JP4595351B2 - Steel continuous casting method - Google Patents
Steel continuous casting method Download PDFInfo
- Publication number
- JP4595351B2 JP4595351B2 JP2004055177A JP2004055177A JP4595351B2 JP 4595351 B2 JP4595351 B2 JP 4595351B2 JP 2004055177 A JP2004055177 A JP 2004055177A JP 2004055177 A JP2004055177 A JP 2004055177A JP 4595351 B2 JP4595351 B2 JP 4595351B2
- Authority
- JP
- Japan
- Prior art keywords
- mold
- magnetic field
- molten steel
- flow
- frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Continuous Casting (AREA)
Description
本発明は、浸漬ノズルを用いて溶鋼を鋳型に供給する鋼の連続鋳造において、溶鋼に移動磁場を印加することによって、流動を制御し、高品質鋳片を製造する技術に関する。 The present invention relates to a technique for producing a high-quality slab by controlling a flow by applying a moving magnetic field to molten steel in continuous casting of steel in which molten steel is supplied to a mold using an immersion nozzle.
鋼の連続鋳造において、鋳型内溶鋼流動状態、特に溶鋼表面近傍の流動がモールドパウダーの巻き込みやノロかみに関係して、鋳片品質に影響することが知られている。欠陥のない鋳片を製造するために鋳型内の溶鋼流動制御技術は重要である。 In continuous casting of steel, it is known that the molten steel flow state in the mold, particularly the flow in the vicinity of the molten steel surface, affects the slab quality in relation to the entrainment of mold powder and the biting. In order to produce defect-free slabs, molten steel flow control technology in the mold is important.
従来から、鋳型内溶鋼に磁場を印加し、流動を適正化する方法が行われている。磁場の印加方法としては、例えば、鋳型の両長辺背面にコイルを対向して設置し、直流静磁場を印加する方法がある。特許文献1では鋳型の幅全体にわたる直流静磁場を印加し、その印加強度を鋳造速度、ノズル吐出孔角度、吐出孔面積、ノズル浸漬深さ、鋳型幅によって規定する方法が提案されている。しかしながら、特許文献1のような静磁場を印加する方法は、静磁場が常に溶鋼流れに対して制動力として働くので、流れの停滞領域を効率的に活性化することができないといった問題がある。
Conventionally, a method of applying a magnetic field to molten steel in a mold to optimize the flow has been performed. As a method for applying a magnetic field, for example, there is a method in which a coil is placed opposite to the back surfaces of both long sides of a mold and a DC static magnetic field is applied.
特許文献2には、鋳型の長辺方向に移動磁界発生コイルを配置して、水平方向に旋回攪拌流を形成し、介在物を凝固シェルに補足させない方法が提案されている。この方法は、積極的に鋳型内溶鋼を攪拌して溶鋼に混在する介在物をスラブ表層に凝固させない方法であるが、攪拌によりパウダーなどを新たに混入させる危険もある。
これに対し、特許文献3には、リニア移動磁場型の移動磁場発生装置が開示されており、この装置では磁場が短辺からモールド中心の浸漬ノズルに向かって移動するようにしており、そのときの周波数は、吐出孔からの溶鋼流が磁場作用域を通過する間に、少なくともリニア移動磁界の作用を1周期以上受けるように設定しており、周波数の上限は、磁場の減衰(表皮効果)を考慮し、鋳型内部の溶鋼にも充分磁界の影響が届くように設定するとしている。特許文献4は、上記特許文献3を発展させ、磁束密度と周波数の両方を増減させて、適正流動が得られるとしている。
In contrast,
特許文献3、4では、溶鋼が吐出孔から鋳型短辺に向かってほぼ一定に流れることを想定して移動磁場を制御しているが、近年の広幅材の鋳造時には、幅方向で溶鋼流れが分布を持ち、期待する効果が見られないといった問題がある。
In
さらに、近時、静磁場と移動磁場を組み合わせる方法が提案されている(例えば特許文献5)。このようにいろいろな種類の磁場を組み合わせることにより、状況に応じた制御が可能になる。しかしながら、この技術では、制御ロジックが複雑になるうえ、設備の大型化、電力消費の増大などが懸念される。
本発明はかかる事情に鑑みてなされたものであって、複雑な制御を行うことなく、鋳型の幅が広い場合等、従来では溶鋼流動の適正化が困難な場合であっても、鋳造時鋳型内の溶鋼流動を適正に制御可能である鋼の連続鋳造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and even when it is difficult to optimize the flow of molten steel in the past, such as when the width of the mold is wide, without performing complicated control, the mold during casting and to provide a continuous casting how the steel is properly controllable molten steel flow in the.
