[go: up one dir, main page]

JP4627403B2 - Organic wastewater treatment apparatus and treatment method - Google Patents

Organic wastewater treatment apparatus and treatment method Download PDF

Info

Publication number
JP4627403B2
JP4627403B2 JP2003433943A JP2003433943A JP4627403B2 JP 4627403 B2 JP4627403 B2 JP 4627403B2 JP 2003433943 A JP2003433943 A JP 2003433943A JP 2003433943 A JP2003433943 A JP 2003433943A JP 4627403 B2 JP4627403 B2 JP 4627403B2
Authority
JP
Japan
Prior art keywords
sludge
reaction tank
solid
biological treatment
liquid separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003433943A
Other languages
Japanese (ja)
Other versions
JP2005186022A (en
Inventor
彰 恵良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2003433943A priority Critical patent/JP4627403B2/en
Publication of JP2005186022A publication Critical patent/JP2005186022A/en
Application granted granted Critical
Publication of JP4627403B2 publication Critical patent/JP4627403B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Treatment Of Sludge (AREA)
  • Activated Sludge Processes (AREA)

Description

本発明は、下水、し尿および産業排水などの有機性排水の処理装置および処理方法に関する。   The present invention relates to a treatment apparatus and treatment method for organic wastewater such as sewage, human waste and industrial wastewater.

従来、工業排水や生活排水などの有機性排水については、好気性生物処理(活性汚泥法、硝化脱窒法等)を行い、排水中のBODを分解することが一般的である。このような生物処理において、分解されたBODの30〜50%が微生物の増殖に使用され、汚泥が増加する。増加した分の汚泥は、余剰汚泥として引き抜かれ、濃縮、脱水、焼却等の工程を得て廃棄物として処分されるが、その処分には多大の経費と設備費がかかり、今後ますます増加する傾向にある。   Conventionally, organic wastewater such as industrial wastewater and domestic wastewater is generally subjected to aerobic biological treatment (activated sludge method, nitrification denitrification method, etc.) to decompose BOD in the wastewater. In such biological treatment, 30-50% of the decomposed BOD is used for the growth of microorganisms, and sludge increases. The increased amount of sludge is withdrawn as excess sludge and disposed of as waste after concentrating, dehydrating, incineration, etc., but the disposal will incur significant costs and equipment costs, and will increase in the future. There is a tendency.

図1に、有機性排水処理装置1における、一般的な処理フローを示す。このように、原水は、生物処理槽(曝気槽)10に流入される。この生物処理槽10には、返送汚泥が供給されるとともに、ブロア12からの空気により槽内が曝気撹拌され、好気条件下におかれている。そこで、汚泥中の好気性微生物により原水中の有機物が除去される。生物処理槽10からの生物処理水は、沈殿槽14に流入され、ここで汚泥が沈降分離され、上澄みが処理水として排出される。また、沈殿槽14の沈殿汚泥は、返送汚泥ポンプ16によって、生物処理槽10に返送汚泥として返送される。そして、沈殿汚泥の一部が余剰汚泥として排出される。   FIG. 1 shows a general processing flow in the organic waste water treatment apparatus 1. In this way, the raw water flows into the biological treatment tank (aeration tank) 10. The biological treatment tank 10 is supplied with return sludge and is aerated and agitated by the air from the blower 12 under aerobic conditions. Therefore, organic substances in the raw water are removed by aerobic microorganisms in the sludge. The biologically treated water from the biological treatment tank 10 flows into the sedimentation tank 14, where sludge is settled and separated, and the supernatant is discharged as treated water. The sedimentation sludge in the sedimentation tank 14 is returned to the biological treatment tank 10 by the return sludge pump 16 as return sludge. A part of the precipitated sludge is discharged as excess sludge.

活性汚泥処理と組み合わせた余剰汚泥の減容化処理として、汚泥を何らかの手段で可溶化した後に生物処理工程に返送する方法が提案されている。汚泥の可溶化手段としては、アルカリ処理、酸処理、オゾン処理、超音波処理、ミル破砕処理、フェントン処理などがある。これにより、生物処理槽で可溶化汚泥の一部が生物処理によって分解され、汚泥を減らすことができる。   As a volume reduction treatment of surplus sludge combined with activated sludge treatment, a method has been proposed in which sludge is solubilized by some means and then returned to the biological treatment process. Examples of sludge solubilizing means include alkali treatment, acid treatment, ozone treatment, ultrasonic treatment, mill crushing treatment, and Fenton treatment. Thereby, a part of solubilized sludge is decomposed | disassembled by biological treatment in a biological treatment tank, and sludge can be reduced.

なかでもアルカリ処理は、撹拌槽内でアルカリ剤と汚泥を混合するだけのシンプルな装置であり、イニシャルコストが安価な装置である。また、界面活性剤などの薬剤を併用することで、高い可溶化率が得られる。   Among them, the alkali treatment is a simple device that simply mixes the alkali agent and sludge in the stirring tank, and is a device with low initial cost. Moreover, a high solubilization rate can be obtained by using a drug such as a surfactant in combination.

しかし、アルカリ処理を実施する場合、加熱、加圧、キャビテーション、ビーズミル、超音波などの物理的な手法を併用しない限り、長時間(10時間程度)の反応時間が必要となるという問題点がある。また、物理的な手法を併用した場合には、数分〜数十分の反応時間でも処理可能であるが、多大なエネルギーが必要となるため、好ましくない。   However, when alkali treatment is performed, there is a problem that a long reaction time (about 10 hours) is required unless physical methods such as heating, pressurization, cavitation, bead mill, and ultrasonic waves are used in combination. . Further, when a physical method is used in combination, the treatment can be performed even for a reaction time of several minutes to several tens of minutes, but it is not preferable because a large amount of energy is required.

例えば、特開平9−150197号公報には、アルカリ処理時間を短縮すること等を目的とし、pH10.5以上の条件で処理するアルカリ処理工程と、pH9.0〜10.0の条件で処理する第2のアルカリ処理工程を設けることが開示されている。   For example, Japanese Patent Application Laid-Open No. 9-150197 discloses an alkali treatment step of treating at a pH of 10.5 or more and treating at a pH of 9.0 to 10.0 for the purpose of shortening the alkali treatment time. Providing a second alkali treatment step is disclosed.

特開平9−150197号公報JP-A-9-150197

しかしながら、特許文献1により開示された方法でもまだ反応時間は長く、不十分である。   However, the method disclosed in Patent Document 1 still has a long reaction time and is insufficient.

本発明は、好気性生物の作用により有機物を分解する有機性排水の処理方法において、汚泥の可溶化、返送によって余剰汚泥の発生量を減量するための、高効率かつ経済的な汚泥の可溶化装置および方法に関する。   The present invention relates to a method for treating organic wastewater that decomposes organic matter by the action of aerobic organisms, solubilization of sludge, solubilization of sludge, and high-efficiency and economical solubilization of sludge by reduction. The present invention relates to an apparatus and method.

本発明は、有機性排水を微生物により処理する生物処理手段と、前記生物処理手段からの生物処理水を固液分離処理し、固形分が除去された処理水を排出する固液分離手段と、前記固液分離手段で分離された汚泥を前記生物処理手段へ返送する分離汚泥返送手段と、を有する有機性排水の処理装置であって、さらに、前記固液分離手段で分離された汚泥の少なくとも一部を受け取り、アルカリ剤を添加し、可溶化させる可溶化手段と、前記可溶化手段で可溶化された汚泥を、前記生物処理手段へ返送する可溶化汚泥返送手段と、を有し、前記可溶化手段は、直列に配置された、第1の反応槽と、それに続く第2の反応槽と、からなり、前記第1の反応槽において、前記アルカリ剤を添加して前記汚泥のpHを11.5〜12.5の範囲に制御し、前記汚泥を5〜20分間滞留せしめた後、前記第2の反応槽に移送し、前記第2の反応槽において一定時間滞留させて前記汚泥を処理する。 The present invention includes biological treatment means for treating organic wastewater with microorganisms, solid-liquid separation means for subjecting biological treated water from the biological treatment means to solid-liquid separation, and discharging treated water from which solid content has been removed, A separation sludge return means for returning the sludge separated by the solid-liquid separation means to the biological treatment means, and further, an organic wastewater treatment apparatus, further comprising at least the sludge separated by the solid-liquid separation means A solubilizing means for receiving a part, adding an alkaline agent, and solubilizing; and a solubilized sludge returning means for returning the sludge solubilized by the solubilizing means to the biological treatment means, The solubilizing means comprises a first reaction tank and a second reaction tank that are arranged in series, and in the first reaction tank, the alkaline agent is added to adjust the pH of the sludge. Control within the range of 11.5 to 12.5 After stagnates the sludge 5-20 min, then transferred to the second reaction vessel, treating the sludge by a certain residence time in the second reaction vessel.

また、本発明は、有機性排水を微生物により処理する生物処理手段と、前記生物処理手段からの生物処理水を固液分離処理し、固形分が除去された処理水を排出する固液分離手段と、前記固液分離手段で分離された汚泥を前記生物処理手段へ返送する分離汚泥返送手段と、を有する有機性排水処理装置であって、さらに、前記固液分離手段で分離された汚泥の少なくとも一部を受け取り、アルカリ剤を添加し、可溶化させる可溶化手段と、前記可溶化手段で可溶化された汚泥を、前記生物処理手段へ返送する可溶化汚泥返送手段と、を有し、前記可溶化手段は、直列に配置された、管内に複数の羽根を設けたスタティックミキサと、それに続く反応槽と、からなり、前記アルカリ剤を前記汚泥に添加してpH11.5〜12.5の範囲にした後、前記スタティックミキサで処理し、その後、前記反応槽に移送して一定時間滞留させる。 The present invention also provides a biological treatment means for treating organic wastewater with microorganisms, and a solid-liquid separation means for subjecting the biologically treated water from the biological treatment means to solid-liquid separation treatment and discharging the treated water from which solid content has been removed. And an organic wastewater treatment apparatus that returns the sludge separated by the solid-liquid separation means to the biological treatment means, and further comprising: A solubilizing means for receiving at least a part, adding an alkaline agent, and solubilizing; and a solubilized sludge returning means for returning the sludge solubilized by the solubilizing means to the biological treatment means, The solubilizing means comprises a static mixer arranged in series and provided with a plurality of blades in a tube, and a subsequent reaction tank, and the alkaline agent is added to the sludge to adjust the pH to 11.5 to 12.5. In the range The treatment with the static mixer, then, to dwell a given period of time in the transfer to the reactor.

また、前記有機性排水処理装置において、前記反応槽が、直列に配置された、第1の反応槽と、それに続く第2の反応槽と、からなり、前記第1の反応槽において、pH11.5〜12.5の範囲に制御して前記汚泥を処理した後、前記第2の反応槽に移送し、前記第2の反応槽において、一定時間滞留させて前記汚泥を処理することが好ましい。   Further, in the organic waste water treatment apparatus, the reaction tank includes a first reaction tank and a second reaction tank that are arranged in series, and in the first reaction tank, a pH of 11. It is preferable that after treating the sludge while controlling in the range of 5 to 12.5, the sludge is transferred to the second reaction tank and retained in the second reaction tank for a certain period of time to treat the sludge.

また、前記有機性排水処理装置において、前記反応槽または前記第2の反応槽において、前記汚泥の滞留時間は15分〜100分であることが好ましい。 Moreover, in the said organic waste water treatment apparatus, it is preferable that the residence time of the said sludge is 15 minutes- 100 minutes in the said reaction tank or the said 2nd reaction tank.

また、前記有機性排水処理装置において、さらに、前記可溶化手段により可溶化された汚泥に酸を添加する酸添加手段と、前記酸添加手段により酸添加された汚泥を、前記生物処理手段へ返送する酸添加汚泥返送手段と、を有することが好ましい。   Further, in the organic waste water treatment apparatus, the acid addition means for adding acid to the sludge solubilized by the solubilization means, and the sludge added with acid by the acid addition means are returned to the biological treatment means. And an acid-added sludge return means.

また、本発明は、有機性排水を微生物により処理する生物処理工程と、前記生物処理工程からの生物処理水を固液分離処理し、固形分が除去された処理水を排出する固液分離工程と、前記固液分離工程で分離された汚泥を前記生物処理手段へ返送する分離汚泥返送工程と、を有する有機性排水処理方法であって、さらに、前記固液分離工程で分離された汚泥の少なくとも一部にアルカリ剤を添加し、可溶化させる可溶化工程と、前記可溶化工程で可溶化された汚泥を、前記生物処理工程へ返送する可溶化汚泥返送工程と、を有し、前記可溶化工程は、前記アルカリ剤を添加して、前記汚泥のpHを11.5〜12.5に制御し、前記汚泥を5〜20分間滞留せしめた後、移送する第1の工程と、前記汚泥を、第1の工程での滞留時間の3〜5倍滞留させて処理する第2の工程と、を含む。 The present invention also includes a biological treatment process for treating organic wastewater with microorganisms, and a solid-liquid separation process for subjecting the biologically treated water from the biological treatment process to solid-liquid separation, and discharging the treated water from which solids have been removed. And a separated sludge return step for returning the sludge separated in the solid-liquid separation step to the biological treatment means, further comprising an organic wastewater treatment method, wherein the sludge separated in the solid-liquid separation step A solubilization process for adding and solubilizing at least a part of the alkali agent, and a solubilized sludge return process for returning the sludge solubilized in the solubilization process to the biological treatment process, and In the solubilization step, the alkaline agent is added to control the pH of the sludge to 11.5 to 12.5, the sludge is allowed to stay for 5 to 20 minutes, and then transferred to the sludge. 3 to 5 of the residence time in the first step A second step of processing by double residence.

本発明によれば、可溶化処理を、直列に配置された、第1の反応槽と、それに続く第2の反応槽にて、または、急速撹拌機と反応槽にて行い、さらに好ましくはpHの制御、滞留時間の制御を行うことにより、従来法に比べて低エネルギーで、短時間に汚泥を可溶化処理することが可能である。   According to the present invention, the solubilization treatment is performed in a first reaction tank and a subsequent second reaction tank arranged in series, or in a rapid stirrer and reaction tank, more preferably pH. By controlling the above and the residence time, it is possible to solubilize sludge in a short time with low energy compared to the conventional method.

発明者は鋭意研究を重ねたところ、アルカリによる汚泥の可溶化処理において、処理時間が20分付近を境に可溶化の現象が急激に変化することに気がついた。すなわち、アルカリ処理開始直後〜20分頃までは、TOC(全有機炭素)溶出率が高いにもかかわらずpHの低下はほとんど起きないが、20分を過ぎるあたりになるとpHの低下が急激に起きTOCの溶出率も下がることがわかった。 As a result of extensive research, the inventor has noticed that the solubilization phenomenon changes abruptly when the treatment time is around 20 minutes in the solubilization treatment of sludge with alkali. That is, from the start of the alkali treatment to about 20 minutes, although the TOC (total organic carbon) elution rate is high, there is almost no pH drop, but when it is over 20 minutes, the pH drop suddenly occurs. It was found that the TOC elution rate also decreased.

このことから、可溶化反応は、アルカリ剤添加直後から20分の間に最も効率的に微生物の細胞壁を破壊して細胞内成分を溶出させる第1段階と、その後の、溶出した有機物を緩やかに加水分解等で低分子化して微生物が分解できる形(BOD成分)にしていく第2段階が存在することを見出し、本発明に至った。 Therefore, in the solubilization reaction, the first stage in which the cell wall of the microorganism is most efficiently destroyed and the intracellular components are eluted within 20 minutes immediately after the addition of the alkaline agent, and then the eluted organic substances are gently dissolved. The present inventors have found that there is a second stage of reducing the molecular weight by hydrolysis or the like so that microorganisms can be decomposed (BOD component).

さらに発明者は、急速に撹拌することによって、可溶化反応が飛躍的に効率よく行われることも見出した。   Furthermore, the inventor has also found that the solubilization reaction can be performed remarkably efficiently by stirring rapidly.

