[go: up one dir, main page]

JP2003088885A - Method and apparatus for treating organic waste water - Google Patents

Method and apparatus for treating organic waste water

Info

Publication number
JP2003088885A
JP2003088885A JP2001283366A JP2001283366A JP2003088885A JP 2003088885 A JP2003088885 A JP 2003088885A JP 2001283366 A JP2001283366 A JP 2001283366A JP 2001283366 A JP2001283366 A JP 2001283366A JP 2003088885 A JP2003088885 A JP 2003088885A
Authority
JP
Japan
Prior art keywords
sludge
tank
biological treatment
solid
nitrification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001283366A
Other languages
Japanese (ja)
Other versions
JP3801004B2 (en
JP2003088885A5 (en
Inventor
Takuya Kobayashi
琢也 小林
Kiyomi Arakawa
清美 荒川
Katsuyuki Kataoka
克之 片岡
Toshihiro Tanaka
俊博 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2001283366A priority Critical patent/JP3801004B2/en
Publication of JP2003088885A publication Critical patent/JP2003088885A/en
Publication of JP2003088885A5 publication Critical patent/JP2003088885A5/ja
Application granted granted Critical
Publication of JP3801004B2 publication Critical patent/JP3801004B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Treatment Of Sludge (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Activated Sludge Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a simple method and apparatus for biologically treating organic waste water in which the volume of excess sludge produced is suppressed while the deterioration of quality of treated water is prevented. SOLUTION: In the biological treating method in which the organic waste water 1 is treated in biological treating tanks 8, 9 and solid-liquid separation of the resultant activated sludge is carried out with membrane separation 10, a part of the activated sludge in the biological treating tank 9 is taken out to be subjected to liquefying treatment 11 and the liquefying treated sludge 4 is circulated in the biological treating tank 8 and further a part of another sludge is taken out from the biological treating tank 8 to be subjected to solid/ liquid separation 12 and the sludge 6 obtained by the solid/liquid separation is circulated in the biological treating tank 9 and hardly biologically decomposable substance is removed 13 from the resultant separated liquid 5. The liquefying treatment can be carried out by ozone treatment or ultrasonic treatment and the removal of the hardly biologically decomposable substance can be carried out by coagulating sedimentation or oxidation decomposition with ozone and/or hydrogen peroxide.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、有機性廃水の処理
に係り、特に、有機性廃水を生物処理し、膜分離により
固液分離を行う生物処理方法と装置に関する。
TECHNICAL FIELD The present invention relates to the treatment of organic wastewater, and more particularly to a biological treatment method and apparatus for biologically treating organic wastewater and performing solid-liquid separation by membrane separation.

【0002】[0002]

【従来の技術】有機性廃水の処理において、活性汚泥に
よる生物処理方法は、多様な排水へ対応でき排水処理方
法の主流となっている。生物処理法の一つに、排水中の
有機物除去に加えて窒素を除去するための方法として、
硝化脱窒法が知られている。これは、排水中の窒素の除
去のために提案されたもので、生物処理槽を、攪拌のみ
を行う脱窒槽と、硝化を行う硝化槽に分け、排水を脱窒
槽に流入させ、脱窒槽流出液は硝化槽に供給、硝化槽流
出液は固液分離装置に流出させ、同時に一部の硝化槽流
出液を脱窒槽へ循環する処理となっている。硝化槽で
は、BOD酸化菌による廃水中の有機物の酸化分解の他
に、活性汚泥中の硝化菌により、アンモニア性窒素が硝
酸性窒素に酸化される。硝化槽から流出した活性汚泥混
合液は、脱窒槽で、活性汚泥混合液中の硝酸性窒素を、
活性汚泥中の脱窒菌が原水に含まれる有機物を用い、窒
素に還元する。以上の工程により、廃水中のアンモニア
性窒素は、気体窒素に還元され廃水中から除去される。
2. Description of the Related Art In the treatment of organic wastewater, the biological treatment method using activated sludge has become the mainstream of wastewater treatment methods because it can deal with various wastewater. As one of the biological treatment methods, as a method for removing nitrogen in addition to removing organic matter in wastewater,
The nitrification denitrification method is known. This is a proposal for removal of nitrogen in wastewater.The biological treatment tank is divided into a denitrification tank that only performs stirring and a nitrification tank that performs nitrification. The liquid is supplied to the nitrification tank, the nitrification tank effluent is caused to flow to the solid-liquid separation device, and at the same time, a part of the nitrification tank effluent is circulated to the denitrification tank. In the nitrification tank, ammonia nitrogen is oxidized to nitrate nitrogen by nitrifying bacteria in the activated sludge, in addition to oxidative decomposition of organic substances in wastewater by BOD oxidizing bacteria. The activated sludge mixed solution that flowed out from the nitrification tank was denitrified to remove the nitric nitrogen in the activated sludge mixed solution.
Denitrifying bacteria in activated sludge are reduced to nitrogen by using organic matter contained in raw water. Through the above steps, ammoniacal nitrogen in the wastewater is reduced to gaseous nitrogen and removed from the wastewater.

【0003】上述のように、活性汚泥による生物処理は
優れた方法であるが、その一方で、生物処理槽内で増殖
した微生物や流入した懸濁物質などにより、余剰汚泥が
発生する問題がある。近年、余剰汚泥の処理コストが増
加しているため、その抑制技術が注目されており、汚泥
を微細化、可溶化し、再び生物処理槽に供給すること
で、液化した汚泥を生物処理槽中の活性汚泥により、無
機化を行うことが提案されている。微細化や液化工程に
ついては、物理的に活性汚泥を微細化する方法や、加温
し高熱細菌を利用し汚泥を可溶化する方法、オゾンを作
用させて汚泥を可溶化する技術が知られている。しか
し、これらの方法で汚泥の微細化、液化を行ったとき、
余剰汚泥の発生量は減少するものの、微細化した汚泥の
一部が処理水に流出し、処理水水質が悪化する問題点が
あった。また、これらの微細化、液化方法は、従来の生
物処理系にさらに微細化工程や液化工程を付け加えるた
め、装置全体が複雑になる問題がある。汚泥の微細化や
液化による減容化において、膜分離法を用い固液分離を
行えば、処理水への汚泥の流出を抑えることが可能であ
る。しかし、同時に微細化した汚泥が系内に蓄積し、減
容化効率が低下することや、膜の閉塞が起こりやすくな
る問題点があった。
As described above, biological treatment with activated sludge is an excellent method, but on the other hand, there is a problem that excess sludge is generated due to microorganisms grown in the biological treatment tank and suspended substances flowing in. . In recent years, excess sludge treatment costs have been increasing, and technology for suppressing it has been drawing attention. By refining and solubilizing sludge and supplying it again to the biological treatment tank, liquefied sludge can be stored in the biological treatment tank. It has been proposed to perform mineralization with the activated sludge. Regarding the micronization and liquefaction process, methods of physically micronizing activated sludge, solubilizing sludge by heating and utilizing high heat bacteria, and technology of solubilizing sludge by applying ozone are known. There is. However, when sludge is refined and liquefied by these methods,
Although the amount of excess sludge generated was reduced, there was a problem that a part of the finely sludge sludge flowed out into the treated water and the quality of the treated water deteriorated. In addition, these miniaturization and liquefaction methods have a problem that the whole apparatus is complicated because a miniaturization step and a liquefaction step are added to the conventional biological treatment system. When solid-liquid separation is performed using a membrane separation method in the case of reducing the volume of sludge by miniaturization or liquefaction, it is possible to suppress the outflow of sludge to treated water. However, at the same time, there is a problem that finely sludge is accumulated in the system, the volume reduction efficiency is lowered, and the membrane is easily clogged.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記のよう
な従来技術に鑑みてなされたものであり、処理水水質の
悪化を防ぎつつ、生物処理の過程で発生する余剰汚泥の
発生量を削減し、また、生物処理槽内に蓄積する難生物
分解性物質の除去が可能な、簡便な有機性廃水の生物処
理方法と装置を提供することを課題とする。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above-mentioned conventional techniques, and it is possible to reduce the amount of excess sludge generated in the process of biological treatment while preventing deterioration of the quality of treated water. An object of the present invention is to provide a simple biological treatment method and apparatus for organic wastewater, which can reduce the amount of the biodegradable substance accumulated in the biological treatment tank and remove the hardly biodegradable substance.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、有機性廃水を生物処理槽で処理し、得
られる活性汚泥を膜分離により固液分離を行う生物処理
方法において、前記生物処理槽内の活性汚泥の一部を抜
き出して液化処理し、該液化処理した汚泥を生物処理槽
に循環させると共に、さらに生物処理槽から活性汚泥の
他の一部を抜き出して固液分離を行い、該固液分離によ
り得られた汚泥を生物処理槽に循環させ、一方、得られ
た分離液から難生物分解性物質を除去することとしたも
のである。前記処理方法において、液化処理は、オゾン
処理又は超音波処理により行うことができ、また、前記
難生物分解性物質の除去は、凝集剤の添加による凝集沈
殿によるか、又は、オゾン及び/又は過酸化水素による
酸化分解によることができる。
In order to solve the above problems, the present invention provides a biological treatment method in which organic wastewater is treated in a biological treatment tank and the resulting activated sludge is subjected to solid-liquid separation by membrane separation. A part of the activated sludge in the biological treatment tank is extracted and liquefied, and the liquefied sludge is circulated to the biological treatment tank, and another part of the activated sludge is further extracted from the biological treatment tank to perform solid-liquid separation. The sludge obtained by the solid-liquid separation is circulated in the biological treatment tank, while the hardly biodegradable substance is removed from the obtained separated liquid. In the above-mentioned treatment method, the liquefaction treatment can be carried out by ozone treatment or ultrasonic treatment, and the hardly biodegradable substance can be removed by coagulation-precipitation by addition of a coagulant, or ozone and / or an excess of ozone. It can be due to oxidative decomposition with hydrogen oxide.

【0006】また、本発明では、有機性廃水を生物処理
する生物処理槽と、得られる活性汚泥を固液分離する膜
分離装置を有する生物処理装置において、前記生物処理
槽の活性汚泥の一部を抜き出す経路と、該経路に接続し
た液化処理装置と、該液化処理した汚泥を生物処理槽に
循環させる経路とを有すると共に、前記生物処理槽の活
性汚泥の一部を抜き出す別の経路と、該経路に接続した
固液分離装置と、該固液分離した汚泥を前記生物処理槽
に循環させる経路と、前記固液分離して得られた分離液
から難生物分解性物質を除去する除去手段とを有するこ
ととしたものである。
Further, according to the present invention, in a biological treatment apparatus having a biological treatment tank for biologically treating organic wastewater and a membrane separation device for solid-liquid separating the resulting activated sludge, a part of the activated sludge in the biological treatment tank is provided. A path for extracting the liquefaction treatment apparatus, a liquefaction apparatus connected to the path, and a path for circulating the liquefaction-treated sludge in the biological treatment tank, and another path for extracting a part of the activated sludge in the biological treatment tank, A solid-liquid separation device connected to the path, a path for circulating the solid-liquid separated sludge in the biological treatment tank, and a removal means for removing a hardly biodegradable substance from the separated liquid obtained by the solid-liquid separation. It is decided to have and.

【0007】[0007]

【発明の実施の形態】本発明では、生物処理槽に脱窒槽
と硝化槽を設けることで、有機物の除去と同時に硝化脱
窒を生物処理槽内で行うことができる。また、硝化脱窒
反応を進行させるためには、硝化槽から活性汚泥の一部
を脱窒槽に循環させることが必要であるが、この循環の
途中に汚泥を液化処理する装置を設けることで、汚泥の
液化処理を行いつつ、硝化槽で生成した硝酸性窒素を脱
窒槽に戻すことが可能となる。また、脱窒槽における脱
窒反応に必要な有機物は、排水中の有機物の他に、液化
した汚泥由来の有機物を利用することが可能となる。本
発明者らは、汚泥減容化処理を行ったときに、生物処理
槽内に蓄積する微細化した汚泥が0.1〜1μmの粒径
を持ち、難生物分解性であることを見いだした。そこ
で、膜分離法を適用することで、余剰汚泥の発生量を抑
制しつつ、処理水水質の悪化を防止することできた。さ
らに、生物処理槽内に蓄積した難生物分解性物質を除去
することで、膜汚染を防ぎ、長期間にわたり安定した運
転を行うことができた。なお、本発明における難生物分
解性物質は、フミン物質、セルロースなどの繊維質、金
属酸化物などに由来する強熱残留物質、内分泌かく乱性
物質、ダイオキシン類が含まれる。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, by providing a denitrification tank and a nitrification tank in the biological treatment tank, nitrification and denitrification can be performed in the biological treatment tank at the same time as the removal of organic substances. Further, in order to proceed the nitrification denitrification reaction, it is necessary to circulate a part of the activated sludge from the nitrification tank to the denitrification tank, but by providing a device for liquefying sludge in the middle of this circulation, It is possible to return the nitrate nitrogen generated in the nitrification tank to the denitrification tank while performing the sludge liquefaction process. Further, as the organic matter required for the denitrification reaction in the denitrification tank, it is possible to use the organic matter derived from liquefied sludge in addition to the organic matter in the wastewater. The present inventors have found that when the sludge volume reduction treatment is performed, the finely sludge accumulated in the biological treatment tank has a particle size of 0.1 to 1 μm and is hardly biodegradable. . Therefore, by applying the membrane separation method, it was possible to prevent deterioration of the treated water quality while suppressing the amount of excess sludge generated. Furthermore, by removing the hardly biodegradable substances accumulated in the biological treatment tank, it was possible to prevent membrane contamination and perform stable operation for a long period of time. The biodegradable substance in the present invention includes a humic substance, a fibrous material such as cellulose, an ignition residual substance derived from a metal oxide, an endocrine disrupting substance, and dioxins.

【0008】次に、本発明を図面を用いて詳細に説明す
る。図1は、下水を本発明の処理方法により処理する一
例のフロー構成図である。図1に示すように、下水1は
脱窒槽8に供給され、脱窒槽8の活性汚泥と混合され、
さらに硝化槽9に送られる。脱窒槽8と硝化槽9の活性
汚泥濃度は流入下水の性状により変わるが、2000〜
15000mg/Lであることが望ましい。硝化槽9に
は膜分離装置10が設けられており、硝化液3からろ過
により膜ろ過処理水2を得る。膜分離装置10の膜は、
孔径が1〜0.04μmであることが望ましい。硝化液
3は硝化槽9から流出させ、生成した硝酸性窒素を脱窒
槽8に送る。硝化液3の流量は、窒素除去量に応じて決
められるが、通常は流入下水量の1〜4倍である。この
循環の途中には、液化処理装置11が設けられており、
硝化液3に含まれる活性汚泥の液化処理を行う。液化手
段としては、オゾンなどの酸化剤の添加や超音波による
微細化が望ましい。
Next, the present invention will be described in detail with reference to the drawings. FIG. 1 is a flow configuration diagram of an example of treating sewage by the treatment method of the present invention. As shown in FIG. 1, the sewage 1 is supplied to the denitrification tank 8 and mixed with the activated sludge in the denitrification tank 8,
Further, it is sent to the nitrification tank 9. The concentration of activated sludge in the denitrification tank 8 and the nitrification tank 9 varies depending on the nature of the inflowing sewage,
It is preferably 15000 mg / L. A membrane separation device 10 is provided in the nitrification tank 9, and membrane filtration treated water 2 is obtained from the nitrification solution 3 by filtration. The membrane of the membrane separation device 10 is
The pore size is preferably 1 to 0.04 μm. The nitrification liquid 3 is caused to flow out from the nitrification tank 9, and the generated nitrate nitrogen is sent to the denitrification tank 8. The flow rate of the nitrification liquid 3 is determined according to the nitrogen removal amount, but is usually 1 to 4 times the inflowing sewage amount. A liquefaction processing device 11 is provided in the middle of this circulation,
The activated sludge contained in the nitrification liquid 3 is liquefied. As the liquefying means, it is desirable to add an oxidant such as ozone or to make it fine by ultrasonic waves.

【0009】液化処理にオゾンを用いる場合は、オゾン
供給量は、液化処理槽に流入する汚泥量に対し、10〜
60mg−O3/g−SSであるが、特に10〜20m
g−O3/g−SSであることが望ましい。また、超音
波処理による液化処理では、液化処理槽に流入する汚泥
に対し1000〜50000kJ/kg−SSで照射す
ることが望ましい。液化処理装置11から流出した液化
処理汚泥4は、脱窒槽8に供給される。生物処理構内に
蓄積する難生物分解性物質除去のため、硝化槽9から硝
化液3の一部を抜き出し、固液分離槽12に供給する。
固液分離槽12には、ダイナミックろ過法(不織布や織
布などの通水性シートからなるろ過体を生物処理槽など
に浸漬させ、ろ過体表面に形成される汚泥のダイナミッ
クろ過層により、低い水頭圧でろ過水を得る方法)、沈
殿池法、遠心分離法、加圧浮上法、膜ろ過法(膜の孔径
が1μm以上)を用いて行うことが望ましい。また、固
液分離槽12に供給する生物処理槽の活性汚泥混合液量
は、原水水量に関わらず任意に設定できるが、合理的な
処理にするためには原水水量の1〜10%が好ましい。
When ozone is used for the liquefaction treatment, the amount of ozone supplied is 10 to the amount of sludge flowing into the liquefaction treatment tank.
60 mg-O 3 / g-SS, but especially 10-20 m
it is desirable that the g-O 3 / g-SS . Further, in the liquefaction treatment by ultrasonic treatment, it is desirable to irradiate the sludge flowing into the liquefaction treatment tank with 1000 to 50000 kJ / kg-SS. The liquefaction-treated sludge 4 flowing out from the liquefaction-treatment device 11 is supplied to the denitrification tank 8. In order to remove the hardly biodegradable substance accumulated in the biological treatment plant, a part of the nitrification liquid 3 is extracted from the nitrification tank 9 and supplied to the solid-liquid separation tank 12.
In the solid-liquid separation tank 12, a dynamic filtration method (a filter made of a water-permeable sheet such as a non-woven fabric or a woven cloth is dipped in a biological treatment tank, etc., and a dynamic head layer of sludge formed on the surface of the filter provides a low head of water. It is desirable to use a method of obtaining filtered water by pressure), a sedimentation basin method, a centrifugal separation method, a pressure flotation method, or a membrane filtration method (having a pore size of the membrane of 1 μm or more). Further, the amount of the activated sludge mixed liquid in the biological treatment tank supplied to the solid-liquid separation tank 12 can be arbitrarily set regardless of the amount of raw water, but 1 to 10% of the amount of raw water is preferable for rational treatment. .

【0010】固液分離槽12では、硝化液3から活性汚
泥が分離され濃縮汚泥6として、硝化槽9に返送され
る。この濃縮汚泥6は、脱窒槽8に返送することも可能
である。固液分離槽12で分離した硝化液上澄5は、C
OD除去装置13に送られ、生物処理槽内に蓄積した難
生物分解性物質がCOD除去装置13により除去され、
COD除去処理水7が分離される。COD除去処理水7
は、処理水として系外に流出させることが可能である。
また、COD除去処理水7を脱窒槽8又は硝化槽9に供
給し、膜分離装置10によりろ過後、放流することも可
能である。COD除去装置13には、凝集剤を添加し難
生物分解性物質を凝集沈殿することにより除去する方
法、オゾンを注入し酸化分解により難生物分解性物質を
分解除去する方法、オゾンや過酸化水素を添加し促進酸
化法により難生物分解性物質を分解する方法、活性炭に
より吸着除去する方法、膜分離により濃縮分離する方法
が望ましい。
In the solid-liquid separation tank 12, activated sludge is separated from the nitrification liquid 3 and returned to the nitrification tank 9 as concentrated sludge 6. The concentrated sludge 6 can be returned to the denitrification tank 8. The nitrification liquid supernatant 5 separated in the solid-liquid separation tank 12 is C
The COD removal device 13 removes the hardly biodegradable substance sent to the OD removal device 13 and accumulated in the biological treatment tank.
The COD removal treated water 7 is separated. COD removal treated water 7
Can be discharged out of the system as treated water.
It is also possible to supply the COD-removed water 7 to the denitrification tank 8 or the nitrification tank 9, filter it with the membrane separation device 10, and then discharge it. In the COD removal device 13, a method of removing a hardly biodegradable substance by adding an aggregating agent to coagulate and settle it, a method of injecting ozone to decompose and remove the hardly biodegradable substance by oxidative decomposition, ozone or hydrogen peroxide The method of decomposing the hardly biodegradable substance by the accelerated oxidation method by adding the above, the method of adsorbing and removing it by activated carbon, and the method of concentrating and separating by membrane separation are desirable.

【0011】[0011]

【実施例】以下において、本発明を実施例によりさらに
具体的に説明する。 実施例1 この実施例1においては、図1に示すフローにより、団
地下水の処理を行った。硝化液の液化処理は、オゾン含
有酸素ガスにより行った。団地下水1は、脱窒槽8と硝
化槽9からなる生物処理槽に供給され、硝化槽9からの
硝化液3は、液化処理装置であるオゾン反応槽11に供
給し、液化処理を行った。膜分離装置10として、硝化
槽に中空糸膜モジュールを設置し、ろ過を行った。表1
に生物処理槽の運転条件を示す。
EXAMPLES Hereinafter, the present invention will be described more specifically by way of examples. Example 1 In this Example 1, the treatment of groundwater was performed according to the flow shown in FIG. The liquefaction treatment of the nitrification liquid was performed using ozone-containing oxygen gas. The group groundwater 1 was supplied to a biological treatment tank composed of a denitrification tank 8 and a nitrification tank 9, and the nitrification liquid 3 from the nitrification tank 9 was supplied to an ozone reaction tank 11 which is a liquefaction processing device for liquefaction treatment. As the membrane separation device 10, a hollow fiber membrane module was installed in a nitrification tank and filtration was performed. Table 1
The operating conditions of the biological treatment tank are shown in.

【0012】[0012]

【表1】 表1に示すように、本実施例の生物処理槽の容積は、硝
化槽2m3、脱窒槽1m3であり、MLSSは約3000
mg/Lであった。生物処理槽への原水流入量は15m
3/d、生物処理槽全体に対するBOD負荷は約0.1
3kg/kg・dとなった。硝化槽からオゾン反応槽を
経て脱窒槽に循環する循環流量は30m3/dに設定し
た。
[Table 1] As shown in Table 1, the volume of the biological treatment tank of the present embodiment, nitrification tank 2m 3, a denitrification tank 1 m 3, MLSS of about 3000
It was mg / L. Raw water inflow to biological treatment tank is 15m
3 / d, BOD load on the whole biological treatment tank is about 0.1
It became 3 kg / kg · d. The circulation flow rate of circulation from the nitrification tank to the denitrification tank via the ozone reaction tank was set to 30 m 3 / d.

【0013】オゾン反応槽11には、硝化液を30m3
/dで供給した。また、オゾンガスは300g/dの割
合で供給した。表2にオゾン反応槽11での処理結果を
示す。表2に示したように、溶解性COD、BOD、T
−Nがオゾン処理後に増加しているが、これらは汚泥の
液化により溶解性の各成分が増加したことによる。
The ozone reaction tank 11 contains 30 m 3 of nitrification liquid.
/ D. Ozone gas was supplied at a rate of 300 g / d. Table 2 shows the treatment results in the ozone reaction tank 11. As shown in Table 2, the solubility COD, BOD, T
-N increased after the ozone treatment, but these were due to the increase of each soluble component due to the liquefaction of sludge.

【表2】 [Table 2]

【0014】本実施例では系内に蓄積する難生物分解性
物質の除去のため、硝化槽9より硝化液の一部を抜き出
し固液分離装置12に供給、ここで固液分離を行い汚泥
6を硝化槽9に返送した。硝化液上澄5は、COD除去
装置である凝集沈殿装置13に供給し、凝集剤として塩
化鉄(FeCl3)を添加し、難生物分解性物質を凝集
沈殿させた。塩化鉄は、硝化液上澄5に対し50mg/
Lとなるように添加し、pHを6.0に調整した。分離
液は、COD除去処理水である凝集沈殿処理水7として
膜ろ過処理水2と共に放流した。表3に、硝化液上澄5
と凝集沈殿処理水7の水質を示す。硝化液上澄5では、
CODとして検出された難生物分解性物質が、凝集沈殿
処理により除去された。
In the present embodiment, in order to remove the hardly biodegradable substances accumulated in the system, a part of the nitrification liquid is extracted from the nitrification tank 9 and supplied to the solid-liquid separation device 12, where the solid-liquid separation is performed and the sludge 6 Was returned to the nitrification tank 9. The nitrification solution supernatant 5 was supplied to a coagulation-sedimentation device 13 which is a COD removal device, and iron chloride (FeCl 3 ) was added as a coagulant to coagulate and precipitate the hardly biodegradable substance. Iron chloride is 50 mg / based on the nitrification solution supernatant 5.
L was added to adjust the pH to 6.0. The separated liquid was discharged together with the membrane filtration treated water 2 as the coagulation sedimentation treated water 7 which was the COD removal treated water. In Table 3, nitrification solution supernatant 5
And shows the water quality of the coagulation sedimentation treated water 7. In the nitrification solution supernatant 5,
The biodegradable substance detected as COD was removed by the coagulation sedimentation treatment.

【0015】[0015]

【表3】 本実施例では、硝化槽9における膜分離に孔径0.4μ
mの中空糸膜モジュールを用い、13分吸引ろ過、2分
停止を1サイクルとしてろ過運転を行った。この時、膜
透過流束は約0.4m/dであった。団地下水1と膜ろ
過処理水2の平均水質を表4にまとめる。表4より、膜
ろ過処理水2の水質は、BODは5mg/L以下、SS
は検出されず、CODも6.5mg/Lと良好な水質を
得ることができた。また、全窒素(T−N)も7.2m
g/Lであり、流入した全窒素の約70%を除去するこ
とができた。
[Table 3] In this embodiment, the pore size is 0.4 μm for membrane separation in the nitrification tank 9.
Using the hollow fiber membrane module of m, filtration operation was performed with 13-minute suction filtration and 2-minute stoppage as 1 cycle. At this time, the membrane permeation flux was about 0.4 m / d. Table 4 shows the average water quality of the group groundwater 1 and the membrane filtration treated water 2. From Table 4, the water quality of the membrane filtration treated water 2 is 5 mg / L or less for BOD and SS.
Was not detected, and COD was 6.5 mg / L, and good water quality could be obtained. In addition, total nitrogen (T-N) is 7.2m
It was g / L, and about 70% of the total inflowing nitrogen could be removed.

【0016】[0016]

【表4】 本実施例における系内汚泥量の経過を図3に示す。硝化
槽汚泥の一部を液化処理したことにより、系内汚泥量は
約9kgで安定しており、約2ヶ月間排泥を行わずに運
転が行えた。また、膜分離装置における膜間差圧は4〜
6kPaで安定しており、薬品洗浄などを行わずに連続
運転が可能であった。
[Table 4] FIG. 3 shows the progress of the amount of sludge in the system in this example. By partially liquefying the nitrification tank sludge, the amount of sludge in the system was stable at about 9 kg, and the operation could be performed for about 2 months without discharging sludge. Further, the transmembrane pressure difference in the membrane separation device is 4 to
It was stable at 6 kPa and could be operated continuously without chemical cleaning.

【0017】比較例1 この比較例においては、図2に示すようなフローにより
団地下水の処理を行った。実施例1とは異なり、凝集沈
殿を行う部分は設けていない。硝化液の液化処理は、オ
ゾン含有酸素ガスにより行った。団地下水1は、脱窒槽
8と硝化槽9からなる生物処理槽に供給され、硝化槽9
からの硝化液3は液化処理装置であるオゾン反応槽11
に供給し、液化処理を行った。膜分離装置10として、
硝化槽に中空糸膜モジュール設置し、ろ過を行った。表
5に生物処理槽の運転条件を示す。
Comparative Example 1 In this comparative example, the groundwater treatment was performed by the flow shown in FIG. Unlike Example 1, no part for performing aggregation and precipitation is provided. The liquefaction treatment of the nitrification liquid was performed using ozone-containing oxygen gas. The group groundwater 1 is supplied to a biological treatment tank including a denitrification tank 8 and a nitrification tank 9,
The nitrification liquid 3 from the ozone reaction tank 11 is a liquefaction processing device.
And was liquefied. As the membrane separation device 10,
The hollow fiber membrane module was installed in the nitrification tank and filtration was performed. Table 5 shows the operating conditions of the biological treatment tank.

【0018】[0018]

【表5】 表5に示すように、本比較例の生物処理槽の容積は、硝
化槽2m3、脱窒槽1m3であり、MLSSは約3000
mg/Lであった。生物処理槽への原水流入量は15m
3/d、生物処理槽全体に対するBOD負荷は約0.1
3kg/kg・dとなった。硝化槽からオゾン反応槽を
経て脱窒槽に循環する循環流量は30m3/dに設定し
た。
[Table 5] As shown in Table 5, the volume of the biological treatment tank of the present comparative example, nitrification tank 2m 3, a denitrification tank 1 m 3, MLSS of about 3000
It was mg / L. Raw water inflow to biological treatment tank is 15m
3 / d, BOD load on the whole biological treatment tank is about 0.1
It became 3 kg / kg · d. The circulation flow rate of circulation from the nitrification tank to the denitrification tank via the ozone reaction tank was set to 30 m 3 / d.

【0019】オゾン反応槽11には、硝化液を30m3
/dで供給した。また、オゾンガスは300g/dの割
合で供給した。表6にオゾン反応槽11での処理結果を
示す。表6に示したように、溶解性COD、BOD、T
−Nがオゾン処理後に増加しているが、これらは汚泥の
液化により溶解性の各成分が増加したことによる。
The ozone reaction tank 11 contains 30 m 3 of nitrification liquid.
/ D. Ozone gas was supplied at a rate of 300 g / d. Table 6 shows the treatment results in the ozone reaction tank 11. As shown in Table 6, the solubility COD, BOD, T
-N increased after the ozone treatment, but these were due to the increase of each soluble component due to the liquefaction of sludge.

【表6】 [Table 6]

【0020】本比較例では、硝化槽9における膜分離に
孔径0.4μmの中空糸膜モジュールを用い、13分吸
引ろ過、2分停止を1サイクルとしてろ過運転を行っ
た。この時、膜透過流束は約0.4m/dであった。団
地下水1と膜ろ過処理水2の平均水質を表7にまとめ
る。表7より、膜ろ過処理水2の水質は、BODは5m
g/L以下でSSは検出されなかったものの、CODは
10mg/Lと実施例1よりも水質が悪化した。また、
全窒素(T−N)は10.6mg/Lであり、こちらも実
施例1よりも水質が悪化した。
In this comparative example, a hollow fiber membrane module having a pore diameter of 0.4 μm was used for membrane separation in the nitrification tank 9, and filtration operation was performed with 13-minute suction filtration and 2-minute stoppage as 1 cycle. At this time, the membrane permeation flux was about 0.4 m / d. Table 7 shows the average water quality of the group groundwater 1 and the membrane filtration treated water 2. From Table 7, the water quality of the membrane filtration treated water 2 is 5 m in BOD.
Although SS was not detected at g / L or less, COD was 10 mg / L and the water quality was worse than that in Example 1. Also,
The total nitrogen (TN) was 10.6 mg / L, and the water quality was also worse than in Example 1.

【0021】[0021]

【表7】 本比較例における系内汚泥量の経過を図4に示す。液化
処理を行ったものの系内汚泥量が増加した。さらに、膜
分離装置は1ヶ月で膜間差圧が30kPaに達し、薬品
洗浄を行った。以上、実施例1と比較例の運転結果か
ら、膜分離法と硝化槽汚泥の一部を凝集沈殿により分離
除去することで、良好な処理水を得つつ余剰汚泥の発生
量を抑制することが可能であった。
[Table 7] FIG. 4 shows the progress of the amount of sludge in the system in this comparative example. The amount of sludge in the system increased although it was liquefied. Furthermore, the membrane separation apparatus reached a transmembrane pressure difference of 30 kPa in one month and performed chemical cleaning. As described above, based on the operation results of Example 1 and Comparative Example, it is possible to suppress the amount of surplus sludge generated while obtaining good treated water by separating and removing a part of the nitrification tank sludge by coagulation sedimentation. It was possible.

【0022】実施倒2 この実施例2においては、図1に示すようなフローによ
り団地下水の処理を行った。硝化液の液化処理は超音波
照射装置により行った。団地下水1は、脱窒槽8と硝化
槽9からなる生物処理槽に供給され、硝化槽9からの硝
化液3は、液化処理装置である超音波処理槽11に供給
し、液化処理を行った。膜分離装置10として、硝化槽
に中空糸膜モジュールを設置し、ろ過を行った。表8に
生物処理槽の運転条件を示す。
Implementation Example 2 In Example 2, the treatment of groundwater was carried out by the flow shown in FIG. The liquefaction treatment of the nitrification liquid was performed by an ultrasonic irradiation device. The group groundwater 1 is supplied to a biological treatment tank composed of a denitrification tank 8 and a nitrification tank 9, and the nitrification liquid 3 from the nitrification tank 9 is supplied to an ultrasonic treatment tank 11 which is a liquefaction processing device for liquefaction treatment. . As the membrane separation device 10, a hollow fiber membrane module was installed in a nitrification tank and filtration was performed. Table 8 shows the operating conditions of the biological treatment tank.

【表8】 [Table 8]

【0023】表8に示すように、本実施例の生物処理槽
の容積は、硝化槽2m3、脱窒槽1m3であり、MLSS
は約3000mg/Lであった。生物処理槽への原水流
入量は15m3/d、生物処理槽全体に対するBOD負
荷は約0.13kg/kg・dとなった。硝化槽から超
音波処理槽を経て脱窒槽に循環する循環流量は30m3
/dに設定した。超音波処理槽11には、硝化液を30
3/dで供給した。また、超音波は汚泥量に対し65
00kJ/kg−SSの割合で照射した。表9に超音波
処理槽11での処理結果を示す。表9に示したように、
溶解性COD、BOD、T−Nが超音波処理後に増加し
ているが、これらは汚泥の液化により溶解性の各成分が
増加したことによる。
As shown in Table 8, the volume of the biological treatment tank of the present embodiment, nitrification tank 2m 3, a denitrification tank 1 m 3, MLSS
Was about 3000 mg / L. The amount of raw water flowing into the biological treatment tank was 15 m 3 / d, and the BOD load on the entire biological treatment tank was about 0.13 kg / kg · d. The circulation flow rate from the nitrification tank to the denitrification tank through the ultrasonic treatment tank is 30 m 3.
Set to / d. The ultrasonic treatment bath 11 contains 30 nitric acid.
Supplied in m 3 / d. Also, ultrasonic waves are 65
Irradiation was performed at a rate of 00 kJ / kg-SS. Table 9 shows the treatment results in the ultrasonic treatment bath 11. As shown in Table 9,
Solubility COD, BOD, and TN increased after ultrasonic treatment, but these are due to an increase in each soluble component due to liquefaction of sludge.

【0024】[0024]

【表9】 [Table 9]

【0025】実施例2は系内に蓄積する難生物分解性物
質の除去のため、硝化槽9より硝化液の一部を抜き出し
固液分離装置12に供給、ここで固液分離を行い汚泥を
硝化槽9に返送した。硝化液上澄5は、COD除去装置
である凝集沈殿装置13に供給し、凝集剤として塩化鉄
(FeCl3)を添加し、難生物分解性物質を凝集沈殿
させた。塩化鉄は、硝化液上澄5に対し50mg/Lと
なるように添加し、pHは6.0に調整した。分離液
は、COD除去処理水である凝集沈殿処理水7として膜
ろ過処理水2と共に放流した。表10に硝化液上澄5と
凝集沈殿処理水7の水質を示す。硝化液上澄5には、C
ODとして検出された難生物分解性物質が、凝集沈殿処
理により除去された。
In Example 2, in order to remove the hardly biodegradable substance accumulated in the system, a part of the nitrification liquid was extracted from the nitrification tank 9 and supplied to the solid-liquid separation device 12, where the solid-liquid separation was performed to remove sludge. It was returned to the nitrification tank 9. The nitrification solution supernatant 5 was supplied to a coagulation-sedimentation device 13 which is a COD removal device, and iron chloride (FeCl 3 ) was added as a coagulant to coagulate and precipitate the hardly biodegradable substance. Iron chloride was added to the nitrification solution supernatant 5 at 50 mg / L, and the pH was adjusted to 6.0. The separated liquid was discharged together with the membrane filtration treated water 2 as the coagulation sedimentation treated water 7 which was the COD removal treated water. Table 10 shows the water quality of the nitrification solution supernatant 5 and the coagulated sedimentation treated water 7. The nitrification solution supernatant 5 contains C
The biodegradable substance detected as OD was removed by the coagulation sedimentation treatment.

【表10】 [Table 10]

【0026】本実施例では、硝化槽9における膜分離に
孔径0.4μmの中空糸膜モジュールを用い、13分吸
引ろ過、2分停止を1サイクルとしてろ過運転を行っ
た。この時、膜透過流束は約0.4m/dであった。団
地下水1と膜ろ過処理水2の平均水質を表11にまとめ
る。表11より、膜ろ過処理水2の水質は、BODは5
mg/L以下、SSは検出されず、CODも5.9mg
/Lと良好な水質を得ることができた。また、全窒素
(T−N)も7.1mg/Lであり、流入した全窒素の
約70%を除去することができた。
In this example, a hollow fiber membrane module having a pore size of 0.4 μm was used for membrane separation in the nitrification tank 9, and filtration operation was performed with 13-minute suction filtration and 2-minute stoppage as one cycle. At this time, the membrane permeation flux was about 0.4 m / d. Table 11 shows the average water quality of the group groundwater 1 and the membrane filtration treated water 2. From Table 11, the water quality of the membrane filtration treated water 2 has a BOD of 5
mg / L or less, SS was not detected, and COD was 5.9 mg
/ L and good water quality could be obtained. Moreover, the total nitrogen (TN) was also 7.1 mg / L, and about 70% of the total inflowing nitrogen could be removed.

【0027】[0027]

【表11】 本実施例における系内汚泥量の経過を図5に示す。硝化
槽汚泥の一部を液化処理したことにより、系内汚泥量は
約9kgで安定しており、約2ヶ月間排泥を行わずに運
転が行えた。また、膜分離装置における膜間差圧は4〜
6kPaで安定しており、薬品洗浄などを行わずに連続
運転が可能であった。
[Table 11] FIG. 5 shows the progress of the amount of sludge in the system in this example. By partially liquefying the nitrification tank sludge, the amount of sludge in the system was stable at about 9 kg, and the operation could be performed for about 2 months without discharging sludge. Further, the transmembrane pressure difference in the membrane separation device is 4 to
It was stable at 6 kPa and could be operated continuously without chemical cleaning.

【0028】実施例3 この実施例3においては、図1に示すようなフローによ
り団地下水の処理を行った。硝化液の液化処理は、オゾ
ン含有酸素ガスにより行った。また、硝化液の一部を固
液分離槽12により固液分離し、硝化液上澄5をCOD
除去装置である第2オゾン反応槽13に供給した。第2
オゾン反応槽13にはオゾンガスを注入し、硝化液上澄
5に残留したフミン物質などの難生物分解性物質を酸化
分解した。表12に硝化液上澄5とCOD除去処理水で
ある第2オゾン反応槽処理水7の水質を示す。硝化液上
澄5には、CODとして検出されたフミン物質などの難
生物分解性物質が、酸化分解により除去された。
Example 3 In this Example 3, the groundwater was treated by the flow shown in FIG. The liquefaction treatment of the nitrification liquid was performed using ozone-containing oxygen gas. Further, a part of the nitrification liquid is subjected to solid-liquid separation in the solid-liquid separation tank 12, and the nitrification liquid supernatant 5 is subjected to COD.
It was supplied to the second ozone reaction tank 13, which is a removing device. Second
Ozone gas was injected into the ozone reaction tank 13 to oxidatively decompose humic substances and other hardly biodegradable substances remaining in the nitrification solution supernatant 5. Table 12 shows the water quality of the nitrification solution supernatant 5 and the treated water 7 of the second ozone reaction tank which is treated water for COD removal. In the nitrification solution supernatant 5, a biodegradable substance such as a humic substance detected as COD was removed by oxidative decomposition.

【0029】[0029]

【表12】 団地下水1と膜ろ過処理水2の平均水質を表13にまと
める。表13より、膜ろ過処理水2の水質は、BODは
5mg/L以下、SSは検出されず、CODも5.9m
g/Lと良好な水質を得ることができた。また、全窒素
(T−N)も7.2mg/Lであり、流入した全窒素の
約70%を除去することができた。
[Table 12] Table 13 shows the average water quality of the group groundwater 1 and the membrane filtration treated water 2. From Table 13, as for the water quality of the membrane filtration treated water 2, BOD is 5 mg / L or less, SS is not detected, and COD is 5.9 m.
Good water quality of g / L could be obtained. Moreover, the total nitrogen (TN) was also 7.2 mg / L, and about 70% of the total nitrogen that had flowed in could be removed.

【0030】[0030]

【表13】 硝化槽汚泥の一部を液化処理したことにより、系内汚泥
量は約9kgで安定しており、約2ヶ月間排泥を行わず
に運転が行えた。また、フミン物質などを第2オゾン反
応槽13で分解したことにより、硝化槽9にフミン物質
などが蓄積せず、膜分離装置における膜間差圧は4〜6
kPaで安定しており、薬品洗浄などを行わずに連続運
転が可能であった。
[Table 13] By partially liquefying the nitrification tank sludge, the amount of sludge in the system was stable at about 9 kg, and the operation could be performed for about 2 months without discharging sludge. Further, since the humic substance and the like are decomposed in the second ozone reaction tank 13, the humic substance and the like do not accumulate in the nitrification tank 9, and the transmembrane pressure difference in the membrane separation device is 4 to 6
It was stable at kPa and could be operated continuously without chemical cleaning.

【0031】[0031]

【発明の効果】本発明によれば、生物の処理過程で発生
する余剰汚泥の発生量を削減し、また生物処理槽内に蓄
積する難生物分解性物質を除去でき、処理水水質の悪化
を防ぎつつ余剰汚泥の発生量を抑制することが可能な、
従来よりも簡便な処理フローを提供することができた。
EFFECTS OF THE INVENTION According to the present invention, it is possible to reduce the amount of surplus sludge generated in the process of treating organisms and to remove the hardly biodegradable substances that accumulate in the biological treatment tank, thus deteriorating the quality of treated water. It is possible to suppress the amount of excess sludge generated while preventing it,
It was possible to provide a simpler processing flow than before.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の処理方法の一例を示すフロー構成図。FIG. 1 is a flow configuration diagram showing an example of a processing method of the present invention.

【図2】比較例1に用いた処理方法のを示すフロー構成
図。
FIG. 2 is a flow configuration diagram showing a processing method used in Comparative Example 1.

【図3】実施例1の運転日数による汚泥量の経過を示す
グラフ。
FIG. 3 is a graph showing the progress of the amount of sludge according to the number of operating days in Example 1.

【図4】比較例1の運転日数による汚泥量の経過を示す
グラフ。
FIG. 4 is a graph showing the progress of sludge amount according to the number of operating days in Comparative Example 1.

【図5】実施例2の運転日数による汚泥量の経過を示す
グラフ。
FIG. 5 is a graph showing the progress of the amount of sludge according to the number of operating days in Example 2.

【符号の説明】[Explanation of symbols]

1:下水、2:膜ろ過処理水、3:硝化液、4:液化処
理汚泥、5:硝化液上澄、6:濃縮汚泥、7:COD除
去処理水、8:脱窒槽、9:硝化槽、10:膜分離装
置、11:液化処理装置、12:固液分離槽、13:C
OD除去装置
1: Sewage, 2: Membrane filtration treated water, 3: Nitrification liquid, 4: Liquefaction treated sludge, 5: Nitrification liquid supernatant, 6: Concentrated sludge, 7: COD removal treated water, 8: Denitrification tank, 9: Nitrification tank 10: Membrane separation device, 11: Liquefaction processing device, 12: Solid-liquid separation tank, 13: C
OD removal device

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 3/34 101 C02F 3/34 101A 4D059 101B 11/00 11/00 Z 11/06 11/06 A (72)発明者 片岡 克之 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 田中 俊博 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 Fターム(参考) 4D006 GA02 HA01 KA01 KA71 KB13 KB14 KB21 PB20 PC62 4D015 BA19 BB05 CA02 DA13 EA32 FA02 FA03 FA24 FA26 4D028 BB07 BC17 BD17 BE01 BE02 BE04 BE08 4D040 BB02 BB24 BB54 4D050 AA20 BB02 BB09 BD06 4D059 AA05 BK12 BK22 CA21 CA28 DA43 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C02F 3/34 101 C02F 3/34 101A 4D059 101B 11/00 11/00 Z 11/06 11/06 A ( 72) Inventor Katsuyuki Kataoka 11-1 Haneda Asahi-cho, Ota-ku, Tokyo Inside the EBARA CORPORATION (72) Inventor Toshihiro Tanaka 11-11 Haneda-Asahi-cho, Ota-ku, Tokyo F-term inside the EBARA CORPORATION (reference) 4D006 GA02 HA01 KA01 KA71 KB13 KB14 KB21 PB20 PC62 4D015 BA19 BB05 CA02 DA13 EA32 FA02 FA03 FA24 FA26 4D028 BB07 BC17 BD17 BE01 BE02 BE04 BE08 4D040 BB02 BB24 BB54 4D050 AA20 BB02 BB09 BD06 42112 A05

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 有機性廃水を生物処理槽で処理し、得ら
れる活性汚泥を膜分離により固液分離を行う生物処理方
法において、前記生物処理槽内の活性汚泥の一部を抜き
出して液化処理し、該液化処理した汚泥を生物処理槽に
循環させると共に、さらに生物処理槽から活性汚泥の他
の一部を抜き出して固液分離を行い、該固液分離により
得られた汚泥を生物処理槽に循環させ、一方、得られた
分離液から難生物分解性物質を除去することを特徴とす
る有機性廃水の処理方法。
1. A biological treatment method in which organic wastewater is treated in a biological treatment tank, and the resulting activated sludge is subjected to solid-liquid separation by membrane separation. A part of the activated sludge in the biological treatment tank is extracted and liquefied. Then, the liquefied sludge is circulated to the biological treatment tank, and another part of the activated sludge is extracted from the biological treatment tank to perform solid-liquid separation, and the sludge obtained by the solid-liquid separation is used as the biological treatment tank. A method for treating organic wastewater, characterized in that the biodegradable substance is circulated in the same manner, while the hardly biodegradable substance is removed from the obtained separated liquid.
【請求項2】 前記液化処理は、オゾン処理又は超音波
処理により行うことを特徴とする請求項1記載の有機性
廃水の処理方法。
2. The method for treating organic wastewater according to claim 1, wherein the liquefaction treatment is performed by ozone treatment or ultrasonic treatment.
【請求項3】 前記難生物分解性物質の除去は、凝集剤
の添加による凝集沈殿によるか、又は、オゾン及び/又
は過酸化水素による酸化分解によることを特徴とする請
求項1又は2記載の有機性廃水の処理方法。
3. The method according to claim 1, wherein the biodegradable substance is removed by coagulation precipitation by adding a coagulant or by oxidative decomposition by ozone and / or hydrogen peroxide. Method of treating organic wastewater.
【請求項4】 有機性廃水を生物処理する生物処理槽
と、得られる活性汚泥を固液分離する膜分離装置を有す
る生物処理装置において、前記生物処理槽の活性汚泥の
一部を抜き出す経路と、該経路に接続した液化処理装置
と、該液化処理した汚泥を生物処理槽に循環させる経路
とを有すると共に、前記生物処理槽の活性汚泥の一部を
抜き出す別の経路と、該経路に接続した固液分離装置
と、該固液分離した汚泥を前記生物処理槽に循環させる
経路と、前記固液分離して得られた分離液から難生物分
解性物質を除去する除去手段とを有することを特徴とす
る有機性廃水の処理装置。
4. A biological treatment apparatus having a biological treatment tank for biologically treating organic wastewater and a membrane separation device for solid-liquid separation of the resulting activated sludge, and a path for extracting a part of the activated sludge from the biological treatment tank. , A liquefaction apparatus connected to the path, a path for circulating the liquefied sludge in a biological treatment tank, and another path for extracting a part of the activated sludge in the biological processing tank, and the path A solid-liquid separation device, a path for circulating the solid-liquid separated sludge in the biological treatment tank, and a removing unit for removing a hardly biodegradable substance from the separated liquid obtained by the solid-liquid separation. An organic wastewater treatment device characterized by:
JP2001283366A 2001-09-18 2001-09-18 Method and apparatus for treating organic wastewater Expired - Fee Related JP3801004B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001283366A JP3801004B2 (en) 2001-09-18 2001-09-18 Method and apparatus for treating organic wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001283366A JP3801004B2 (en) 2001-09-18 2001-09-18 Method and apparatus for treating organic wastewater

Publications (3)

Publication Number Publication Date
JP2003088885A true JP2003088885A (en) 2003-03-25
JP2003088885A5 JP2003088885A5 (en) 2004-12-24
JP3801004B2 JP3801004B2 (en) 2006-07-26

Family

ID=19106864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001283366A Expired - Fee Related JP3801004B2 (en) 2001-09-18 2001-09-18 Method and apparatus for treating organic wastewater

Country Status (1)

Country Link
JP (1) JP3801004B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005103381A (en) * 2003-09-29 2005-04-21 Hitachi Plant Eng & Constr Co Ltd Nitrification processing method and apparatus
JP2007222830A (en) * 2006-02-27 2007-09-06 Kubota Corp Nitrogen-containing organic wastewater treatment method and treatment equipment therefor
JP2008237958A (en) * 2007-03-26 2008-10-09 Metawater Co Ltd Sewage treatment method and sewage treatment apparatus
WO2010055776A1 (en) * 2008-11-11 2010-05-20 株式会社神鋼環境ソリューション Water treatment device and water treatment method
JP2010137216A (en) * 2008-11-11 2010-06-24 Kobelco Eco-Solutions Co Ltd Membrane separation activated sludge treatment apparatus and membrane separation activated sludge treatment method
JP2010207751A (en) * 2009-03-11 2010-09-24 Kobelco Eco-Solutions Co Ltd Water treatment device and water treatment method
JP2010207752A (en) * 2009-03-11 2010-09-24 Kobelco Eco-Solutions Co Ltd Water treatment device and water treatment method
JP2011025187A (en) * 2009-07-28 2011-02-10 Kobelco Eco-Solutions Co Ltd Method and apparatus for treating wastewater
JP2015058401A (en) * 2013-09-19 2015-03-30 パナソニック株式会社 Wastewater treatment equipment
CN104817222A (en) * 2014-01-31 2015-08-05 三菱丽阳株式会社 Waste water treatment method and waste water treatment device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005103381A (en) * 2003-09-29 2005-04-21 Hitachi Plant Eng & Constr Co Ltd Nitrification processing method and apparatus
JP2007222830A (en) * 2006-02-27 2007-09-06 Kubota Corp Nitrogen-containing organic wastewater treatment method and treatment equipment therefor
JP2008237958A (en) * 2007-03-26 2008-10-09 Metawater Co Ltd Sewage treatment method and sewage treatment apparatus
WO2010055776A1 (en) * 2008-11-11 2010-05-20 株式会社神鋼環境ソリューション Water treatment device and water treatment method
JP2010137216A (en) * 2008-11-11 2010-06-24 Kobelco Eco-Solutions Co Ltd Membrane separation activated sludge treatment apparatus and membrane separation activated sludge treatment method
JP2010207751A (en) * 2009-03-11 2010-09-24 Kobelco Eco-Solutions Co Ltd Water treatment device and water treatment method
JP2010207752A (en) * 2009-03-11 2010-09-24 Kobelco Eco-Solutions Co Ltd Water treatment device and water treatment method
JP2011025187A (en) * 2009-07-28 2011-02-10 Kobelco Eco-Solutions Co Ltd Method and apparatus for treating wastewater
JP2015058401A (en) * 2013-09-19 2015-03-30 パナソニック株式会社 Wastewater treatment equipment
CN104817222A (en) * 2014-01-31 2015-08-05 三菱丽阳株式会社 Waste water treatment method and waste water treatment device

Also Published As

Publication number Publication date
JP3801004B2 (en) 2006-07-26

Similar Documents

Publication Publication Date Title
JP3867326B2 (en) Ozone treatment method for activated sludge process water
JP3801004B2 (en) Method and apparatus for treating organic wastewater
JPH07241596A (en) Treatment of waste water
JP2002177981A (en) Waste water treatment method and equipment
JP3377346B2 (en) Organic wastewater treatment method and apparatus
JP3645513B2 (en) Organic wastewater treatment method and apparatus
JP3763444B2 (en) Organic wastewater treatment method
JP4156820B2 (en) Organic wastewater treatment method and treatment apparatus
JP3807945B2 (en) Method and apparatus for treating organic wastewater
JP4403704B2 (en) Biofilm filtration apparatus and treatment method
JP2003094088A (en) Water treatment system
JP3178975B2 (en) Water treatment method
JP4854706B2 (en) Organic wastewater treatment method and treatment apparatus
JP2002320992A (en) Method for treating organic waste water and equipment therefor
JP3257943B2 (en) Wastewater treatment method
JP2002166275A (en) Method and equipment for treating drainage containing thermally degradable organic compound
JP2000350988A (en) Method and apparatus for treating human wastewater
JPH10216776A (en) Biological treatment of organic wastewater
JP3919999B2 (en) Organic wastewater treatment method and apparatus
JPH0659478B2 (en) Organic wastewater treatment method
JP2003053377A (en) Method for treating organic waste water and treating device
JPH1071398A (en) Treatment of sewage
JP2001347291A (en) Method and apparatus for treating organic wasteliquid
JP2874127B2 (en) How to remove nitrogen from organic wastewater
JP2004121973A (en) Organic wastewater treatment method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060424

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3801004

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140512

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees