[go: up one dir, main page]

JP4585659B2 - Flame retardant resin composition and molded product therefrom - Google Patents

Flame retardant resin composition and molded product therefrom Download PDF

Info

Publication number
JP4585659B2
JP4585659B2 JP2000220008A JP2000220008A JP4585659B2 JP 4585659 B2 JP4585659 B2 JP 4585659B2 JP 2000220008 A JP2000220008 A JP 2000220008A JP 2000220008 A JP2000220008 A JP 2000220008A JP 4585659 B2 JP4585659 B2 JP 4585659B2
Authority
JP
Japan
Prior art keywords
component
resin composition
carbon atoms
resin
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000220008A
Other languages
Japanese (ja)
Other versions
JP2002037973A (en
Inventor
克浩 山中
和彦 古屋
竹谷  豊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Chemicals Ltd filed Critical Teijin Chemicals Ltd
Priority to JP2000220008A priority Critical patent/JP4585659B2/en
Publication of JP2002037973A publication Critical patent/JP2002037973A/en
Application granted granted Critical
Publication of JP4585659B2 publication Critical patent/JP4585659B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【技術分野】
本発明は難燃性のポリスチレン樹脂組成物に関する。さらに詳しくは、本発明は耐熱性に優れかつ耐衝撃性が良好な難燃性のポリスチレン樹脂組成物およびそれからの成形品に関する。また本発明は高水準の荷重たわみ温度を有しかつ実質的にハロゲンを含有しない難燃性のポリスチレン樹脂組成物およびそれからの成形品にも関する。
【0002】
【背景技術】
ポリスチレン樹脂は耐衝撃性に優れ、さらに成形性も優れていることから、オフィスオートメーション機器部品、家電製品部品、自動車部品など多岐の分野で使用されているが、ポリスチレン樹脂の易燃性のために、その用途は制限されている。ポリスチレン樹脂の難燃化の方法としてはハロゲン化合物、リン化合物または無機化合物を難燃剤として添加することが知られており、それによりある程度難燃化が達成されている。しかしながら、製品の安全性を高めるためにオフィスオートメーション機器や、家電製品の成形品には、アメリカの規格であるアンダーライターズラボラトリー(UL)社のサブジェクト94にもとづく難燃試験の規制が年々厳しくなっており、より高度の難燃化が要求されている。
【0003】
従来、ポリスチレン樹脂の難燃性を向上させる方法として、例えばポリスチレン樹脂、メラミン等の窒素化合物、ポリオールおよび有機リン酸エステルからなる樹脂組成物(特開平4−117442号公報)およびゴム変性ポリスチレン樹脂とハロゲン化合物からなる着火溶融滴下型自己消炎性ポリスチレン樹脂組成物(特公平6−43542号公報)が知られている。しかしながら、これらの樹脂組成物は難燃性が十分ではなく、その使用範囲が限られるという問題があった。
【0004】
さらに、近年、ハロゲン化合物が環境に悪影響を及ぼすという報告がなされ、樹脂成形品は欧州を中心としてノンハロゲン化の動きが盛んになってきた。そのため難燃剤においてもノンハロゲンタイプの需要が高まり、各樹脂に対するノンハロゲンタイプの難燃剤の開発が盛んに行われるようになった。ところが、ポリスチレン樹脂のノンハロゲンによる難燃化に関しては、これまでは、その易燃性から困難とされてきた。
【0005】
かかる分野の公知技術として、特開平8−176396号公報や特開平8−120152号公報では特定のゴム変性ポリスチレン樹脂とリン含有難燃剤との樹脂組成物が開示され、具体的には、リン含有難燃剤としてトリフェニルホスフェートおよびその誘導体あるいは赤リンが使用され、溶融滴下自己消火性の難燃性が発現することが示されている。しかしながら、トリフェニルホスフェートおよびその誘導体を使用した組成物は、可塑効果によって流動性を上げ、着火溶融滴下を容易にして難燃性を発現したものであり、かかる樹脂組成物は、耐熱性が著しく低下し、実用性に乏しいという欠点がある。赤リンを用いた場合は、難燃性を発現するには比較的多量配合する必要があり、そのため樹脂組成物の押出成形時に有毒なホスフィンガスが発生し易く、その上赤リンの取り扱いが難しい等の問題があり、また得られる樹脂組成物が赤リン特有の褐色になり、その使用範囲が限られるという欠点がある。
【0006】
また、特開平8−311278号公報では、ゴム変性ポリスチレン樹脂、有機リン化合物単量体と有機リン化合物縮合体およびシリコーンオイルからなり、該有機リン化合物中に上記単量体を50〜100重量%含むことを特徴とする溶融滴下自己消火性難燃性樹脂組成物が開示されている。具体的には、ゴム変性ポリスチレンの還元粘度は0.53dl/gのものが使用されており、かかる樹脂組成物も耐熱性および耐衝撃性に劣り、実用性に乏しいという欠点がある。
このように、従来のゴム変性ポリスチレン樹脂組成物においては、難燃性はある程度達成されるが耐熱性に劣り、殊にOA機器ハウジング等の高い耐熱性を要求される用途に使用することは困難であり、その改善が求められている。
【0007】
【発明の開示】
【発明が解決しようとする課題】
本発明の第1の目的は、着火溶融滴下型の難燃性、すなわちUL94規格のV−2レベル以上の難燃性を達成することができ、かつ耐熱性に優れたポリスチレン樹脂組成物を提供することにある。
【0008】
本発明の第2の目的は、耐衝撃性が高水準を維持し、荷重たわみ温度の低下が少なくかつ難燃性のゴム変性ポリスチレン樹脂組成物を提供することにある。
【0009】
本発明の第3の目的は、荷重たわみ温度、耐衝撃性および難燃性がいずれもバランスよく高水準であって、実質的にハロゲンを含有しないゴム変性ポリスチレン樹脂組成物を提供することにある。
本発明の他の目的は、OA機器のハウジングおよび容器などに有利に利用できる難燃性のゴム変性ポリスチレン樹脂組成物を提供することにある。
【0010】
【課題を解決するための手段】
本発明者らの研究によれば、前記本発明の目的は、
(A)耐衝撃性ポリスチレンより実質的になる樹脂成分(成分a)100重量部および
(B)下記式(I−2)で表されかつ 31 PNMR純度が99%以上のリン含有化合物(成分b)1〜50重量部、
よりなる難燃性樹脂組成物によって達成される。
【0011】
【化24】

Figure 0004585659
【0012】
本発明の前記式(I−2)で表されるリン含有化合物(成分b)と類似の化合物が、難燃剤として使用されることは知られている。特開昭54−157156号公報には、ジメチルペンタエリスリトールジホスホネート、ジメチルペンタエリスリトールジホスフェートおよびジフェニルペンタエリスリトールジホスホネートに代表されるスピロ環を有するジホスホネートをポリカーボネート樹脂の難燃剤として利用することが記載されている。この公報記載の発明はポリカーボネート樹脂の難燃化が前記ジホスホネートの配合によって増加することを単に教示するに過ぎない。
【0013】
さらにペンタエリスリトールジホスフェートまたはペンタエリスリトールジホスホネートを難燃剤として含有する芳香族ポリカーボネート樹脂組成物が米国特許第4,178,281号明細書に記載されている。この米国特許には、芳香族ポリカーボネート樹脂あるいはそれとABS樹脂との混合物の難燃化について記載されているが、それ以外の樹脂について何らの説明もない。
【0014】
ポリフェニレンテールおよび耐衝撃性ポリスチレンよりなる特定の樹脂混合物に、ペンタエリスリトールジホスホネートを配合した難燃性の樹脂組成物が米国特許第4,162,278号明細書に記載されている。この米国特許は前記特定の樹脂混合物に対してV−0またはV−1の規格を満足する難燃性が達成されたことを単に教示しているに過ぎず、また実施例には具体的な組成比が記載されていない。
【0015】
またジ置換フェニルのペンタエリスリトールジホスフェートを難燃剤とする樹脂組成物が特開平5−92986号公報に記載されている。このジホスフェートのジ置換フェニル基は、2,6位にメチル基やt−ブチル基の如き立体障害基を置換基として有するジ置換フェニル基である。この特定構造のジ置換フェニルペンタエリスリトールジホスフェートは、置換基を有しないジホスフェートに比べて樹脂に対して熱安定性が優れていることが記載されている。この公報には、対象とする樹脂について特に限定がなく、極めて広範囲の樹脂が例示されているが、具体的に効果が確認されているのは、ポリフェニレンエーテルを主体とする樹脂およびポリカーボネート樹脂である。
【0016】
本発明によれば、前記式(I−2)で表わされる特定構造のリン含有化合物であって、特定の純度を有する化合物を耐衝撃性ポリスチレン樹脂に配合すると、難燃化が増大されること以外に耐熱性の低下、殊に荷重たわみ温度の低下が驚くほど少なくなることが見出された。
後述する実施する実施例および比較例から明らかなように、本発明の好ましい配合条件下では、リン含有化合物の配合によって、耐衝撃性ポリスチレン樹脂自体が有する荷重たわみ温度が実質的に低下しないかまたはある場合には若干上昇することさえあることが見出された。この耐熱性の低下が少ない現像は、本発明のリン含有化合物と耐衝撃性ポリスチレン樹脂との組合せによる特異的挙動と思われる。
【0017】
耐衝撃性ポリスチレン樹脂の難燃剤として、通常よく知られた例えばトリフェニルホスフェート(TPP)やビス(ノニルフェニル)フェニルホスフェート(BNPP)を使用した場合、荷重たわみ温度の大幅な低下を余儀なくされることからも、本発明の樹脂組成物における樹脂とリン含有化合物の組合せが特異な効果を奏することが理解できる。耐衝撃性ポリスチレンの荷重たわみ温度に代表される耐熱性が難燃化にもかかわらず、高水準に維持されることは、その利用価値および利用分野の拡大をもたらすことになる。その上本発明の樹脂組成物は、耐衝撃性の低下は少なく、耐衝撃性ポリスチレン樹脂の本来の利点は保持されている。
以下、本発明の樹脂組成物についてさらに詳細に説明する。
【0018】
【発明を実施するための最良の形態】
本発明の樹脂組成物において成分aとしての耐衝撃性ポリスチレン樹脂は、通常“HIPS”と称される衝撃性の改良されたポリスチレン樹脂である。一般的には、HIPSはゴム変性されたポリスチレン樹脂を意味する。
このゴム変性スチレン樹脂は主に芳香族ビニル重合体よりなるマトリックス中にゴム状重合体が粒子状に分散してなる重合体をいい、ゴム状重合体の存在下に芳香族ビニル単量体を必須成分とする単量体混合物を加えて公知の塊状重合、塊状懸濁重合、溶液重合または乳化重合することにより得られる。
【0019】
前記ゴム状重合体の例としては、ポリブタジエン、ポリ(スチレン−ブタジエン)等のジエン型ゴムおよび上記ジエンゴムを水素添加した飽和ゴム、イソプレンゴム、クロロプレンゴム、ポリアクリル酸ブチル等のアクリルゴムおよびエチレン−プロピレン−ジエンモノマー三元共重合体(EPDM)等を挙げることができ、特にジエン型ゴムが好ましい。
上記ゴム状重合体の存在下に重合させるグラフト共重合可能な単量体混合物中の必須成分である芳香族ビニル単量体は、例えばスチレン、α−メチルスチレン、パラメチルスチレン等であり、スチレンが最も好ましい。
上記ゴム変性ポリスチレン樹脂中のゴム状重合体成分の含有量は1〜15重量%、好ましくは1〜10重量%、より好ましくは2〜8.5重量%であり、芳香族ビニル重合体成分の含有量は99〜85重量%、好ましくは99〜90重量%、より好ましくは98〜91.5重量%である。この範囲内では得られる樹脂組成物の耐熱性、耐衝撃性および剛性のバランスが向上し、また、不飽和結合が少なく酸化され難くなり熱安定性に優れるため好ましい。
【0020】
本発明におけるゴム変性ポリスチレン樹脂の分子量の尺度である還元粘度ηsp/C(0.5g/dlのトルエン溶液を30℃で測定)は、0.2〜1.5dl/gであり、好ましくは0.4〜1.3dl/gであり、より好ましくは0.6〜1.1dl/gである。ゴム変性ポリスチレン樹脂の還元粘度ηsp/Cに関する上記条件を満たすための手段としては、重合開始剤、重合温度、連鎖移動剤の調整等を挙げられる。還元粘度が低くなると耐熱性および耐衝撃性に劣る樹脂組成物となる。
【0021】
本発明の難燃性樹脂組成物において、樹脂成分(成分a)は、樹脂成分を100重量%としたとき、前記耐衝撃性ポリスチレン(成分a−1)を90〜100重量%含有している。樹脂成分中の耐衝撃性ポリスチレン以外の樹脂(成分a−2)としては、ポリフェニレンエーテル、ポリカーボネート、ABS樹脂、ポリエステルおよびフェノール樹脂よりなる群から選ばれた少なくとも一種が挙げられる。これら成分a−2としては、ポリフェニレンエーテル、ポリカーボネートまたはフェノール樹脂が好適である。成分a−2は、樹脂成分(成分a)を100重量%としたとき0〜10重量%未満の範囲で使用される。
本発明の難燃性樹脂組成物における難燃剤としてのリン含有化合物(成分b)は下記式(I−2)で表される。
【0022】
【化25】
Figure 0004585659
【0023】
発明の樹脂組成物は、耐衝撃性ポリスチレンを主とする樹脂成分(成分a)および前記式(I−2)で表されるリン含有化合物より実質的になるが、さらに他のリンまたはリン化合物を成分cとして配合させることができる。成分cの配合により、難燃効果、物理的強度あるいは耐熱性などを改良することができ、またコストを低減できる効果もある。
さらに配合することができる成分cとしては、下記(c−1)〜(c−5)のリンもしくはリン化合物が挙げられる。
(c−1)赤リン
(c−2)下記式(c−2)で表されるトリアリールホスフェート
【0024】
【化29】
Figure 0004585659
【0025】
(c−3)下記式(c−3)で表される縮合リン酸エステル、
【0026】
【化30】
Figure 0004585659
【0027】
(c−4)下記式(c−4)で表される縮合リン酸エステル、
【0028】
【化31】
Figure 0004585659
【0029】
(c−5)下記式(c−5)で表される化合物、
【0030】
【化32】
Figure 0004585659
【0031】
前記式(c−2)〜(c−4)中、R〜Rは、それぞれ同一もしくは異なり、炭素数6〜15のアリール基、好ましくは炭素数6〜10のアリール基である。このアリール基の具体例としては、フェニル、ナフチルまたはアントリルが挙げられる。これらアリール基は1〜5個、好ましくは1〜3個の置換基を有していてもよく、その置換基としては、(i)メチル、エチル、プロピル、イソプロピル、n−ブチル、sec−ブチル、t−ブチル、ネオペンチルおよびノニルの如き炭素数1〜12のアルキル基(好ましくは炭素数1〜8のアルキル基)、(ii)メトキシ、エトキシ、プロポキシ、ブトキシおよびペントキシの如き炭素数1〜12のアルキルオキシ基(好ましくは炭素数1〜8のアルキルオキシ基)、(iii)メチルチオ、エチルチオ、プロピルチオ、ブチルチオおよびペンチルチオの如き炭素数1〜12のアルキルチオ基(好ましくは炭素数1〜8のアルキルチオ基)および(iv)式−Y−Arで表される基(ここでYは、−O−、−S−または炭素数1〜8、好ましくは炭素数1〜4のアルキレン基を示し、Arは炭素数6〜15、好ましくは炭素数6〜10のアリール基を示す)が挙げられる。
【0032】
式(c−3)および(c−4)において、ArおよびArは、両者が存在する場合(c−4の場合)、同一もしくは異なり、炭素数6〜15のアリーレン基、好ましくは炭素数6〜10のアリーレン基を示す。具体例としてはフェニレン基またはナフチレン基が挙げられる。このArおよびArのアリーレン基は1〜4個、好ましくは1〜3個の置換基を有していてもよい。かかる置換基としては(i)メチル、エチル、プロピル、イソプロピル、n−ブチル、sec−ブチルおよびt−ブチルの如き炭素数1〜4のアルキル基、(ii)ベンジル、フェネチル、フェニルプロピル、ナフチルメチルおよびクミルの如き炭素数7〜20のアラルキル基および(iii)式−Z−Rで示される基(ここでZは−O−または−S−を示し、Rは炭素数1〜4、好ましくは1〜3のアルキル基または炭素数6〜15、好ましくは6〜10のアリール基を示す)および(iv)フェニル基の如き炭素数6〜15のアリール基が挙げられる。
【0033】
式(c−3)および(c−4)において、mは1〜5の整数、好ましくは1〜3の整数を示し、特に好ましくは1である。
式(c−4)においてXはArおよびArを結合する単結合もしくは基であり、−Ar−X−Ar−は通常ビスフェノールから誘導される残基である。かくしてXは単結合、−O−、−CO−、−S−、−SO−または炭素数1〜3のアルキルレンを示し、好ましくは単結合、−O−またはイソプロピリデンである。
また前記(c−5)の化合物は、6H−ベンゾ[c.e][1,2]オキサホスホリン−6−オンである。この(c−5)の化合物における2つのベンゼン環にはそれぞれ1〜4個、好ましくは1〜2個の置換基を有していてもよい。その置換基としては、前記式(c−2)〜(c−4)におけるR〜Rのアリール基の置換基として例示した(i)〜(iv)の置換基が挙げられる。
【0035】
前記(c−1)〜(c−5)のリンもしくはリン化合物(成分c)が本発明の樹脂組成物に配合される場合、その割合は、前記リン含有化合物(成分b)100重量部当り1〜100重量部、好ましくは5〜80重量部、特に好ましくは10〜60重量部の範囲が適当である。前記(c−1)〜(c−5)のリンもしくはリン化合物もしくはリン化合物のうち、好ましくは(c−2)〜(c−5)のリン化合物である。
本発明の樹脂組成物には、さらに下記化学式で表されるジクミル(成分d)を配合することができる。
【0036】
【化33】
Figure 0004585659
【0037】
このジクミル(成分d)は、樹脂成分(成分a)100重量部に対して0.01〜3重量部、好ましくは0.02〜2重量部、特に好ましくは0.03〜1重量部配合される。このジクミルは、前記割合で配合することにより、難燃効果はラジカル発生によるものと推測され、その結果として難燃性のレベルが向上する。
本発明の樹脂組成物には、さらに知られた難燃助剤を配合することができる。難燃助剤としては、例えばシリコーンオイルを挙げることができる。かかるシリコーンオイルとしては、ポリジオルガノシロキサンを骨格とし、好ましくはポリジフェニルシロキサン、ポリメチルフェニルシロキサン、ポリジメチルシロキサン、あるいはそれらの任意の共重合体または混合物であり、なかでもポリジメチルシロキサンが好ましく用いられる。その粘度は好ましくは0.8〜5000センチポイズ(25℃)、より好ましくは10〜1000センチポイズ(25℃)、さらに好ましくは50〜500センチポイズ(25℃)であり、かかる粘度の範囲のものは難燃性に優れ好ましい。かかるシリコーンオイルの配合量は、樹脂成分(成分a)100重量部に対して、0.5〜10重量部の範囲が好ましい。
【0038】
さらに、難燃助剤としてフッ素樹脂を配合することもできる。かかるフッ素樹脂には、例えば、テトラフルオロエチレン、トリフルオロエチレン、ビニルフルオライド、ビニリデンフルオライド、ヘキサフルオロプロピレン等のフッ素含有モノマーの単独または共重合体が挙げられる。また滴下防止性能を損なわない範囲で、前記フッ素含有モノマーと、エチレン、プロピレン、アクリレート等の重合性モノマーを共重合してもよい。これらのフッ素樹脂の中で、ポリテトラフルオロエチレンが好ましい。好ましいポリテトラフルオロエチレンはASTM規格によれば、タイプ3と呼ばれるものである。前記フッ素樹脂は樹脂成分(成分a)100重量部に対して0.01〜3重量部、好ましくは0.1〜2重量部の範囲が適当である。
また、本発明の樹脂組成物には、種々の添加剤、例えば、酸化防止剤、紫外線吸収剤、耐光安定剤などの劣化防止剤;滑剤;帯電防止剤;離型剤;可塑剤;ガラス繊維および炭素繊維などの補強繊維;タルク、マイカおよびワラストナイトなどの充填剤;および顔料などの着色剤などを添加してもよい。前記添加剤の使用量は、耐熱性、耐衝撃性、機械的強度などを損なわない範囲で、添加剤の目的および機能に応じて適当に選択できる。
【0039】
本発明の樹脂組成物は、樹脂成分(成分a)、リン含有化合物(成分b)および必要に応じてその他の成分を、V型ブレンダー、スーパーミキサー、スーパーフローター、ヘンシェルミキサーなどの混合機を用いて予備混合し、かかる予備混合物は混練機に供給し、溶融混合される。混練機としては、種々の溶融混合機、例えばニーダー、単軸または二軸押出機などが使用でき、なかでも二軸押出機などを用いて樹脂組成物を150〜280℃、好ましくは170〜250℃の温度で溶融して、サイドフィーダーにより液体成分を注入し、押出し、ペレタイザーによりペレット化する方法が好ましく使用される。
本発明の難燃性の樹脂組成物は、殊に耐熱性が良好であり、オフィスオートメーション機器部品、家電製品部品、自動車部品などの種々の成形品を成形する材料として有用である。このような成形品は慣用の方法、例えばペレット状の樹脂組成物を射出成形機により、例えば160〜250℃のシリンダー温度で射出成形することにより製造できる。
【0040】
本発明の樹脂組成物から形成された成形品は、従来知られたリン含有化合物として難燃剤を配合した成形品に比べて、物理的性質が極めて優れている。殊に耐熱性に優れ、とりわけ荷重たわみ温度(HDT)が高い点に特徴を有している。すなわち、耐衝撃性ポリスチレン樹脂に、その樹脂の難燃剤として知られた、トリフェニルホスフェート(TPP)やビス(ノニルフェニル)フェニルホスフェート(BNPP)の如きリン酸エステルを配合すると、その耐衝撃性ポリスチレン樹脂が本来有している荷重たわみ温度(HDT)が大幅に低下することが知られている。例えば難燃効果が達成されるに十分な量のトリフェニルホスフェートをポリスチレン樹脂に配合すると、荷重たわみ温度(HDT)の保持率は約60〜80%に低下する。
ところが、本発明のリン含有化合物(成分b)をポリスチレン樹脂に配合すると、荷重たわみ温度(HDT)の保持率は少なくとも85%を維持し、低下する割合は極めて少ない。好適条件下においては、本発明の樹脂組成物からの成形品は、荷重たわみ温度(HDT)の保持率は、90%以上の高い率を有し、驚くべきことには、95%以上、時には100〜105%を示すこともある。このようにポリスチレン樹脂に難燃剤としてリン含有化合物を配合した場合、ポリスチレン樹脂自体の荷重たわみ温度(HDT)がほとんど低下しないで、ある場合にはその樹脂と同じ水準乃至それ以上の水準を示す組成物は従来全く知れていなかった。
【0041】
本発明の樹脂組成物は、使用する耐衝撃性ポリスチレン樹脂からの荷重たわみ温度の保持率が少なくとも85%、好ましくは90%以上であり、特に好ましくは95%以上である。かかる保持率の範囲では実用上大きな価値を有し、耐衝撃性ポリスチレン樹脂の本来の高い耐熱性を保持することを意味する。ここで、かかる荷重たわみ温度保持率は、耐衝撃性ポリスチレン樹脂(成分a)の荷重たわみ温度x(℃)と、これにリン含有化合物(成分b)を配合した樹脂組成物の荷重たわみ温度y(℃)との関係において、(y/x)×100%の計算式で算出される。また、本発明の樹脂組成物は、成分aが実質的に耐衝撃性ポリスチレン樹脂(HIPS)である場合、ASTM−D648に準拠した方法で1/4インチ試験片を用いて荷重1.81MPa(18.5Kgf/cm)で測定した荷重たわみ温度の値が、好ましくは65〜100℃の範囲であり、より好ましくは70〜95℃である。
また、本発明の樹脂組成物からの成形品は、衝撃強度の低下が少なく、実用性を有するに充分な衝撃強度を有している。
に実施例において使用したリン含有化合物の調製例を説明する。
【0042】
調製例
2,4,8,10−テトラオキサ−3,9−ジホスファスピロ[5,5]ウンデカン,3,9−ベンジル−3,9−ジオキサイド(b−7)の調製
温度計、コンデンサー、滴下ロートを備えた反応容器にペンタエリスリトール6.81部、ピリジン0.4部、ジオキサン80.0部を仕込み、攪拌した。該反応容器にベンジルジクロロホスホン酸19.5部を該滴下ロートを用い添加し、添加終了後、加熱還流を行った。反応後、室温まで冷却し、得られた結晶を水及びメタノールにて洗浄しろ過した。得られたろ取物を120℃、133Paで3時間乾燥し、白色の固体15.3部を得た。得られた固体は31P、HNMRスペクトル、及び融点測定により目的とする2,4,8,10−テトラオキサ−3,9−ジホスファスピロ[5,5]ウンデカン,3,9−ベンジル−3,9−ジオキサイド(以下b−7と称する)である事を確認した。収率は75%、31PNMR純度は99%であった。
H−NMR(CDCl,300MHz):δ7.4−7.2(m,10H),4.4−4.1(m,8H)、3.48(d,4H)、31P−NMR(CDCl,120MHz):δ23.1(S)、融点:257−259℃
【0043】
【実施例】
以下に実施例を挙げて本発明の詳細を説明するが、本発明の範囲がこれらの実施例に限定されるものではない。尚、評価は下記の方法で行った。
【0044】
(1)難燃性(UL−94評価)
難燃性は厚さ3.18mm(1/8インチ)のテストピースを用い、難燃性の評価尺度として、米国UL規格のUL−94に規定されている垂直燃焼試験に準じて評価を行った。どの試験片も炎を取り去った後の燃焼が30秒以内で、滴下せずに消火するものがV−1、滴下して消火するものがV−2であり、この評価基準以下のものをnotVとした。
【0045】
(2)還元粘度ηsp/C
ゴム変性スチレン系樹脂1gにメチルエチルケトン18mlとメタノール2mlの混合溶媒を加え、25℃で2時間振とうし、5℃、4000rpmで30分間遠心分離する。上澄み液を取り出し、メタノールで樹脂分を析出させた後、乾燥した。このようにして得られた樹脂、0.1gをトルエンに溶解し、0.5g/dlの溶液とし、この溶液10mlを毛細管径約0.3mmであるオストワルド型粘度計に入れ、30℃でこの溶液の流下秒数tを測定した。一方、同じ粘度計でトルエンの流下秒数tを測定し、以下の数式により算出した。このときトルエンの流下秒数tが240秒以上になることが好ましい。
ηsp/C=(t/t−1)/C (C:ポリマー濃度g/dl)
【0046】
(3)ゴム変性スチレン系樹脂中のゴム状重合体成分量
核磁気共鳴測定装置(バリアン製、UNITY300)により水素原子の核磁気共鳴を測定し、スチレンユニットと、ブタジエンユニットのモル比よりゴム状重合体成分量を算出した。
【0047】
(4)荷重たわみ温度(HDT)、荷重たわみ温度保持率
荷重たわみ温度は、ASTM−D648に準拠した方法により6.35mm(1/4インチ)試験片を用いて18.5Kg荷重で測定した。また、荷重たわみ温度保持率は、使用したゴム変性スチレン系樹脂の荷重たわみ温度x(℃)とスチレン系樹脂組成物の荷重たわみ温度y(℃)を測定し、(y/x)×100(%)の計算式により算出した。
【0048】
(5)MFR値
JIS−K7210で規定される測定法に準じて、230℃、37.3N(3.8kg荷重)の条件で求めた。
実施例、比較例で用いる各成分は以下のものを用いた。
【0049】
(A)樹脂成分
(1)還元粘度ηsp/C=0.63dl/g、ゴム状重合体成分4.3重量%、MFR36.0g/10分であるゴム変性スチレン系樹脂(以下H−1と称する)
(2)還元粘度ηsp/C=0.78dl/g、ゴム状重合体成分4.3重量%、MFR71.9g/10分であるゴム変性スチレン系樹脂(以下H−2と称する)
(3)還元粘度ηsp/C=0.96dl/g、ゴム状重合体成分7.9重量%、MFR7.9g/10分であるゴム変性スチレン系樹脂(以下H−3と称する)
【0050】
(B)環状有機リン化合物
,4,8,10−テトラオキサ−3,9−ジホスファスピロ[5,5]ウンデカン,3,9−ジベンジル−3,9−ジオキサイド(以下b−7と称する)
【0051】
(C)その他のリン化合物
(1)トリフェニルホスフェート{大八化学工業(株)製TPP(以下c−2と称する)}
(2)1,3−フェニレンビス[ジ(ジフェニル)フォスフェート]{前記一般式(C−3−1)でR、R、RおよびRがフェニル基である有機リン酸エステル化合物、大八化学(株)製CR−733S(以下c−3−1と称する)}
(3)1,3−フェニレンビス[ジ(2,6−ジメチルフェニル)フォスフェート]{前記一般式(4)でR、R、RおよびRが2,6−ジメチルフェニル基である有機リン酸エステル化合物、旭電化工業(株)製アデカスタブFP−500(以下c−3−2と称する)}
(4)ビスフェノール−A[ジ(ジフェニル)フォスフェート]{前記一般式(c−4)でR、R、RおよびRがフェニル基、ArおよびArがフェニレン基、Xがイソプロピリデン基である有機リン酸エステル化合物、大八化学(株)製CR−741(以下c−4と称する)}
(5)6H−ジベンゾ[c,e][1,2]オキサホスホリン−6−オン{三光化学(株)製HCA(以下c−5と称する)}
(D)その他の添加剤
ジクミル{日本油脂(株)製ノフマーBC−90(以下d−1と称する)}
【0052】
実施例1、2および比較例1〜12
記載の各成分を表記載の量(重量部)でタンブラーにて配合し、15mmφ二軸押出機(テクノベル製、KZW15)にて樹脂温度180℃でペレット化し、得られたペレットを65℃の熱風乾燥機にて4時間乾燥を行った。乾燥したペレットを射出成形機((株)日本製鋼所製 J75Si)にてシリンダー温度200℃で成形した。成形板を用いて評価した結果を表に示した。
【0053】
【表8】
Figure 0004585659
【0054】
実施例1、2は燃焼時の炎の大きさが小さく、消炎傾向が見られる。
実施例2では、さらに、ドリップ粒の消炎時間が非常に短い(燃焼し続けない)。[0001]
【Technical field】
  The present invention relates to a flame retardant polystyrene resin composition. More specifically, the present invention relates to a flame retardant polystyrene resin composition having excellent heat resistance and good impact resistance, and a molded article therefrom. The present invention also relates to a flame retardant polystyrene resin composition having a high level of deflection temperature under load and containing substantially no halogen, and a molded product therefrom.
[0002]
[Background]
  Polystyrene resin is excellent in impact resistance and has excellent moldability, so it is used in various fields such as office automation equipment parts, home appliance parts, and automobile parts. , Its use is limited. As a method for flame-retarding polystyrene resin, it is known to add a halogen compound, a phosphorus compound or an inorganic compound as a flame retardant, and thus flame retardancy is achieved to some extent. However, in order to increase the safety of products, the regulations of flame retardant tests based on the subject 94 of the Underwriters Laboratory (UL), an American standard, are becoming stricter every year for office automation equipment and molded products of household appliances. Therefore, more advanced flame retardant is required.
[0003]
  Conventionally, as a method for improving the flame retardancy of a polystyrene resin, for example, a resin composition comprising a polystyrene resin, a nitrogen compound such as melamine, a polyol and an organic phosphate ester (JP-A-4-117442) and a rubber-modified polystyrene resin An ignition melting dripping type self-extinguishing polystyrene resin composition (Japanese Patent Publication No. 6-43542) made of a halogen compound is known. However, these resin compositions have a problem that the flame retardancy is not sufficient and the range of use thereof is limited.
[0004]
  Furthermore, in recent years, it has been reported that halogen compounds have an adverse effect on the environment, and the trend of non-halogenation of resin molded products has become active mainly in Europe. Therefore, the demand for non-halogen type flame retardants has increased, and development of non-halogen type flame retardants for various resins has been actively conducted. However, regarding the flame resistance of polystyrene resin by non-halogen, it has been considered difficult until now because of its flammability.
[0005]
  As known techniques in this field, JP-A-8-176396 and JP-A-8-120152 disclose a resin composition of a specific rubber-modified polystyrene resin and a phosphorus-containing flame retardant, specifically, a phosphorus-containing material. Triphenyl phosphate and its derivatives or red phosphorus are used as flame retardants, and it has been shown that the flame retardant property of melt dripping self-extinguishing is exhibited. However, compositions using triphenyl phosphate and derivatives thereof have improved fluidity due to the plastic effect, and are easy to ignite, melt and drop, and exhibit flame retardancy. Such resin compositions have extremely high heat resistance. It has a drawback that it is lowered and is not practical. In the case of using red phosphorus, it is necessary to add a relatively large amount in order to exhibit flame retardancy. Therefore, toxic phosphine gas is easily generated during extrusion molding of the resin composition, and it is difficult to handle red phosphorus. In addition, the resin composition obtained has a brown color peculiar to red phosphorus, so that the range of use thereof is limited.
[0006]
  In JP-A-8-311278, a rubber-modified polystyrene resin, an organic phosphorus compound monomer, an organic phosphorus compound condensate, and silicone oil are used, and the above-mentioned monomer is contained in the organic phosphorus compound in an amount of 50 to 100% by weight. A melt-drip self-extinguishing flame retardant resin composition characterized by containing is disclosed. Specifically, rubber-modified polystyrene having a reduced viscosity of 0.53 dl / g is used, and such a resin composition is also inferior in heat resistance and impact resistance and lacks in practical use.
  As described above, in the conventional rubber-modified polystyrene resin composition, the flame retardancy is achieved to some extent, but the heat resistance is inferior. In particular, it is difficult to use in applications that require high heat resistance such as OA equipment housings. There is a need for improvement.
[0007]
DISCLOSURE OF THE INVENTION
[Problems to be solved by the invention]
  A first object of the present invention is to provide a polystyrene resin composition that can achieve flame retardant properties of an ignition melting and dropping type, that is, flame retardancy of V94 level or higher of UL94 standard and is excellent in heat resistance. There is to do.
[0008]
  A second object of the present invention is to provide a rubber-modified polystyrene resin composition that maintains a high level of impact resistance, has a small decrease in deflection temperature under load, and is flame retardant.
[0009]
  A third object of the present invention is to provide a rubber-modified polystyrene resin composition that has a well-balanced and high level of deflection temperature under load, impact resistance, and flame retardancy, and does not substantially contain halogen. .
  Another object of the present invention is to provide a flame-retardant rubber-modified polystyrene resin composition that can be advantageously used in housings and containers of OA equipment.
[0010]
[Means for Solving the Problems]
  According to the study by the present inventors, the object of the present invention is as follows.
(A) Impact resistant polystyreneBecome more substantial100 parts by weight of resin component (component a) and
(B) BottomFormula (I-2)Represented byAnd 31 PNMR purity is 99% or more1 to 50 parts by weight of a phosphorus-containing compound (component b),
This is achieved by the flame retardant resin composition.
[0011]
Embedded image
Figure 0004585659
[0012]
  Before the present inventionFormula (I-2)A phosphorus-containing compound represented by formula (component b)And similar compoundsHowever, it is known to be used as a flame retardant. JP-A-54-157156 describes that diphosphonate having a spiro ring represented by dimethylpentaerythritol diphosphonate, dimethylpentaerythritol diphosphate and diphenylpentaerythritol diphosphonate is used as a flame retardant for polycarbonate resin. Has been. The invention described in this publication merely teaches that the flame retardancy of the polycarbonate resin is increased by the incorporation of the diphosphonate.
[0013]
  Further, an aromatic polycarbonate resin composition containing pentaerythritol diphosphate or pentaerythritol diphosphonate as a flame retardant is described in US Pat. No. 4,178,281. This US patent describes flame retardancy of aromatic polycarbonate resin or a mixture of ABS resin and ABS resin, but there is no explanation about other resins.
[0014]
  A flame retardant resin composition in which pentaerythritol diphosphonate is blended with a specific resin mixture comprising a polyphenylene tail and high impact polystyrene is described in US Pat. No. 4,162,278. This U.S. Patent merely teaches that flame retardancy satisfying the V-0 or V-1 standard has been achieved for the particular resin mixture, and the examples are specific. The composition ratio is not described.
[0015]
  A resin composition containing a disubstituted phenyl pentaerythritol diphosphate as a flame retardant is described in JP-A-5-92986. The disubstituted phenyl group of this diphosphate is a disubstituted phenyl group having a sterically hindering group such as a methyl group or a t-butyl group as a substituent at the 2,6-position. It is described that the disubstituted phenylpentaerythritol diphosphate having this specific structure is superior in thermal stability to the resin as compared with the diphosphate having no substituent. In this publication, there is no particular limitation on the target resin, and an extremely wide range of resins are exemplified. However, concrete effects have been confirmed for resins mainly composed of polyphenylene ether and polycarbonate resins. .
[0016]
  According to the invention, saidRepresented by Formula (I-2)Phosphorus-containing compounds with specific structureA compound having a certain purityIt has been found that when blended with an impact resistant polystyrene resin, in addition to increasing the flame retardancy, the heat resistance is lowered, in particular the load deflection temperature is surprisingly reduced.
  As will be apparent from Examples and Comparative Examples to be described later, under the preferable blending conditions of the present invention, the deflection temperature under load of the impact-resistant polystyrene resin itself is not substantially reduced by the blending of the phosphorus-containing compound, or It was found that in some cases it could even rise slightly. This development with a small decrease in heat resistance seems to be a specific behavior by the combination of the phosphorus-containing compound of the present invention and an impact-resistant polystyrene resin.
[0017]
  For example, triphenyl phosphate (TPP) or bis (nonylphenyl) phenyl phosphate (BNPP), which are commonly known as flame retardants for impact-resistant polystyrene resins, require a significant decrease in deflection temperature under load. From this, it can be understood that the combination of the resin and the phosphorus-containing compound in the resin composition of the present invention has a unique effect. Maintaining a high level of heat resistance, represented by the deflection temperature under load of impact-resistant polystyrene, despite the incombustibility, leads to expansion of its utility value and field of use. In addition, the resin composition of the present invention has little impact resistance reduction and retains the original advantages of the impact resistant polystyrene resin.
  Hereinafter, the resin composition of the present invention will be described in more detail.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
  The impact-resistant polystyrene resin as component a in the resin composition of the present invention is a polystyrene resin with improved impact properties, usually referred to as “HIPS”. In general, HIPS means a rubber-modified polystyrene resin.
  This rubber-modified styrene resin is a polymer in which a rubber-like polymer is dispersed in the form of a matrix mainly composed of an aromatic vinyl polymer, and an aromatic vinyl monomer is added in the presence of the rubber-like polymer. It can be obtained by adding a monomer mixture as an essential component and performing known block polymerization, block suspension polymerization, solution polymerization or emulsion polymerization.
[0019]
  Examples of the rubbery polymer include diene type rubbers such as polybutadiene and poly (styrene-butadiene), saturated rubbers obtained by hydrogenation of the diene rubbers, isoprene rubbers, chloroprene rubbers, acrylic rubbers such as polybutyl acrylate, and ethylene- A propylene-diene monomer terpolymer (EPDM) can be exemplified, and a diene rubber is particularly preferable.
  The aromatic vinyl monomer which is an essential component in the graft copolymerizable monomer mixture polymerized in the presence of the rubbery polymer is, for example, styrene, α-methylstyrene, paramethylstyrene, etc. Is most preferred.
  The content of the rubber-like polymer component in the rubber-modified polystyrene resin is 1 to 15% by weight, preferably 1 to 10% by weight, more preferably 2 to 8.5% by weight. Content is 99 to 85 weight%, Preferably it is 99 to 90 weight%, More preferably, it is 98 to 91.5 weight%. Within this range, the balance of heat resistance, impact resistance and rigidity of the obtained resin composition is improved, and there are few unsaturated bonds, and it is difficult to oxidize and is excellent in thermal stability.
[0020]
  Reduced viscosity η which is a measure of the molecular weight of the rubber-modified polystyrene resin in the present inventionsp/ C (measured at 30 ° C. of a 0.5 g / dl toluene solution) is 0.2 to 1.5 dl / g, preferably 0.4 to 1.3 dl / g, more preferably 0.8. 6 to 1.1 dl / g. Reduced viscosity η of rubber-modified polystyrene resinspExamples of means for satisfying the above-mentioned conditions regarding / C include adjustment of a polymerization initiator, a polymerization temperature, and a chain transfer agent. When the reduced viscosity is lowered, the resin composition is inferior in heat resistance and impact resistance.
[0021]
  In the flame-retardant resin composition of the present invention, the resin component (component a) contains the above-mentioned impact-resistant polystyrene (component a-1) when the resin component is 100% by weight.90~ 100 weightIncluding%Have. Examples of the resin (component a-2) other than the impact-resistant polystyrene in the resin component include at least one selected from the group consisting of polyphenylene ether, polycarbonate, ABS resin, polyester, and phenol resin. As these components a-2, polyphenylene ether, a polycarbonate, or a phenol resin is suitable. Component a-2 is 0 to 0 when the resin component (component a) is 100% by weight.10weight%Less thanUsed in range.
  The phosphorus-containing compound (component b) as a flame retardant in the flame retardant resin composition of the present invention is as follows.Formula (I-2)It is represented by
[0022]
Embedded image
Figure 0004585659
[0023]
  BookThe resin composition of the invention comprises a resin component (component a) mainly composed of impact-resistant polystyrene and the above-mentionedFormula (I-2)However, another phosphorus or phosphorus compound can be added as component c. By blending component c, flame retardancy, physical strength, heat resistance and the like can be improved, and costs can be reduced.
  As the component c that can be further blended, the following phosphorus or phosphorus compounds (c-1) to (c-5) can be mentioned.
(C-1) Red phosphorus
(C-2) Triaryl phosphate represented by the following formula (c-2)
[0024]
Embedded image
Figure 0004585659
[0025]
(C-3) a condensed phosphate ester represented by the following formula (c-3),
[0026]
Embedded image
Figure 0004585659
[0027]
(C-4) a condensed phosphate ester represented by the following formula (c-4),
[0028]
Embedded image
Figure 0004585659
[0029]
(C-5) a compound represented by the following formula (c-5),
[0030]
Embedded image
Figure 0004585659
[0031]
  In the formulas (c-2) to (c-4), R1~ R4Are the same or different and are aryl groups having 6 to 15 carbon atoms, preferably aryl groups having 6 to 10 carbon atoms. Specific examples of this aryl group include phenyl, naphthyl or anthryl. These aryl groups may have 1 to 5, preferably 1 to 3 substituents, including (i) methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl. , T-butyl, neopentyl and nonyl alkyl groups having 1 to 12 carbon atoms (preferably alkyl groups having 1 to 8 carbon atoms), (ii) 1 to 12 carbon atoms such as methoxy, ethoxy, propoxy, butoxy and pentoxy. Alkyloxy groups (preferably alkyloxy groups having 1 to 8 carbon atoms), (iii) alkylthio groups having 1 to 12 carbon atoms (preferably alkylthio groups having 1 to 8 carbon atoms) such as methylthio, ethylthio, propylthio, butylthio and pentylthio. Group) and (iv) formula -Y-Ar3(Wherein Y represents —O—, —S— or an alkylene group having 1 to 8 carbon atoms, preferably 1 to 4 carbon atoms, Ar3Represents an aryl group having 6 to 15 carbon atoms, preferably 6 to 10 carbon atoms).
[0032]
  In formulas (c-3) and (c-4), Ar1And Ar2Are the same or different when both are present (in the case of c-4) and represent an arylene group having 6 to 15 carbon atoms, preferably an arylene group having 6 to 10 carbon atoms. Specific examples include a phenylene group or a naphthylene group. This Ar1And Ar2The arylene group may have 1 to 4, preferably 1 to 3 substituents. Such substituents include (i) alkyl groups having 1 to 4 carbon atoms such as methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl and t-butyl, and (ii) benzyl, phenethyl, phenylpropyl, naphthylmethyl. And an aralkyl group having 7 to 20 carbon atoms such as cumyl and (iii) the formula -Z-R5(Wherein Z represents —O— or —S—, R5Represents an alkyl group having 1 to 4 carbon atoms, preferably 1 to 3 carbon atoms or an aryl group having 6 to 15 carbon atoms, preferably 6 to 10 carbon atoms) and (iv) an aryl group having 6 to 15 carbon atoms such as a phenyl group. Can be mentioned.
[0033]
  In formulas (c-3) and (c-4), m represents an integer of 1 to 5, preferably an integer of 1 to 3, particularly preferably 1.
  In the formula (c-4), X is Ar1And Ar2A single bond or group for bonding1-X-Ar2-Is a residue usually derived from bisphenol. Thus, X is a single bond, -O-, -CO-, -S-, -SO.2-Represents an alkylene having 1 to 3 carbon atoms, preferably a single bond, -O- or isopropylidene.
  The compound (c-5) is 6H-benzo [c. e] [1,2] oxaphospholin-6-one. Each of the two benzene rings in the compound (c-5) may have 1 to 4, preferably 1 to 2 substituents. Examples of the substituent include R in the formulas (c-2) to (c-4).1~ R4The substituents (i) to (iv) exemplified as the substituent for the aryl group in FIG.
[0035]
  When the phosphorus or phosphorus compound (component c) of (c-1) to (c-5) is blended in the resin composition of the present invention, the ratio is 100 parts by weight of the phosphorus-containing compound (component b). The range of 1 to 100 parts by weight, preferably 5 to 80 parts by weight, particularly preferably 10 to 60 parts by weight is appropriate. Of the phosphorus or phosphorus compounds or phosphorus compounds of (c-1) to (c-5), the phosphorus compounds of (c-2) to (c-5) are preferred.
  The resin composition of the present invention may further contain dicumyl (component d) represented by the following chemical formula.
[0036]
Embedded image
Figure 0004585659
[0037]
  The dicumyl (component d) is blended in an amount of 0.01 to 3 parts by weight, preferably 0.02 to 2 parts by weight, particularly preferably 0.03 to 1 part by weight, based on 100 parts by weight of the resin component (component a). The When this dicumyl is blended in the above ratio, it is estimated that the flame retardant effect is caused by radical generation, and as a result, the level of flame retardancy is improved.
  Further known flame retardant aids can be blended with the resin composition of the present invention. Examples of the flame retardant aid include silicone oil. As such silicone oil, polydiorganosiloxane is used as a skeleton, preferably polydiphenylsiloxane, polymethylphenylsiloxane, polydimethylsiloxane, or an arbitrary copolymer or mixture thereof. Among them, polydimethylsiloxane is preferably used. . The viscosity is preferably 0.8 to 5000 centipoise (25 ° C.), more preferably 10 to 1000 centipoise (25 ° C.), and still more preferably 50 to 500 centipoise (25 ° C.). Excellent in flammability. The blending amount of the silicone oil is preferably in the range of 0.5 to 10 parts by weight with respect to 100 parts by weight of the resin component (component a).
[0038]
  Furthermore, a fluororesin can be blended as a flame retardant aid. Examples of such a fluororesin include homopolymers or copolymers of fluorine-containing monomers such as tetrafluoroethylene, trifluoroethylene, vinyl fluoride, vinylidene fluoride, and hexafluoropropylene. Moreover, you may copolymerize the said fluorine-containing monomer and polymerizable monomers, such as ethylene, propylene, and an acrylate, in the range which does not impair dripping prevention performance. Of these fluororesins, polytetrafluoroethylene is preferred. Preferred polytetrafluoroethylene is what is called Type 3 according to the ASTM standard. The said fluororesin is 0.01-3 weight part with respect to 100 weight part of resin components (component a), Preferably the range of 0.1-2 weight part is suitable.
  In addition, the resin composition of the present invention includes various additives such as antioxidants, UV absorbers, light stabilizers, and the like; lubricants; antistatic agents; mold release agents; plasticizers; glass fibers. And reinforcing fibers such as carbon fibers; fillers such as talc, mica and wollastonite; and colorants such as pigments may be added. The amount of the additive used can be appropriately selected according to the purpose and function of the additive as long as the heat resistance, impact resistance, mechanical strength and the like are not impaired.
[0039]
  The resin composition of the present invention uses a resin component (component a), a phosphorus-containing compound (component b), and other components as necessary, using a mixer such as a V-type blender, super mixer, super floater, and Henschel mixer. The preliminary mixture is supplied to a kneader and melt-mixed. As the kneader, various melt mixers such as a kneader, a single screw or a twin screw extruder can be used, and among them, the resin composition is used at 150 to 280 ° C., preferably 170 to 250 using a twin screw extruder. A method of melting at a temperature of 0 ° C., injecting a liquid component with a side feeder, extruding, and pelletizing with a pelletizer is preferably used.
  The flame-retardant resin composition of the present invention has particularly good heat resistance and is useful as a material for molding various molded products such as office automation equipment parts, home appliance parts and automobile parts. Such a molded article can be produced by a conventional method, for example, by injection molding a pellet-shaped resin composition with an injection molding machine at a cylinder temperature of, for example, 160 to 250 ° C.
[0040]
  The molded product formed from the resin composition of the present invention is extremely excellent in physical properties as compared with a molded product in which a flame retardant is blended as a conventionally known phosphorus-containing compound. In particular, it has excellent heat resistance and is characterized by a high deflection temperature under load (HDT). That is, when a high-impact polystyrene resin is blended with a phosphate ester such as triphenyl phosphate (TPP) or bis (nonylphenyl) phenyl phosphate (BNPP), which is known as a flame retardant for the resin, the high-impact polystyrene. It is known that the deflection temperature under load (HDT) inherent to the resin is significantly reduced. For example, if a sufficient amount of triphenyl phosphate is added to the polystyrene resin to achieve a flame retardant effect, the retention rate of load deflection temperature (HDT) is reduced to about 60 to 80%.
  However, when the phosphorus-containing compound (component b) of the present invention is blended with polystyrene resin, the retention rate of load deflection temperature (HDT) is maintained at least 85%, and the rate of decrease is very small. Under suitable conditions, the molded article from the resin composition of the present invention has a high ratio of load deflection temperature (HDT) of 90% or higher, surprisingly 95% or higher, sometimes It may be 100 to 105%. In this way, when a phosphorus-containing compound is blended with a polystyrene resin as a flame retardant, the deflection temperature under load (HDT) of the polystyrene resin itself hardly decreases, and in some cases, a composition showing the same level or higher level as that resin. Things have never been known before.
[0041]
  The resin composition of the present invention has a retention rate of the deflection temperature under load from the impact-resistant polystyrene resin to be used is at least 85%, preferably 90% or more, particularly preferably 95% or more. In the range of such retention rate, it has a great value in practical use, and means that the original high heat resistance of the impact-resistant polystyrene resin is retained. Here, the deflection temperature retention ratio under load is the deflection temperature x (° C.) of the impact-resistant polystyrene resin (component a) and the deflection temperature y of the resin composition in which the phosphorus-containing compound (component b) is blended. In relation to (° C.), the calculation formula is (y / x) × 100%. Further, when the component a is substantially an impact-resistant polystyrene resin (HIPS), the resin composition of the present invention has a load of 1.81 MPa using a 1/4 inch test piece by a method based on ASTM-D648 ( 18.5Kgf / cm2The value of the deflection temperature under load measured in (1) is preferably in the range of 65 to 100 ° C, more preferably 70 to 95 ° C.
  In addition, a molded article from the resin composition of the present invention has a sufficient impact strength to have a practical use with little reduction in impact strength.The
  NextThe preparation examples of the phosphorus-containing compounds used in the examples are described.
[0042]
KeyExample1
  Preparation of 2,4,8,10-tetraoxa-3,9-diphosphaspiro [5,5] undecane, 3,9-benzyl-3,9-dioxide (b-7)
  A reaction vessel equipped with a thermometer, a condenser, and a dropping funnel was charged with 6.81 parts of pentaerythritol, 0.4 parts of pyridine, and 80.0 parts of dioxane and stirred. 19.5 parts of benzyldichlorophosphonic acid was added to the reaction vessel using the dropping funnel, and the mixture was heated to reflux after the addition was completed. After the reaction, the reaction mixture was cooled to room temperature, and the resulting crystal was washed with water and methanol and filtered. The obtained filtered product was dried at 120 ° C. and 133 Pa for 3 hours to obtain 15.3 parts of a white solid. The resulting solid is31P,1The desired 2,4,8,10-tetraoxa-3,9-diphosphaspiro [5,5] undecane, 3,9-benzyl-3,9-dioxide (hereinafter referred to as b-7) by HNMR spectrum and melting point measurement It was confirmed that Yield 75%31The PNMR purity was 99%.
1H-NMR (CDCl3, 300 MHz): δ 7.4-7.2 (m, 10H), 4.4-4.1 (m, 8H), 3.48 (d, 4H),31P-NMR (CDCl3, 120 MHz): δ 23.1 (S), melting point: 257-259 ° C.
[0043]
【Example】
  Hereinafter, the present invention will be described in detail with reference to examples. However, the scope of the present invention is not limited to these examples. The evaluation was performed by the following method.
[0044]
(1) Flame retardancy (UL-94 evaluation)
  Flame retardance is evaluated using a test piece with a thickness of 3.18 mm (1/8 inch) in accordance with the vertical flame test defined in UL-94 of the US UL standard as a flame retardance evaluation scale. It was. Each test piece burns within 30 seconds after removing the flame, V-1 is extinguished without dripping, V-2 is extinguished by dripping, and V2 is the one below this evaluation standard. It was.
[0045]
(2) Reduced viscosity ηsp/ C
  A mixed solvent of 18 ml of methyl ethyl ketone and 2 ml of methanol is added to 1 g of rubber-modified styrenic resin, shaken at 25 ° C. for 2 hours, and centrifuged at 5 ° C. and 4000 rpm for 30 minutes. The supernatant liquid was taken out and the resin content was precipitated with methanol, followed by drying. 0.1 g of the resin thus obtained is dissolved in toluene to obtain a 0.5 g / dl solution, and 10 ml of this solution is placed in an Ostwald viscometer having a capillary diameter of about 0.3 mm, and this solution is added at 30 ° C. Solution flow-down seconds t1Was measured. On the other hand, the number of seconds t0Was calculated by the following formula. At this time, t0Is preferably 240 seconds or longer.
ηsp / C = (t1/ T0-1) / C (C: polymer concentration g / dl)
[0046]
(3) Amount of rubbery polymer component in rubber-modified styrene resin
  The nuclear magnetic resonance of hydrogen atoms was measured with a nuclear magnetic resonance measuring apparatus (manufactured by Varian, UNITY 300), and the amount of rubbery polymer component was calculated from the molar ratio of styrene unit to butadiene unit.
[0047]
(4) Deflection temperature under load (HDT), Deflection temperature retention ratio under load
  The deflection temperature under load was measured at a load of 18.5 kg using a 6.35 mm (1/4 inch) test piece by a method according to ASTM-D648. Further, the deflection temperature retention ratio under load was determined by measuring the deflection temperature x (° C.) of the rubber-modified styrenic resin used and the deflection temperature y (° C.) of the styrene resin composition, and (y / x) × 100 ( %).
[0048]
(5) MFR value
  According to the measurement method prescribed | regulated by JIS-K7210, it calculated | required on the conditions of 230 degreeC and 37.3N (3.8 kg load).
  The following were used for each component used in Examples and Comparative Examples.
[0049]
(A) Resin component
  (1) Reduced viscosity ηsp/C=0.63 dl / g, rubber-like polymer component 4.3 wt%, MFR 36.0 g / 10 min rubber-modified styrene resin (hereinafter referred to as H-1)
  (2) Reduced viscosity ηsp/C=0.78 dl / g, rubber-like polymer component 4.3 wt%, MFR 71.9 g / 10 min rubber-modified styrene resin (hereinafter referred to as H-2)
  (3) Reduced viscosity ηsp/C=0.96 dl / g, rubber-like polymer component 7.9 wt%, MFR 7.9 g / 10 min rubber-modified styrene resin (hereinafter referred to as H-3))
[0050]
(B) Cyclic organophosphorus compound
  2, 4,8,10-tetraoxa-3,9-diphosphaspiro [5,5] undecane, 3,9-dibenzyl-3,9-dioxai((We call lower b-7)
[0051]
(C) Other phosphorus compounds
  (1)Triphenyl phosphate {TPP manufactured by Daihachi Chemical Industry Co., Ltd. (hereinafter referred to as c-2)}
  (2)1,3-phenylenebis [di (diphenyl) phosphate] {R in the above general formula (C-3-1)4, R5, R6And R7Is a phenyl group, CR-733S manufactured by Daihachi Chemical Co., Ltd. (hereinafter referred to as c-3-1)}
  (3)1,3-phenylenebis [di (2,6-dimethylphenyl) phosphate] {in the general formula (4), R4, R5, R6And R7An organophosphate compound having a 2,6-dimethylphenyl group, ADK STAB FP-500 (hereinafter referred to as c-3-2) manufactured by Asahi Denka Kogyo Co., Ltd.}
  (4)Bisphenol-A [di (diphenyl) phosphate] {R in the general formula (c-4)4, R5, R6And R7Is a phenyl group, Ar1And Ar2Is a phenylene group, X is an isopropylidene group, an organic phosphate ester compound, CR-841 (hereinafter referred to as c-4) manufactured by Daihachi Chemical Co., Ltd.}
  (5)6H-dibenzo [c, e] [1,2] oxaphospholin-6-one {HCA manufactured by Sanko Chemical Co., Ltd. (hereinafter referred to as c-5)}
(D) Other additives
  Dicumyl {Nofmar BC-90 manufactured by Nippon Oil & Fats Co., Ltd. (hereinafter referred to as d-1)}
[0052]
Example 12And Comparative Examples 1 to12
  table1Table of listed ingredients1It mix | blends with the tumbler by the quantity (weight part) of description, pelletizes at the resin temperature of 180 degreeC with a 15 mmphi twin screw extruder (the Technobel make, KZW15), and the obtained pellet is 4 hours with a 65 degreeC hot air dryer. Drying was performed. The dried pellets were molded at a cylinder temperature of 200 ° C. with an injection molding machine (J75Si, manufactured by Nippon Steel). Table shows the results of evaluation using molded plates.1It was shown to.
[0053]
[Table 8]
Figure 0004585659
[0054]
  Examples 1 and 2The flame size during combustion is small and a tendency to extinguish is observed.
  In Example 2,Furthermore, the flame extinguishing time of the drip grains is very short (does not continue to burn).

Claims (11)

(A)耐衝撃性ポリスチレンより実質的になる樹脂成分(成分a)100重量部および
(B)下記式(I−2)で表されかつ 31 PNMR純度が99%以上のリン含有化合物(成分b)1〜50重量部、
よりなる難燃性樹脂組成物。
Figure 0004585659
(A) substantially comprising a resin component than the high impact polystyrene (component a) 100 parts by weight of a and (B) under following formula (I-2) is represented by and 31 PNMR purity phosphorus-containing compound of 99% or more (component b) 1-50 parts by weight,
A flame retardant resin composition.
Figure 0004585659
さらに下記(c−1)〜(c−5)よりなる群から選ばれる少なくとも1種の化合物(成分c)を、前記式(I−2)で表されるリン含有化合物(成分b)100重量部当り、1〜100重量部を含有する請求項1記載の樹脂組成物。
(c−1)赤リン
(c−2)下記式(c−2)で表されるトリアリールホスフェート
Figure 0004585659
(c−3)下記式(c−3)で表される縮合リン酸エステル、
Figure 0004585659
(c−4)下記式(c−4)で表される縮合リン酸エステル、
Figure 0004585659
(c−5)下記式(c−5)で表される化合物、
Figure 0004585659
但し前記式(c−2)〜(c−4)中、R〜Rは、それぞれ同一もしくは異なっていてもよく、炭素数6〜15のアリール基を示し、このアリール基は、炭素数1〜12のアルキル基、炭素数1〜12のアルコキシ基、炭素数1〜12のアルキルチオ基または基−Y−Arの1〜5個で置換されていてもよい(ここでYは−O−、−S−または炭素数1〜8のアルキレン基を示し、Arは炭素数6〜15のアリール基を示す)。
ArおよびArは、両者が存在する場合には同一もしくは異なっていてもよく、炭素数6〜15のアリーレン基を示し、このアリーレン基は、炭素数1〜4のアルキル基、炭素数7〜20のアラルキル基または基−Z−Rの1〜4個で置換されていてもよい(ここでZは−O−または−S−を示し、Rは炭素数1〜4のアルキル基または炭素数6〜15のアリール基を示す)。Xは単結合、−O−、−CO−、−S−、−SO−または炭素数1〜3のアルキレン基を示し、mは1〜5の整数を示す。また式(c−5)の2つのベンゼン環には、それぞれ1〜4個の置換基(置換基としてはR〜Rのアリール基の置換基と同じものから選択される)を有していてもよい。
Further below (c-1) ~ at least one compound selected from (c-5) the group consisting of (component c), phosphorus-containing compound represented by the front above formula (I-2) (component b) 100 The resin composition according to claim 1, comprising 1 to 100 parts by weight per part by weight.
(C-1) Red phosphorus (c-2) Triaryl phosphate represented by the following formula (c-2)
Figure 0004585659
(C-3) a condensed phosphate ester represented by the following formula (c-3),
Figure 0004585659
(C-4) a condensed phosphate ester represented by the following formula (c-4),
Figure 0004585659
(C-5) a compound represented by the following formula (c-5),
Figure 0004585659
However, in the above formulas (c-2) to (c-4), R 1 to R 4 may be the same or different and each represents an aryl group having 6 to 15 carbon atoms. The alkyl group having 1 to 12 carbon atoms, the alkoxy group having 1 to 12 carbon atoms, the alkylthio group having 1 to 12 carbon atoms or the group —Y—Ar 3 may be substituted (wherein Y is —O -, -S- or an alkylene group having 1 to 8 carbon atoms, and Ar 3 represents an aryl group having 6 to 15 carbon atoms).
Ar 1 and Ar 2 may be the same or different when both are present, and represent an arylene group having 6 to 15 carbon atoms, which is an alkyl group having 1 to 4 carbon atoms, 7 carbon atoms May be substituted with 1 to 4 aralkyl groups of ˜20 or a group —Z—R 5 (where Z represents —O— or —S—, and R 5 represents an alkyl group having 1 to 4 carbon atoms). Or an aryl group having 6 to 15 carbon atoms). X represents a single bond, —O—, —CO—, —S—, —SO 2 — or an alkylene group having 1 to 3 carbon atoms, and m represents an integer of 1 to 5. Each of the two benzene rings of formula (c-5) has 1 to 4 substituents (the substituents are selected from the same substituents as the aryl groups of R 1 to R 4 ). It may be.
さらにジクミル(成分d)を樹脂成分(成分a)100重量部当り、0.01〜3重量部含有する請求項1または2記載の樹脂組成物。  The resin composition according to claim 1 or 2, further comprising 0.01 to 3 parts by weight of dicumyl (component d) per 100 parts by weight of the resin component (component a). 実質的にハロゲンを含有しない請求項1〜3のいずれか記載の樹脂組成物。The resin composition according to any one of claims 1 to 3 , which contains substantially no halogen. 該樹脂成分(成分a)は、その成分中耐衝撃性ポリスチレン樹脂を90重量%以上含有する請求項記載の樹脂組成物。The resin component (component a), tree fat composition according to claim 1, containing the component impact resistant polystyrene resin 90 wt% or more. 耐衝撃性ポリスチレンは、ゴム変性されたポリスチレンであって、その中のポリスチレン成分の含有率が85〜99重量%である請求項1記載の樹脂組成物。  The resin composition according to claim 1, wherein the high-impact polystyrene is rubber-modified polystyrene, and the content of the polystyrene component therein is 85 to 99% by weight. 樹脂成分(成分a)100重量部に対して、前記式(I−2)で表されるリン含有化合物(成分b)1〜40重量部含有する請求項1記載の樹脂組成物。The resin component (component a) 100 parts by weight of a, prior to following formula phosphorus-containing compound represented by (I-2) (component b) 1 to 40 containing parts according to claim 1 resin composition. 下記式で表される荷重たわみ温度保持率(M)が少なくとも85%を達成することができる請求項1記載の樹脂組成物。
M(%)=(y/x)×100
但しxは樹脂成分(成分a)自体からの成形品の荷重たわみ温度(℃)を示し、yは樹脂成分(成分a)およびリン含有化合物(成分b)よりなる樹脂組成物からの成形品の荷重たわみ温度(℃)を示す。
The resin composition according to claim 1, wherein a load deflection temperature retention ratio (M) represented by the following formula can achieve at least 85%.
M (%) = (y / x) × 100
Where x represents the deflection temperature under load (° C.) of the molded product from the resin component (component a) itself, and y represents the molded product from the resin composition comprising the resin component (component a) and the phosphorus-containing compound (component b). Indicates the deflection temperature under load (° C).
荷重たわみ温度保持率が90%以上である請求項記載の樹脂組成物。 Tree fat composition according to claim 1, wherein said temperature of deflection under load retention ratio of 90% or more. UL94規格の難燃レベルV−2を少なくとも達成することができる請求項1記載の樹脂組成物。  The resin composition according to claim 1, which can achieve at least the flame retardancy level V-2 of UL94 standard. 前記請求項1記載の難燃性樹脂組成物より形成された成形品。Claim 1 Symbol placement molded article formed from the flame-retardant resin composition.
JP2000220008A 2000-07-21 2000-07-21 Flame retardant resin composition and molded product therefrom Expired - Lifetime JP4585659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000220008A JP4585659B2 (en) 2000-07-21 2000-07-21 Flame retardant resin composition and molded product therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000220008A JP4585659B2 (en) 2000-07-21 2000-07-21 Flame retardant resin composition and molded product therefrom

Publications (2)

Publication Number Publication Date
JP2002037973A JP2002037973A (en) 2002-02-06
JP4585659B2 true JP4585659B2 (en) 2010-11-24

Family

ID=18714691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000220008A Expired - Lifetime JP4585659B2 (en) 2000-07-21 2000-07-21 Flame retardant resin composition and molded product therefrom

Country Status (1)

Country Link
JP (1) JP4585659B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60227170D1 (en) 2001-05-15 2008-07-31 Teijin Chemicals Ltd FLAME RESISTANT RESIN COMPOSITION AND FORM BODY THEREOF
AU2003263612A1 (en) * 2002-09-25 2004-04-19 Cheil Industries Inc. Flameproof styrenic resin composition
KR100817399B1 (en) * 2005-12-29 2008-03-27 제일모직주식회사 Flameproof thermoplastic Resin Composition
KR100877291B1 (en) * 2007-11-19 2009-01-07 제일모직주식회사 Non-halogen flame retardant polycarbonate resin composition
KR101004674B1 (en) 2007-12-20 2011-01-04 제일모직주식회사 Symmetrical cyclic phosphorus compound, preparation method thereof and flame retardant styrene resin composition comprising same
CN101475593A (en) 2007-12-20 2009-07-08 第一毛织株式会社 Symmetric cyclic phosphonate compound, method of preparing the same and flame retardant styrenic resin composition including the same
CN101838538B (en) * 2009-07-17 2012-07-04 大连理工大学 Polyphosphate flame retardant containing DOPO side chain structure and preparation method thereof
KR101240321B1 (en) * 2009-12-21 2013-03-08 제일모직주식회사 Non-halogen Flameproof Polycarbonate Resin Composition
KR101251330B1 (en) * 2009-12-31 2013-04-05 제일모직주식회사 Polycarbonate Resin Composition Having Good Flame Retardancy
KR101234601B1 (en) * 2009-12-31 2013-02-19 제일모직주식회사 Novel phosphoanate based compound and flame retardant thermoplastic resin composition including the same
JP5502819B2 (en) * 2011-08-24 2014-05-28 帝人株式会社 Flame retardant resin composition and molded product therefrom
JP6159067B2 (en) * 2012-09-13 2017-07-05 東洋スチレン株式会社 Styrene flame-retardant resin composition and molded article
JP2018095832A (en) * 2016-11-16 2018-06-21 株式会社フジクラ Flame-retardant resin composition, and molded article, insulated wire, metal cable, and optical fiber cable using the same
US11299621B2 (en) * 2018-12-18 2022-04-12 Toray Plastics (America), Inc. Anti-blush and chemical resistant polyester film

Also Published As

Publication number Publication date
JP2002037973A (en) 2002-02-06

Similar Documents

Publication Publication Date Title
JP4585659B2 (en) Flame retardant resin composition and molded product therefrom
EP1654321A1 (en) Flameproof rubber-reinforced styrenic resin composition
EP1262519B1 (en) Flame-retardant resin composition and molded article obtained therefrom
US20060041040A1 (en) Flameproof styrenic resin composition
JP2004210968A (en) Flame retardant resin composition and molded article therefrom
JP4653373B2 (en) Flame-retardant resin moldings and moldings therefrom
JP2002003727A (en) Flame retardant resin composition
JP5571399B2 (en) Flame-retardant styrenic resin composition and molded product therefrom
JP2004018585A (en) Flame-retardant resin moldings and moldings therefrom
JP3948812B2 (en) Flame retardant resin composition
JP4560485B2 (en) Flame-retardant styrenic resin composition and molded product therefrom
WO2016117552A1 (en) Flame-retardant resin composition and molded article produced from same
JP4870315B2 (en) Flame retardant resin composition and molded product therefrom
JP2002212382A (en) Flame-retardant resin composition and molded article therefrom
JP2004018734A (en) Flame retardant resin composition and molded article therefrom
JP4080254B2 (en) Flame retardant resin composition and molded product therefrom
JP3563630B2 (en) Flame retardant styrenic resin composition
JP2004018733A (en) Flame retardant resin composition and molded article therefrom
JP4486299B2 (en) Flame retardant resin composition and molded product therefrom
JP4633995B2 (en) Flame retardant resin composition and molded product therefrom
JP2004035796A (en) Flame retardant resin composition and molded article therefrom
JP2002212403A (en) Flame-retardant resin composition and molded article therefrom
JP2004018626A (en) Flame retardant resin composition and molded article therefrom
JP2002210734A (en) Method for producing styrene resin pellets
JP2001146541A (en) Flame retardant styrenic resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060808

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071107

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071127

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080307

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100906

R150 Certificate of patent or registration of utility model

Ref document number: 4585659

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

EXPY Cancellation because of completion of term