次に、本発明について以下詳細に説明する。図2は、本発明の一実施形態の構成を示すブロック図である。工業排水、生活排水などの有機性排水が原水として、生物処理槽10に流入してくる。なお、原水調整槽、原水槽などの前処理設備は必要に応じて適宜設けられるが、ここでは省略する。流入した原水は、槽10内の微生物濃度が所定の濃度に維持されている活性汚泥の共存下で所定時間曝気される。ブロア12からの空気が槽内の底部に設置された散気装置から噴出されることで、槽10内が曝気撹拌されている。なお、生物処理槽10において、板状の接触材を設置し、接触材に微生物の一部を付着生育させてもよい。   Next, the present invention will be described in detail below. FIG. 2 is a block diagram showing a configuration of one embodiment of the present invention. Organic wastewater such as industrial wastewater and domestic wastewater flows into the biological treatment tank 10 as raw water. In addition, although pre-processing facilities, such as a raw water adjustment tank and a raw water tank, are provided suitably as needed, it abbreviate | omits here. The inflow raw water is aerated for a predetermined time in the presence of activated sludge in which the microorganism concentration in the tank 10 is maintained at a predetermined concentration. The inside of the tank 10 is aerated and stirred by the air from the blower 12 being ejected from an air diffuser installed at the bottom of the tank. In the biological treatment tank 10, a plate-shaped contact material may be installed, and a part of the microorganisms may adhere to and grow on the contact material.

好気性微生物により原水中の有機物が分解されたのち、沈殿槽14に流入し、活性汚泥が沈降され、清澄な処理水となる。処理水は沈殿槽14上部、処理水路より流出する。沈殿槽14の代わりに、公知の固液分離手段、例えば遠心分離、浮上分離、UF膜又はMF膜等の膜分離等を用いてもよい。また、沈殿汚泥を、さらに遠心分離機等で濃縮して、次の処理工程に供給してもよい。可溶化処理装置18に供給する水酸化ナトリウムなどの公知のアルカリ剤の所要量が、汚泥濃縮度に反比例して増加するので、可能な限り、固形物濃度の高い汚泥を可溶化処理装置18に供給することが、望ましいからである。   After the organic matter in the raw water is decomposed by the aerobic microorganisms, it flows into the settling tank 14 and the activated sludge is settled to become clear treated water. The treated water flows out from the upper part of the settling tank 14 and the treated water channel. Instead of the precipitation tank 14, a known solid-liquid separation means such as centrifugation, flotation separation, membrane separation such as UF membrane or MF membrane, etc. may be used. Further, the precipitated sludge may be further concentrated by a centrifuge or the like and supplied to the next treatment step. Since the required amount of a known alkaline agent such as sodium hydroxide supplied to the solubilizing device 18 increases in inverse proportion to the sludge concentration, sludge having a high solid concentration is added to the solubilizing device 18 as much as possible. It is because it is desirable to supply.

沈殿汚泥は、返送汚泥として、生物処理槽10に返送される。そして、沈殿汚泥の一部は、引抜汚泥として、可溶化処理装置18に供給され、分解、可溶化される。なお、生物処理槽10から汚泥の一部を抜き取り、引抜汚泥とする場合もある。以下、可溶化処理手段として、本発明に基づくアルカリ処理の一実施形態を図3にて説明する。   The precipitated sludge is returned to the biological treatment tank 10 as return sludge. And a part of sedimentation sludge is supplied to the solubilization processing apparatus 18 as drawing sludge, and is decomposed | disassembled and solubilized. In some cases, a part of the sludge is extracted from the biological treatment tank 10 to obtain a drawn sludge. Hereinafter, an embodiment of the alkali treatment based on the present invention will be described with reference to FIG.

図3は本発明の可溶化処理手段の一実施形態の構成を示すブロック図である。引抜汚泥は、汚泥移送ポンプ20によって、急速反応槽(第1の反応槽)22に導入される。急速反応槽の滞留時間は、5〜20分であり、好ましくは10〜20分である。滞留時間は5分より短いと十分なTOC溶出量が得られず、20分を超えると急激なpH低下が起き、十分なTOC溶出効率が得られない。急速反応槽22では、撹拌機24にて撹拌される。撹拌所要動力は0.1〜0.4kW/m3が好ましく、より好ましくは0.2kW/m3程度である。急速反応槽22内では、pHセンサ26の測定値に基づき、アルカリ供給路28から添加されるアルカリによって、pH11.5〜12.5に維持されることが好ましい。アルカリ剤の添加方法は、常時添加してもよいし、定量ずつ逐次添加してもよい。もちろんpH測定値に応じて、添加量を変えて逐次添加してもよい。定量添加する場合の添加濃度は、例えば、水酸化ナトリウム20〜50mMである。 FIG. 3 is a block diagram showing the configuration of one embodiment of the solubilization processing means of the present invention. The drawn sludge is introduced into the rapid reaction tank (first reaction tank) 22 by the sludge transfer pump 20. The residence time of the rapid reaction tank is 5 to 20 minutes, preferably 10 to 20 minutes. If the residence time is shorter than 5 minutes, a sufficient TOC elution amount cannot be obtained, and if it exceeds 20 minutes, a rapid pH drop occurs and sufficient TOC elution efficiency cannot be obtained. In the rapid reaction tank 22, the agitator 24 stirs. The power required for stirring is preferably 0.1 to 0.4 kW / m 3 , more preferably about 0.2 kW / m 3 . In the rapid reaction tank 22, it is preferable to maintain the pH at 11.5 to 12.5 by the alkali added from the alkali supply path 28 based on the measured value of the pH sensor 26. As for the method of adding the alkaline agent, it may be added all the time or may be added successively in a fixed amount. Of course, depending on the measured pH value, the addition amount may be changed and added sequentially. The addition concentration in the case of quantitative addition is, for example, 20 to 50 mM sodium hydroxide.

添加するアルカリ剤としては、水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、水酸化カリウム、炭酸カリウム、水酸化カルシウム等の公知のアルカリ剤が挙げられるが、水酸化ナトリウムが好ましい。また、アルカリ剤は速やかに均一化させるために水溶液の状態で添加することが好ましい。急速反応槽22の内温は、10〜30℃の範囲であることが好ましい。温度が低いと可溶化の進行が遅くなるためである。可溶化(加水分解)速度を速めるため、30℃以上、例えば40〜90℃に加温してもよい。なお、可溶化処理する汚泥量は、余剰汚泥発生量の3〜5倍量程度が好ましい。また、汚泥可溶化の助剤として界面活性剤等の添加剤を添加してもよい。   Examples of the alkali agent to be added include known alkali agents such as sodium hydroxide, sodium carbonate, sodium hydrogen carbonate, potassium hydroxide, potassium carbonate, calcium hydroxide, and sodium hydroxide is preferable. The alkaline agent is preferably added in the form of an aqueous solution in order to make it uniform quickly. The internal temperature of the rapid reaction tank 22 is preferably in the range of 10 to 30 ° C. This is because solubilization progresses slowly when the temperature is low. In order to increase the speed of solubilization (hydrolysis), it may be heated to 30 ° C. or higher, for example, 40 to 90 ° C. The amount of sludge to be solubilized is preferably about 3 to 5 times the amount of excess sludge generated. Moreover, you may add additives, such as surfactant, as an auxiliary | assistant of sludge solubilization.

また、図4に示すように、急速撹拌機34を用いても良く、より短い滞留時間で同様の効果が得られる。ここで、急速撹拌機34としては、ラインミキサなどのスタティックミキサ、ライン分散機、高速分散混合機、乳化分散機等が使用できる。特に、汚泥送泥ラインに直接設置できるラインミキサなどのスタティックミキサが好ましい。例えば、汚泥が流れる管内に羽根(各種形状が採用可能である)を多数設けたタイプのものなどを採用することができる。また、好ましくは1.0〜5.0kgf/cm2の圧力下で汚泥を分散し、アルカリを混合することができるスタティックミキサであることが好ましい。急速撹拌機34による処理、例えばラインミキサによる処理は、ワンパスによる処理であっても良いし、循環させ複数回、例えば、2〜20回、好ましくは5〜10回通過させて処理しても良い。 Moreover, as shown in FIG. 4, you may use the rapid stirrer 34 and the same effect is acquired with shorter residence time. Here, as the rapid agitator 34, a static mixer such as a line mixer, a line disperser, a high-speed dispersion mixer, an emulsification disperser, or the like can be used. In particular, a static mixer such as a line mixer that can be directly installed in the sludge feed mud line is preferable. For example, a type in which a large number of blades (various shapes can be used) are provided in a pipe through which sludge flows can be used. Moreover, it is preferable that it is a static mixer which can disperse sludge under the pressure of 1.0-5.0 kgf / cm < 2 >, and can mix an alkali. The treatment by the rapid stirrer 34, for example, the treatment by the line mixer, may be a one-pass treatment, or may be circulated for a plurality of times, for example, 2 to 20 times, preferably 5 to 10 times. .