上記課題を解決するために、本発明は、鋳型幅方向中央に設けられた浸漬ノズルを介して長辺と短辺とを有する矩形状の鋳型内に溶鋼を供給しつつ、前記鋳型幅方向の両側に配列された複数の電磁コイルと、これら複数の電磁コイルに給電する交流電源と、前記電磁コイルに供給される電流値を制御する電流値制御部と、前記電磁コイルに供給される電流の周波数を制御する周波数制御部とを有し、磁場の移動方向が前記長辺に沿う鋳型幅方向である移動磁場を前記鋳型内の溶鋼に印加する電磁流動制御装置により鋳型内の溶鋼の流動を制御して鋳造する鋼の連続鋳造方法であって、
予め把握されている前記鋳型内における前記鋳型幅方向の溶鋼流速が、前記浸漬ノズル近傍では平均速度よりも速く、鋳型短辺近傍では平均速度よりも遅い場合に、
前記移動磁場の移動方向が前記浸漬ノズル側から前記短辺側となるように前記複数の電磁コイルに給電される交流の位相を調整するとともに、前記移動磁場の移動速度が前記鋳型幅方向の溶鋼流速の平均速度より小さくなるように前記周波数制御部による電流の周波数を制御し、かつ前記電流値制御部により前記電磁コイルに供給される電流値を制御することにより印加磁場強度を制御して、
前記鋳型幅方向の溶鋼流速がその平均速度よりも速い部分である前記浸漬ノズル近傍では減速するように、かつその平均速度よりも遅い部分である鋳型短辺近傍では加速するように溶鋼の流動を制御することを特徴とする鋼の連続鋳造方法を提供する。
In order to solve the above-mentioned problems, the present invention is to supply molten steel into a rectangular mold having a long side and a short side via an immersion nozzle provided in the center of the mold width direction, and in the mold width direction. A plurality of electromagnetic coils arranged on both sides, an AC power supply for supplying power to the plurality of electromagnetic coils, a current value control unit for controlling a current value supplied to the electromagnetic coil, and a current supplied to the electromagnetic coil A frequency control unit that controls the frequency, and the flow of the molten steel in the mold is controlled by an electromagnetic flow control device that applies a moving magnetic field in which the moving direction of the magnetic field is the mold width direction along the long side to the molten steel in the mold. A method for continuous casting of steel to be controlled and cast,
When the molten steel flow velocity in the mold width direction in the mold ascertained in advance is faster than the average speed in the vicinity of the immersion nozzle, and slower than the average speed in the vicinity of the mold short side,
The phase of alternating current supplied to the plurality of electromagnetic coils is adjusted so that the moving direction of the moving magnetic field is from the immersion nozzle side to the short side, and the moving speed of the moving magnetic field is the molten steel in the mold width direction. Control the frequency of the current by the frequency control unit to be smaller than the average speed of the flow velocity, and control the current value supplied to the electromagnetic coil by the current value control unit to control the applied magnetic field strength,
Said to slow in the immersion nozzle near a faster part than the mold width direction of the molten steel flow velocity is the average velocity, and the flow of molten steel to accelerate the mold short side near a slower portion than its average speed Provided is a continuous casting method of steel characterized by controlling .
本発明によれば、鋳型内における溶鋼流動分布に応じて、具体的には、鋳型内における前記鋳型幅方向の溶鋼流速がその平均速度よりも速い部分、例えば浸漬ノズル近傍では減速するように、その平均速度よりも遅い部分、例えば鋳型短辺近傍では加速するように、電磁流動制御装置からの印加磁場の周波数と印加磁場強度の両方を制御するので、周波数により磁場の移動速度を調整して、流動を制御する領域や活性化させる領域を選択的に調整しつつ、印加磁場強度により溶鋼流動の抑制および活性化の強さを調整するので、鋳型内の溶鋼流動分布によらず溶鋼流動を適切に制御することが可能となる。したがって、鋳型の幅が広い場合等、従来では溶鋼流動の適正化が困難な場合であっても、鋳型内の溶鋼流動を適正に制御することが可能となり、高品質の鋳片を製造することができる。 According to the present invention, according to the molten steel flow distribution in the mold, specifically, the molten steel flow velocity in the mold width direction in the mold is decelerated near the average speed, for example, in the vicinity of the immersion nozzle, Since both the frequency of the applied magnetic field and the applied magnetic field intensity from the electromagnetic flow control device are controlled so as to accelerate near the average speed, for example, near the short side of the mold, adjust the moving speed of the magnetic field according to the frequency. In addition, by selectively adjusting the flow control region and the activation region, the strength of the molten steel flow is adjusted by the applied magnetic field strength, so the strength of the molten steel flow is adjusted. It becomes possible to control appropriately. Therefore, even when it is difficult to optimize the flow of molten steel in the past, such as when the width of the mold is wide, it is possible to properly control the flow of molten steel in the mold, and to produce a high-quality slab. Can do.
以下、本発明の実施の形態について説明する。
まず、図1を参照して、鋼の連続鋳造において溶鋼流動制御に用いられる、溶鋼に印加される磁場が鋳型の長辺に沿う方向(鋳型幅方向)に移動するタイプの電磁流動制御装置およびその溶鋼流動制御メカニズムの概略について説明する。なお、以下の説明における各式において示す物理量の添え字X、Y、Zは、図1のX方向、Y方向、Z方向のものであることを示す。
Embodiments of the present invention will be described below.
First, referring to FIG. 1, an electromagnetic flow control device of a type in which a magnetic field applied to molten steel is used in molten steel flow control in continuous casting of steel and moves in a direction along the long side of the mold (mold width direction) and An outline of the molten steel flow control mechanism will be described. Note that the subscripts X, Y, and Z of physical quantities shown in the respective expressions in the following description indicate those in the X, Y, and Z directions in FIG.
図1に示すように、一般的にこのタイプの電磁流動制御装置10は、長辺2aおよび短辺2bを有する矩形状の鋳型2において、浸漬ノズル3から吐出流が吐出される位置に配置されており、複数の電磁コイル1が矩形状の鋳型2の長辺2aに沿って(幅方向に)並んで設置されており、隣り合うコイルに流す電流の位相をずらすことにより、いわゆるリニアタイプの移動磁場を発生させている。なお、浸漬ノズル3は、鋳型2の長辺2aに沿う鋳型幅方向中央に設けられている。
As shown in FIG. 1, this type of electromagnetic
その磁場の移動速度は、コイル1のポールピッチ(S極からN極までの距離)τと電磁コイル1から発生する磁場の周波数fで以下の(1)式のように表現することができる。なお、以下の式において、各物理量の添え字X、Y、Zは、図1のX方向、Y方向、Z方向のものであることを示す。
Vx=2τf (1)
また、図1に示すように印加磁場Byは、鋳型2を短辺方向に貫く方向に印加され、したがって、ローレンツの法則より、誘導電流は以下の(2)式のように表現することができる。
Jz=σVxBy (2)
さらに、電磁力は以下の(3)式で表現することができ、主に磁場の移動方向と同じ向きに電磁力が働くことが示される。
Fx=JzBy=2τσfBy 2 (3)
The moving speed of the magnetic field can be expressed as the following equation (1) by the pole pitch (distance from the S pole to the N pole) τ of the
V x = 2τf (1)
Further, the applied magnetic field B y as shown in Figure 1, is applied in a direction passing through the
J z = σV x B y (2)
Furthermore, the electromagnetic force can be expressed by the following equation (3), which indicates that the electromagnetic force mainly works in the same direction as the magnetic field moving direction.
F x = J z B y = 2τσfB y 2 (3)
しかし実際には、鋳型内では溶鋼流速uがあるので,磁場の実効移動速度としては,溶鋼流速との相対速度を考えるべきであり、より正確には上記(3)式は、以下の(4)式に書き換えられる。
Fx=JzBy=σ(Vx−u)By 2 =σ(2τf−u)By 2 (4)
However, since there is actually a molten steel flow velocity u in the mold, the effective velocity of the magnetic field should be considered relative to the molten steel flow velocity. More precisely, the above equation (3) is expressed by the following (4 ) Expression.
F x = J z B y = σ (V x −u) B y 2 = σ (2τf−u) B y 2 (4)
このような電磁流動制御装置10においては、鋳造速度が速く、鋳型2の中の溶鋼流動を抑制したい場合には、磁場を鋳型2の短辺2b側から浸漬ノズル3の方向に移動させ、吐出流を抑制(減速)するように作用させる。一方、鍋交換などの鋳造速度が遅い場合には、磁場を浸漬ノズル3側から短辺2bの方向に移動させ、浸漬ノズル3からの吐出流を加速し鋳型2内の溶鋼の流動を活性化し、熱供給の促進効果を発揮させることができる。あるいは、鋳型2の長辺2aの前面と後面で磁場移動方向を逆転させ、磁界が回転するように設定し、溶鋼の旋回による洗浄効果を得ることもできる。
In such an electromagnetic
従来から一般的に観察されている鋳型内の流動パターンの模式図を図2に示す。図2の(a)は鋳型の水平断面図であり、(b)は垂直断面図である。この場合には、溶鋼流速uはおおよそ幅方向に亘って一様で、上記(4)式は理解しやすく、吐出流4に対して、磁場を鋳型2の短辺2bから浸漬ノズル3に向かう方向に移動させることで所期の溶鋼流制動効果が得られる。なお、符号5はモールドパウダーであり、6は凝固シェルである。この場合の電磁流動制御装置の溶鋼流制動効果の作用イメージ図を図3に示す。この図に示すように位置によらず移動磁場により溶鋼流速が減速されている。
FIG. 2 shows a schematic diagram of a flow pattern in a mold that has been generally observed. 2A is a horizontal sectional view of the mold, and FIG. 2B is a vertical sectional view. In this case, the molten steel flow velocity u is substantially uniform in the width direction, the above equation (4) is easy to understand, and the magnetic field is directed from the
しかし、鋳造条件(鋳造幅、浸漬ノズルから溶鋼流に吹き込むアルゴンガス流量、鋳造速度)のバランスによっては、図4のような流動パターンも出現することがわかっている。図4の(a)は鋳型の水平断面図であり、(b)は垂直断面図である。特に、近年の生産性向上対策で実施される幅広の鋳型を用いて鋳造した場合にこのような流動パターンが観察されることが多い。このような場合には、浸漬ノズル3の近傍は溶鋼流速によるモールドパウダー5の削りこみや浮上ガスが湯面で弾けることによるモールドパウダー5の巻き込みを防止するために溶鋼の流動を抑制したいが、短辺2bの近傍は熱供給不足による未溶融パウダーの混入やノロかみなどを防止するために流動を活性化させたい。
However, it is known that a flow pattern as shown in FIG. 4 also appears depending on the balance of casting conditions (casting width, argon gas flow rate blown into the molten steel flow from the immersion nozzle, casting speed). 4A is a horizontal sectional view of the mold, and FIG. 4B is a vertical sectional view. In particular, such a flow pattern is often observed when casting is performed using a wide mold which is implemented as a measure for improving productivity in recent years. In such a case, in the vicinity of the
この場合に、溶鋼の流動状態によって磁場の移動速度を適切に選ぶことができれば、すなわち溶鋼流速が速い部分では溶鋼流を抑制するように、遅い部分では溶鋼流を活性化させるようにできれば、鋳型内の溶鋼流動を適正に制御可能である。 In this case, if the moving speed of the magnetic field can be appropriately selected according to the flow state of the molten steel, that is, if the molten steel flow can be suppressed in the slow portion and the molten steel flow can be activated in the slow portion, the mold The molten steel flow inside can be controlled appropriately.
このようなことを実現させるため、本実施形態では、電磁流動制御装置10から印加される印加磁場強度を制御することに加えて、印加磁場強度の周波数を制御する。すなわち、磁場による溶鋼流動の抑制の強さや、活性化させる強さを調整するには、印加磁場強度(すなわち磁束密度)Byの増減が必要であり、一方、上述の(1)式に示すように、磁場の移動速度Vxは、印加磁場の周波数fに比例するから、この周波数fを変化させることにより磁場の移動速度を変えることができ、これにより溶鋼の流動状態によって磁場の移動速度を適切に選ぶことができる。
In order to realize this, in the present embodiment, in addition to controlling the applied magnetic field strength applied from the electromagnetic
このような本実施形態の溶鋼流動制御を用いて図4の流動パターンを制御する制御イメージ図を図5に示す。印加磁場の周波数を制御して、磁場の移動速度を調整しつつ、印加磁場強度を制御して溶鋼流動の抑制の強さや、活性化させる強さを調整すれば、図5のように浸漬ノズル3の近傍での溶鋼の流動は減速し、鋳型2の短辺2b近傍での溶鋼の流動は加速させることが可能となる。制御後の流動パターンは図6のようになる。図6の(a)は鋳型の水平断面図であり、(b)は垂直断面図である。図6のように制御すれば、溶鋼流動4は全体に亘って一様の流動が形成され、湯面近傍に強い流動がないので、モールドパウダー5の巻き込みなどの危険がなく、かつ鋳型2の短辺2b近傍にも充分な溶鋼流動が生じて充分熱が供給されており、パウダーが未溶融のまま残っていたり、ノロかみなどが発生する危険性もない。
FIG. 5 shows a control image diagram for controlling the flow pattern of FIG. 4 using the molten steel flow control of the present embodiment. By controlling the frequency of the applied magnetic field and adjusting the moving speed of the magnetic field, the applied magnetic field strength is controlled to adjust the strength of suppressing molten steel flow and the strength of activation, as shown in FIG. The flow of molten steel near 3 is decelerated, and the flow of molten steel near the
次に、このような制御を実現するための具体的な装置構成について説明する。図7は、電磁流動制御装置10aを含む連続鋳造装置を示す水平断面図である。上述したように、長辺2aおよび短辺2bを有する矩形状の鋳型2の中央に、浸漬ノズル3が配置されている。そして、図1において説明した電磁流動制御装置10と同様、電磁流動制御装置10aは、鋳型2の浸漬ノズル3から吐出流が吐出される位置に配置されており、複数の電磁コイル1が矩形状の鋳型2の2つの長辺2aに沿って(幅方向に)両側に並んで設置されており、隣り合うコイルに流す電流の位相をずらすことにより、いわゆるリニアタイプの移動磁場を発生させるようになっている。両側の複数の電磁コイル1は、それぞれヨーク7に取り付けられて一体化されている。一方側の電磁コイル1の数は12個であり、他方の側も同様に12個のコイルが配置されており、両側の各電磁コイルは対向して設けられている。なお、図中の矢印は、ある瞬間における磁場の向きを示している。
Next, a specific apparatus configuration for realizing such control will be described. FIG. 7 is a horizontal sectional view showing a continuous casting apparatus including the electromagnetic
これら電磁コイル1には、3相交流電源11から隣り合う電磁コイル1の位相が120°ずれるように給電される。3相交流電源11から延びる配線の途中には、交流電流の電流値を制御する電流値制御部12と周波数を制御する周波数制御部13が設けられており、これらにより電磁コイル1に供給する交流電流の電流値および周波数が制御可能なようになっている。なお、電流値制御部12および周波数制御部13による電流値制御および周波数制御は操業条件に応じてオペレーターが操作するようにすることができる。また、電磁コイル1の配列数は12個に限らず、印加電流も隣接する電磁コイルで位相をずらすことができれば3相交流に限らず2相交流であってもよい。例えば、電磁コイルの配列数を10個にし、2相交流を用い、隣接する電磁コイルで90°位相をずらしたものを挙げることができる。
Power is supplied to these
このように構成される連続鋳造装置においては、図示しない取鍋からタンディッシュに貯留された溶鋼が浸漬ノズル3から鋳型2内に注入される。その際の溶鋼流動を制御するに際し、電磁流動制御装置10aの電磁コイル1へ供給される電流の値を電流値制御部12により制御することにより、電磁コイル1により発生する印加磁場強度を制御することができる。また、周波数制御部13により電流の周波数を制御して電磁コイル1からの印加磁場の周波数を制御することにより磁場の移動速度を制御することができる。したがって、これらにより、上述したような適切な溶鋼流動制御を行うことができる。
In the continuous casting apparatus configured as described above, molten steel stored in a tundish from a ladle (not shown) is poured into the
[実施例1]
本発明の効果を確かめるために、スラブ連鋳機にてアルミキルド鋼の鋳造実験を行なった。鋳型厚み(短辺)は220mm、鋳型幅(長辺)は1900mm、スループット4ton/minである。浸漬ノズルとしては、底形状がプール型である2孔ノズルで吐出角度は下向き25度、ノズル内径Dは90mmφのものを用いた。ノズルからのアルゴンガスの吹き込み量は9NL/minであった。電磁コイルは、3相交流で給電されるリニア移動磁場型であり、長さは2100mmで鋳型長さを充分カバーするものであった。電磁コイルのポールピッチτは,0.28mとした。電磁コイルは、湯面から380mmの深さに中心が来るように設置した。
[Example 1]
In order to confirm the effect of the present invention, an aluminum killed steel casting experiment was conducted with a slab continuous casting machine. The mold thickness (short side) is 220 mm, the mold width (long side) is 1900 mm, and the throughput is 4 ton / min. As the immersion nozzle, a two-hole nozzle whose bottom shape is a pool type, a discharge angle of 25 degrees downward, and a nozzle inner diameter D of 90 mmφ were used. The amount of argon gas blown from the nozzle was 9 NL / min. The electromagnetic coil was a linear moving magnetic field type that was fed with a three-phase alternating current, and had a length of 2100 mm and sufficiently covered the mold length. The pole pitch τ of the electromagnetic coil was 0.28 m. The electromagnetic coil was installed so that the center was at a depth of 380 mm from the molten metal surface.
ここでは、まず周波数固定で磁場強度のみを変更して鋳造した。引き続き周波数と磁場強度の両方を変更して鋳造を行った。湯面の状態を検知するため、短辺から100mmとノズルから200mmの位置に熱電対を浸漬させ、温度を計測した。過去の知見により、熱電対の温度が高いほど溶鋼の流速値が高いことが知られている。
Here, casting was performed with the frequency fixed and only the magnetic field strength changed. Subsequently, casting was performed by changing both the frequency and the magnetic field strength. In order to detect the state of the hot water surface, a thermocouple was immersed at a
鋳型短辺側の熱電対温度と浸漬ノズル側の熱電対温度の推移を印加磁場の周波数と磁場強度とともに図8にプロットした。磁場を印加していない場合、鋳型短辺側の温度が低く、浸漬ノズル側の温度が高くなっており、図4に示されるように、吐出流が充分強く短辺に達していない状態と推定することができる。 The transition of the thermocouple temperature on the short side of the mold and the thermocouple temperature on the immersion nozzle side is plotted in FIG. 8 together with the frequency and magnetic field strength of the applied magnetic field. When no magnetic field is applied, the temperature on the mold short side is low and the temperature on the immersion nozzle side is high, and it is estimated that the discharge flow is sufficiently strong and does not reach the short side as shown in FIG. can do.
このため、磁場がノズル側から短辺側に移動するモードに設定し、印加磁場の周波数を2Hzに設定し、電流値を制御して印加磁場強度を徐々に上げていった。これにより、図8に示すように、鋳型短辺側も浸漬ノズル側も温度が上昇し、溶鋼流が加速していると推定することができる。印加磁場強度が5×10−2T(500Gauss)程度で、鋳型短辺側および浸漬ノズル側の温度がほぼ同等になったが、その温度レベルは高く、流速の速い状態で均等したと推定することができる。 For this reason, the mode in which the magnetic field moves from the nozzle side to the short side is set, the frequency of the applied magnetic field is set to 2 Hz, the current value is controlled, and the applied magnetic field strength is gradually increased. Thereby, as shown in FIG. 8, it can be estimated that the temperature rises on both the mold short side and the immersion nozzle side, and the molten steel flow is accelerated. The applied magnetic field strength is about 5 × 10 −2 T (500 Gauss), and the temperatures on the mold short side and the immersion nozzle side are almost equal, but the temperature level is high, and it is estimated that the temperature is uniform at a high flow rate. be able to.
次に、印加磁場の周波数を1Hzに設定し、印加磁場強度を5×10−2T(500Gauss)程度から1×10−2T(100Gauss)程度まで徐々に下げていった。鋳型短辺側において、2Hzのときと同様に印加磁場強度が高いほど、温度が上昇(加速)したが、浸漬ノズル近傍では温度がほぼ一定で磁場印加の効果が見られなかった。 Next, the frequency of the applied magnetic field was set to 1 Hz, and the applied magnetic field strength was gradually decreased from about 5 × 10 −2 T (500 Gauss) to about 1 × 10 −2 T (100 Gauss). On the short side of the mold, the temperature increased (accelerated) as the applied magnetic field strength increased as in the case of 2 Hz. However, the temperature was almost constant in the vicinity of the immersion nozzle, and the effect of applying the magnetic field was not observed.
さらに印加磁場の周波数を0.5Hzにして、印加磁場強度を1×10−2T(100Gauss)程度から徐々に上昇させていった。鋳型短辺側では温度上昇(加速効果)となり、浸漬ノズル側では温度低下(減速効果)となり、印加磁場強度の上昇とともに両者の温度が近づき5×10−2T(500Gauss)程度でほぼ同等となった。このとき湯面温度は、中間レベルで安定しており、溶鋼流速は速すぎず、パウダー巻き込みの危険も小さいものと推定された。 Furthermore, the frequency of the applied magnetic field was set to 0.5 Hz, and the applied magnetic field intensity was gradually increased from about 1 × 10 −2 T (100 Gauss). The temperature rises (acceleration effect) on the short side of the mold, and the temperature drops (deceleration effect) on the immersion nozzle side. As the applied magnetic field strength increases, both temperatures approach and are approximately equal to about 5 × 10 −2 T (500 Gauss). became. At this time, the molten metal surface temperature was stable at an intermediate level, the molten steel flow velocity was not too fast, and the risk of powder entrainment was estimated to be small.
手嶋ら:鉄と鋼,79(1993),p.576〜582によると、吐出流の軌跡およびその各位置での溶鋼の流速値を推定することができる。これを本鋳造実験に当てはめると、吐出流速の幅方向平均値は41cm/sとなる。吐出流は浸漬ノズル中心から300mm以内で平均流速より速いが、300mmより短辺側で平均流速より遅くなる。供給電流の周波数が2Hzのとき、磁場移動速度は1.12m/sであり、溶鋼吐出流より速いため鋳型全幅領域で加速効果があったと推定することができる。印加磁場の周波数1Hzのときには、磁場移動速度は0.56m/sであり、鋳型短辺側では加速効果が見られたが、浸漬ノズル近傍では磁場移動速度が浸漬ノズル近傍の溶鋼流速とほぼ同等で、これらの間の相対速度が小さく、発生電磁力が小さかったため、加速効果も減速効果も大きく働かなかったものと考えられる。周波数0.5Hzのときには、磁場移動速度は0.28m/sであり、磁場の移動速度が小さいため、図5のように浸漬ノズル近傍では相対速度が鋳型短辺から浸漬ノズルへ向かう方向になるため減速効果が得られたが、鋳型短辺近傍では加速効果が働いたものと考えられる。 Teshima et al .: Iron and Steel, 79 (1993), p. According to 576 to 582, the trajectory of the discharge flow and the flow velocity value of the molten steel at each position can be estimated. When this is applied to the main casting experiment, the average value in the width direction of the discharge flow velocity is 41 cm / s. The discharge flow is faster than the average flow velocity within 300 mm from the center of the immersion nozzle, but is slower than the average flow velocity on the shorter side than 300 mm. When the frequency of the supply current is 2 Hz, the magnetic field moving speed is 1.12 m / s, which is faster than the molten steel discharge flow, so that it can be estimated that there was an acceleration effect in the entire mold width region. When the applied magnetic field frequency was 1 Hz, the magnetic field moving speed was 0.56 m / s, and an acceleration effect was seen on the short side of the mold, but the magnetic field moving speed was almost equal to the molten steel flow velocity near the immersion nozzle. Therefore, it is considered that neither the acceleration effect nor the deceleration effect worked because the relative speed between them was small and the generated electromagnetic force was small. When the frequency is 0.5 Hz, the magnetic field moving speed is 0.28 m / s, and the moving speed of the magnetic field is small. Therefore, in the vicinity of the immersion nozzle, the relative speed is in the direction from the short side of the mold to the immersion nozzle as shown in FIG. Therefore, a deceleration effect was obtained, but it is considered that the acceleration effect worked near the short side of the mold.
鋳造後のスラブの欠陥発生率を調査した結果を図9に示す。ここで、スラブ欠陥発生率は、スラブ欠陥個数を連続鋳造装置の出側に設けられた光学的検査装置によりカウントし、スラブ単位面積当たりの不良率で評価した。この図から明らかなように、供給電流の周波数0.5Hzで印加磁場強度が4×10−2〜5×10−2T(400〜500Gauss)程度の時に欠陥発生率が低くなっていることが確認された。 The result of investigating the defect occurrence rate of the slab after casting is shown in FIG. Here, the slab defect occurrence rate was evaluated by counting the number of slab defects with an optical inspection device provided on the exit side of the continuous casting apparatus, and evaluating the defect rate per unit area of the slab. As it is apparent from this figure, that the applied magnetic field strength at frequency 0.5Hz is 4 × 10 -2 ~5 × 10 -2 T (400~500Gauss) about defect rate when the supply current is low confirmed.
以上より、印加磁場強度の変更だけでは制御できない溶鋼の流動が、印加磁場の周波数も同時に変更することによって適正化することができ、高品質スラブを製造することができることが確認された。 From the above, it was confirmed that the flow of molten steel, which cannot be controlled only by changing the applied magnetic field intensity, can be optimized by simultaneously changing the frequency of the applied magnetic field, and a high-quality slab can be manufactured.
本発明によれば、鋳型内の溶鋼流動分布によらず溶鋼流動を適正化することが可能となるので、鋳型の幅が広い場合等、従来では溶鋼流動の適正化が困難な場合であっても、鋳型内の溶鋼流動を適正に制御可能となり、高品質の鋳片を製造することができる。 According to the present invention, it is possible to optimize the molten steel flow regardless of the molten steel flow distribution in the mold. Therefore, when the width of the mold is wide, conventionally, it is difficult to optimize the molten steel flow. In addition, the molten steel flow in the mold can be appropriately controlled, and a high quality slab can be manufactured.
1;電磁コイル
2;鋳型
2a;長辺
2b;短辺
3;浸漬ノズル
4;吐出流
5;モールドパウダー
6;凝固シェル
7;ヨーク
10,10a;電磁流動制御装置
11;3相交流電源
12;電流値制御部
13;周波数制御部
DESCRIPTION OF
Claims (1)
予め把握されている前記鋳型内における前記鋳型幅方向の溶鋼流速が、前記浸漬ノズル近傍では平均速度よりも速く、鋳型短辺近傍では平均速度よりも遅い場合に、
前記移動磁場の移動方向が前記浸漬ノズル側から前記短辺側となるように前記複数の電磁コイルに給電される交流の位相を調整するとともに、前記移動磁場の移動速度が前記鋳型幅方向の溶鋼流速の平均速度より小さくなるように前記周波数制御部による電流の周波数を制御し、かつ前記電流値制御部により前記電磁コイルに供給される電流値を制御することにより印加磁場強度を制御して、
前記鋳型幅方向の溶鋼流速がその平均速度よりも速い部分である前記浸漬ノズル近傍では減速するように、かつその平均速度よりも遅い部分である鋳型短辺近傍では加速するように溶鋼の流動を制御することを特徴とする鋼の連続鋳造方法。 A plurality of electromagnetic coils arranged on both sides in the mold width direction while supplying molten steel into a rectangular mold having a long side and a short side through an immersion nozzle provided in the center of the mold width direction, and these An AC power source that feeds power to the plurality of electromagnetic coils, a current value control unit that controls a current value supplied to the electromagnetic coil, and a frequency control unit that controls the frequency of the current supplied to the electromagnetic coil, This is a continuous casting method of steel in which the flow of molten steel in a mold is controlled by an electromagnetic flow control device that applies a moving magnetic field in which the moving direction of the magnetic field is in the mold width direction along the long side to the molten steel in the mold. And
When the molten steel flow velocity in the mold width direction in the mold ascertained in advance is faster than the average speed in the vicinity of the immersion nozzle, and slower than the average speed in the vicinity of the mold short side,
The phase of alternating current supplied to the plurality of electromagnetic coils is adjusted so that the moving direction of the moving magnetic field is from the immersion nozzle side to the short side, and the moving speed of the moving magnetic field is the molten steel in the mold width direction. Control the frequency of the current by the frequency control unit to be smaller than the average speed of the flow velocity, and control the current value supplied to the electromagnetic coil by the current value control unit to control the applied magnetic field strength,
The flow of the molten steel is caused to slow down in the vicinity of the immersion nozzle, where the molten steel flow velocity in the mold width direction is faster than the average speed, and to accelerate in the vicinity of the mold short side, which is a portion slower than the average speed. A continuous casting method of steel characterized by controlling.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004055177A JP4595351B2 (en) | 2004-02-27 | 2004-02-27 | Steel continuous casting method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004055177A JP4595351B2 (en) | 2004-02-27 | 2004-02-27 | Steel continuous casting method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005238319A JP2005238319A (en) | 2005-09-08 |
JP4595351B2 true JP4595351B2 (en) | 2010-12-08 |
Family
ID=35020599
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004055177A Expired - Lifetime JP4595351B2 (en) | 2004-02-27 | 2004-02-27 | Steel continuous casting method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4595351B2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH105945A (en) * | 1996-06-27 | 1998-01-13 | Nkk Corp | Method for controlling molten steel flow in continuous casting mold |
JPH1177265A (en) * | 1997-09-12 | 1999-03-23 | Nkk Corp | Method for controlling fluid of molten steel in mold for continuous casting |
JP2003320440A (en) * | 2002-03-01 | 2003-11-11 | Jfe Steel Kk | Method and device for controlling molten steel fluidity in mold, and method for manufacturing continuous casting slab |
-
2004
- 2004-02-27 JP JP2004055177A patent/JP4595351B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH105945A (en) * | 1996-06-27 | 1998-01-13 | Nkk Corp | Method for controlling molten steel flow in continuous casting mold |
JPH1177265A (en) * | 1997-09-12 | 1999-03-23 | Nkk Corp | Method for controlling fluid of molten steel in mold for continuous casting |
JP2003320440A (en) * | 2002-03-01 | 2003-11-11 | Jfe Steel Kk | Method and device for controlling molten steel fluidity in mold, and method for manufacturing continuous casting slab |
Also Published As
Publication number | Publication date |
---|---|
JP2005238319A (en) | 2005-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101396734B1 (en) | Method and apparatus for controlling the flow of molten steel in a mould | |
JP4401777B2 (en) | Apparatus and method for continuous casting | |
KR101176816B1 (en) | Method of continuous casting of steel | |
EP2500120A1 (en) | Method of continuous casting of steel | |
JP4865944B2 (en) | Method and apparatus for controlling metal flow in continuous casting using electromagnetic fields | |
JP4595351B2 (en) | Steel continuous casting method | |
JP7151247B2 (en) | Flow controller for thin slab continuous casting and thin slab continuous casting method | |
JP3593328B2 (en) | Method for controlling flow of molten steel in mold and apparatus for forming electromagnetic field therefor | |
JP2008055431A (en) | Method of continuous casting for steel | |
JP4254576B2 (en) | Steel continuous casting apparatus and continuous casting method | |
JP5369808B2 (en) | Continuous casting apparatus and continuous casting method | |
JP4553639B2 (en) | Continuous casting method | |
JP4345521B2 (en) | Steel continuous casting method | |
JP5375242B2 (en) | Continuous casting apparatus and continuous casting method | |
JP2005238318A (en) | Apparatus and method for continuously casting steel | |
JP2006281218A (en) | Method for continuously casting steel | |
JP4492333B2 (en) | Steel continuous casting method | |
JP4910357B2 (en) | Steel continuous casting method | |
JP2005152996A (en) | Method for continuously casting steel | |
JP5710448B2 (en) | Control method of electromagnetic stirring device in mold at the end of casting | |
JP4983320B2 (en) | Method and apparatus for continuous casting of steel | |
JP2003275849A (en) | Method for producing continuously cast slab | |
RU2464123C1 (en) | Method of adjusting conditions of electromagnetic mixing of ingot liquid phase in slab continuous casting machine and device to this end | |
JP4432263B2 (en) | Steel continuous casting method | |
JP5018144B2 (en) | Steel continuous casting method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070219 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070831 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090825 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091022 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20091222 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100311 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20100330 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100518 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100713 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100824 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100906 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4595351 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131001 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |