JP4608765B2 - Biodegradation method of TOC component - Google Patents
Biodegradation method of TOC component Download PDFInfo
- Publication number
- JP4608765B2 JP4608765B2 JP2000359658A JP2000359658A JP4608765B2 JP 4608765 B2 JP4608765 B2 JP 4608765B2 JP 2000359658 A JP2000359658 A JP 2000359658A JP 2000359658 A JP2000359658 A JP 2000359658A JP 4608765 B2 JP4608765 B2 JP 4608765B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- raw water
- toc
- toc component
- filtration layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Biological Treatment Of Waste Water (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は原水を生物濾過層に通水して、原水中のTOC成分を生物分解する方法に係り、特に、生物濾過層への下向流通水を可能として生物濾過装置を小型化すると共に、その後の膜分離手段を不要とするTOC成分の生物分解方法に関する。
【0002】
【従来の技術】
半導体製造工程の使用済超純水(回収水)中には、少量の有機物、その他の不純物が含有されていることから、この回収水は、活性炭、逆浸透膜、紫外線酸化、生物処理等の処理を経て超純水製造用水として再使用されている。
【0003】
このような回収水中に含まれる有機物の大部分は、メタノール、イソプロピルアルコール(IPA)、アセトン等の有機溶媒であり、活性炭、逆浸透膜による完全除去は困難であることから、酸化剤を併用した紫外線酸化と生物処理が行われている。このうち、紫外線酸化はエネルギーコストが高くつくことから、最近では、生物処理による分解法が広く採用されつつある。
【0004】
従来、TOC成分の生物分解法としては、活性炭等の濾材を充填した濾過層に原水を上向流で通水し、濾材を流動させながら、原水中のTOC成分を濾材に付着した微生物に接触させて分解する方法が一般的である。
【0005】
従来において、固定床ではなく、流動床で処理を行う理由は、固定床で処理を行うと、固定床の入口部表層(下向流通水の場合は最上層)で生物膜が生成し、生成した生物膜により濾材同士が固着して通水不可能となるためである。しかも、このように生物膜が形成されると、通常の水逆洗では、これを除去することが難しく、回復は非常に困難であった。
【0006】
特開平5−64782号公報には、濾過層に形成された生物膜を次亜塩素酸ナトリウムを含む水で定期的に逆洗することにより除去することが記載されているが、このような逆洗を行っても、一旦生物膜が形成されるとその除去は非常に困難であった。
【0007】
このようなことから、従来においては、生物膜の生成を防止するために、生物濾過層に原水を上向流通水することにより濾材を流動させる流動床での処理が行われている。
【0008】
【発明が解決しようとする課題】
しかしながら、流動床による処理では、
(1) 接触時間を長くとる必要があり、通水速度を上げることができないために、装置が大型化する。
(2) 菌体の流出量が多く、このため、生物濾過装置の後段に限外濾過膜分離装置等を設けて流出した菌体を除去する必要がある。
といった欠点があった。
【0009】
本発明は上記従来の問題点を解決し、原水を生物濾過層に下向流通水して原水中のTOC成分を生物分解する方法において、濾過層表面の生物膜の生成を防止して、生物濾過装置の小型化を図ると共に、後段の膜分離手段を不要とするTOC成分の生物分解方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明のTOC成分の生物分解方法は、濾材として粒状の活性炭及び/又はアンスラサイトが充填された濾過層に、TOC成分を含む原水を下向流で通水して、該濾材に付着した微生物により原水中のTOC成分を生物分解する方法において、該原水のTOC成分濃度が1mg/L以下であり、該原水に酸化剤として次亜塩素酸塩を有効成分濃度で0.5〜100mg/L添加して前記濾過層に通水することを特徴とする。
【0011】
前述の如く、濾過層に原水を下向流で通水する場合、生物膜は濾過層の最上層部分に形成される。
【0012】
本発明では、原水に酸化剤を添加して濾過層に通水するため、この最上層部分での生物膜の形成は防止される。そして、原水に添加された酸化剤は、この濾過層の最上層部分の菌体又は濾材の活性炭により分解されて無害化されるため、濾過層の内部の菌体活性は保持され、この濾過層内部の菌体により原水中のTOC成分は有効に分解除去される。
【0013】
本発明では、このように下向流通水により固定床での処理が可能となることから、通水速度を高くとることができ、生物濾過装置を小型化することができる。また、菌体の流出が少ないため、流出した菌体の捕捉のための膜分離手段等を不要とすることができる。
【0014】