短い滞留時間で効果が得られる理由としては、フロックが固まりになっているのを急速撹拌によりバラバラにすることができ、フロックへのアルカリの接触効率が上がることにより、よりスムーズに細胞壁の破壊が行われるためと考えられる。   The reason why the effect can be obtained with a short residence time is that the flocs can be separated by rapid stirring, and the contact efficiency of alkali to the flocs increases, so that the cell wall can be broken more smoothly. It is thought to be done.

また、図5に示すように、急速撹拌機34と急速反応槽22を直列に配置して併用しても良く、これにより、よりさらに可溶化効果が上がるので好ましい。つまり、例えば、図3に示す構成で、急速反応槽22で20分処理してもよいし、図4に示す構成で、急速撹拌機で10パス処理してもよいし、図5に示す構成で、急速撹拌機で1パス処理した後、急速反応槽で20分処理してもよい。 Moreover, as shown in FIG. 5, the rapid stirrer 34 and the rapid reaction tank 22 may be arranged in series and used in combination, which is preferable because the solubilizing effect is further increased. That is, for example, in the configuration shown in FIG. 3, the treatment may be performed in the rapid reaction tank 22 for 20 minutes, in the configuration shown in FIG. Then, after one pass treatment with a rapid stirrer, treatment may be performed for 20 minutes in a rapid reaction vessel.

スタティックミキサ使用時のアルカリ剤の添加は、汚泥のスタティックミキサ導入前でも、ミキサのライン中でもかまわないが、導入前に行われることが好ましい。pHの測定はミキサのライン中でも、急速反応槽中でも、緩速反応槽中でもかまわない。アルカリ剤の添加方法は上述の通りである。   The addition of the alkaline agent when using the static mixer may be performed before the introduction of the sludge static mixer or in the mixer line, but is preferably performed before the introduction. The pH can be measured in the mixer line, in the rapid reaction tank, or in the slow reaction tank. The method for adding the alkaline agent is as described above.

本実施形態において、急速反応槽22内または急速撹拌機34内では、活性汚泥を構成する種々の微生物の細胞壁構成成分(タンパク質など)が高pH条件下(pH11.5以上)で変性し細胞壁に損傷が生じて破壊され、細胞壁内外の浸透圧の差によって細胞内成分が溶出し、微生物が死滅して、最も効率的な可溶化効果が得られる。   In the present embodiment, in the rapid reaction tank 22 or the rapid stirrer 34, cell wall components (proteins, etc.) of various microorganisms constituting the activated sludge are denatured under high pH conditions (pH 11.5 or more) and become cell walls. Damage is caused and destroyed, intracellular components are eluted by the difference in osmotic pressure inside and outside the cell wall, and microorganisms are killed to obtain the most efficient solubilizing effect.

急速反応槽22および急速撹拌機34の少なくとも一方で処理された汚泥は、緩速反応槽(第2の反応槽)30へ流入する。緩速反応槽30では、急速反応槽22で溶出した成分および微生物表層部の多糖類からなる粘膜質が低分子化、低粘性化することで、緩やかに可溶化が進行し、より微生物により分解されやすい状態となる。この反応に伴いpHが低下する。ここで、緩速反応槽30の滞留時間は、急速反応槽22の滞留時間の3〜5倍、つまり15分〜100分であることが好ましく、30分〜100分であることがより好ましい。緩速反応槽30の内温は、10〜30℃の範囲であることが好ましい。温度が低いと可溶化の進行が遅くなるためである。可溶化速度を速めるため、30℃以上、例えば40〜60℃に加温してもよい。緩速反応槽30では撹拌機32により撹拌され、撹拌速度は、急速反応槽22の撹拌機24の撹拌速度より小さく設定されることが好ましく、撹拌機32の撹拌所要動力は0.05〜0.2kW/m、例えば0.1kW/m程度であることが好ましい。この緩速反応槽30で処理された汚泥が返送可溶化汚泥として生物処理槽10に流入し、分解されることで余剰汚泥の発生量を大幅に低減することができる。 Sludge treated at least one of the rapid reaction tank 22 and the rapid stirrer 34 flows into a slow reaction tank (second reaction tank) 30. In the slow reaction tank 30, the components eluted in the rapid reaction tank 22 and the mucosal material composed of polysaccharides on the surface of the microorganism are reduced in molecular weight and viscosity, so that the solubilization proceeds slowly and is further decomposed by microorganisms. It becomes easy to be done. The pH decreases with this reaction. Here, the residence time of the slow reaction tank 30 is preferably 3 to 5 times the residence time of the rapid reaction tank 22, that is, 15 minutes to 100 minutes , and more preferably 30 minutes to 100 minutes. The internal temperature of the slow reaction tank 30 is preferably in the range of 10 to 30 ° C. This is because solubilization progresses slowly when the temperature is low. In order to increase the solubilization rate, the temperature may be increased to 30 ° C or higher, for example, 40 to 60 ° C. The slow reaction tank 30 is stirred by the stirrer 32, and the stirring speed is preferably set smaller than the stirring speed of the stirrer 24 of the rapid reaction tank 22, and the power required for stirring of the stirrer 32 is 0.05-0. It is preferably about 2 kW / m 3 , for example, about 0.1 kW / m 3 . The sludge treated in the slow reaction tank 30 flows into the biological treatment tank 10 as a return solubilized sludge and is decomposed, so that the amount of excess sludge generated can be greatly reduced.

汚泥の可溶化処理は、汚泥中の微生物細菌の細胞壁等の細菌表面構造を破壊し、細胞質を溶出させ、微生物で分解させる形となった栄養分(BOD成分)とするものである。発明者はより効率的な処理を検討したところ、pHの低下と溶出TOCとの関係に顕著な変化があることを見出した。pHの低下と溶出TOCとの関係を図6に示す。図6からわかるようにアルカリ処理開始直後〜20分頃までは、TOC(全有機炭素)溶出率が高いにもかかわらずpHの低下はほとんど起きないが、20分を過ぎるあたりになるとpHの低下が急激に起きTOCの溶出率も下がる。つまり、可溶化処理開始直後〜20分付近を境に、現象が急激に変化していくことがわかった。 In the sludge solubilization treatment, a bacterial surface structure such as a cell wall of microbial bacteria in the sludge is destroyed, the cytoplasm is eluted, and a nutrient (BOD component) is formed that is decomposed by microorganisms. The inventor has examined a more efficient treatment and found that there is a marked change in the relationship between the decrease in pH and the eluted TOC. The relationship between the decrease in pH and the eluted TOC is shown in FIG. Until around ~ 20 minutes after alkaline treatment started as can be seen from FIG. 6, TOC (total organic carbon) While the decrease in the dissolution rate is higher even though pH hardly occur, lowering the pH becomes around past the 20 minutes Suddenly occurs and the elution rate of TOC also decreases. In other words, it was found that the phenomenon changes suddenly immediately after the start of the solubilization process and around 20 minutes.

本発明者らは、可溶化処理において、可溶化処理開始直後〜20分までの間に、汚泥中の微生物細菌の細胞壁を破壊し、細胞内物質を溶出する工程が顕著に行われ、20分過ぎたあたりから破壊され溶出してきた細胞質を加水分解等で低分子化する工程が顕著に行われることを見出し、細胞膜破壊溶出工程(第1工程)の区域と細胞質溶出・低分子化工程(第2工程)の区域を別々に設けることにより、非常に短時間で効率的な処理を可能とした。 The present inventors have found that in solubilization treatment, until ~ 20 minutes immediately after the start solubilization treatment to disrupt the cell walls of the microorganisms bacteria in the sludge, eluting the intracellular material takes place remarkably, 20 minutes It was found that the process of reducing the molecular weight of the cytoplasm that had been destroyed and eluted from the past by hydrolysis etc. was markedly performed, and the area of the cell membrane disruption elution process (first process) and the cytosolic elution / lowering process (first process) By providing separate areas for (2 steps), efficient processing was possible in a very short time.

つまり、可溶化反応は、アルカリ剤添加直後〜20分程度で最も効率的に微生物の細胞壁を破壊して細胞内成分を溶出させる第一段階と、その後、緩やかに溶出が持続する第二段階とに分けることができる。すなわち、本実施形態における急速反応槽22が可溶化反応の第一段階に相当し、緩速反応槽30が第二段階に相当する。急速反応槽22では、pHはほとんど低下することなく、高pH条件下(pH11.5以上)で、急激に有機物を溶出させることができる。緩速反応槽30では、緩やかに溶出が継続する。従来のように、長時間、単一の槽で反応を進行させた場合には、溶出に伴うpHの低下により、溶出効率が低下する。 In other words, the solubilization reaction consists of a first stage in which the cell walls of microorganisms are most efficiently destroyed and the intracellular components are eluted in about 20 minutes immediately after the addition of the alkaline agent, and then the second stage in which elution is gradually sustained. Can be divided into That is, the rapid reaction tank 22 in this embodiment corresponds to the first stage of the solubilization reaction, and the slow reaction tank 30 corresponds to the second stage. In the rapid reaction tank 22, the organic matter can be rapidly eluted under high pH conditions (pH 11.5 or more) with almost no drop in pH. In the slow reaction tank 30, elution is continued gradually. When the reaction is allowed to proceed in a single tank for a long time as in the prior art, the elution efficiency decreases due to the decrease in pH associated with elution.

また、急速撹拌機34で、フロックを分散させながらアルカリ剤と反応させることによって、より短時間で、上述の急速反応槽22と同様の効果が得られる。汚泥中の微生物はその他の物質とともに固まり(フロック)となって存在している。ここで、急速撹拌機による処理は、フロックを分散して微細化することにより、効率的に微生物をアルカリ反応させることができるため、より短時間での処理が可能であると考えられ、加熱、加圧、キャビテーション、ビーズミル、超音波などの手法と比べると、本実施形態の必要なエネルギー量は圧倒的に小さい。   Moreover, the effect similar to the above-mentioned rapid reaction tank 22 is acquired in a shorter time by making it react with an alkali agent, disperse | distributing a floc with the rapid stirrer 34. FIG. Microorganisms in the sludge exist together with other substances as flocs. Here, the treatment with the rapid stirrer is considered to be able to perform the reaction in a shorter time because the microorganisms can be efficiently alkali-reacted by dispersing and miniaturizing the floc, and heating, Compared with techniques such as pressurization, cavitation, bead mill, and ultrasonic waves, the amount of energy required for this embodiment is overwhelmingly small.

この可溶化処理された汚泥は返送可溶化汚泥として、生物処理槽10へ返送され、好気性微生物により、CO2とH2Oに生物学的に分解される。ここで、生物処理槽10へのBOD負荷は、流入する原水のBODと可溶化汚泥のBODの合計量に基づいて、設計し、処理水質の悪化をあらかじめ防止するようにしておくことが好ましい。 This solubilized sludge is returned to the biological treatment tank 10 as a return solubilized sludge and biologically decomposed into CO 2 and H 2 O by aerobic microorganisms. Here, it is preferable that the BOD load on the biological treatment tank 10 is designed based on the total amount of the BOD of the raw water flowing in and the BOD of the solubilized sludge so as to prevent the deterioration of the treated water quality in advance.

また、可溶化処理、つまり急速反応槽22および緩速反応槽30による処理は上述のような連続処理でもよいが、バッチ処理でもよい。バッチ処理の場合は、急速反応槽22に引抜汚泥を移送した後、汚泥を撹拌しながらアルカリ剤を添加し、所定のpHに調整し、所定時間撹拌を行う急速反応工程後、緩速反応槽30に移送してさらに所定時間撹拌を行う緩速反応工程を行う。反応後、可溶化した汚泥を生物処理槽10等へ移送する。急速反応工程と緩速反応工程はこのように別々の槽で行ってもよいが、一つの槽で行ってもよい。   Further, the solubilization process, that is, the process in the rapid reaction tank 22 and the slow reaction tank 30, may be a continuous process as described above, but may be a batch process. In the case of batch processing, after the drawn sludge is transferred to the rapid reaction tank 22, an alkaline agent is added while stirring the sludge, adjusted to a predetermined pH, and after a rapid reaction step in which stirring is performed for a predetermined time, a slow reaction tank. And a slow reaction step in which the mixture is further stirred for a predetermined time. After the reaction, the solubilized sludge is transferred to the biological treatment tank 10 or the like. The rapid reaction step and the slow reaction step may be performed in separate tanks as described above, but may be performed in one tank.

緩速反応槽30の容量は急速反応槽(第1の反応槽)22の容量よりも大きいことが好ましく、緩速反応槽30の容量は急速反応槽22の3倍から5倍であることがより好ましい。また、緩速反応槽(第2の反応槽)30は、内部を複数に区切った構造にしてもよい。複数に区切ることで、上流の槽から下流の槽へ段階的にpHが低下していくことになり、より効率的な加水分解反応が起こる。また、緩速反応槽30は、槽容量が大きく、汚泥の粘度も高いので槽全体を完全に混合させることが困難になりがちであるが、複数に区切り多段にすることでより完全に混合され加水分解が進行し易い。   The capacity of the slow reaction tank 30 is preferably larger than the capacity of the rapid reaction tank (first reaction tank) 22, and the capacity of the slow reaction tank 30 is 3 to 5 times that of the rapid reaction tank 22. More preferred. Further, the slow reaction tank (second reaction tank) 30 may have a structure in which the inside is divided into a plurality of parts. By dividing into a plurality, the pH gradually decreases from the upstream tank to the downstream tank, and a more efficient hydrolysis reaction occurs. Further, the slow reaction tank 30 has a large tank capacity and a high viscosity of sludge, so it tends to be difficult to mix the whole tank completely. Hydrolysis is likely to proceed.

また、可溶化汚泥は、例えば、可溶化処理装置18の後に設けた中和槽内において、酸を添加して中和してもよい。添加する酸としては、硫酸、塩酸、りん酸等の公知の酸が挙げられるが、硫酸が好ましい。また、急激な中和反応を避けるため、酸は5%〜30%、好ましくは10%〜20%の水溶液として添加することが好ましい。このとき、添加される酸の量は生物処理槽10に設けられたpHセンサによる測定値によって決定され、pHの範囲は6.5〜8.5を維持することが好ましい。中和された汚泥は生物処理槽10に返送され、生物処理槽10内の活性汚泥によって、同様に分解される。可溶化汚泥の中和反応は中和槽で行ってもよいが、生物処理槽10に酸を添加して中和してもよい。   Further, the solubilized sludge may be neutralized by adding an acid, for example, in a neutralization tank provided after the solubilizer 18. Examples of the acid to be added include known acids such as sulfuric acid, hydrochloric acid, and phosphoric acid, and sulfuric acid is preferred. In order to avoid a rapid neutralization reaction, the acid is preferably added as an aqueous solution of 5% to 30%, preferably 10% to 20%. At this time, the amount of acid to be added is determined by a measured value by a pH sensor provided in the biological treatment tank 10, and the pH range is preferably maintained at 6.5 to 8.5. The neutralized sludge is returned to the biological treatment tank 10 and similarly decomposed by the activated sludge in the biological treatment tank 10. The neutralization reaction of the solubilized sludge may be performed in a neutralization tank, but may be neutralized by adding an acid to the biological treatment tank 10.

また、原水が酸性を示すために、原水調整槽等の前処理設備にてアルカリを添加して中和する必要がある場合は、可溶化汚泥を原水調整槽等に返送してもよい。その際にはpHセンサを原水調整槽等に設けてもよい。pHが所定のpH以上に上昇するようであれば測定値を基に酸を添加してもよい。   Moreover, since it is necessary to neutralize the raw water by adding alkali in a pretreatment facility such as a raw water adjustment tank in order to show acidity, the solubilized sludge may be returned to the raw water adjustment tank or the like. In that case, a pH sensor may be provided in the raw water adjustment tank or the like. An acid may be added based on the measured value if the pH rises above a predetermined pH.

さらに、上記可溶化手段により可溶化された汚泥、または、上記酸添加手段により酸添加された汚泥のうち少なくとも一部を濃縮、脱水等の処理を行い、余剰汚泥としてもよい。   Further, at least a part of the sludge solubilized by the solubilizing means or the sludge added with the acid by the acid adding means may be subjected to a treatment such as concentration, dehydration, or the like to obtain surplus sludge.

本発明の有機性排水処理方法および処理装置は、有機性排水を処理するところであれば特に制限なく使用されるが、特に、下水、浄化槽、食品工場排水など有機物が多く無機物が比較的少ない排水に対して好適に使用できる。   The organic wastewater treatment method and treatment apparatus of the present invention can be used without particular limitation as long as it treats organic wastewater, and in particular, wastewater containing a large amount of organic matter such as sewage, septic tank, and food factory wastewater, and relatively little inorganic matter. It can be preferably used.

以下に実施例を挙げて本発明をより具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist.

(実験例1)
活性汚泥(MLSS:10000mg/L)を流量30mL/minで第1の反応槽(0.6L)に導入し、温度20℃にて、NaOH水溶液(30mM)および界面活性剤(50mg/L、セピアD200:オルガノ製)を連続添加してpH=12.0を維持しながら、20分間滞留させた。20分間滞留後、第1の反応槽と直列に配置された第2の反応槽(3.0L)に移送し、100分間滞留させた。100分後、第2の反応槽のpHは11.5まで低下した。溶出TOCは110mg・TOC/g・SSであった。
(Experimental example 1)
Activated sludge (MLSS: 10000 mg / L) was introduced into the first reaction vessel (0.6 L) at a flow rate of 30 mL / min, and at a temperature of 20 ° C., an aqueous NaOH solution (30 mM) and a surfactant (50 mg / L, Sepia D200 (manufactured by Organo) was continuously added to maintain the pH = 12.0 and allowed to stay for 20 minutes. After staying for 20 minutes, it was transferred to a second reaction tank (3.0 L) arranged in series with the first reaction tank and allowed to stay for 100 minutes. After 100 minutes, the pH of the second reactor dropped to 11.5. The eluted TOC was 110 mg · TOC / g · SS.

(比較例1)
活性汚泥(MLSS:10000mg/L)を流量30mL/minで反応槽(10.8L)に導入し、温度20℃にて、NaOH水溶液(30mM)および界面活性剤(50mg/L、セピアD200:オルガノ製)を連続添加してpH=11.1を維持しながら、6時間滞留させた。6時間後、溶出TOCは102mg・TOC/g・SSであった。実験例1は比較例1に比べて、1/3の滞留時間にもかかわらず、同等以上の溶出効果が得られた。
(Comparative Example 1)
Activated sludge (MLSS: 10000 mg / L) was introduced into the reaction vessel (10.8 L) at a flow rate of 30 mL / min, and at a temperature of 20 ° C., an aqueous NaOH solution (30 mM) and a surfactant (50 mg / L, Sepia D200: Organo The product was allowed to stay for 6 hours while maintaining pH = 11.1. After 6 hours, the eluted TOC was 102 mg · TOC / g · SS. Compared with Comparative Example 1, Experimental Example 1 showed an elution effect equal to or higher than that of 1/3.

(実験例2)
活性汚泥(MLSS:約10000mg/L)を汚泥可溶化槽に導入し、温度20℃にて、25%NaOH水溶液を添加し、pH=12.0に調整した(初期にpH調整を行ったのみで、その後は調整せず)。NaOH添加後の溶出TOCを経過時間ごとにTOC計(島津製作所製 TOC−5000)により測定した。測定した結果を図7に示す。またこのときの経過時間に伴う可溶化槽内のpHの変化を図8に示す。時間とともにpHが低下していることがわかる。
(Experimental example 2)
Activated sludge (MLSS: about 10000 mg / L) was introduced into the sludge solubilization tank, and at a temperature of 20 ° C., a 25% NaOH aqueous solution was added to adjust the pH to 12.0 (only the pH was adjusted initially). And then no adjustments). The elution TOC after NaOH addition was measured with a TOC meter (TOC-5000, manufactured by Shimadzu Corporation) for each elapsed time. The measurement results are shown in FIG. Moreover, the change of pH in the solubilization tank accompanying the elapsed time at this time is shown in FIG. It can be seen that the pH decreases with time.

(比較例2)
活性汚泥(MLSS:約10000mg/L)を汚泥可溶化槽に導入し、温度20℃にて、25%NaOH水溶液を添加して、pH=11.0を6時間にわたり維持するように調整した。6時間経過後の添加したNaOH水溶液の総量は実験例2にて初期に添加したNaOH水溶液の量の約2割多くなった。溶出TOCを最初にNaOHを添加してからの経過時間ごとに測定した。測定した結果を図7に示す。またこのときの経過時間に伴う可溶化槽内のpHの変化を図8に示す。図7より明らかなように、経過時間ごとの溶出TOC量は、実験例2に比較して低いものであった(2時間経過後で100.0に対して72.0、6時間経過後で110.0に対して98.0)。なお、図8より、槽内のpHはほぼ一定に保たれている。
(Comparative Example 2)
Activated sludge (MLSS: about 10,000 mg / L) was introduced into a sludge solubilization tank, and at a temperature of 20 ° C., a 25% NaOH aqueous solution was added to adjust the pH = 11.0 to be maintained for 6 hours. The total amount of the aqueous NaOH solution added after 6 hours was about 20% larger than the amount of the aqueous NaOH solution added initially in Experimental Example 2. The eluted TOC was measured every time elapsed since the first addition of NaOH. The measurement results are shown in FIG. Moreover, the change of pH in the solubilization tank accompanying the elapsed time at this time is shown in FIG. As is clear from FIG. 7, the amount of eluted TOC for each elapsed time was lower than that in Experimental Example 2 (72.0 after 2 hours and 72.0, after 6 hours passed). 98.0 vs. 110.0). From FIG. 8, the pH in the tank is kept substantially constant.

(実験例3)
活性汚泥(MLSS:約10000mg/L)に、温度20℃にて、25%NaOH水溶液を添加し、pH=12.0に調整した(初期にpH調整を行ったのみで、その後は調整せず)。調整後、ラインミキサにより送水圧:2.0kgf/cm2にて5パス処理を行い、汚泥可溶化槽に導入した。NaOH添加後の溶出TOCを経過時間ごとに測定した。測定した結果を図9に示す。図9より明らかなように、実験例2に比較して、ラインミキサ処理直後の溶出TOC量が高くなっている(初期溶出TOC:3.0に対して、90.0)。また、6時間経過後も、実験例2に対して高くなっており、ラインミキサの効果が現れている。
(Experimental example 3)
To activated sludge (MLSS: about 10000 mg / L), 25% NaOH aqueous solution was added at a temperature of 20 ° C., and adjusted to pH = 12.0 (only pH adjustment was performed at the initial stage, and no adjustment was made thereafter) ). After the adjustment, a 5-pass treatment was performed with a line mixer at a water supply pressure of 2.0 kgf / cm 2 and the mixture was introduced into a sludge solubilization tank. The eluted TOC after adding NaOH was measured at each elapsed time. The measurement results are shown in FIG. As is clear from FIG. 9, the amount of elution TOC immediately after the line mixer treatment is higher than that of Experimental Example 2 (initial elution TOC: 3.0 vs. 90.0). In addition, even after the lapse of 6 hours, Ri your higher against Experimental Example 2, the effect of the line mixer has emerged.

本発明により、工業排水や生活排水などの有機性排水、特に、下水、浄化槽、食品工場排水など有機物が多く無機物が比較的少ない有機性排水の処理装置および処理方法を提供する。本発明によれば、従来法に比べて低エネルギーで、非常に短時間に汚泥を可溶化処理することが可能である。   The present invention provides a treatment apparatus and treatment method for organic wastewater such as industrial wastewater and domestic wastewater, particularly organic wastewater containing a large amount of organic matter such as sewage, septic tank, and food factory wastewater and relatively little inorganic matter. According to the present invention, it is possible to solubilize sludge in a very short time with low energy compared to the conventional method.

従来の有機性排水処理の処理フローを示す図である。It is a figure which shows the processing flow of the conventional organic waste water treatment. 本発明の有機性排水処理装置の一実施形態の構成を示す図である。It is a figure which shows the structure of one Embodiment of the organic waste water treatment equipment of this invention. 本発明の有機性排水処理装置における可溶化処理装置の一実施形態の構成を示す図である。It is a figure which shows the structure of one Embodiment of the solubilization processing apparatus in the organic waste water treatment apparatus of this invention. 本発明の有機性排水処理装置における可溶化処理装置の別の実施形態の構成を示す図である。It is a figure which shows the structure of another embodiment of the solubilization processing apparatus in the organic waste water treatment apparatus of this invention. 本発明の有機性排水処理装置における可溶化処理装置のさらに別の実施形態の構成を示す図である。It is a figure which shows the structure of another embodiment of the solubilization processing apparatus in the organic waste water treatment apparatus of this invention. 本発明の一実施形態における、[OH-]の消費量と溶出TOCの関係を示す図である。It is a figure which shows the relationship between the consumption of [OH < - >] and elution TOC in one Embodiment of this invention. 本発明の実験例2および比較例2における、経過時間と溶出TOCの関係を示す図である。It is a figure which shows the relationship between elapsed time and elution TOC in Experimental example 2 and Comparative example 2 of this invention. 本発明の実験例2および比較例2における、経過時間とpHの関係を示す図である。It is a figure which shows the relationship between elapsed time and pH in Experimental example 2 and Comparative example 2 of this invention. 本発明の実験例2および実験例3における、経過時間と溶出TOCの関係を示す図である。It is a figure which shows the relationship between elapsed time and elution TOC in Experimental example 2 and Experimental example 3 of this invention.

符号の説明Explanation of symbols

1,3 有機性排水処理装置、10 生物処理槽、12 ブロア、14 沈殿槽、16 返送汚泥ポンプ、18 可溶化処理装置、20 汚泥移送ポンプ、22 急速反応槽(第1の反応槽)、24 撹拌機、26 pHセンサ、28 アルカリ供給路、30 緩速反応槽(第2の反応槽)、32 撹拌機、34 急速撹拌機。   1,3 Organic wastewater treatment equipment, 10 Biological treatment tank, 12 Blower, 14 Precipitation tank, 16 Return sludge pump, 18 Solubilization treatment equipment, 20 Sludge transfer pump, 22 Rapid reaction tank (first reaction tank), 24 Stirrer, 26 pH sensor, 28 alkali supply path, 30 slow reaction tank (second reaction tank), 32 stirrer, 34 rapid stirrer.

Claims (6)

有機性排水を微生物により処理する生物処理手段と、
前記生物処理手段からの生物処理水を固液分離処理し、固形分が除去された処理水を排出する固液分離手段と、
前記固液分離手段で分離された汚泥を前記生物処理手段へ返送する分離汚泥返送手段と、
を有する有機性排水の処理装置であって、
さらに、前記固液分離手段で分離された汚泥の少なくとも一部を受け取り、アルカリ剤を添加し、可溶化させる可溶化手段と、
前記可溶化手段で可溶化された汚泥を、前記生物処理手段へ返送する可溶化汚泥返送手段と、
を有し、
前記可溶化手段は、直列に配置された、第1の反応槽と、それに続く第2の反応槽と、からなり、
前記第1の反応槽において、前記アルカリ剤を添加して前記汚泥のpHを11.5〜12.5の範囲に制御し、前記汚泥を5〜20分間滞留せしめた後、前記第2の反応槽に移送し、
前記第2の反応槽において一定時間滞留させて前記汚泥を処理することを特徴とする有機性排水処理装置。
Biological treatment means for treating organic wastewater with microorganisms;
Solid-liquid separation means for subjecting the biologically treated water from the biological treatment means to solid-liquid separation, and discharging the treated water from which the solid content has been removed,
A separation sludge return means for returning the sludge separated by the solid-liquid separation means to the biological treatment means;
An organic wastewater treatment apparatus having
Furthermore, a solubilization means for receiving at least a part of the sludge separated by the solid-liquid separation means, adding an alkaline agent, and solubilizing;
Solubilized sludge return means for returning the sludge solubilized by the solubilizing means to the biological treatment means;
Have
The solubilizing means is composed of a first reaction tank and a second reaction tank following the first reaction tank, which are arranged in series.
In the first reaction tank, the alkaline agent is added to control the pH of the sludge within a range of 11.5 to 12.5, and the sludge is allowed to stay for 5 to 20 minutes, and then the second reaction. Transferred to the tank,
An organic wastewater treatment apparatus, wherein the sludge is treated by staying in the second reaction tank for a certain period of time.
有機性排水を微生物により処理する生物処理手段と、
前記生物処理手段からの生物処理水を固液分離処理し、固形分が除去された処理水を排出する固液分離手段と、
前記固液分離手段で分離された汚泥を前記生物処理手段へ返送する分離汚泥返送手段と、
を有する有機性排水処理装置であって、
さらに、前記固液分離手段で分離された汚泥の少なくとも一部を受け取り、アルカリ剤を添加し、可溶化させる可溶化手段と、
前記可溶化手段で可溶化された汚泥を、前記生物処理手段へ返送する可溶化汚泥返送手段と、
を有し、
前記可溶化手段は、直列に配置された、管内に複数の羽根を設けたスタティックミキサと、それに続く反応槽と、からなり、
前記アルカリ剤を前記汚泥に添加してpH11.5〜12.5の範囲にした後、前記スタティックミキサで処理し、その後、前記反応槽に移送して一定時間滞留させることを特徴とする有機性排水処理装置。
Biological treatment means for treating organic wastewater with microorganisms;
Solid-liquid separation means for subjecting the biologically treated water from the biological treatment means to solid-liquid separation, and discharging the treated water from which the solid content has been removed,
A separation sludge return means for returning the sludge separated by the solid-liquid separation means to the biological treatment means;
An organic wastewater treatment device having
Furthermore, a solubilization means for receiving at least a part of the sludge separated by the solid-liquid separation means, adding an alkaline agent, and solubilizing;
Solubilized sludge return means for returning the sludge solubilized by the solubilizing means to the biological treatment means;
Have
The solubilizing means comprises a static mixer having a plurality of blades arranged in a tube, and a reaction vessel following the static mixer.
After adding the alkaline agent to the sludge to make the pH in the range of 11.5 to 12.5, treating with the static mixer, and then transferring to the reaction vessel and retaining for a certain period of time. Wastewater treatment equipment.
請求項に記載の有機性排水処理装置であって、
前記反応槽は、直列に配置された、第1の反応槽と、それに続く第2の反応槽と、からなり、
前記第1の反応槽において、pH11.5〜12.5の範囲に制御して前記汚泥を処理した後、前記第2の反応槽に移送し、
前記第2の反応槽において、一定時間滞留させて前記汚泥を処理することを特徴とする有機性排水処理装置。
The organic waste water treatment apparatus according to claim 2 ,
The reaction tank is composed of a first reaction tank and a second reaction tank that are arranged in series, which are arranged in series.
In the first reaction tank, the sludge is treated in a pH range of 11.5 to 12.5, and then transferred to the second reaction tank.
An organic wastewater treatment apparatus, wherein the sludge is treated for a certain period of time in the second reaction tank.
請求項1乃至のいずれか1に記載の有機性排水処理装置であって、
前記反応槽または前記第2の反応槽において、前記汚泥の滞留時間は15分〜100分であることを特徴とする有機性排水処理装置。
An organic wastewater treatment apparatus according to any one of claims 1 to 3 ,
In the said reaction tank or the said 2nd reaction tank, the residence time of the said sludge is 15 minutes- 100 minutes , The organic waste water treatment apparatus characterized by the above-mentioned.
請求項1乃至のいずれか1に記載の有機性排水処理装置であって、
さらに、前記可溶化手段により可溶化された汚泥に酸を添加する酸添加手段と、
前記酸添加手段により酸添加された汚泥を、前記生物処理手段へ返送する酸添加汚泥返送手段と、
を有することを特徴とする有機性排水処理装置。
The organic waste water treatment apparatus according to any one of claims 1 to 4 ,
Furthermore, an acid addition means for adding an acid to the sludge solubilized by the solubilization means,
Acid-added sludge return means for returning the sludge added with acid by the acid addition means to the biological treatment means;
An organic wastewater treatment apparatus characterized by comprising:
有機性排水を微生物により処理する生物処理工程と、
前記生物処理工程からの生物処理水を固液分離処理し、固形分が除去された処理水を排出する固液分離工程と、
前記固液分離工程で分離された汚泥を前記生物処理手段へ返送する分離汚泥返送工程と、
を有する有機性排水処理方法であって、
さらに、前記固液分離工程で分離された汚泥の少なくとも一部にアルカリ剤を添加し、可溶化させる可溶化工程と、
前記可溶化工程で可溶化された汚泥を、前記生物処理工程へ返送する可溶化汚泥返送工程と、
を有し、
前記可溶化工程は、
前記アルカリ剤を添加して、前記汚泥のpHを11.5〜12.5に制御し、前記汚泥を5〜20分間滞留せしめた後、移送する第1の工程と、
前記汚泥を、第1の工程での滞留時間の3〜5倍滞留させて処理する第2の工程と、
を含むことを特徴とする有機性排水処理方法。
A biological treatment process for treating organic wastewater with microorganisms;
A solid-liquid separation step of subjecting the biologically treated water from the biological treatment step to solid-liquid separation, and discharging the treated water from which the solid content has been removed;
A separated sludge return step for returning the sludge separated in the solid-liquid separation step to the biological treatment means;
An organic wastewater treatment method comprising:
Furthermore, a solubilization step of adding an alkali agent to at least a part of the sludge separated in the solid-liquid separation step and solubilizing;
A solubilized sludge return step for returning the sludge solubilized in the solubilization step to the biological treatment step;
Have
The solubilization step includes:
Adding the alkaline agent, controlling the pH of the sludge to 11.5 to 12.5, retaining the sludge for 5 to 20 minutes, and then transferring the first step;
A second step in which the sludge is treated by retaining 3 to 5 times the residence time in the first step;
An organic wastewater treatment method comprising:
JP2003433943A 2003-12-26 2003-12-26 Organic wastewater treatment apparatus and treatment method Expired - Lifetime JP4627403B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003433943A JP4627403B2 (en) 2003-12-26 2003-12-26 Organic wastewater treatment apparatus and treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003433943A JP4627403B2 (en) 2003-12-26 2003-12-26 Organic wastewater treatment apparatus and treatment method

Publications (2)

Publication Number Publication Date
JP2005186022A JP2005186022A (en) 2005-07-14
JP4627403B2 true JP4627403B2 (en) 2011-02-09

Family

ID=34791168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003433943A Expired - Lifetime JP4627403B2 (en) 2003-12-26 2003-12-26 Organic wastewater treatment apparatus and treatment method

Country Status (1)

Country Link
JP (1) JP4627403B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105198180A (en) * 2015-02-20 2015-12-30 新疆科力新技术发展有限公司 Improved water washing treating-agent and method for realizing standard oily sludge treatment in oil field by employing same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5174360B2 (en) * 2007-02-23 2013-04-03 一般財団法人石油エネルギー技術センター Organic wastewater treatment method
JP5118358B2 (en) * 2007-02-23 2013-01-16 一般財団法人石油エネルギー技術センター Organic wastewater treatment method
JP5981096B2 (en) * 2010-06-02 2016-08-31 日立造船株式会社 Wastewater treatment method and apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01127061A (en) * 1987-11-13 1989-05-19 Fuji Electric Co Ltd Cleaning method for electrostatic precipitator
JPH1034166A (en) * 1996-07-22 1998-02-10 Japan Organo Co Ltd Apparatus for treating fluorine-containing waste water and method therefor
JPH11333500A (en) * 1998-05-26 1999-12-07 Nec Corp Aluminum recovery equipment from aluminum-containing sludge
JP2000317487A (en) * 1999-05-13 2000-11-21 Ebara Corp Treatment of organic sewage
JP2001087789A (en) * 1999-09-22 2001-04-03 Ebara Corp Method and apparatus for treating organic waste water
JP2002326088A (en) * 2001-05-02 2002-11-12 Ebara Corp Method and apparatus for treating phosphorous and cod- containing water
JP2003190984A (en) * 2001-12-28 2003-07-08 Japan Organo Co Ltd Method for treating organic drain

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01127061A (en) * 1987-11-13 1989-05-19 Fuji Electric Co Ltd Cleaning method for electrostatic precipitator
JPH1034166A (en) * 1996-07-22 1998-02-10 Japan Organo Co Ltd Apparatus for treating fluorine-containing waste water and method therefor
JPH11333500A (en) * 1998-05-26 1999-12-07 Nec Corp Aluminum recovery equipment from aluminum-containing sludge
JP2000317487A (en) * 1999-05-13 2000-11-21 Ebara Corp Treatment of organic sewage
JP2001087789A (en) * 1999-09-22 2001-04-03 Ebara Corp Method and apparatus for treating organic waste water
JP2002326088A (en) * 2001-05-02 2002-11-12 Ebara Corp Method and apparatus for treating phosphorous and cod- containing water
JP2003190984A (en) * 2001-12-28 2003-07-08 Japan Organo Co Ltd Method for treating organic drain

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105198180A (en) * 2015-02-20 2015-12-30 新疆科力新技术发展有限公司 Improved water washing treating-agent and method for realizing standard oily sludge treatment in oil field by employing same

Also Published As

Publication number Publication date
JP2005186022A (en) 2005-07-14

Similar Documents

Publication Publication Date Title
CA2109436C (en) Wastewater treatment system
US6605220B2 (en) Apparatus and method for wastewater treatment with enhanced solids reduction (ESR)
JP2007136367A (en) Biological wastewater treatment apparatus and biological wastewater treatment method
JPH0751686A (en) Treatment of sewage
JP4627403B2 (en) Organic wastewater treatment apparatus and treatment method
KR100769997B1 (en) Treatment method of high concentration organic sewage by continuous batch liquid corrosion method
JP2007275846A (en) Wastewater treatment system and wastewater treatment method
AU2002211514A1 (en) Apparatus and method for wastewater treatment with enhanced solids reduction (ESR)
EP4417330A1 (en) Method for treating high-concentration fermentation by-products generated in amino acid fermentation process
JP2007222830A (en) Treatment method of nitrogen-containing organic wastewater, and treatment apparatus for it
KR100710488B1 (en) Apparatus and method for water and wastewater treatment using dissolved ozone flotation and pressurized ozone oxidation
JP2006218344A (en) Oil and fat-containing water treatment method and treatment device, and organic waste treatment method and treatment device
JP2002001384A (en) Method and apparatus for treating organic wastewater
JP2005169268A (en) Excess sludge treatment apparatus and excess sludge treatment method
JP3961246B2 (en) Method and apparatus for treating organic wastewater
CN108137361B (en) Biological treatment method of organic waste water
JP4608057B2 (en) Sludge treatment apparatus and sludge treatment method
JP3877262B2 (en) Organic wastewater treatment method and equipment
JP3472246B2 (en) Excess sludge treatment method
JPS5998800A (en) Biological treatment of waste water containing organic substance
JP4923504B2 (en) Biological treatment method and biological treatment apparatus for organic wastewater
JP3400622B2 (en) Method and apparatus for treating organic sewage
KR101384367B1 (en) Wastewater treatment ultrasonic wave
KR200209356Y1 (en) Apparatus for waste water processing contain heavy metal and a pollutant non decomposition
KR20040020807A (en) Apparatus and method for reducing sludge volume, apparatus and method for treating wastewater using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4627403

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term