JP2007222830A - Treatment method of nitrogen-containing organic wastewater, and treatment apparatus for it - Google Patents
Treatment method of nitrogen-containing organic wastewater, and treatment apparatus for it Download PDFInfo
- Publication number
- JP2007222830A JP2007222830A JP2006049441A JP2006049441A JP2007222830A JP 2007222830 A JP2007222830 A JP 2007222830A JP 2006049441 A JP2006049441 A JP 2006049441A JP 2006049441 A JP2006049441 A JP 2006049441A JP 2007222830 A JP2007222830 A JP 2007222830A
- Authority
- JP
- Japan
- Prior art keywords
- sludge
- tank
- nitrification
- nitrogen
- denitrification
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Activated Sludge Processes (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
- Treatment Of Sludge (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
本発明は、含窒素有機性廃水を活性汚泥処理して廃水中の窒素を除去する処理方法およびそのための処理設備に関するものである。 The present invention relates to a treatment method for treating nitrogen containing organic wastewater with activated sludge to remove nitrogen in the wastewater, and a treatment facility therefor.
従来、硝化工程と脱窒工程からなる生物学的窒素除去法において、脱窒工程における脱窒細菌の水素供与体として破砕や可溶化した汚泥を用いることが行なわれており、例えば、余剰汚泥をアルカリ処理した後、遠心分離し、分離液を脱窒素工程へ返送する方法が例えば特許文献1などで知られている。 Conventionally, in biological nitrogen removal methods consisting of a nitrification process and a denitrification process, sludge that has been crushed or solubilized has been used as a hydrogen donor for denitrifying bacteria in the denitrification process. For example, Patent Document 1 discloses a method of performing centrifugation after alkali treatment and returning the separated liquid to the denitrification step.
しかしながら、硝化工程で重要な役割を果たす硝化細菌は、増殖速度が比較的遅く、硝化細菌を系内で安定的に保持しようとすれば、好気的固形物滞留時間を長くする必要があり、破砕や可溶化量を多くできないため、結果的に汚泥の可溶化による減量効果としては低くなる問題が生じていた。逆に硝化槽の汚泥量に対して破砕や可溶化の汚泥量の比率を大きくして好気的固形物滞留時間を短くすると、特に低温期に硝化細菌を系内に保持することが困難となり、その結果処理水の窒素濃度が高くなるという問題が生じていた。 However, the nitrifying bacteria that play an important role in the nitrification process have a relatively slow growth rate, and if it is intended to stably hold the nitrifying bacteria in the system, it is necessary to increase the aerobic solid residence time, Since the amount of crushing and solubilization cannot be increased, as a result, there has been a problem that the effect of weight reduction by solubilization of sludge is lowered. Conversely, increasing the ratio of sludge for crushing and solubilization to the amount of sludge in the nitrification tank and shortening the aerobic solid residence time makes it difficult to retain nitrifying bacteria in the system, especially in the low temperature period. As a result, there has been a problem that the nitrogen concentration of the treated water becomes high.
このようなことから、通常、硝化槽の汚泥濃度は1,000mg/L〜4,000mg/L程度とするのが適当とされ、余剰汚泥の発生を大幅に減らすと同時に、硝化細菌を系内に安定に保持するためには、硝化槽を大きくするしか方法がなく、そのようにすると設備費用が高くなるとともに、設置面積が大きくなってしまうという問題があった。 For this reason, it is usually appropriate to set the sludge concentration in the nitrification tank to about 1,000 mg / L to 4,000 mg / L, greatly reducing the generation of excess sludge and simultaneously removing nitrifying bacteria in the system. However, there is a method of increasing the nitrification tank in order to stably maintain the nitrification tank, and there is a problem that the equipment cost becomes high and the installation area becomes large.
さらに、硝化槽の汚泥濃度を増加させた場合には、最終沈殿池での固形物負荷が上昇するとともに、汚泥の破砕手段として特に、湿式媒体撹拌式ミルなどの微粉砕機械を用いた場合には、汚泥フロックが分散する傾向を示すために汚泥の分離が困難になっていた。これを解消する手段として最終沈殿池の水面積負荷を低くすることが考えられるが、そのためには最終沈殿槽を大きくすることが必要となり、その結果、設備費用が高くなるとともに設置面積が大きくなるという問題があった。 Furthermore, when the sludge concentration in the nitrification tank is increased, the solid load in the final sedimentation basin is increased, and particularly when a fine grinding machine such as a wet-medium agitating mill is used as a sludge crushing means. The sludge flocs tend to disperse, making it difficult to separate the sludge. It is conceivable to reduce the water area load of the final sedimentation basin as a means to solve this, but for that purpose, it is necessary to enlarge the final sedimentation tank, resulting in high equipment costs and large installation area. There was a problem.
一方、微細な浮遊物までを除去し、水質の向上と施設規模の縮小を目的として、沈殿槽の代わりとして硝化槽に浸漬型膜分離装置を設置して固液分離を行なう膜分離活性汚泥法が例えば特許文献2などで知られている。
On the other hand, a membrane separation activated sludge method that removes fine suspended solids and installs a submerged membrane separator in a nitrification tank instead of a precipitation tank for the purpose of improving water quality and reducing the scale of facilities. Is known, for example, from
しかしながら、このような膜分離活性汚泥法では処理水の微細な浮遊物濃度は低く抑えられる反面、沈殿槽により固液分離する場合と比較して汚泥発生量を少なくすることができなかった。
本発明は、含窒素有機性廃水を生物処理して窒素を除去する方法において、安定した窒素の除去を可能にし、また、発生する余剰汚泥の量を減少させることができ、経済性に優れた含窒素有機性廃水の処理方法およびそのための処理設備を提供することを目的としている。 The present invention is a method for removing nitrogen by biologically treating nitrogen-containing organic wastewater, enabling stable nitrogen removal, and reducing the amount of generated excess sludge, which is excellent in economic efficiency. An object of the present invention is to provide a method for treating nitrogen-containing organic wastewater and a treatment facility therefor.
本発明者らは、上記課題を解決するために、鋭意検討した結果、脱窒槽および/または硝化槽から汚泥を一部抜き出し可溶化して再び脱窒槽および/または硝化槽に戻すとともに、硝化槽に浸漬した膜分離装置により固液分離することにより上記した課題が解決できることを見出し、本発明に到達した。 As a result of intensive investigations to solve the above problems, the present inventors have extracted some sludge from the denitrification tank and / or nitrification tank, solubilized it, and returned it to the denitrification tank and / or nitrification tank. The present inventors have found that the above-mentioned problems can be solved by solid-liquid separation using a membrane separation apparatus immersed in the present invention.
すなわち、本発明の第一は、含窒素有機性廃水を脱窒素工程に導入し、脱窒工程を経た液を次いで硝化工程に導入し、硝化工程を経た硝化液の一部を脱窒素工程に循環させ、硝化液の一部を固液分離して処理水を得る生物学的窒素除去法において、前記固液分離を膜分離装置によって行なうとともに、脱窒工程および/または硝化工程から汚泥を一部抜き出し、可溶化処理を施した後に脱窒工程および/または硝化工程に戻すことを特徴とする含窒素有機性廃水の処理方法を要旨とするものである。 That is, in the first aspect of the present invention, the nitrogen-containing organic wastewater is introduced into the denitrification process, the liquid after the denitrification process is introduced into the nitrification process, and a part of the nitrification liquid after the nitrification process is introduced into the denitrification process. In a biological nitrogen removal method in which a part of the nitrification liquid is circulated and solid-liquid separated to obtain treated water, the solid-liquid separation is performed by a membrane separation apparatus, and sludge is removed from the denitrification process and / or the nitrification process. The gist of the present invention is a method for treating nitrogen-containing organic wastewater, which is characterized by returning to the denitrification step and / or the nitrification step after part extraction and solubilization treatment.
本発明の第二は、含窒素有機性廃水が流入する脱窒槽と、脱窒槽からの液が流入する硝化槽と、硝化槽に浸漬して設けた浸漬型膜分離装置と、硝化槽の槽内液を脱窒槽へ循環させるための循環流路とを備え、脱窒槽および/または硝化槽から引き抜いた汚泥を可溶化するための汚泥可溶化装置とを備えていることを特徴とする含窒素有機性廃水の処理設備を要旨とするものであり、好ましくは、汚泥可溶化装置が、湿式媒体撹拌式ミルである前記の含窒素有機性廃水の処理設備であり、また好ましくは、硝化槽に汚泥濃度を測るための汚泥濃度計が設けられている前記の含窒素有機性廃水の処理設備である。 The second aspect of the present invention is a denitrification tank into which nitrogen-containing organic wastewater flows, a nitrification tank into which liquid from the denitrification tank flows, a submerged membrane separation apparatus provided by being immersed in the nitrification tank, and a tank of the nitrification tank A nitrogen-containing nitrogen stream characterized by comprising a circulation channel for circulating the internal liquid to the denitrification tank, and a sludge solubilizer for solubilizing sludge extracted from the denitrification tank and / or nitrification tank The organic wastewater treatment facility is a gist, preferably, the sludge solubilizer is the above-mentioned nitrogen-containing organic wastewater treatment facility which is a wet medium stirring mill, and preferably, in the nitrification tank. The nitrogen-containing organic wastewater treatment facility is provided with a sludge concentration meter for measuring the sludge concentration.
本発明によれば、浸漬型膜分離装置を用いることによって硝化槽内の汚泥濃度を高濃度に保持できるため、硝化細菌の活性をほとんど低下させずに安定した窒素の除去を可能とすることができ、また、特に硝化槽に設置した汚泥濃度計を用いることにより好気的固形物滞留時間を所定の時間以上に容易に制御することが可能となるため、より安定した窒素の除去が達成できる。また、本発明では浸漬型膜分離装置により処理水を得るため、処理水中のSSを低くでき、それに伴いBOD、CODなどの成分も沈殿槽を有する活性汚泥法と比較して、良好な処理水質を経済的に得ることができる。さらに、本発明によれば脱窒槽および/または硝化槽から汚泥を一部抜き出し可溶化した後、脱窒槽および/または硝化槽に戻すことを行なっているため、余剰汚泥の発生量を安定して減少させることができる。 According to the present invention, since the sludge concentration in the nitrification tank can be maintained at a high concentration by using the submerged membrane separator, it is possible to stably remove nitrogen without substantially reducing the activity of nitrifying bacteria. In addition, the use of a sludge concentration meter installed in the nitrification tank makes it possible to easily control the aerobic solid residence time to a predetermined time or more, thereby achieving more stable nitrogen removal. . In the present invention, since treated water is obtained by the submerged membrane separation apparatus, SS in the treated water can be lowered, and accordingly, components such as BOD and COD have better treated water quality compared to the activated sludge method having a sedimentation tank. Can be obtained economically. Furthermore, according to the present invention, since sludge is partially extracted and solubilized from the denitrification tank and / or nitrification tank and then returned to the denitrification tank and / or nitrification tank, the amount of surplus sludge generated can be stabilized. Can be reduced.
従来の最終沈殿池を有する生物学的窒素除去法においては、硝化槽の汚泥濃度は通常1,000mg/L〜4,000mg/L程度であり、例えば3,000mg/Lとした場合、原水量100m3/日で汚泥発生量が4kg/日の施設において、汚泥可溶化量を12kg/日とし、処理水中のSSおよび余剰汚泥量が0kg/日、硝化細菌の保持のために好気的固形物滞留時間が10日必要であった場合では、1日当たり24時間曝気したときでは必要とされる硝化槽の容積は40m3となる。従って、脱窒槽と硝化槽の容積が同じとすれば、全体で80m3の容積が必要となる。一方、本発明によれば、例えば汚泥濃度を15,000mg/Lとした場合では、硝化槽の容積は8m3、脱窒槽と硝化槽の容積が同じとすれば、全体で16m3の容積でよく、硝化槽の汚泥濃度の逆数に比例して容積は小さくて済むことになる。 In the conventional biological nitrogen removal method having a final sedimentation basin, the sludge concentration in the nitrification tank is usually about 1,000 mg / L to 4,000 mg / L. In a facility with a sludge generation rate of 4 kg / day at 100 m 3 / day, the sludge solubilization amount is 12 kg / day, the SS and surplus sludge amount in the treated water is 0 kg / day, and aerobic solids to retain nitrifying bacteria When the material residence time is 10 days, the required nitrification tank volume is 40 m 3 when aeration is performed for 24 hours per day. Therefore, if the denitrification tank and the nitrification tank have the same volume, a total volume of 80 m 3 is required. On the other hand, according to the present invention, for example, when the sludge concentration is 15,000 mg / L, the volume of the nitrification tank is 8 m 3 , and if the denitrification tank and the nitrification tank have the same volume, the total volume is 16 m 3 . Well, the volume can be reduced in proportion to the inverse of the sludge concentration in the nitrification tank.
本発明において処理の対象となる含窒素有機性廃水としては、通常の活性汚泥法によって処理される有機物を含有する廃水であれば特に限定されるものではなく、下水、し尿、食料品製造業廃水などの産業廃水、汚泥などが挙げられる。 The nitrogen-containing organic wastewater to be treated in the present invention is not particularly limited as long as it contains organic matter treated by a normal activated sludge method. Sewage, human waste, food manufacturing industry wastewater Industrial wastewater, sludge, etc.
以下、本発明の処理方法について図面を参照しながら説明する。
図1において、含窒素有機性廃水1(以下、廃水という)は先ず、脱窒工程が行なわれる脱窒槽2に流入する。ここで、好ましくは攪拌が行なわれ、所定の槽内滞留時間を経る間に槽内の脱窒細菌の働きにより硝酸態窒素または亜硝酸態窒素から分子状窒素が除去される。アンモニア態窒素を含んだ廃水は、次に硝化工程が行なわれる硝化槽3へ送られ、ここでは曝気がされることにより好気条件下で、所定の槽内滞留時間を経る間に槽内の活性汚泥の生物反応によって有機物が分解されるとともに硝化細菌の働きにより硝酸化または亜硝酸化される。次に硝化槽3内に設置されたポンプなどにより、一部の硝化液は硝化槽3から循環流路4を通って脱窒槽2へ戻り、系内を循環する。
The processing method of the present invention will be described below with reference to the drawings.
In FIG. 1, nitrogen-containing organic waste water 1 (hereinafter referred to as waste water) first flows into a
ここで、循環させる硝化液の量としては、通常、廃水導入量の1〜5倍量とし、目的の窒素除去率となるように設定する。
本発明においては、硝化液はまた硝化槽3内に浸漬して設けた浸漬型膜分離装置5に導入され、膜を透過した液が処理水6として系外に排出される。浸漬型膜分離装置5が重力、あるいは吸引ポンプ装置の吸引圧を受けて硝化槽3内の槽内液をろ過し、重力、あるいは吸引ポンプ装置により処理水は系外へ排出される。
Here, the amount of the nitrifying liquid to be circulated is usually set to 1 to 5 times the amount of waste water introduced, and is set so as to achieve the target nitrogen removal rate.
In the present invention, the nitrification liquid is also introduced into a submerged
本発明においては、さらに、脱窒槽2および/または硝化槽3から汚泥を一部抜き出し、汚泥可溶化装置7へ導入し、可溶化した汚泥を再び脱窒槽2および/または硝化槽3へ戻すことを行なう。具体的には例えば、脱窒槽2および/または硝化槽3の汚泥の一部は汚泥供給ポンプを用いて汚泥可溶化装置7に送られ、可溶化して生分解性を高めて脱窒槽2および/または硝化槽3へ返送される。
In the present invention, a part of the sludge is further extracted from the
汚泥可溶化装置7で破砕などの可溶化を施す汚泥の量としては、汚水のBODの同化により増殖する汚泥の固形物量と、可溶化処理した汚泥の一部は生物処理により再度汚泥になるため、その増殖量とを考慮して目標の減量化率になるように適宜設定すればよく、通常、汚泥が可溶化しない場合の余剰汚泥発生量の2〜4倍量程度の汚泥を可溶化することが好ましい。
As the amount of sludge to be solubilized such as crushing in the
また、可溶化された汚泥を戻す時間帯としては、廃水の流入量が少なく脱窒のための有機分が少なくなる、夜間などに行なうことが好ましい。
この際、汚泥を抜き出す槽としては、脱窒槽2または硝化槽3のどちらでもよいが、硝化槽3の汚泥濃度が通常、脱窒槽2よりも高いことから、汚泥可溶化装置7がコンパクトになり、また効率よく運転できるという理由から、硝化槽3の方が好ましい。また、可溶化した汚泥を戻す槽としては、脱窒槽2または硝化槽3のどちらでもよいが、脱窒槽2に返送した場合には脱窒のための有機物として可溶化汚泥を有効に利用することができることから、脱窒槽2の方が好ましい。
Further, the time zone for returning the solubilized sludge is preferably at night when the amount of wastewater inflow is small and the organic content for denitrification is small.
At this time, either the
このような処理を行ない、なお発生する汚泥を余剰汚泥8として硝化槽3または脱窒槽2から排出することとなる。
次に、図2に基づき上記した処理方法を好適に実施し得る設備の第1の例について説明すると、この処理設備の主な構成としては、脱窒槽2、硝化槽3および汚泥可溶化装置7からなり、硝化槽3は槽内に浸漬型膜分離装置5および散気装置9を備えており、脱窒槽2から硝化槽3への流路、硝化槽3から脱窒槽2への循環流路4、汚泥可溶化装置7と脱窒槽2と硝化槽3との間の流路などがある。
Such treatment is performed, and the generated sludge is discharged from the
Next, a description will be given of a first example of equipment that can suitably carry out the above-described treatment method based on FIG. 2. The
図2において、脱窒槽2は、廃水が流入するとともに、硝化槽3から循環液が流入し、循環液に含まれる硝酸態窒素、亜硝酸態窒素が脱窒細菌の働きにより窒素ガスとして系外に除去される槽である。脱窒槽2内には槽内の液を攪拌するために攪拌装置10が設置されているのが好ましい。ここで用いられる攪拌装置10としては、水中ミキサや水中ポンプなどが挙げられる。
In FIG. 2, in the
硝化槽3は、脱窒槽2からの液が導入される槽であって、槽内では硝化細菌による生物反応によってアンモニア態窒素が硝酸態または亜硝酸態窒素に硝化される。硝化槽3には、一部の槽内液を脱窒槽2へ返送するための循環ポンプ装置11が備わっており、これにより脱窒槽2と硝化槽3との間で汚泥液が循環することになる。循環する液量としては、目的とする窒素除去率にもよるが、通常廃水の導入量(日平均汚水量Q)の数倍(1Q〜5Q程度)に設定することが好ましい。
The
本発明においては、硝化槽3内には浸漬型膜分離装置5が設けられ、浸漬型膜分離装置5の下方に散気装置9が配置されている。浸漬型膜分離装置5は、その形式は特に限定されないが、例えば複数のろ過膜カートリッジを所定間隔で平行に配置したものが挙げられ、散気装置9から噴出する曝気空気が気液混相流で膜面に沿ってクロスフローで流れて膜面を洗浄するようなものが好ましい。
In the present invention, a submerged
この浸漬型膜分離装置5により、ろ過膜を透過した処理水は、重力または吸引ポンプ装置12により系外に取り出されることとなる。吸引ポンプ装置12としては、脱窒槽2に受け入れる廃水の日平均汚水量Qに対して1Q〜3Qの範囲で処理水量を調整できるものであれば好ましい。また、浸漬型膜分離装置5は、最大で日平均汚水量Qの3倍の処理水を取り出すことが可能なろ過膜面積および膜カートリッジ数の処理能力を有していれば好ましく使用できる。
The treated water that has permeated the filtration membrane by the submerged
本発明において、硝化槽3にはまた余剰汚泥を系外に排出するための汚泥引抜ポンプ13、汚泥可溶化装置7へ汚泥を送るための汚泥供給ポンプ14が備わっていることが好ましい。
In the present invention, the
なお、上記のような硝化槽3が複数あってもよく、その場合は、脱窒槽2からの液を並列に流入させる。
また、本発明においては、硝化槽3内に汚泥濃度を測定するための汚泥濃度計15が備えられていることが好ましい。汚泥濃度計15としては、透過光式、散乱光式、マイクロ波式、超音波式など各種方式が挙げられる。また、粘度計など汚泥濃度と相関関係にある計器を用いてもよく、もちろん手分析により測定しても良い。なお、汚泥濃度計15は、脱窒槽2および硝化槽3の両方に設置することが望ましいが、片方に設置し相関関係を求めてその値を用いてもよい。片方に汚泥濃度計15を設置する場合は硝化槽3に設置する方が好ましい。
Note that there may be a plurality of
In the present invention, it is preferable that the
本発明の処理設備においては、汚泥可溶化装置7が脱窒槽2および/または硝化槽3の槽内に存在する汚泥の一部を可溶化するために設置されている。槽内の汚泥を汚泥可溶化装置7に送るために、汚泥供給ポンプ14が脱窒槽2および/または硝化槽3に浸漬されていることが好ましい。破砕などの可溶化処理を施された汚泥は再び脱窒槽2および/または硝化槽3へ返送されることとなる。この際、汚泥を抜き出す槽としては、上述したように、脱窒槽2または硝化槽3のどちらでもよいが、硝化槽3の汚泥濃度が通常、脱窒槽2よりも高いことから、汚泥可溶化装置7がコンパクトになり、また効率よく運転できるという理由から、硝化槽3の方が好ましい。また、可溶化した汚泥を戻す槽としては、脱窒槽2または硝化槽3のどちらでもよいが、脱窒槽2に返送した場合には脱窒のための有機物として可溶化汚泥を有効に利用することができるため、脱窒槽2の方が好ましい。
In the treatment facility of the present invention, the
本発明の処理設備において用いられる汚泥可溶化装置7としては、汚泥を可溶化できるものであれば特にその方式に限定されるものではないが、例えば、湿式媒体撹拌式ミル、超音波、ホモジナイザー、ミキサーなどによる機械破砕処理装置の他、酸化剤やアルカリ処理などの化学的可溶化処理装置、熱処理装置などによって汚泥を破砕や可溶化する方法を用いた装置を挙げることができ、これらを単独、あるいは組み合わせて用いることができる。 The sludge solubilizer 7 used in the treatment facility of the present invention is not particularly limited as long as it can solubilize sludge. For example, a wet medium agitating mill, ultrasonic wave, homogenizer, In addition to mechanical crushing processing devices such as mixers, chemical solubilization processing devices such as oxidants and alkali treatments, devices using methods for crushing and solubilizing sludge with heat treatment devices, etc. can be mentioned alone, Or they can be used in combination.
これらの装置のうち、湿式媒体撹拌式ミルは、取り扱いが容易である他、難分解性の有機物の発生が少ないなどの点で優れているため、汚泥の破砕、可溶化装置として好ましい。 Among these apparatuses, the wet-medium agitating mill is preferable as a sludge crushing and solubilizing apparatus because it is easy to handle and is excellent in that the generation of persistent organic substances is small.
なお、汚泥の可溶化に酸化剤を用いる装置において、脱窒槽2の汚泥を処理する場合では、嫌気性の汚泥を好気的な状態にするために、より多くの酸化剤が必要であるため、硝化槽3の汚泥を処理した方がよい。
In addition, in the apparatus which uses an oxidizing agent for sludge solubilization, in the case of treating the sludge in the
以下、湿式媒体撹拌式ミルについて詳しく説明する。
使用される破砕媒体(ビーズ)としては、ガラス、アルミナ、ジルコニアなどのビーズが挙げられ、真比重2.0〜7.0のビーズであることが好ましい。真比重が2.0より小さいと微生物の破砕が十分にできにくくなり、また真比重を7.0より大きくしても汚泥の破砕効果の向上がほとんどなく、撹拌に必要な動力が大きくなるので好ましくない。
Hereinafter, the wet medium stirring mill will be described in detail.
Examples of the crushing medium (beads) used include beads such as glass, alumina, and zirconia, and beads having a true specific gravity of 2.0 to 7.0 are preferable. If the true specific gravity is less than 2.0, microorganisms cannot be sufficiently crushed, and even if the true specific gravity is greater than 7.0, the sludge crushing effect is hardly improved and the power required for stirring increases. It is not preferable.
また、破砕媒体の粒径としては、0.05〜2.0mmφが好ましく、特に0.25〜1.0mmφが好ましい。ビーズの粒径が2.0mmφより大きいと、ビーズ間の空隙が大きくなるため汚泥を構成する数μm〜数十μmのバクテリアなどの微生物を破砕しにくくなるために好ましくない。また、ビーズの粒径が0.05mmφより小さいと、スクリーンなどのビーズ分離部で分離することが困難となるため好ましくない。 The particle size of the crushing medium is preferably 0.05 to 2.0 mmφ, particularly preferably 0.25 to 1.0 mmφ. If the particle size of the beads is larger than 2.0 mmφ, it is not preferable because the gap between the beads becomes large and it becomes difficult to crush microorganisms such as bacteria of several μm to several tens μm constituting the sludge. Further, if the particle size of the beads is smaller than 0.05 mmφ, it is difficult to separate the beads at a bead separating portion such as a screen.
ビーズ充填率としては、破砕効果および消費電力の点から50〜100%、特に70〜90%が好ましく、ディスク(ピン)先端周速としては、3〜30m/秒、特に5〜20m/秒が好ましい。また、ミル室の向きとしては、縦型、横型のいずれでもよく、破砕媒体を撹拌するための撹拌装置としてはディスク型、ピン型、ピンディスク型などが挙げられる。 The bead filling rate is preferably 50 to 100%, particularly 70 to 90% from the viewpoint of crushing effect and power consumption, and the disk (pin) tip peripheral speed is 3 to 30 m / second, particularly 5 to 20 m / second. preferable. Further, the direction of the mill chamber may be either a vertical type or a horizontal type, and examples of the stirring device for stirring the crushing medium include a disk type, a pin type, and a pin disk type.
湿式媒体撹拌式ミル処理における汚泥の滞留時間は、導入する汚泥濃度や用いる破砕媒体などによって適宜設定されるものであり、特に限定されるものではないが、通常20秒〜20分が好ましく、特に30秒〜10分が好ましい。滞留時間が20秒よりも短いと汚泥が十分に破砕されていない可能性があり、また、20分より長くしても消費電力が増大するだけで、破砕効果はさほど向上しない。 The sludge residence time in the wet medium stirring mill treatment is appropriately set depending on the sludge concentration to be introduced and the crushing medium to be used, and is not particularly limited, but is usually preferably 20 seconds to 20 minutes, particularly 30 seconds to 10 minutes are preferred. If the residence time is shorter than 20 seconds, there is a possibility that the sludge is not sufficiently crushed, and even if it is longer than 20 minutes, only the power consumption increases and the crushing effect is not improved so much.
また、処理温度としては、60℃以下が好ましく、特に4〜40℃が好ましい。処理温度が60℃より高いと、汚泥成分の一部が熱変性して難分解性物質となり、処理水の水質が悪化する可能性があるために好ましくない。 Moreover, as processing temperature, 60 degrees C or less is preferable, and 4-40 degreeC is especially preferable. When the treatment temperature is higher than 60 ° C., a part of the sludge component is thermally denatured to become a hardly decomposable substance, which is not preferable because the quality of the treated water may be deteriorated.
通常、ミル処理により破砕した汚泥の温度は、処理前の汚泥に比べて10〜30℃程度上昇するため、夏場のように温度が高く処理温度が60℃以上になる場合では、冷却水を用いて冷却することが好ましい。 Usually, the temperature of sludge crushed by mill treatment rises by about 10-30 ° C compared to the sludge before treatment. Therefore, when the temperature is high and the treatment temperature is 60 ° C or higher as in summer, cooling water is used. It is preferable to cool it.
また、ミル処理終了後は、次の運転立ち上げを容易に行なうために、ミル室内を水により洗浄することが望ましい。洗浄する水としては、水道水、処理水、汚水などを用いて行なえばよい。洗浄する水の量および時間は適宜設定すればよいが、洗浄水の汚泥濃度が1重量%以下になるまで洗浄することが好ましい。 In addition, after the mill treatment is completed, it is desirable to wash the mill chamber with water in order to easily start the next operation. As the water to be washed, tap water, treated water, sewage, or the like may be used. The amount and time of water to be washed may be set as appropriate, but it is preferable to wash until the sludge concentration in the washing water is 1% by weight or less.
湿式媒体撹拌式ミル処理では汚泥が流動する状態であれば、汚泥の破砕効果は汚泥濃度にあまり左右されない。従って、破砕処理する汚泥の濃度は汚泥が流動する状態であれば汚泥濃度が高い方が好ましい。 If the sludge flows in the wet medium agitation mill treatment, the sludge crushing effect is not greatly affected by the sludge concentration. Therefore, the concentration of sludge to be crushed is preferably higher if the sludge flows.
従って、固液分離に沈殿槽を用いる場合では、固液分離後の分離汚泥の汚泥濃度は通常0.2〜1質量%程度と低いため、処理液を直接処理した場合、湿式媒体撹拌式ミルが大きくなるとともに処理量が多いため、経済的に汚泥を破砕するためには、分離汚泥は汚泥濃縮装置を用いて濃縮しておくことが望ましい。 Therefore, when a precipitation tank is used for solid-liquid separation, the sludge concentration of the separated sludge after solid-liquid separation is usually as low as about 0.2 to 1% by mass. In order to smash sludge economically, it is desirable to concentrate the separated sludge using a sludge concentrator.
しかしながら、本発明においては、硝化槽3内の汚泥濃度は通常1質量%以上と高いため、通常はこれらの汚泥は汚泥濃縮装置を用いて濃縮する必要がなく、設備全体の設置スペースの縮小化が図れるとともに経済性に優れる。
However, in the present invention, since the sludge concentration in the
以上、説明してきたように、本発明の処理設備を用いることにより、本発明の処理方法を実施することができるが、この際、増殖速度の遅い硝化細菌を系内に安定的に保持し、窒素を十分に除去するためには、硝化槽3での好気的固形物滞留時間を所定の時間以上になるように系内の各条件を制御することが好ましい。なお、計算を容易にするために、余剰汚泥を引き抜く槽と可溶化処理する汚泥を引き抜く槽は、通常同じ槽にすることが好ましい。
As described above, by using the treatment equipment of the present invention, the treatment method of the present invention can be carried out. At this time, nitrifying bacteria having a slow growth rate are stably retained in the system, In order to sufficiently remove nitrogen, it is preferable to control each condition in the system so that the aerobic solid residence time in the
ところで、高度処理施設設計マニュアル(案)(社団法人 日本下水道協会 平成6年)では、好気的固形物滞留時間(θXA)は以下の式(1)で示されることとなるが、硝化細菌を系内に保持するためには、好気的固形物滞留時間(θXA)が以下の式(2)を満たしている必要があり、また、循環式硝化脱窒法では好気的固形物滞留時間(θXA)は水温と関係式(3)の式が成立することが示されている。 By the way, in the advanced treatment facility design manual (draft) (Japan Sewerage Association 1994), the aerobic solid residence time (θ XA ) is expressed by the following formula (1). In order to keep the aerobic solid in the system, the aerobic solid retention time (θ XA ) needs to satisfy the following formula (2). It is shown that the time (θ XA ) satisfies the water temperature and the relational expression (3).
θXA=θX・tA/t …式(1)
θXA;好気的固形物滞留時間(日)
θX;固形物滞留時間(日)
tA;硝化槽滞留時間(時間)
t;活性汚泥槽(脱窒槽+硝化槽)滞留時間(時間)
θXA=1/μ …式(2)
μ;硝化細菌の比増殖速度(水温T(℃)の関数)(1/日)
θXA=δ・20.6e(−0.0627T) …式(3)
δ;流入水T−Nの変動に対する補正係数 1.2〜1.5
T;水温T(℃)
ここで、本発明においては、通常の活性汚泥法と比較して汚泥発生量を減少させるために、通常、汚泥可溶化しない場合の余剰汚泥発生量の2〜4倍量程度の汚泥を可溶化することとなり、その可溶化された汚泥のほとんどは死滅するため、好気的固形物滞留時間が短くなる。
θ XA = θ X · t A / t Equation (1)
θ XA ; Aerobic solid residence time (days)
θ X ; solids residence time (days)
t A ; nitrification tank residence time (hours)
t: Activated sludge tank (denitrification tank + nitrification tank) residence time (hours)
θ XA = 1 / μ Equation (2)
μ: Specific growth rate of nitrifying bacteria (function of water temperature T (° C)) (1 / day)
θ XA = δ · 20.6e (−0.0627T) (3)
δ: Correction coefficient for fluctuation of influent TN 1.2-1.5
T: Water temperature T (° C)
Here, in the present invention, in order to reduce the amount of sludge generation as compared with the normal activated sludge method, normally, about 2 to 4 times the amount of excess sludge generation when not sludge solubilization is solubilized. Therefore, since most of the solubilized sludge is killed, the aerobic solid residence time is shortened.
本発明では、沈殿槽を有する活性汚泥法と比較して、膜分離活性汚泥法であるため汚泥濃度を高くでき、従って、低水温期においても硝化細菌を系内に保持するための、系内の好気的固形物滞留時間を一定以上にすることが有利である。 In the present invention, compared to the activated sludge method having a sedimentation tank, the sludge concentration can be increased because of the membrane-separated activated sludge method. Therefore, in order to keep the nitrifying bacteria in the system even in the low water temperature period, It is advantageous to maintain the aerobic solids residence time above a certain level.
しかしながら、沈殿槽を有する活性汚泥法と同様に水温と汚泥濃度計の数値に基づいて、汚泥濃度、汚泥可溶化量、余剰汚泥量、曝気時間を十分注意して設定し、系内に硝化細菌を保持する必要がある。 However, as with the activated sludge method with a sedimentation tank, the sludge concentration, sludge solubilization amount, surplus sludge amount, and aeration time are carefully set based on the water temperature and sludge densitometer values. Need to hold.
可溶化処理を行なった場合の好気的固形物滞留時間(θXA)の計算は破砕や可溶化処理する汚泥のうち、硝化細菌が死滅した汚泥については系外へ流出する汚泥として算出すると、式(4)で示される。
θXA=tB/24・(VA・XA)/(QW・XW+(Q−QW)・XE+α・QM・XM) …式(4)
VA;硝化槽の容量(m3)
XA;硝化槽の汚泥濃度(kg/m3)
XW;余剰汚泥の汚泥濃度(kg/m3)
XM;汚泥可溶化する汚泥の汚泥濃度(kg/m3)
XE;処理水中のSS濃度(kg/m3)
Q;流入汚水量(m3/日)
QW;余剰汚泥量(m3/日)
QM;汚泥可溶化量(m3/日)
tB;曝気時間(時間)
α;汚泥可溶化による硝化細菌の死滅割合(−)
また、本処理設備では、膜処理により処理水を得るため、処理水のSS濃度を無視することができるため、式(4)は式(5)で示される。
θXA=tB/24・(VA・XA)/(QW・XW+α・QM・XM) …式(5)
従って、本発明では式(3)よりT(℃)における必要好気的固形物滞留時間(日)を求め、式(5)の計算値がそれ以上となるように、硝化槽3の汚泥重量(VA・XA)、汚泥可溶化重量(QM・XM)、余剰汚泥重量(QW・XW)、曝気時間(tB)の各値を設定して運転することが好ましい。なお、通常は式(5)の計算値が式(3)の計算値よりも2日以上長いように設定するのが好ましく、さらには5日以上長いように設定することがより好ましい。
The calculation of the aerobic solid residence time (θ XA ) when solubilized is calculated as the sludge that is crushed and solubilized, and the sludge in which the nitrifying bacteria have died is calculated as the sludge that flows out of the system. It is shown by Formula (4).
θ XA = t B / 24 · (V A · X A ) / (Q W · X W + (Q−Q W ) · X E + α · Q M · X M ) (4)
V A ; capacity of nitrification tank (m 3 )
X A : Sludge concentration in nitrification tank (kg / m 3 )
X W : Sludge concentration of excess sludge (kg / m 3 )
X M : Sludge concentration of sludge solubilized (kg / m 3 )
X E ; SS concentration in treated water (kg / m 3 )
Q: Inflow sewage volume (m 3 / day)
Q W ; excess sludge volume (m 3 / day)
Q M ; sludge solubilization amount (m 3 / day)
t B ; Aeration time (hours)
α: Rate of death of nitrifying bacteria by sludge solubilization (-)
Moreover, in this processing equipment, since the treated water is obtained by membrane treatment, the SS concentration of the treated water can be ignored. Therefore, the equation (4) is expressed by the equation (5).
θ XA = t B / 24 · (V A · X A ) / (Q W · X W + α · Q M · X M ) (5)
Therefore, in the present invention, the required aerobic solid residence time (day) at T (° C.) is obtained from the formula (3), and the sludge weight of the
本発明の処理設備において、余剰汚泥の引き抜きと、汚泥破砕する汚泥の引き抜きを硝化槽から直接行なう場合には、硝化槽3内のMLSS濃度を測定することにより、上記の算出が容易にできるという利点がある。
In the treatment facility of the present invention, when the excess sludge is extracted and the sludge to be crushed is directly extracted from the nitrification tank, the above calculation can be easily performed by measuring the MLSS concentration in the
次に、本処理設備の運転条件における各設定値の決め方の一例を以下に示す。
(1)汚泥可溶化量を設定する。汚泥可溶化量は固定値とするか、あるいは流入水量および流入水質によって変化させる。なお、流入水質が安定している場合では流入水量と比例して増減させてもよい。通常、汚泥可溶化量は、汚泥可溶化しない場合に発生する余剰汚泥量の2〜4倍量程度とすればよい。
Next, an example of how to determine each set value in the operating conditions of the present processing equipment is shown below.
(1) Set the amount of sludge solubilization. The sludge solubilization amount is set to a fixed value or is changed according to the influent water amount and the influent water quality. In addition, when the inflow water quality is stable, it may be increased or decreased in proportion to the inflow water amount. Usually, the amount of sludge solubilization may be about 2 to 4 times the amount of excess sludge generated when sludge is not solubilized.
(2)1日あたりの最低曝気時間を設定する。最低曝気時間としては特に制限されないが、1日当たり6時間以上が好ましく、さらには8時間以上が好ましい。
(3)設定硝化槽汚泥濃度を設定する。設定硝化槽汚泥濃度としては10,000mg/L〜20,000mg/Lが好ましく、さらには10,000mg/L〜15,000mg/Lがより好ましい。
(2) Set the minimum aeration time per day. The minimum aeration time is not particularly limited, but is preferably 6 hours or more per day, and more preferably 8 hours or more.
(3) Set nitrification tank sludge concentration. The set nitrification tank sludge concentration is preferably 10,000 mg / L to 20,000 mg / L, and more preferably 10,000 mg / L to 15,000 mg / L.
(4)水温(固定値、あるいは実測値)から式(3)により必要好気的固形物滞留時間(日)を求める。水温を固定値とする場合では、当該処理場の最低水温を用いることが好ましく、通常は12℃程度である。また、δの値は1.2〜1.5とするが、安全側を見て1.5に設定する方が好ましい。 (4) The required aerobic solid residence time (days) is obtained from the water temperature (fixed value or actual measured value) according to the equation (3). When the water temperature is set to a fixed value, it is preferable to use the lowest water temperature of the treatment plant, which is usually about 12 ° C. Further, the value of δ is set to 1.2 to 1.5, but it is preferable to set it to 1.5 in view of the safety side.
(5)汚泥可溶化装置7の運転を開始する。但し、式(5)の計算値が必要好気的固形物滞留時間(日)以下になる場合は、硝化槽汚泥濃度を上昇させてから汚泥可溶化装置7の運転を開始する。なお、式(5)のαは汚泥の種類や汚泥の可溶化方法および汚泥可溶化装置7の運転条件により異なるため、あらかじめ、当該処理場の汚泥を用いて実験により求めておくことが好ましく、実験できない場合では安全側を見てα=1と設定することが好ましい。
(5) The operation of the
(6)設定硝化槽汚泥濃度に達した段階で、汚泥濃度がほぼ一定になるように、余剰汚泥の引き抜きを開始する。通常、汚泥可溶化しない場合の余剰汚泥発生量の0〜0.5倍量程度である。 (6) When the set nitrification tank sludge concentration is reached, the extraction of excess sludge is started so that the sludge concentration becomes substantially constant. Usually, it is about 0 to 0.5 times the amount of surplus sludge generated when sludge is not solubilized.
(7)式(5)の計算値が必要好気的固形物滞留時間(日)以下になった場合は、曝気時間を延長する。
(8)水温低下などにより、1日あたりの曝気時間を24時間とした場合でも、式(5)の計算値が必要好気的固形物滞留時間(日)以下になった場合は、必要好気的固形物滞留時間(日)になるように汚泥可溶化量を減少させるか、または汚泥可溶化条件を変更し、硝化細菌の死滅割合を小さくする。
(7) When the calculated value of the formula (5) becomes less than the required aerobic solid residence time (days), the aeration time is extended.
(8) Even if the aeration time per day is set to 24 hours due to a decrease in the water temperature, etc., if the calculated value of the formula (5) is less than the required aerobic solid residence time (days), Reduce the sludge solubilization amount so that the residence time (days) of the air solids is reached, or change the sludge solubilization conditions to reduce the killing rate of nitrifying bacteria.
(9)再度、式(5)の計算値が必要好気的固形物滞留時間(日)以上になれば、設定汚泥可溶化量まで汚泥可溶化量を増加させるか、または汚泥可溶化条件を変更し、硝化細菌の死滅割合を大きくする。
(10)設定汚泥可溶化量とした場合でも、必要好気的固形物滞留時間(日)以上になれば、1日あたりの曝気時間を減少させる。
(9) If the calculated value of equation (5) is equal to or longer than the required aerobic solid residence time (days), increase the sludge solubilization amount to the set sludge solubilization amount, or change the sludge solubilization conditions. Change and increase the killing rate of nitrifying bacteria.
(10) Even in the case of the set sludge solubilization amount, the aeration time per day is decreased if the required aerobic solid retention time (days) is reached.
なお、以上の制御については、プログラムを組むことにより自動的に制御することができる。また、式(5)の計算値が必要好気的固形物滞留時間(日)よりも2日以上長いように制御するのが好ましく、さらには5日以上となるよう制御する方がより好ましい。 The above control can be automatically controlled by creating a program. Moreover, it is preferable to control so that the calculated value of Formula (5) is 2 days or more longer than the required aerobic solid residence time (days), and it is more preferable to control to be 5 days or more.
なお、本制御方法では硝化槽の容積を一定のものとして計算しているが、場合によっては、水面高さを変化させることなどにより、その容積を変化させても当然かまわない。また、余剰汚泥および汚泥可溶化するための汚泥を硝化槽3から引き抜いた場合では、計算はさらに容易なものとなる。
In this control method, the volume of the nitrification tank is calculated as constant, but in some cases, the volume may be changed by changing the water surface height. Further, when the excess sludge and sludge for sludge solubilization are extracted from the
このようにして硝化細菌を保持するように、好気的固形物滞留時間を設定すれば、汚泥発生量を減少させると共に、安定して汚水中の窒素を除去することができる。
なお、硝化細菌を系内に保持するように好気的固形物滞留時間を設定すれば、通常は汚水中の有機物および破砕や可溶化処理した汚泥は槽内において十分に分解処理ができる。
If the aerobic solid retention time is set so as to retain nitrifying bacteria in this manner, the amount of sludge generated can be reduced and nitrogen in the sewage can be removed stably.
If the aerobic solid residence time is set so as to retain nitrifying bacteria in the system, usually organic matter in sewage and sludge sludged or solubilized can be sufficiently decomposed in the tank.
また、汚泥発生量が減少することにより、通常、処理水のリン濃度が上昇するため、脱窒槽あるいは、また硝化槽に塩化第2鉄などの凝集剤添加をしてリンを除去する方法や、処理水に凝集剤なとを添加して除去する方法を行なうことが好ましい。 Moreover, since the phosphorus concentration of treated water usually increases due to a decrease in the amount of sludge generated, a method of removing phosphorus by adding a flocculant such as ferric chloride to the denitrification tank or nitrification tank, It is preferable to carry out a method of removing the flocculant by adding it to the treated water.
ところで、以上述べた第1の例における処理設備では、汚泥水を循環させる方法として、通常、硝化槽3に循環ポンプ装置11を配置し、脱窒槽2へ汚泥水を送り、脱窒槽2の槽内水は自然流下にて硝化槽3へ送るようにしてあるが、図3に示す第2の例における処理設備のように循環ポンプ装置11を脱窒槽2に配置して、硝化槽3へ脱窒槽2の槽内水を送り、硝化槽3の槽内水を自然流下にて脱窒槽2へ循環させるようにしてもよい。また、この第2の例における処理設備では汚泥引抜ポンプ13および汚泥供給ポンプ14は循環ポンプ装置11とともに、脱窒槽2に配置されている。他の構成は図2に示す第1の例における処理設備と同様である。
[実施例]
By the way, in the processing facility in the first example described above, as a method of circulating the sludge water, the
[Example]
実施例1
図3に示すような処理フローの容積52m3の脱窒槽2および容積18m3の硝化槽3が2槽(図3では1槽を図示)からなる本発明の処理設備にて、98m3/日の生活廃水1を196日間処理した。浸漬型膜分離装置5としては、有機平膜(0.8m2/枚×75枚/基×6基、(株)クボタ製)を使用した。汚泥可溶化装置7としては、湿式媒体攪拌式ミル(25V−SP、アシザワ(株)製)を用いた。
Example 1
In the processing apparatus of the present invention comprising a
期間中の硝化槽水温は18℃〜27℃であり、必要好気的固形物滞留時間(日)は式(3)よりδ=1.5とした場合、5.7日〜10.0日であった。
それに対して、式(5)より、α=0.70として、好気的固形物滞留時間(日)が式(3)より求めた値以上となるように運転を行なった。すなわち、期間中の平均的運転条件は以下のとおりである。廃水を脱窒槽2へ流入させ、脱窒槽2の汚泥は循環ポンプ装置11にて400m3/日で硝化槽3へ供給した。硝化槽3の汚泥(汚泥濃度15g/L)は、散気装置9で曝気(19時間/日)し、浸漬型膜分離装置5により廃水導入量と同量の処理水6を分離した。残りの硝化槽汚泥はオーバーフローとして脱窒槽2へ返送した。また、脱窒槽2の汚泥(汚泥濃度12g/L)の一部(43kg/日)を汚泥可溶化装置7としての湿式媒体撹拌式ミルに供給し破砕処理を行なった。また、余剰汚泥は汚泥引抜ポンプ13にて汚泥貯留槽に排出した。
The nitrification tank water temperature during the period is 18 ° C. to 27 ° C., and the required aerobic solid residence time (days) is 5.7 days to 10.0 days when δ = 1.5 from Equation (3). Met.
On the other hand, from the formula (5), the operation was performed such that α = 0.70 and the aerobic solid residence time (days) was not less than the value obtained from the formula (3). That is, the average operating conditions during the period are as follows. Waste water was allowed to flow into the
比較例1
実施例1の処理方法において、汚泥破砕を行なわない以外は実施例1と同様の方法で131日間排水処理を行なった。
Comparative Example 1
In the treatment method of Example 1, wastewater treatment was performed for 131 days in the same manner as in Example 1 except that sludge was not crushed.
図4は固形物汚泥発生量を示す図である。比較例1では12kg/日の固形物汚泥が発生しているのに対し、その3.6倍を汚泥可溶化装置で処理した実施例1では5.1kg/日であり、比較例1に対して固形物汚泥発生量は減少していた。 FIG. 4 is a diagram showing the amount of solid sludge generated. In Comparative Example 1, solid sludge was generated at 12 kg / day, whereas in Example 1 in which 3.6 times the solid sludge was processed by the sludge solubilizer, the rate was 5.1 kg / day. The amount of solid sludge generated was decreasing.
また、表1に廃水と処理水の水質を示す。 Table 1 shows the quality of waste water and treated water.
以上のとおり、本発明の処理設備にて、硝化槽の汚泥量、余剰汚泥量、汚泥可溶化量、曝気時間を適切に制御することにより汚泥発生量を減少させることができるとともに、安定して汚水中の窒素などを除去することができた。 As described above, in the treatment facility of the present invention, the amount of sludge generated in the nitrification tank, the amount of excess sludge, the amount of sludge solubilized, and the aeration time can be appropriately controlled and stably reduced. Nitrogen in sewage could be removed.
1 含窒素有機性廃水
2 脱窒槽
3 硝化槽
4 循環流路
5 浸漬型膜分離装置
6 処理水
7 汚泥可溶化装置
8 余剰汚泥
9 散気装置
10 撹拌装置
11 循環ポンプ装置
12 吸引ポンプ装置
13 汚泥引抜ポンプ
14 汚泥供給ポンプ
15 汚泥濃度計
DESCRIPTION OF SYMBOLS 1 Nitrogen-containing
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006049441A JP2007222830A (en) | 2006-02-27 | 2006-02-27 | Treatment method of nitrogen-containing organic wastewater, and treatment apparatus for it |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006049441A JP2007222830A (en) | 2006-02-27 | 2006-02-27 | Treatment method of nitrogen-containing organic wastewater, and treatment apparatus for it |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007222830A true JP2007222830A (en) | 2007-09-06 |
Family
ID=38545128
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006049441A Pending JP2007222830A (en) | 2006-02-27 | 2006-02-27 | Treatment method of nitrogen-containing organic wastewater, and treatment apparatus for it |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007222830A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011143363A (en) * | 2010-01-15 | 2011-07-28 | Swing Corp | Method and apparatus for treating nitrogen in waste water |
JP2013220378A (en) * | 2012-04-16 | 2013-10-28 | Shikoku Chem Corp | Volume reduction method for excess sludge |
JP7101858B1 (en) * | 2021-12-24 | 2022-07-15 | Jfe環境テクノロジー株式会社 | Sewage sludge volume reduction device |
US12122698B2 (en) | 2018-10-23 | 2024-10-22 | Bl Technologies, Inc. | MABR media for supporting AOB and annamox bacteria and process for deammonification of wastewater |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001340889A (en) * | 2000-05-31 | 2001-12-11 | Unitika Ltd | Treating method for organic wastewater |
JP2002166139A (en) * | 2000-12-04 | 2002-06-11 | Hitachi Plant Eng & Constr Co Ltd | Membrane separation device |
JP2003088885A (en) * | 2001-09-18 | 2003-03-25 | Ebara Corp | Method and apparatus for treating organic waste water |
JP2003181489A (en) * | 2001-12-17 | 2003-07-02 | Kurita Water Ind Ltd | Organic wastewater treatment method |
JP2004314020A (en) * | 2003-04-21 | 2004-11-11 | Hitachi Plant Eng & Constr Co Ltd | Membrane treatment system for virus isolation |
-
2006
- 2006-02-27 JP JP2006049441A patent/JP2007222830A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001340889A (en) * | 2000-05-31 | 2001-12-11 | Unitika Ltd | Treating method for organic wastewater |
JP2002166139A (en) * | 2000-12-04 | 2002-06-11 | Hitachi Plant Eng & Constr Co Ltd | Membrane separation device |
JP2003088885A (en) * | 2001-09-18 | 2003-03-25 | Ebara Corp | Method and apparatus for treating organic waste water |
JP2003181489A (en) * | 2001-12-17 | 2003-07-02 | Kurita Water Ind Ltd | Organic wastewater treatment method |
JP2004314020A (en) * | 2003-04-21 | 2004-11-11 | Hitachi Plant Eng & Constr Co Ltd | Membrane treatment system for virus isolation |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011143363A (en) * | 2010-01-15 | 2011-07-28 | Swing Corp | Method and apparatus for treating nitrogen in waste water |
JP2013220378A (en) * | 2012-04-16 | 2013-10-28 | Shikoku Chem Corp | Volume reduction method for excess sludge |
US12122698B2 (en) | 2018-10-23 | 2024-10-22 | Bl Technologies, Inc. | MABR media for supporting AOB and annamox bacteria and process for deammonification of wastewater |
JP7101858B1 (en) * | 2021-12-24 | 2022-07-15 | Jfe環境テクノロジー株式会社 | Sewage sludge volume reduction device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3403996B1 (en) | Granule-forming method and waste water treatment method | |
JP6497871B2 (en) | Method and apparatus for treating oil-containing wastewater | |
JP2008114215A (en) | Method and apparatus for treating sludge | |
JP2007275847A (en) | Wastewater treating apparatus and wastewater treating method | |
JP2007222830A (en) | Treatment method of nitrogen-containing organic wastewater, and treatment apparatus for it | |
JP4875690B2 (en) | Biological treatment method and biological treatment equipment for wastewater containing high concentration fats and oils | |
JP2006314991A (en) | Apparatus and method for treating high-concentration nitrogen-containing dirty waste water such as waste water from livestock farmer and excreta | |
JP2012011376A (en) | Sewage treatment method and apparatus | |
JP2007196207A (en) | Wastewater treatment apparatus and wastewater treatment method | |
JP6670192B2 (en) | Organic sludge processing method and processing apparatus | |
JP2007275846A (en) | Wastewater treatment system and wastewater treatment method | |
KR100839035B1 (en) | Apparatus and method for biological sewage treatment by sludge solid-liquid separation flotation using diffuser | |
CA2425147A1 (en) | Apparatus and method for wastewater treatment with enhanced solids reduction (esr) | |
JP2009214073A (en) | Treatment method for nitrogen-containing organic wastewater and treatment apparatus therfor | |
JP5095882B2 (en) | Waste nitric acid treatment method | |
WO2018123449A1 (en) | Method for treating methane fermentation waste water and treatment equipment | |
JP4034074B2 (en) | Wastewater treatment equipment | |
JP2004275820A (en) | Wastewater treatment apparatus | |
JP6875059B2 (en) | Wastewater treatment method and wastewater treatment equipment | |
JP4019277B2 (en) | Method and apparatus for treating organic wastewater generated from fishing ports and fish markets | |
JP2003266096A (en) | Wastewater treatment apparatus | |
JP2000070989A (en) | Method and apparatus removing nitrogen in waste water | |
JP3846242B2 (en) | WATER TREATMENT DEVICE AND METHOD OF TREATING WATER WASTEWATER OF BIOFILM FILTER | |
JP4786678B2 (en) | Organic wastewater treatment method | |
WO2023276823A1 (en) | Aerobic granule forming method and aerobic granule forming device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20080430 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081126 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100722 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100810 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20101207 |