本発明の方法は、TOC成分濃度が1mg/L以下の原水の処理に有効である。
【0015】
また、酸化剤としては次亜塩素酸塩を用いる。
【0016】
【発明の実施の形態】
以下に図面を参照して本発明の実施の形態を詳細に説明する。
【0017】
図1は本発明のTOC成分の生物分解方法の実施の形態を示す系統図である。
【0018】
原水は原水タンク1で酸化剤が添加された後、ポンプPにより生物濾過塔2に下向流で通水されて処理される。
【0019】
添加する酸化剤としては、次亜塩素酸ナトリウム(NaClO)等の次亜塩素酸塩を用いる。H 2O2やO3は微生物の酸素源ともなるため、濾過層内の微生物の増殖にも有効である。なお、酸化剤は2種以上を併用しても良く、酸化剤と殺菌剤とを併用しても良い。
【0020】
酸化剤の添加量は、少な過ぎると生物膜の形成を防止し得ず、過度に多いと菌体活性に影響を及ぼしTOC成分の除去効率が低下することから、用いる酸化剤の酸化力や殺菌力に応じて適量を添加する。酸化剤はその有効成分濃度で0.5〜100mg/L添加する。
【0021】
生物濾過塔2は、塔内に、粒状の活性炭及び/又はアンスラサイトが濾材として充填された濾過層2Aが形成されたものである。
【0022】
この活性炭、アンスラサイトとしては、原水との接触効率、取り扱い性等の面から粒径10〜32メッシュ程度のものが好適である。
【0023】
本発明では、このような濾過層2Aに対して原水を下向流通水するため、上向流流動床処理の場合に比べて通水速度を高くとることができ、通水SV5〜50hr−1程度での処理が可能である。
【0024】
また、このような下向流処理を行うことで、生物濾過塔2の流出水(処理水)中への菌体の流出を防止することができることから、従来設備のような後段の膜分離装置を不要とした上で、後段の純水装置等への負荷の増大を引き起こすことなく、効率的なTOC成分の分解除去を行える。
【0025】
なお、このように原水に酸化剤を添加して処理を行っても、濾過層2Aの内部において生物膜が形成される恐れがある。即ち、前述の如く、原水に添加された酸化剤は濾過層2Aの入口側(最上層)において微生物に分解されたり活性炭に吸着されて分解され、このため濾過層2Aの内部においては菌体活性は保持され、TOC成分の分解が行われるが、この濾過層2A内部で菌体が増殖して生物膜を形成し、濾材同士を固着させて通水抵抗を大きくする恐れがある。
【0026】
このため、本発明では、このような濾過層2A内部の生物膜の形成を防止するために、定期的に空気逆洗や水逆洗を行うことが好ましい。この逆洗は、原水の通水条件や原水中の酸化剤濃度等によっても異なるが、0.5〜10日間の原水の通水毎に1回の頻度で行うのが好ましい。
【0027】
なお、本発明では、この逆洗は、生物膜の形成の予防のためと一部の過剰生物膜を除去するために行うものであり、既に生成した生物膜を完全剥離除去するためのものではないことから、特別な薬剤処理は不要であり、水又は空気による逆洗で十分な効果を得ることができる。
【0028】
このような本発明のTOC成分の生物分解方法は、半導体製造工程の回収水のように、TOC成分濃度が1mg/L以下の原水の処理に有効である。即ち、原水中のTOC成分濃度が1mg/Lを超える場合には、濾材が塊状になって通水負荷が過大となったり、塊形成のため表面積が小さくなって処理水TOCが悪化したり、生物体のリークにより後段の設備に負荷がかかるなど、本発明による効果を十分に得ることができない場合がある。
【0029】
【実施例】
以下に実施例及び比較例を挙げて本発明をより具体的に説明する。
【0030】
実施例1
図1に示す方法に従って、低濃度TOCの実機回収原水(TOC成分は主にIPA)に、NaClOを0.5mg/L添加し、生物濾過塔2に下向流で通水した。
この原水の水質は次の通りである。
[原水水質]
pH:3.8〜4.3
導電率:3.5〜4.8mS/m
TOC:100〜150μg/L
生物濾過塔2には、新品のコール炭系活性炭(粒径10〜32メッシュ)を2500mL充填し、原水は通水SV10hr−1で下向流通水した。
【0031】
このときの処理水(生物濾過塔2の流出水)のTOC濃度を調べ、TOC除去率の経時変化を図2に示した。
【0032】
図2に示されるように、通水初期は、活性炭で吸着処理できないIPAの90%以上が流出するが、通水開始より、3日程度で約33%のTOC除去率、21日で90%のTOC除去率が得られた。また、この処理水中の生菌数の測定では、通水開始から3日後で800個/mL程度であったものが、21日後には、200個/mLまで減少していた。
【0033】
この結果から、NaClOを含む原水を通水しても、担体である活性炭に生菌が担持され、TOC除去に何ら阻害を受けることはなく、一方で生物膜の生成は防止され、長期に亘り安定にTOCの生物分解が可能であることが確認された。
【0034】
比較例1
実施例1において、原水にNaClOを添加しなかったこと以外は同様にして処理を行ったところ、通水開始から14日後に、処理水量が半減し、25日後には濾過層の閉塞で通水不可能となった。
【0035】
生物濾過塔を解体して内部を調べたところ、生物膜により濾材同士が固着したために、閉塞が起こったことが確認された。
【0036】
【発明の効果】
以上詳述した通り、本発明によれば、原水を生物濾過層に下向流通水するTOC成分の生物分解方法において、濾過層表面の生物膜の生成を防止することができる。このため、固定床による処理が可能となり、従来の流動床処理に比べて、生物濾過装置を小型化することができる。また、菌体の流出を防止することができるため、流出した菌体の捕捉のための後段の膜分離手段を不要とすることができ、設備の小型化、設備コストの低減、保守管理の軽減を図った上で、TOC成分を効率的に分解除去することができる。
【図面の簡単な説明】
【図1】 本発明のTOC成分の生物分解方法の実施の形態を示す系統図である。
【図2】 実施例1におけるTOC除去率の経時変化を示すグラフである。
【符号の説明】
1 原水タンク
2 生物濾過塔
2A 濾過層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of biodegrading TOC components in raw water by passing raw water through the biofiltration layer, and in particular, downsizing the biofiltration device by enabling downward circulation water to the biofiltration layer, The present invention relates to a biodegradation method of a TOC component that does not require a subsequent membrane separation means.
[0002]
[Prior art]
Since used ultrapure water (recovered water) in the semiconductor manufacturing process contains a small amount of organic substances and other impurities, this recovered water can be used for activated carbon, reverse osmosis membranes, ultraviolet oxidation, biological treatment, etc. After being treated, it is reused as ultrapure water production water.
[0003]
Most of the organic substances contained in such recovered water are organic solvents such as methanol, isopropyl alcohol (IPA), and acetone, and complete removal with activated carbon and reverse osmosis membrane is difficult. UV oxidation and biological treatment are performed. Among these, since the oxidation of ultraviolet rays is expensive, recently, a decomposition method by biological treatment has been widely adopted.
[0004]
Conventionally, as a biodegradation method of TOC components, raw water is passed upward through a filter layer filled with a filter medium such as activated carbon, and the TOC component in the raw water is contacted with microorganisms attached to the filter medium while flowing the filter medium. A method of disassembling them is generally used.
[0005]
Conventionally, the reason why the treatment is performed in the fluidized bed instead of the fixed bed is that when the treatment is performed in the fixed bed, a biofilm is generated on the surface layer of the inlet part of the fixed bed (the uppermost layer in the case of downward circulating water). This is because the filter medium adheres to the biofilm and water cannot pass therethrough. Moreover, when a biofilm is formed in this way, it is difficult to remove it by ordinary backwashing with water, and recovery is very difficult.
[0006]
JP-A-5-64782 describes that the biofilm formed on the filtration layer is removed by regular backwashing with water containing sodium hypochlorite. Even after washing, once a biofilm was formed, it was very difficult to remove it.
[0007]
For this reason, conventionally, in order to prevent the formation of a biofilm, processing in a fluidized bed in which the filter medium is flowed by flowing raw water upward through the biofiltration layer is performed.
[0008]
[Problems to be solved by the invention]
However, with fluidized bed processing,
(1) Since it is necessary to take a long contact time and the water flow rate cannot be increased, the apparatus becomes large.
(2) There is a large amount of bacterial cell outflow. Therefore, it is necessary to provide an ultrafiltration membrane separation device or the like after the biological filtration device to remove the bacterial cell that has flowed out.
There was a drawback.
[0009]
The present invention solves the above-mentioned conventional problems, and in the method of biodegrading the TOC component in the raw water by flowing the raw water downward into the biological filtration layer, it prevents the formation of a biofilm on the surface of the filtration layer, It aims at providing the biodegradation method of the TOC component which aims at size reduction of a filtration apparatus and does not require the membrane separation means of a back | latter stage.
[0010]
[Means for Solving the Problems]
In the biodegradation method of the TOC component of the present invention, the raw water containing the TOC component is passed through the filtration layer filled with granular activated carbon and / or anthracite as a filter medium, and the microorganisms adhered to the filter medium In the method of biodegrading the TOC component in the raw water, the TOC component concentration of the raw water is 1 mg / L or less, and hypochlorite is used as an oxidizing agent in the raw water at an active ingredient concentration of 0.5 to 100 mg / L. It is added and water is passed through the filtration layer.
[0011]
As described above, when raw water is passed through the filtration layer in a downward flow, the biofilm is formed in the uppermost layer portion of the filtration layer.
[0012]
In the present invention, since an oxidizing agent is added to the raw water and water is passed through the filtration layer, the formation of a biofilm in the uppermost layer portion is prevented. The oxidizing agent added to the raw water is decomposed and detoxified by the fungus body in the uppermost layer part of the filtration layer or the activated carbon of the filter medium, so that the fungus body activity inside the filtration layer is maintained, and the filtration layer The TOC component in the raw water is effectively decomposed and removed by the cells inside.
[0013]
In this invention, since processing on a fixed bed becomes possible by downward flowing water as described above, the water flow rate can be increased and the biological filtration device can be miniaturized. Moreover, since there is little outflow of microbial cells, a membrane separation means or the like for capturing the shed microbial cells can be eliminated.
[0014]
The method of the present invention is effective for treating raw water having a TOC component concentration of 1 mg / L or less.
[0015]
Further, use of hypochlorite as an oxidizing agent.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0017]
FIG. 1 is a system diagram showing an embodiment of the TOC component biodegradation method of the present invention.
[0018]
After raw water to oxidant in the raw water tank 1 is added, is processed is passed through by the downflow in biological filtration tower 2 by a pump P.
[0019]
It is an added oxidizing agent, Ru with hypochlorite such as sodium hypochlorite (NaClO). Since H 2 O 2 and O 3 also serve as oxygen sources for microorganisms, they are also effective for the growth of microorganisms in the filtration layer. Two or more oxidizing agents may be used in combination, and an oxidizing agent and a bactericidal agent may be used in combination.
[0020]
The addition amount of the oxidizing agent, Eze prevents too small biofilm formation, too much from the removal efficiency of TOC components affect the bacterial cell activity is reduced, the oxidizing power of the oxidizing agent to be used and sterilized adding an appropriate amount in response to a force. Acid agent is Ru 0.5 to 100 mg / L added pressure to its active ingredient concentration.
[0021]
In the biological filtration tower 2, a filtration layer 2A in which granular activated carbon and / or anthracite is filled as a filter medium is formed in the tower.
[0022]
As the activated carbon and anthracite, those having a particle size of about 10 to 32 mesh are preferable from the viewpoint of contact efficiency with raw water, handling properties, and the like.
[0023]
In the present invention, since the raw water is circulated downward with respect to such a filtration layer 2A, the water flow rate can be made higher than in the case of the upward flow fluidized bed treatment, and the water flow SV5 to 50 hr −1. It is possible to process to the extent.
[0024]
Further, by performing such a downward flow treatment, it is possible to prevent bacterial cells from flowing into the effluent water (treated water) of the biological filtration tower 2, so that a downstream membrane separation apparatus such as conventional equipment is used. In addition, the TOC component can be efficiently decomposed and removed without causing an increase in the load on the subsequent deionized water device or the like.
[0025]
Even if the treatment is performed by adding an oxidizing agent to the raw water in this way, a biofilm may be formed inside the filtration layer 2A. That is, as described above, oxidizing agent added to the raw water is decomposed is adsorbed on the inlet side charcoal or decomposed microorganisms in (top layer) of the filtration layer 2A, cell activity in the interior of this for the filtration layer 2A Is retained and the TOC component is decomposed, but there is a risk that bacterial cells grow inside the filtration layer 2A to form a biofilm, and the filter media are fixed to each other to increase water resistance.
[0026]
For this reason, in the present invention, in order to prevent the formation of the biofilm inside the filtration layer 2A, it is preferable to periodically perform air backwashing or water backwashing. This backwashing is different depending passing water conditions and raw water oxidizer concentration, etc. of the raw water, preferably carried out at a frequency of once per water flow of the raw water of 0.5 to 10 days.
[0027]
In the present invention, this backwashing is performed for the purpose of preventing the formation of biofilm and for removing a part of the excess biofilm. Therefore, no special chemical treatment is required, and a sufficient effect can be obtained by backwashing with water or air.
[0028]
Such a biodegradation method of a TOC component of the present invention is effective for treating raw water having a TOC component concentration of 1 mg / L or less, such as recovered water in a semiconductor manufacturing process. That is, when the TOC component concentration in the raw water exceeds 1 mg / L, the filter medium becomes a lump and the water flow load becomes excessive, or the surface area decreases due to lump formation and the treated water TOC deteriorates. In some cases, the effects of the present invention cannot be sufficiently obtained, for example, a load on a subsequent stage is caused by a leak of a living organism.
[0029]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
[0030]
Example 1
In accordance with the method shown in FIG. 1, 0.5 mg / L of NaClO was added to low-concentration TOC actual recovered raw water (TOC component is mainly IPA), and water was passed downward through the biological filtration tower 2.
The quality of this raw water is as follows.
[Raw water quality]
pH: 3.8-4.3
Conductivity: 3.5-4.8mS / m
TOC: 100-150 μg / L
The biological filtration tower 2 was filled with 2500 mL of new coal charcoal-based activated carbon (
[0031]
The TOC concentration of the treated water (outflow water of the biological filtration tower 2) at this time was examined, and the change with time in the TOC removal rate is shown in FIG.
[0032]
As shown in FIG. 2, 90% or more of IPA that cannot be adsorbed with activated carbon flows out at the beginning of water flow, but the TOC removal rate is about 33% in about 3 days from the start of water flow, and 90% in 21 days. The TOC removal rate was obtained. In the measurement of the number of viable bacteria in the treated water, the number was about 800 / mL after 3 days from the start of water flow, but decreased to 200 / mL after 21 days.
[0033]
From this result, even when raw water containing NaClO is passed, viable bacteria are supported on the activated carbon which is the carrier, and there is no inhibition on TOC removal, while biofilm formation is prevented, and for a long time. It was confirmed that TOC biodegradation was possible stably.
[0034]
Comparative Example 1
In Example 1, treatment was carried out in the same manner except that NaClO was not added to the raw water, but the amount of treated water was reduced by half after 14 days from the start of water flow, and the water passed through the filter layer after 25 days. It became impossible.
[0035]
When the biological filtration tower was disassembled and the inside was examined, it was confirmed that clogging occurred because the filter media adhered to each other due to the biofilm.
[0036]
【The invention's effect】
As described in detail above, according to the present invention, in the biodegradation method of the TOC component in which raw water is circulated downward to the biofiltration layer, the formation of a biofilm on the surface of the filtration layer can be prevented. For this reason, the process by a fixed bed is attained and the biological filtration apparatus can be reduced in size compared with the conventional fluidized bed process. In addition, since the bacterial cells can be prevented from flowing out, a subsequent membrane separation means for capturing the bacterial cells that have flowed out can be made unnecessary, downsizing the equipment, reducing equipment costs, and reducing maintenance management. In addition, the TOC component can be efficiently decomposed and removed.
[Brief description of the drawings]
FIG. 1 is a system diagram showing an embodiment of a biodegradation method for a TOC component of the present invention.
2 is a graph showing a change with time of the TOC removal rate in Example 1. FIG.
[Explanation of symbols]
1 Raw Water Tank 2 Biological Filtration Tower 2A Filtration Layer
Claims (1)
該原水のTOC成分濃度が1mg/L以下であり、
該原水に酸化剤として次亜塩素酸塩を有効成分濃度で0.5〜100mg/L添加して前記濾過層に通水することを特徴とするTOC成分の生物分解方法。A method in which raw water containing a TOC component is passed through a filtration layer filled with granular activated carbon and / or anthracite as a filter medium in a downward flow, and the TOC component in the raw water is biodegraded by microorganisms attached to the filter medium In
TOC component concentration of the raw water is 1 mg / L or less,
A biodegradation method for a TOC component comprising adding hypochlorite as an oxidizing agent in an amount of 0.5 to 100 mg / L as an oxidizing agent to the raw water and passing the filtered water through the filtration layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000359658A JP4608765B2 (en) | 2000-11-27 | 2000-11-27 | Biodegradation method of TOC component |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000359658A JP4608765B2 (en) | 2000-11-27 | 2000-11-27 | Biodegradation method of TOC component |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002159984A JP2002159984A (en) | 2002-06-04 |
JP4608765B2 true JP4608765B2 (en) | 2011-01-12 |
Family
ID=18831394
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000359658A Expired - Fee Related JP4608765B2 (en) | 2000-11-27 | 2000-11-27 | Biodegradation method of TOC component |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4608765B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5061410B2 (en) * | 2001-05-11 | 2012-10-31 | 栗田工業株式会社 | Ultrapure water production apparatus and ultrapure water production method |
JP5055662B2 (en) * | 2001-05-11 | 2012-10-24 | 栗田工業株式会社 | Ultrapure water production apparatus and ultrapure water production method |
JP3948337B2 (en) * | 2001-10-18 | 2007-07-25 | 栗田工業株式会社 | Ultrapure water production apparatus and ultrapure water production method |
JP4848641B2 (en) * | 2005-02-01 | 2011-12-28 | 栗田工業株式会社 | Pure water production method and apparatus |
JP5604913B2 (en) * | 2010-03-05 | 2014-10-15 | 栗田工業株式会社 | Water treatment method and ultrapure water production method |
JP5604914B2 (en) * | 2010-03-05 | 2014-10-15 | 栗田工業株式会社 | Water treatment method and ultrapure water production method |
KR20130014493A (en) * | 2010-03-05 | 2013-02-07 | 쿠리타 고교 가부시키가이샤 | Water treatment method and process for producing ultrapure water |
JP5914964B2 (en) * | 2010-10-18 | 2016-05-11 | 栗田工業株式会社 | Ultrapure water production method |
JP5915127B2 (en) * | 2011-12-05 | 2016-05-11 | 栗田工業株式会社 | Backwashing method of biological activated carbon tower |
JP5957890B2 (en) * | 2012-01-11 | 2016-07-27 | 栗田工業株式会社 | Electronic industrial process wastewater recovery method and recovery device |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4944553A (en) * | 1972-09-02 | 1974-04-26 | ||
JPS54125863A (en) * | 1978-03-13 | 1979-09-29 | Kubota Ltd | Organic waste water treating method |
JP2772363B2 (en) * | 1989-10-02 | 1998-07-02 | オルガノ株式会社 | Wastewater recovery method in semiconductor manufacturing process |
JPH03232591A (en) * | 1990-02-09 | 1991-10-16 | Toshiba Corp | Bioactive carbon treating device |
JPH0461984A (en) * | 1990-06-28 | 1992-02-27 | Ebara Infilco Co Ltd | Bacteriostatic method of active carbon |
JPH0787914B2 (en) * | 1991-08-08 | 1995-09-27 | 栗田工業株式会社 | Membrane separation method |
JP2520206B2 (en) * | 1991-09-06 | 1996-07-31 | 日本碍子株式会社 | Activated carbon treatment method for water |
JPH05104094A (en) * | 1991-10-15 | 1993-04-27 | Ebara Infilco Co Ltd | Purification treatment of water |
JPH05115868A (en) * | 1991-10-28 | 1993-05-14 | Kankyo Eng Kk | Advanced treatment of waste water |
JPH05277475A (en) * | 1992-03-31 | 1993-10-26 | Kurita Water Ind Ltd | Method for treating water containing organic matter |
JPH05317891A (en) * | 1992-05-25 | 1993-12-03 | Kurita Water Ind Ltd | Filter device |
JP3468784B2 (en) * | 1992-08-25 | 2003-11-17 | 栗田工業株式会社 | Ultrapure water production equipment |
JPH0679272A (en) * | 1992-09-02 | 1994-03-22 | Kurita Water Ind Ltd | Pure water production equipment |
JPH0691299A (en) * | 1992-09-17 | 1994-04-05 | Kurita Water Ind Ltd | Method for treating drainage and apparatus therefor |
JP3491328B2 (en) * | 1994-04-15 | 2004-01-26 | 栗田工業株式会社 | Ultrapure water production equipment |
JP3918199B2 (en) * | 1995-09-29 | 2007-05-23 | 栗田工業株式会社 | Activated carbon treatment equipment |
JPH09117796A (en) * | 1995-10-27 | 1997-05-06 | Kubota Corp | How to remove persistent organic substances |
JP3605995B2 (en) * | 1997-04-01 | 2004-12-22 | 日立プラント建設株式会社 | Biological activated carbon filtration equipment |
-
2000
- 2000-11-27 JP JP2000359658A patent/JP4608765B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2002159984A (en) | 2002-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2605624T3 (en) | Procedure for a compact bed bioreactor for the control of biological inlays of reverse osmosis and nanofiltration membranes | |
TWI485115B (en) | The method and apparatus for producing ultra pure water | |
JP5914964B2 (en) | Ultrapure water production method | |
WO2011108478A1 (en) | Water treatment method and process for producing ultrapure water | |
JP4608765B2 (en) | Biodegradation method of TOC component | |
JP6742128B2 (en) | Closed circulation type land aquaculture system coexisting with ozone treatment and biological filtration treatment and its control method | |
JPH11114596A (en) | Production of ultrapure water and ultrapure water producing device | |
JP6517137B2 (en) | Operation management method of water purification equipment | |
JPH05329477A (en) | Membrane separation | |
JP5061410B2 (en) | Ultrapure water production apparatus and ultrapure water production method | |
JPH0649190B2 (en) | High-purity water manufacturing equipment | |
JP2001038390A (en) | Ultrapure water production method | |
JP3651306B2 (en) | Method and apparatus for treating water containing trace organic matter | |
JPH0679272A (en) | Pure water production equipment | |
JP5055662B2 (en) | Ultrapure water production apparatus and ultrapure water production method | |
JPH10192851A (en) | Water purifying treatment apparatus | |
JP5789922B2 (en) | Water treatment method and ultrapure water production method | |
JP3896687B2 (en) | Manganese-containing water treatment equipment | |
JP3433601B2 (en) | Wastewater recovery and purification equipment | |
JPH0857273A (en) | Immersion type membrane separator | |
JPH0647399A (en) | Water purifying treatment method | |
CN112960864A (en) | Ultrafiltration membrane component, ultrafiltration system and method for removing soluble pollutants by ultrafiltration membrane component | |
JP3387311B2 (en) | Ultrapure water production equipment | |
JP3932591B2 (en) | Pure water production method | |
JPS6331592A (en) | Method for making ultrapure water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071113 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100512 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100518 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100714 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100810 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100825 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100914 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100927 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131022 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4608765 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |