。図4はエッチング時間tと脚幅のエッチングによる減少量dとの関係をプロットしたグラフである。エッチング時間tと脚幅のエッチングによる減少量dにはほぼ直線で近似できる相関関係が見られる。
The best mode for carrying out the present invention will be described below with reference to the drawings. First, based on a plurality of sample crystal resonators manufactured in advance, a first correlation indicating a relationship between a size and a frequency of a predetermined portion of the crystal resonator, a reduction amount and a frequency due to etching of the predetermined portion, Steps for obtaining a second correlation indicating the above relationship and a third correlation indicating the relationship between the etching time and the amount of decrease due to etching of the predetermined portion will be described.
2 to 4 are plotted using data in mass-produced products as sample crystal resonators. FIG. 2 is a graph plotting the relationship between the leg width W ′ after etching and the frequency f. There is a correlation that can be approximated by a straight line between the leg width W ′ after etching and the frequency f. FIG. 3 is a graph plotting the relationship between the amount d of decrease in leg width etching and the frequency f. Although the leg width on the metal film pattern before the etching is not constant, there is a correlation that can be approximated by a substantially straight line between the decrease d due to the etching of the leg width and the frequency f. This is presumably because the decrease d due to the etching of the leg width reflects the size of the convex portion, and when d increases, the convex portion becomes smaller and the frequency decreases. FIG. 4 is a graph plotting the relationship between the etching time t and the decrease d due to the etching of the leg width. There is a correlation that can be approximated by a straight line between the etching time t and the decrease d due to the etching of the leg width.

図2のグラフに示す実線は各測定点から最小二乗法により求めた回帰直線であり、数式(1)のように表現できる。ここでgは脚幅が単位長さ変化した時の周波数変化の大きさを示す係数であり、hは調整項となる切片である。この数式(1)によって水晶振動子の所定部位の寸法である脚幅と周波数との第一の相関関係が表される。   The solid line shown in the graph of FIG. 2 is a regression line obtained from each measurement point by the least square method and can be expressed as Equation (1). Here, g is a coefficient indicating the magnitude of frequency change when the leg width changes by unit length, and h is an intercept serving as an adjustment term. This equation (1) represents the first correlation between the leg width, which is the dimension of the predetermined part of the crystal resonator, and the frequency.

f=gW’+h ・・・・(1)     f = gW ′ + h (1)

図3のグラフに示す実線は各測定点から最小二乗法により求めた回帰直線であり、数式(2)のように表現できる。ここでiは脚幅のエッチングによる減少量が単位量変化した時の周波数変化の大きさを示す係数であり、jは調整項となる切片である。この数式(2)によって所定部位のエッチングによる減少量と周波数との関係を示す第二の相関関係が表される。   The solid line shown in the graph of FIG. 3 is a regression line obtained from each measurement point by the least square method, and can be expressed as Equation (2). Here, i is a coefficient indicating the magnitude of frequency change when the amount of decrease due to etching of the leg width changes by a unit amount, and j is an intercept serving as an adjustment term. This mathematical formula (2) represents the second correlation indicating the relationship between the amount of decrease due to etching of the predetermined portion and the frequency.

f=id+j ・・・・(2)     f = id + j (2)

図4のグラフに示す実線は各測定点から最小二乗法により求めた回帰直線であり、数式(3)のように表現できる。ここでkはエッチング時間が単位量変化した時の脚幅のエッチングによる減少量の変化の大きさを示す係数であり、mは調整項となる切片である。この数式(3)によってエッチング時間と所定部位のエッチングによる減少量との関係を示す第三の相関関係が表される。   The solid line shown in the graph of FIG. 4 is a regression line obtained from each measurement point by the least square method, and can be expressed as Equation (3). Here, k is a coefficient indicating the amount of change in the amount of decrease due to the etching of the leg width when the etching time changes by a unit amount, and m is an intercept serving as an adjustment term. This mathematical formula (3) represents the third correlation indicating the relationship between the etching time and the amount of decrease due to etching of a predetermined portion.

d=kt+m ・・・・(3)     d = kt + m (3)

また、脚幅のエッチングによる減少量dは金属膜パターン上の脚幅の測定値W0とエッチング後の脚幅W’とを用いて、数式(4)の様に定義できる。   Further, the decrease d due to the etching of the leg width can be defined as Equation (4) using the measured leg width W0 on the metal film pattern and the leg width W ′ after the etching.

d=W0−W’ ・・・・(4)     d = W0−W ′ (4)

数式(1)と(2)をそれぞれs倍とu倍した上、足し合わせるいわゆる一次結合を行い、数式(4)から求められるW’=W0−dの関係を用いてW’を消去し、さらにdに数式(3)を代入して整理すると、数式(5)の様に周波数fと金属膜パターン上の脚幅W0からエッチング時間tを求める数式が得られる。ここで、pは周波数を一定とした時に金属膜パターン上の脚幅の測定値が単位長さ変化した時のエッチング時間の変化の大きさを示す係数であり、qは金属膜パターン上の脚幅の測定値が一定である時に周波数を単位量変える場合のエッチング時間の変化の大きさを示す係数であり、rは切片である。   Equations (1) and (2) are multiplied by s times and u times, respectively, and a so-called linear combination is performed, and W ′ is eliminated using the relationship W ′ = W0−d obtained from Equation (4). Further, when formula (3) is substituted for d and arranged, a formula for obtaining the etching time t from the frequency f and the leg width W0 on the metal film pattern is obtained as in formula (5). Here, p is a coefficient indicating the magnitude of change in etching time when the measured value of the leg width on the metal film pattern changes by unit length when the frequency is constant, and q is the leg on the metal film pattern. This is a coefficient indicating the magnitude of change in etching time when the frequency is changed by a unit amount when the measured value of the width is constant, and r is an intercept.

t=pW0+qf+r ・・・・(5)     t = pW0 + qf + r (5)

sおよびuは数式(1)、(2)に対する重みづけの意味があり、任意の値をとることが出来るが、実験によればs,uをそれぞれ1とした時が最も好適であった。   s and u have a meaning of weighting for the mathematical formulas (1) and (2), and can take arbitrary values. However, according to experiments, it was most preferable when s and u were set to 1, respectively.

脚長2250μm、脚幅200μm、板厚100μm、周波数32.768kHzの水晶振動子を製造する例として、脚幅の単位としてμm、エッチング時間tの単位として分を用いると、数式(1)〜(5)の各係数は次のような値をとる。g=117.3(Hz/μm)、h=10715.1(Hz)、i=−91.4(Hz/μm)、j=33816.6(Hz)、k=0.044(μm/分)、m=−3.4(μm)、p=12.8(分/μm)、q=−0.22(分/Hz)、r=4926(分)である。ここで挙げた各係数の値は一例であり、脚長や、脚幅、エッチング条件等によって異なることは言うまでもないことである。   As an example of manufacturing a crystal resonator having a leg length of 2250 μm, a leg width of 200 μm, a plate thickness of 100 μm, and a frequency of 32.768 kHz, when μm is used as a unit of leg width and a minute is used as a unit of etching time t, formulas (1) to (5) ) Take the following values. g = 117.3 (Hz / μm), h = 107155.1 (Hz), i = −91.4 (Hz / μm), j = 33816.6 (Hz), k = 0.044 (μm / min) ), M = −3.4 (μm), p = 12.8 (min / μm), q = −0.22 (min / Hz), and r = 4926 (min). The value of each coefficient mentioned here is an example, and it goes without saying that it varies depending on the leg length, leg width, etching conditions, and the like.

次に、本発明における製造工程を説明する。図5は本発明による製造工程の流れ図である。水晶振動子は水晶原石より切り出され、研磨加工が施され所定の厚みに調整された矩形の水晶ウエハを出発点として順次フォトリソグラフィの技術を用いて形成される。なお、以下の説明で記載したカッコ付アルファベットは図5の工程(a)〜(u)を表している。最初に所定形状の水晶ウエハを用意する。(a)水晶ウエハにはまず、表裏の両面に金属膜としてCrを下地にAu膜がスパッタリングによって形成される。(b)Au膜の上にはフォトレジストが両面に塗布される。塗布には例えばスピンコータが用いられる。(c)所定の温度で乾燥させる工程(プリベーク)の後、(d)水晶振動子の完成体パターンが露光される。(e)フォトレジストに露光されたパターンは現像液中で現像される。(f)現像されたフォトレジストのパターンをマスクとして金属膜(Au、Cr)のエッチングが施される。この時残った金属膜(Au、Cr)のパターンが水晶振動子の外形となる。(g)その後、フォトレジストは剥離される。   Next, the manufacturing process in this invention is demonstrated. FIG. 5 is a flowchart of the manufacturing process according to the present invention. The quartz oscillator is cut out from a quartz crystal, and is sequentially formed using a photolithography technique starting from a rectangular quartz wafer that has been polished and adjusted to a predetermined thickness. In addition, the parenthesized alphabet described in the following description represents steps (a) to (u) in FIG. First, a quartz wafer having a predetermined shape is prepared. (A) First, an Au film is formed on a quartz wafer by sputtering as a metal film on both sides of the front and back surfaces with Cr as a base. (B) A photoresist is applied on both sides of the Au film. For example, a spin coater is used for coating. (C) After the step of drying at a predetermined temperature (pre-baking), (d) the completed pattern of the crystal resonator is exposed. (E) The pattern exposed to the photoresist is developed in a developer. (F) The metal film (Au, Cr) is etched using the developed photoresist pattern as a mask. The pattern of the metal film (Au, Cr) remaining at this time becomes the outer shape of the crystal resonator. (G) Thereafter, the photoresist is peeled off.

工程(g)の後、(A1)金属膜パターン上の脚幅を測定する。同時に処理するウエハの枚数、即ち1ロットの枚数は30枚程度であり、全枚数の測定を行うことが望ましいが、手間がかかるので、任意の3〜5枚を抜き出して測定を行えば良い。同一ロットでは温度等の処理条件が同一なので、3〜5枚程度の試料数でも良い代表値を得ることができるからである。各ウエハの測定は1枚について5点程度行う。これらの測定データの平均値を求め、エッチング時間tを計算するための金属膜パターン上の脚幅W0とする。(A2)求めた金属膜パターン上の脚幅W0と所定の周波数fとを前述の数式(5)に代入してエッチング時間tを計算する。(h)新たなフォトレジストが両面に塗布され、(i)プリベークされた後、(j)周波数調整に使われる金メッキ膜のパターンが露光、現像され、(k)金メッキが施される。(l)金メッキ膜を形成したフォトレジストは剥離され、(m)新たにフォトレジストが両面に塗布される。(n)プリベークの後、(o)このフォトレジスト膜には電極となるパターンが露光される。   After step (g), (A1) the leg width on the metal film pattern is measured. The number of wafers to be processed simultaneously, that is, the number of one lot is about 30, and it is desirable to measure the total number of wafers. However, since it takes time, measurement can be performed by extracting any 3 to 5 wafers. This is because the processing conditions such as temperature are the same in the same lot, so that a representative value may be obtained even with about 3 to 5 samples. Each wafer is measured about 5 points per sheet. An average value of these measurement data is obtained and set as the leg width W0 on the metal film pattern for calculating the etching time t. (A2) The etching time t is calculated by substituting the obtained leg width W0 on the metal film pattern and the predetermined frequency f into the above equation (5). (H) A new photoresist is applied on both sides, (i) after pre-baking, (j) a pattern of a gold plating film used for frequency adjustment is exposed and developed, and (k) gold plating is performed. (L) The photoresist on which the gold plating film is formed is peeled off, and (m) new photoresist is applied on both sides. (N) After pre-baking, (o) the photoresist film is exposed to a pattern to be an electrode.

(p)現像後、(q)先に(f)で形成された金属膜(Crを下地とするAu膜)のパターンをマスクとして水晶がフッ酸とフッ化アンモニウム溶液の混合液によってエッチングされる。エッチングする時間は工程(A2)で計算したエッチング時間tとする。この工程で水晶振動子の外形が形成される。(r)先に(o)、(p)で形成した電極パタ−ン用のフォトレジスト膜に覆われた部分を残し金属膜(Au,Cr膜)がエッチングによって除去される。(s)ウエハを回転しながらTiを下地としてPdが蒸着される。これによって表裏面、および側面の電極膜が形成される。(t)電極用のフォトレジスト膜が剥離され、いわゆるリフトオフによって電極となる部分のみにTi、Pd膜が残る。(u)不要なAu、Cr膜がエッチングによって除去される。この際、Pd膜を残すために、エッチング液にはAuは溶解するが、Pdは溶解しないヨウ素をヨウ化カリウム溶液中に溶かしたエッチング液を用いる。以上で電極が形成されかつ音叉型の外形を持った水晶振動子が完成する。   (P) After development, (q) the quartz is etched with a mixture of hydrofluoric acid and ammonium fluoride solution using the pattern of the metal film (Au film with Cr as a base) previously formed in (f) as a mask. . The etching time is the etching time t calculated in step (A2). In this step, the outer shape of the crystal resonator is formed. (R) The metal film (Au, Cr film) is removed by etching, leaving the portion covered with the electrode pattern photoresist film previously formed in (o) and (p). (S) While rotating the wafer, Pd is deposited on Ti as a base. As a result, the front and back and side electrode films are formed. (T) The photoresist film for the electrode is peeled off, and the Ti and Pd films remain only in the portion that becomes the electrode by so-called lift-off. (U) Unnecessary Au and Cr films are removed by etching. At this time, in order to leave the Pd film, an etching solution is used in which iodine is dissolved in an etching solution, but iodine that does not dissolve Pd is dissolved in a potassium iodide solution. Thus, a crystal resonator having electrodes and a tuning fork-shaped outer shape is completed.

次に、上記製造方法で製造される音叉型水晶振動子の振動脚の状態を図1に基づいて説明する。図1の(a)は金属膜1を有する水晶ウエハの振動脚を表す断面図であり、金属膜1の幅Wは周波数f1を有する振動脚の設計値を表している。図1の(b)、(c)は、それぞれ金属膜幅W20、W10を有する水晶ウエハの振動脚を表す断面図であり、金属膜幅W10<金属膜幅W20となっている。図1の(d)は、上述の製造方法で(a)の水晶ウエハをエッチングした後の振動脚を示す断面図、図1(e)は、上述の製造方法で(b)の水晶ウエハをエッチングした後の振動脚を示す断面図である。
例えば、図1(b)、(c)((a)、(b))ともに周波数f1の振動脚に製造しようとすると、従来は両方の水晶ウエハとも振動脚の幅がWになるまでエッチングしていたが、本実施形態の製造方法によれば、上記の式(6)のW0にW20、W10を代入し、fにf1を代入して算出したエッチング時間はそれぞれ時間が異なり、図1(d)、図1(e)に示す如く、最終的に残存する凸部3を考慮したエッチング時間となるため、幅W20の金属膜1に対応する部分は、設計値の幅Wよりも長い幅W20’となり、幅10の金属膜1に対応する部分は、設計値の幅Wよりも短い幅W10’となることを表している。そして最終的に製造された振動脚の幅は異なるものの、その周波数はどちらも所望の周波数f1に近いものとすることができた。
この図1は本発明の概念を表すものであって、あくまでも一例を示したにすぎないが、このように所望の周波数と所定部位の金属膜の幅(振動脚に対応する金属膜1の幅)に基づき、適切なエッチング時間を導き出せるので、水晶振動子の製造歩留まりを向上させることができる。
Next, the state of the vibrating leg of the tuning fork type crystal resonator manufactured by the above manufacturing method will be described with reference to FIG. FIG. 1A is a cross-sectional view showing a vibrating leg of a crystal wafer having a metal film 1, and the width W of the metal film 1 represents a design value of the vibrating leg having a frequency f1. 1B and 1C are cross-sectional views showing vibration legs of a quartz wafer having metal film widths W20 and W10, respectively, where metal film width W10 <metal film width W20. FIG. 1D is a cross-sectional view showing the vibrating leg after the crystal wafer of FIG. 1A is etched by the above manufacturing method, and FIG. 1E is the cross section of the crystal wafer of FIG. 1B by the above manufacturing method. It is sectional drawing which shows the vibration leg after etching.
For example, if an attempt is made to manufacture a vibrating leg with a frequency f1 in both FIGS. 1B, 1C, 1A, and 1B, conventionally, both quartz wafers are etched until the width of the vibrating leg becomes W. However, according to the manufacturing method of the present embodiment, the etching times calculated by substituting W20 and W10 into W0 and substituting f1 into f in the above equation (6) are different, and FIG. d) As shown in FIG. 1 (e), since the etching time takes into account the finally remaining convex portion 3, the portion corresponding to the metal film 1 having the width W20 has a width longer than the designed width W. The portion corresponding to the metal film 1 having a width of 10 becomes W20 ′, indicating that the width W10 ′ is shorter than the width W of the design value. Although the finally produced vibration legs have different widths, both of the frequencies can be close to the desired frequency f1.
FIG. 1 represents the concept of the present invention, and is merely an example. As described above, the desired frequency and the width of the metal film at a predetermined portion (the width of the metal film 1 corresponding to the vibration leg) are shown. ), An appropriate etching time can be derived, so that the manufacturing yield of the crystal resonator can be improved.

上述の本実施形態では図5の工程(A1)、(A2)を工程(g)の直後に入れた例を示したが、これまでの説明で明らかな様に、工程(A1)、(A2)は金属膜パターンが
形成される工程(f)の後で、かつ水晶ウエハのエッチングを行う工程(q)の前であれば、どこで行っても良い。
In the above-described embodiment, the example in which the steps (A1) and (A2) in FIG. 5 are added immediately after the step (g) has been shown. However, as is clear from the above description, the steps (A1) and (A2) ) May be performed anywhere after the step (f) in which the metal film pattern is formed and before the step (q) in which the crystal wafer is etched.

図6は本発明の製造方法によって製作した水晶振動子の周波数のロット平均値の頻度と従来の方法によって製作した水晶振動子のロット平均値の頻度とを比較したグラフである。本発明の製造方法による方が周波数のバラツキが小さくなっている。従来の製造方法では周波数分布の標準偏差が約140Hzだったのに対し、本発明による製造方法では約100Hzになり30%程度の顕著な改善が見られた。   FIG. 6 is a graph comparing the frequency of the lot average value of the frequency of the crystal resonator manufactured by the manufacturing method of the present invention with the frequency of the lot average value of the crystal resonator manufactured by the conventional method. According to the manufacturing method of the present invention, the frequency variation is smaller. In the conventional manufacturing method, the standard deviation of the frequency distribution was about 140 Hz, whereas in the manufacturing method according to the present invention, it was about 100 Hz, and a remarkable improvement of about 30% was observed.

(a)は金属膜1を有する水晶ウエハの振動脚を表す断面図、(b)、(c)はそれぞれ金属膜幅W20、W10を有する水晶ウエハの振動脚を表す断面図、(d)は(b)の水晶ウエハをエッチングした後の振動脚を示す断面図、(e)は(c)の水晶ウエハをエッチングした後の振動脚を示す断面図である。(A) is sectional drawing showing the vibration leg of the crystal wafer which has the metal film 1, (b), (c) is sectional drawing showing the vibration leg of the crystal wafer which has the metal film width W20 and W10, respectively, (d) is FIG. 5B is a cross-sectional view showing the vibration leg after etching the crystal wafer of FIG. 5B, and FIG. 5E is a cross-sectional view showing the vibration leg after etching the crystal wafer of FIG. 本発明に係わる説明図であり、水晶振動子の脚幅と周波数との関係を示す図である。It is explanatory drawing concerning this invention, and is a figure which shows the relationship between the leg width of a crystal oscillator, and a frequency. 本発明に係わる説明図であり、エッチングによる脚幅の減少量と周波数との関係を示す図である。It is explanatory drawing concerning this invention, and is a figure which shows the relationship between the reduction | decrease amount of the leg width by an etching, and a frequency. 本発明に係わる説明図であり、エッチング時間とエッチングによる脚幅の減少量との関係を示す図である。It is explanatory drawing concerning this invention, and is a figure which shows the relationship between etching time and the reduction | decrease amount of the leg width by etching. 本発明における製造工程を示す流れ図である。It is a flowchart which shows the manufacturing process in this invention. 水晶振動子の周波数のロット平均値の頻度を従来の技術と本発明による方法とで比較した図である。It is the figure which compared the frequency of the lot average value of the frequency of a crystal oscillator with the prior art and the method by this invention. 音叉型の水晶振動子の構造を説明する図である。It is a figure explaining the structure of a tuning fork type crystal oscillator. 従来の技術における水晶振動子の製造工程を示す流れ図である。It is a flowchart which shows the manufacturing process of the crystal oscillator in a prior art. エッチング時間と金属膜パターン上の脚幅とエッチング後の脚幅の差との関係を示す図である。It is a figure which shows the relationship between the etching time, the leg width on a metal film pattern, and the difference of the leg width after an etching. 水晶振動子の脚断面を示す図である。It is a figure which shows the leg cross section of a crystal oscillator. 水晶振動子のエッチング前の金属膜パターン上の脚幅とエッチング後の脚幅および凸部との関係を示す断面図である。It is sectional drawing which shows the relationship between the leg width on the metal film pattern before the etching of a crystal oscillator, the leg width after an etching, and a convex part.

符号の説明Explanation of symbols

1 金属膜パターン
3 凸部
5 基部
7 振動脚
9 脚幅
11 脚長
1 Metal film pattern 3 Convex part 5 Base part 7 Vibrating leg 9 Leg width 11 Leg length

Claims (2)

所定の周波数で振動する振動脚を有する水晶振動子の製造方法において、
水晶ウエハの両面に前記水晶振動子の外形に応じた形状の金属膜を形成する金属膜形成工程と、
前記振動脚の脚幅に応じた箇所の前記金属膜の寸法を測定する測定工程と、
予め試料用水晶振動子に基づいて求めた振動脚の脚幅と周波数との第一の相関関係と、エッチングによる脚幅の減少量と周波数との第二の相関関係と、エッチング時間と脚幅の減少量との第三の相関関係とを用いて、前記測定工程で測定した寸法と前記所定の周波数とからエッチング時間を求める算出工程と、
前記金属膜をマスクとして、前記算出工程で求めたエッチング時間、前記水晶ウエハをエッチングするエッチング工程と、を有することを特徴とする水晶振動子の製造方法。
In a method of manufacturing a crystal unit having a vibrating leg that vibrates at a predetermined frequency,
A metal film forming step of forming a metal film having a shape corresponding to the outer shape of the crystal resonator on both surfaces of the crystal wafer;
A measuring step of measuring the dimension of the metal film at a location corresponding to the leg width of the vibrating leg;
The first correlation between the leg width and the frequency of the vibration leg obtained in advance based on the crystal resonator for the sample, the second correlation between the amount of decrease in leg width by etching and the frequency, the etching time and the leg width. Using the third correlation with the amount of decrease in the calculation step of obtaining the etching time from the dimension measured in the measurement step and the predetermined frequency ,
A method of manufacturing a crystal resonator, comprising: using the metal film as a mask; an etching time obtained in the calculation step; and an etching step of etching the crystal wafer.
前記振動脚の短辺方向は前記水晶ウエハのX軸と一致することを特徴とする請求項1に記載の水晶振動子の製造方法。 The method for manufacturing a crystal resonator according to claim 1, wherein a direction of a short side of the vibrating leg coincides with an X axis of the crystal wafer .
JP2004083752A 2004-03-23 2004-03-23 Manufacturing method of crystal unit Expired - Fee Related JP4638682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004083752A JP4638682B2 (en) 2004-03-23 2004-03-23 Manufacturing method of crystal unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004083752A JP4638682B2 (en) 2004-03-23 2004-03-23 Manufacturing method of crystal unit

Publications (3)

Publication Number Publication Date
JP2005277483A JP2005277483A (en) 2005-10-06
JP2005277483A5 JP2005277483A5 (en) 2007-07-05
JP4638682B2 true JP4638682B2 (en) 2011-02-23

Family

ID=35176722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004083752A Expired - Fee Related JP4638682B2 (en) 2004-03-23 2004-03-23 Manufacturing method of crystal unit

Country Status (1)

Country Link
JP (1) JP4638682B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6018962B2 (en) * 2013-03-28 2016-11-02 シチズンファインデバイス株式会社 Manufacturing method of crystal unit
CH716605A1 (en) * 2019-09-16 2021-03-31 Richemont Int Sa Method of manufacturing a plurality of resonators on a wafer.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002076806A (en) * 2000-09-01 2002-03-15 Seiko Epson Corp Method of manufacturing vibrating reed, vibrating reed, vibrator having vibrating reed, oscillator, and mobile phone device
JP2005277482A (en) * 2004-03-23 2005-10-06 Citizen Watch Co Ltd Manufacturing method of crystal vibrator and vibration gyro

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01179513A (en) * 1988-01-09 1989-07-17 Kinseki Ltd Etching processing method for crystal resonator
JPH10270967A (en) * 1997-03-26 1998-10-09 Seiko Epson Corp Manufacturing method of crystal unit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002076806A (en) * 2000-09-01 2002-03-15 Seiko Epson Corp Method of manufacturing vibrating reed, vibrating reed, vibrator having vibrating reed, oscillator, and mobile phone device
JP2005277482A (en) * 2004-03-23 2005-10-06 Citizen Watch Co Ltd Manufacturing method of crystal vibrator and vibration gyro

Also Published As

Publication number Publication date
JP2005277483A (en) 2005-10-06

Similar Documents

Publication Publication Date Title
US8093787B2 (en) Tuning-fork-type piezoelectric vibrating piece with root portions having tapered surfaces in the thickness direction
JP2007329879A (en) Tuning-fork type bending crystal oscillator piece and manufacturing method therefor
JP2011217040A (en) Method of manufacturing tuning fork type quartz piece
JP4638682B2 (en) Manufacturing method of crystal unit
JP5468444B2 (en) Manufacturing method of tuning fork type crystal piece
JP2011217039A (en) Method of manufacturing tuning fork type quartz piece
JP6185744B2 (en) Manufacturing method of tuning fork crystal unit
JP4600140B2 (en) Method for manufacturing piezoelectric vibrating piece
JP2004173218A (en) Manufacturing method for quartz oscillator
JP5894815B2 (en) Method for manufacturing piezoelectric element
JP6018962B2 (en) Manufacturing method of crystal unit
JP5769557B2 (en) Method for manufacturing crystal resonator element
JPH04158612A (en) Manufacture of surface acoustic wave element
JPH10290135A (en) Crystal substrate etching method
JPH0864579A (en) Manufacture of semiconductor device
JP2005260712A (en) Method for manufacturing tuning fork type quartz oscillator
JPH10270967A (en) Manufacturing method of crystal unit
JP2002314162A (en) Crystal substrate and its manufacturing method
JP6163404B2 (en) Method for manufacturing piezoelectric element
JP2008252769A (en) Method of manufacturing crystal resonator
JP5758642B2 (en) Manufacturing method of crystal unit
JP6424076B2 (en) Method for manufacturing piezoelectric vibrator
JP2002271157A (en) Method of manufacturing elastic surface wave device
JPH0864931A (en) Method for forming fine electrodes for electronic components
JPH09284074A (en) Crystal oscillator, method for manufacturing the same, and electronic device having the crystal oscillator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070521

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4638682

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees