[go: up one dir, main page]

JP4581130B2 - Exhaust gas treatment method and exhaust gas treatment apparatus - Google Patents

Exhaust gas treatment method and exhaust gas treatment apparatus Download PDF

Info

Publication number
JP4581130B2
JP4581130B2 JP2005238573A JP2005238573A JP4581130B2 JP 4581130 B2 JP4581130 B2 JP 4581130B2 JP 2005238573 A JP2005238573 A JP 2005238573A JP 2005238573 A JP2005238573 A JP 2005238573A JP 4581130 B2 JP4581130 B2 JP 4581130B2
Authority
JP
Japan
Prior art keywords
exhaust gas
charging
aggregation
filter
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005238573A
Other languages
Japanese (ja)
Other versions
JP2007051608A (en
Inventor
純一 河西
吉宣 田村
我部  正志
光彦 板屋
健太 内藤
暁 千林
彰 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2005238573A priority Critical patent/JP4581130B2/en
Publication of JP2007051608A publication Critical patent/JP2007051608A/en
Application granted granted Critical
Publication of JP4581130B2 publication Critical patent/JP4581130B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processes For Solid Components From Exhaust (AREA)
  • Electrostatic Separation (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

本発明は、自動車搭載の内燃機関等の排気ガスを、帯電凝集部とフィルタ部を備えてコロナ放電を利用して浄化する排気ガス処理方法及び排気ガス処理装置に関する。   The present invention relates to an exhaust gas treatment method and an exhaust gas treatment device that purify exhaust gas of an internal combustion engine mounted on an automobile or the like by using a corona discharge provided with a charge aggregation portion and a filter portion.

工場ガス,発電所ガス、自動車ガス等の排ガス処理装置として、又、各種製造工場や医療現場等のガス処理装置として、静電凝集装置や静電集塵装置等が使用されている。これらのガス処理装置では、コロナ電極と集塵電極の間に高電圧を印加してガス中にコロナ放電を発生させ、このコロナ放電によりガス中の浮遊微粒子を帯電し、この帯電した粒子を静電気力で集塵電極に引き寄せて凝集肥大化させたり、捕捉したりしている。   Electrostatic agglomeration devices, electrostatic dust collectors, and the like are used as exhaust gas treatment devices for factory gas, power plant gas, automobile gas, etc., and as gas treatment devices for various manufacturing factories and medical sites. In these gas treatment devices, a high voltage is applied between the corona electrode and the dust collecting electrode to generate a corona discharge in the gas, and this corona discharge charges floating fine particles in the gas, and the charged particles are electrostatically charged. It is attracted to the dust collecting electrode by force to enlarge or capture.

これらの放電を利用した静電集塵装置では、処理対象ガスを筒状体に通し、この筒状体で形成された集塵電極又は筒状体とは別に設けた筒状の集塵電極の略中央(軸中心)にコロナ電極を配置して、コロナ電極と集塵電極との間に高電圧を印加することによって、ガス中にコロナ放電を発生させ、ガス中の浮遊微粒子を帯電させる。   In the electrostatic precipitator using these discharges, the gas to be treated is passed through a cylindrical body, and a dust collecting electrode formed by the cylindrical body or a cylindrical dust collecting electrode provided separately from the cylindrical body is used. A corona electrode is arranged at substantially the center (axial center), and a high voltage is applied between the corona electrode and the dust collecting electrode, thereby generating a corona discharge in the gas and charging suspended fine particles in the gas.

この帯電した粒子を、コロナ電極と集塵電極との間に形成された電界によって静電気力で集塵電極表面に移動させて、集塵電極表面で捕捉する。この捕捉された粒子は、電気集塵装置等と同様な振るい落とし等により集塵電極から離脱させて集められたり、集塵電極に隣接して設けられたヒータ等の加熱により燃焼除去される。   The charged particles are moved to the surface of the dust collecting electrode by an electrostatic force by an electric field formed between the corona electrode and the dust collecting electrode, and are captured on the surface of the dust collecting electrode. The trapped particles are separated from the dust collecting electrode and collected by shaking or the like as in the electric dust collector or the like, or burned and removed by heating with a heater or the like provided adjacent to the dust collecting electrode.

そして、自動車に搭載したディーゼルエンジン等の内燃機関の排気ガスを対象とする場合には、排気ガス中に含まれているPM(Particulate Matter:パティキュレート・マター:粒子状物質)が処理対象成分となるが、このPMには、特に燃焼が難しいと言われるSoot(スート:煤)と、高温では蒸気となっているSOF(Soluble Organic Fraction:可溶性有機成分)が含まれている。このSootは、炭素を主成分とするエンジンの排出物質であり、SOFは、燃料やオイルの燃え残りが原因で発生する、ベンゼン,トルエン等の有機溶剤に溶ける成分であり、酸化触媒表面で燃焼できる。   When exhaust gas from an internal combustion engine such as a diesel engine mounted on an automobile is targeted, PM (Particulate Matter) contained in the exhaust gas is treated as a component to be treated. However, this PM contains soot (soot), which is said to be particularly difficult to burn, and SOF (Soluble Organic Fraction), which is steam at high temperatures. This Soot is an engine exhaust material mainly composed of carbon, and SOF is a component dissolved in an organic solvent such as benzene and toluene, which is generated due to unburned fuel and oil, and burns on the surface of the oxidation catalyst. it can.

この電気集塵法では、電気集塵作用を行う部分は、捕集機能に着目した場合には静電捕集部となり、凝集機能に着目した場合には静電凝集部となり、Sootを一旦集塵電極に静電捕集する。この集塵電極上に捕捉され、堆積したSootは、やがて排気ガスの流れによって剥がれて再飛散する。   In this electrostatic precipitating method, the part that performs the electrostatic precipitating action becomes an electrostatic collecting part when paying attention to the collecting function, and becomes an electrostatic collecting part when paying attention to the aggregating function. Electrostatic collection on the dust electrode. The soot trapped and deposited on the dust collecting electrode is eventually peeled off by the flow of exhaust gas and re-scatters.

つまり、静電集塵により、集塵電極の表面で捕捉された粒子間に結合が生じて、微粒子が凝集肥大化するが、この肥大化した捕捉粒子はガス流の影響により、集塵電極の表面から剥離して再飛散を起こす。この再飛散粒子は、ガス処理装置内で帯電、捕捉、剥離を繰り返しながら、その粒径を徐々に大きくしていくが、最終的には再飛散により静電集塵装置から排出されてしまう。この再飛散粒子は凝集肥大化しており、この特性を利用することにより後段に目の粗いフィルタを配置してもSootを効果的に捕集することができる。   In other words, electrostatic dust collection creates a bond between the particles captured on the surface of the dust collection electrode, causing the fine particles to agglomerate and swell. It peels off from the surface and re-scatters. The re-scattered particles gradually increase in particle size while being repeatedly charged, trapped, and peeled off in the gas processing apparatus, but are eventually discharged from the electrostatic precipitator by re-scattering. These re-scattered particles are agglomerated and enlarged, and by utilizing this characteristic, it is possible to effectively collect soot even if a coarse filter is disposed in the subsequent stage.

一方、排気ガス中のガス化したSOFは、冷却して凝縮して液化させると粘着性を持つミストとなり、このミスト状のSOFは、鳥もちの原理により超微小粒子を捕捉して凝集肥大化する。つまり、このSOFは、Sootの捕集や凝集肥大化のバインダとして有用である。そして、超微小粒子の捕集に際して、このSOFの凝集肥大化機能を利用するためには、フィルタ等の集塵装置は電気凝集装置の下流側に設けることが有効である。   On the other hand, the gasified SOF in the exhaust gas becomes sticky mist when cooled and condensed and liquefied, and this mist-like SOF captures ultra-fine particles and agglomerates and enlarges according to the principle of bird's-eye. To do. That is, this SOF is useful as a binder for collecting Soot and agglomerating. In order to utilize this SOF coagulation enlargement function when collecting ultrafine particles, it is effective to provide a dust collecting device such as a filter on the downstream side of the electrocoagulation device.

この下流側にフィルタを配置した構成では、排気ガス中の超微小粒子が、静電作用と液化したSOFの粘着機能との相乗効果により凝集肥大化し、電気凝集装置から、排出される粒子の粒径が大きくなるため、目の粗いフィルタでもこれらの粒子を容易に捕捉することができる。   In the configuration in which the filter is arranged on the downstream side, the ultrafine particles in the exhaust gas agglomerate and enlarge due to the synergistic effect of the electrostatic action and the adhesion function of the liquefied SOF, and the particles discharged from the electrocoagulation apparatus Since the particle size becomes large, these particles can be easily captured even with a coarse filter.

しかしながら、このSOFの全量を使用しきれないので、このSOFの除去を高い除去率で行う必要がある場合には、酸化触媒の併用が必要となる。このガス化状態のSOFは酸化触媒で酸化でき、この酸化触媒は温度が高いほど触媒活性が高いため、また、電気凝集装置は、コロナ放電が500℃を超えると不安定になり充分な電力を投入できず、電気集塵作用が低下するため、通常はガスの温度が高い排気管の前方に酸化触媒を設置し、ガスの温度が低下する排気管後方に電気集塵装置を設置することが考えられる。   However, since the entire amount of this SOF cannot be used, if it is necessary to remove this SOF at a high removal rate, it is necessary to use an oxidation catalyst in combination. This gasified SOF can be oxidized with an oxidation catalyst, and the higher the temperature, the higher the catalytic activity of this oxidation catalyst. Also, the electrocoagulation device becomes unstable when the corona discharge exceeds 500 ° C. and has sufficient power. Since it cannot be charged and the electrostatic precipitating action decreases, it is usually necessary to install an oxidation catalyst in front of the exhaust pipe where the gas temperature is high and install an electrostatic precipitator behind the exhaust pipe where the gas temperature decreases. Conceivable.

しかし、酸化触媒を電気凝集装置よりも、上流側に配設した場合には、SOFが酸化触媒で酸化されてしまうため、電気凝集装置における超微小粒子の捕捉効果が低下してしまい、捕集効率が上がらなくなる。その上、酸化触媒にSOFとSoot等からなる凝集体が流入すると酸化触媒が目詰まりを起こす。   However, when the oxidation catalyst is disposed upstream of the electrocoagulation device, SOF is oxidized by the oxidation catalyst, so that the effect of capturing ultrafine particles in the electrocoagulation device is reduced, and the capture is performed. Collection efficiency will not increase. In addition, when the aggregate composed of SOF and Soot flows into the oxidation catalyst, the oxidation catalyst is clogged.

従って、Sootの捕捉及び凝集肥大化に使用した残りのSOFを酸化触媒で処理するのが良く、酸化触媒の位置としては、帯電凝集部の前段(上流側)に配置するよりも、後段(下流側)に配置した方がよい。つまり、電気凝集装置、フィルタ、酸化触媒の機能を考えると、上流側から電気凝集装置、粗い目のフィルタ、酸化触媒の順に配置することがもっとも効果的に排気ガスを浄化できる。   Therefore, it is better to treat the remaining SOF used for the capture of Soot and the agglomeration with an oxidation catalyst, and the position of the oxidation catalyst is lower than the upstream (upstream side) of the charged aggregation part. It is better to place it on the side. That is, considering the functions of the electrocoagulation device, the filter, and the oxidation catalyst, the exhaust gas can be purified most effectively by arranging the electrocoagulation device, the coarse filter, and the oxidation catalyst in this order from the upstream side.

しかしながら、この電気凝集装置を使用した排気ガス浄化装置では、PMの堆積による浄化性能の低下の問題と、燃費の悪化の問題がある。
つまり、帯電凝集部にコロナ放電のために通電している時は、静電力が常に供給されているので、荷電したPMは集塵電極表面に電気的に引き寄せられて付着している。そのため、排気ガスの流れでは容易に剥がれ落ちず、充分大きく肥大化するまで順次堆積して溜め込まれる。そして、PMが肥大化して剥がれ落ち易くなるか、排気ガスの流速が大きくなって、この肥大化したPMに静電気力で壁面に付着する力以上の力が作用して始めて下流に流される。
However, the exhaust gas purifying apparatus using this electrocoagulation apparatus has a problem of deterioration in purification performance due to PM accumulation and a problem of deterioration in fuel consumption.
That is, since electrostatic force is always supplied when the charged agglomeration portion is energized for corona discharge, the charged PM is electrically attracted and attached to the surface of the dust collecting electrode. For this reason, it does not easily peel off in the flow of exhaust gas, but accumulates and accumulates sequentially until it becomes sufficiently large. Then, the PM is enlarged and easily peeled off, or the flow rate of the exhaust gas is increased, and the enlarged PM is flowed downstream only after the force larger than the force adhering to the wall surface by the electrostatic force acts.

そのため、集塵電極表面近傍の乱流促進手段による電気集塵効果を利用する帯電凝集部では、このPMの堆積中に、乱流促進用の凹凸がPM堆積により埋没してしまい、乱流促進効果が低下し、集塵性能が低下してしまうという問題が発生する。   For this reason, in the charged and agglomerated portion using the electric dust collection effect by the turbulent flow promoting means in the vicinity of the surface of the dust collecting electrode, the irregularities for promoting turbulent flow are buried by the PM deposition during the deposition of PM, thereby promoting the turbulent flow There arises a problem that the effect is lowered and the dust collecting performance is lowered.

また、内燃機関の運転状態は、自動車の使用・走行条件に従って、アイドリング状態から高回転・高負荷状態まで様々な運転状態に変化し、それに伴って排気ガスの流量、温度、PMの量等の排気ガスの状態が変化する。そのため、車両搭載の排気ガス処理装置においては、これらの全ての条件で効率的にPMを浄化する性能が要求される。それと共に、排気ガスの状態に応じて投入電力を制御することにより、帯電凝集部へのコロナ放電のための投入電力を必要最小限に抑えて、燃費の悪化を抑制できると考えられる。   The operating state of the internal combustion engine changes in various operating states from an idling state to a high rotation / high load state according to the use / running conditions of the automobile, and accordingly, the exhaust gas flow rate, temperature, PM amount, etc. The state of the exhaust gas changes. Therefore, an exhaust gas treatment device mounted on a vehicle is required to have a performance for efficiently purifying PM under all these conditions. At the same time, by controlling the input power according to the state of the exhaust gas, it is considered that the input power for corona discharge to the charging and aggregating portion can be minimized and the deterioration of fuel consumption can be suppressed.

そのため、排気ガス中の捕集対象成分をコロナ放電により帯電させて凝集する帯電凝集部を備えた排気ガス浄化装置で、浄化性能を維持しながら消費電力を極力減少するためには、帯電凝集部への投入電力を、内燃機関が高回転・高負荷な条件の時程、即ち、排気ガス量やPM量が多い時程増加し、内燃機関が低回転・低負荷な条件の時程、即ち、排気ガス量やPM量が少ない時程減少することが望ましい。また、更に、燃料噴射が停止している条件下では、排気ガス中にPMが存在しなくなるので、帯電凝集部への投入電力をOFFにすることが望ましい。   Therefore, in the exhaust gas purifying apparatus having a charging aggregation unit that charges and aggregates the components to be collected in the exhaust gas by corona discharge, in order to reduce power consumption as much as possible while maintaining the purification performance, the charging aggregation unit The power input to the engine increases when the internal combustion engine is in a high rotation and high load condition, that is, when the exhaust gas amount and the PM amount are large, and when the internal combustion engine is in a low rotation and low load condition, that is, It is desirable to reduce the amount of exhaust gas and PM when the amount is small. Furthermore, since PM does not exist in the exhaust gas under the condition where the fuel injection is stopped, it is desirable to turn off the input power to the charging and aggregating portion.

この投入電力の制御に関して、幾つかの提案がなされている。
その一つとして、車両用ディーゼル機関の運転条件に基づいて放電電極対と収集電極対との間に給電すべき目標通電電流値を算出し、算出した目標電流値に基づいて電極対間に印加する電圧値を制御する車両用ディーゼル機関の排気ガス浄化装置が提案されている(例えば、特許文献1参照。)。
Several proposals have been made regarding the control of the input power.
As one of them, a target energization current value to be supplied between the discharge electrode pair and the collection electrode pair is calculated based on the operating conditions of the vehicle diesel engine, and is applied between the electrode pair based on the calculated target current value. An exhaust gas purifying device for a vehicle diesel engine that controls a voltage value to be applied has been proposed (see, for example, Patent Document 1).

この排気ガス浄化装置では、エンジンの運転状態、特に、ディーゼルパティキュレート排出量に連動する運転条件として、冷却水温、燃料噴射量、速度(負荷)等を挙げ、これらの条件を変えた場合のディーゼルパティキュレート排出量をマップとしてマイコン装置の記憶部に予め記憶し、このマップに基づいて予想排出量を所定の浄化率で処理可能な最小の通電電流値を求めている。   In this exhaust gas purifying device, the operating conditions of the engine, in particular, the operating conditions linked to the diesel particulate emissions include the cooling water temperature, the fuel injection amount, the speed (load), etc., and the diesel engine when these conditions are changed The particulate discharge amount is stored in advance in the storage unit of the microcomputer device as a map, and the minimum energization current value capable of processing the predicted discharge amount with a predetermined purification rate is obtained based on this map.

また、パティキュレートフィルタの上流側に、コロナ放電でPMに対する酸化除去能力が高い活性酸素等を発生させるためのプラズマ発生装置を設け、パティキュレートフィルタのPM酸化除去能力が不十分になる6つの条件に該当する時に、このプラズマ発生装置を作動する内燃機関の排気浄化装置が提案されている(例えば、特許文献2参照。)。   In addition, a plasma generator for generating active oxygen or the like having high oxidation removal capability for PM by corona discharge is provided on the upstream side of the particulate filter, and the six conditions for the PM oxidation removal capability of the particulate filter are insufficient. Has been proposed (see, for example, Patent Document 2).

一方、発明者らは、内燃機関の気筒内への燃料噴射量が、排気ガスの状態に密接な関係があり、しかも、エンジンブレーキ時には、燃料噴射が停止されることをもとに、次のような知見を得た。   On the other hand, the inventors have the following relationship that the fuel injection amount into the cylinder of the internal combustion engine is closely related to the state of the exhaust gas, and the fuel injection is stopped at the time of engine braking. The following knowledge was obtained.

エンジンブレーキ動作時には燃料噴射が停止されるため、排気ガス中のPMは無くなるので、帯電凝集部の浄化性能が一時的に低下しても支障がない。また、帯電凝集部への投入電力をOFFにすると、その瞬間にPMと集塵電極との間の静電気力が無くなるため、堆積したPMが排気ガスの流れにより剥がれ落ち易くなり、肥大化したPMが下流側のフィルタ部へ流出する。このPMの再飛散により、集塵電極表面近傍の凹凸等の乱流促進作用が回復するので、この投入電力のOFF時に積極的に集塵電極からPMを除去するのが好ましい。
特許第3070621号公報(〔0049〕、〔0050〕、図21) 特開2002−349240号公報(〔0089〕、〔0090〕、図34)
Since fuel injection is stopped during the engine braking operation, PM in the exhaust gas is eliminated, so there is no problem even if the purification performance of the charge aggregation portion temporarily decreases. Further, when the input power to the charging and aggregating part is turned OFF, the electrostatic force between the PM and the dust collecting electrode disappears at that moment, so the accumulated PM is easily peeled off by the flow of exhaust gas, and the enlarged PM Flows out to the downstream filter section. This re-scattering of the PM recovers the turbulent flow promoting action such as irregularities in the vicinity of the surface of the dust collecting electrode. Therefore, it is preferable to positively remove the PM from the dust collecting electrode when the input power is turned off.
Japanese Patent No. 3070621 ([0049], [0050], FIG. 21) JP 2002-349240 A ([0089], [0090], FIG. 34)

本発明は、上記の知見を得て、上記の問題を解決するためになされたものであり、その目的は、コロナ放電による凝集機能及び集塵機能とフィルタの集塵機能を用いて、ガス中の超微小粒子を凝集肥大化して捕集する車両搭載可能な排気ガス処理装置において、エンジンブレーキ動作時に、帯電凝集部への通電を停止するという非常に簡便な投入電力制御で、コロナ放電による凝集機能の回復と消費電力の節約を図ることができる排気ガス処理方法及び排気ガス処理装置を提供することにある。   The present invention has been made in order to obtain the above knowledge and solve the above problems, and its purpose is to use an agglomeration function and a dust collection function by corona discharge and a filter dust collection function, thereby In a vehicle-mounted exhaust gas treatment device that collects and collects fine particles by agglomeration, the agglomeration function by corona discharge is achieved with very simple input power control that stops energization of the charged agglomeration part during engine braking. It is an object of the present invention to provide an exhaust gas processing method and an exhaust gas processing device that can recover the power consumption and save power consumption.

上記のような目的を達成するための排気ガス処理方法は、車両に搭載した内燃機関の排気ガス中の捕集対象成分をコロナ放電により帯電させて凝集する帯電凝集部を上流側に、該凝集させた成分を捕集するフィルタ部を下流側に備えた排気ガス処理装置の排気ガス処理方法において、前記内燃機関の運転条件に基づいて前記帯電凝集部へ投入する放電電力を制御すると共に、前記内燃機関がエンジンブレーキ動作により燃料噴射量がゼロになったときには前記帯電凝集部への通電を停止し、エンジンブレーキ動作を検出している間は、前記帯電凝集部への通電の停止を継続する。   An exhaust gas treatment method for achieving the above-described object is achieved by providing, on the upstream side, a charge agglomeration part that aggregates by charging a component to be collected in exhaust gas of an internal combustion engine mounted on a vehicle by corona discharge. In the exhaust gas processing method of the exhaust gas processing device provided with a filter part for collecting the component that has been made downstream, controlling the discharge power input to the charging and aggregating part based on the operating conditions of the internal combustion engine, and When the fuel injection amount becomes zero by the engine brake operation of the internal combustion engine, the energization to the charging aggregation unit is stopped, and the energization to the charging aggregation unit is stopped while the engine braking operation is detected. .

この構成により、エンジンブレーキ動作時には燃料噴射をゼロにするので排気ガス中にPMが発生せず、また、帯電凝集部への通電停止により静電気力を失わせて堆積したPMを飛散させ、フィルタ部で捕集させることができるので、排気ガスの浄化性能を低下させることなく、帯電凝集部の凝集能力を回復できる。   With this configuration, fuel injection is made zero during engine braking operation, so PM is not generated in the exhaust gas, and the accumulated PM is scattered by losing electrostatic force by stopping energization to the charge aggregation part. Therefore, the aggregation ability of the charged aggregation portion can be recovered without deteriorating the exhaust gas purification performance.

また、上記の排気ガス処理方法において、前記帯電凝集部への通電を停止したときに、前記帯電凝集部に衝撃を与えることを特徴とする。この衝撃の付与には、電気集塵機の槌打ち用装置や、バグフィルタ用の衝撃付与装置や、粉体装置で使用される衝撃付与装置や、リニアソレノイドを利用したスライディングハンマーや、電磁ソレノイドを使用した衝撃装置などを使用することができる。   Further, in the above exhaust gas treatment method, when the energization to the charged aggregation portion is stopped, an impact is given to the charged aggregation portion. This impact is applied using a hammering device for an electrostatic precipitator, an impact applying device for a bag filter, an impact applying device used in a powder device, a sliding hammer using a linear solenoid, or an electromagnetic solenoid. Can be used.

この構成により、帯電凝集部への通電停止により静電気力を失ったPMを効率よく帯電凝集部から除去できる。
そして、上記のような目的を達成するための排気ガス処理装置は、車両に搭載した内燃機関の排気ガス中の捕集対象成分をコロナ放電により帯電させて凝集する帯電凝集部を上流側に、該凝集させた成分を捕集するフィルタ部を下流側に備えた排気ガス処理装置であって、前記内燃機関の運転条件に基づいて前記帯電凝集部へ投入する放電電力を制御すると共に、前記内燃機関がエンジンブレーキ動作により燃料噴射量がゼロになったときには前記帯電凝集部への通電を停止し、エンジンブレーキ動作を検出している間は、前記帯電凝集部への通電の停止を継続する排気ガス処理制御装置を備えて構成される。
With this configuration, PM that has lost its electrostatic force due to the stop of energization to the charge aggregation portion can be efficiently removed from the charge aggregation portion.
And, the exhaust gas treatment device for achieving the above-mentioned object is, on the upstream side, a charged aggregation portion that aggregates by charging the collection target component in the exhaust gas of the internal combustion engine mounted on the vehicle by corona discharge, An exhaust gas processing apparatus provided with a filter unit for collecting the agglomerated components on the downstream side, controlling discharge electric power supplied to the charging and aggregating unit based on operating conditions of the internal combustion engine, and the internal combustion engine The engine stops energization when the fuel injection amount becomes zero due to the engine braking operation, and continues to stop energizing the charging aggregation unit while detecting the engine braking operation. A gas processing control device is provided.

また、上記の排気ガス処理装置において、前記帯電凝集部への通電を停止したときに、前記帯電凝集部に衝撃を与えるように構成される。
更に、上記の排気ガス処理装置において、前記フィルタ部の下流側に酸化触媒を設けて構成される。この構成により、Sootの捕捉及び凝集肥大化に使用した残りのSOFを処理することができ、排気ガス浄化性能をより向上できる。
Further, the exhaust gas processing apparatus is configured to give an impact to the charging aggregation portion when the energization to the charging aggregation portion is stopped.
Furthermore, in the above exhaust gas processing apparatus, an oxidation catalyst is provided on the downstream side of the filter unit. With this configuration, the remaining SOF used for soot capture and coagulation enlargement can be processed, and the exhaust gas purification performance can be further improved.

本発明の排気ガス処理方法及び排気ガス処理装置によれば、エンジンブレーキ動作時に、帯電凝集部への通電を停止するという非常に簡便な投入電力制御で、コロナ放電による凝集機能の回復と消費電力の節約を図ることができる。   According to the exhaust gas processing method and the exhaust gas processing apparatus of the present invention, the recovery of the coagulation function by corona discharge and the power consumption can be achieved with a very simple input power control that stops energization to the charged aggregation unit during engine braking. Savings.

以下、本発明に係る実施の形態の排気ガス処理方法及び排気ガス処理装置について、車両搭載のディーゼルエンジンの排気ガスを処理対象ガスとした排気ガス処理装置を例にして、図面を参照しながら説明する。   Hereinafter, an exhaust gas processing method and an exhaust gas processing apparatus according to embodiments of the present invention will be described with reference to the drawings, taking an exhaust gas processing apparatus using exhaust gas from a diesel engine mounted on a vehicle as a processing target gas as an example. To do.

図1に示すように、この第1の実施の形態の排気ガス処理装置1では、排気ガス中の捕集対象成分であるSoot成分をコロナ放電により帯電させて凝集する帯電凝集部10を上流側に、この凝集させた成分を捕集するフィルタ部20を下流側に備え、更に、フィルタ部20の下流側に酸化触媒30を設け、更に、帯電凝集部10に衝撃付与装置(衝撃付与手段)40を備えて構成される。   As shown in FIG. 1, in the exhaust gas processing apparatus 1 of the first embodiment, a charging aggregation unit 10 that aggregates by charging a soot component, which is a collection target component in exhaust gas, by corona discharge is disposed upstream. In addition, the filter unit 20 for collecting the aggregated components is provided on the downstream side, an oxidation catalyst 30 is further provided on the downstream side of the filter unit 20, and an impact applying device (impact applying unit) is further provided on the charging aggregation unit 10. 40.

つまり、コロナ放電によりSootを粗大化し凝集及び一時的に捕集する帯電凝集部10を前段に、この帯電凝集部10から再飛散する肥大化したSootを捕集するフィルタ部20を中段に、ガス化したままのSOF等の蒸発成分を浄化する酸化触媒30を後段に配置する。   In other words, the charged agglomeration portion 10 that coarsens and aggregates and temporarily collects soot by corona discharge is disposed in the front stage, and the filter portion 20 that collects the enlarged soot re-scattered from the charged agglomeration portion 10 is disposed in the middle stage. An oxidation catalyst 30 for purifying the vaporized component such as SOF that has been converted into a gas is disposed in the subsequent stage.

更に、フィルタ部20の前後差圧を検出する差圧センサ51を設け、更に、フィルタ部20の下流側に酸素濃度センサ52と排気ガス温度センサ53を設ける。これらのセンサ51,52,53の出力は、排気ガス処理装置1の制御装置50に入力される。この制御装置50は、通常はエンジンコントロールユニットと呼ばれるエンジンの制御装置に組み入れられて構成され、帯電凝集部10のコロナ放電の制御やフィルタ部20の再生手段の制御を行う。   Further, a differential pressure sensor 51 for detecting the differential pressure across the filter unit 20 is provided, and an oxygen concentration sensor 52 and an exhaust gas temperature sensor 53 are further provided on the downstream side of the filter unit 20. The outputs of these sensors 51, 52, 53 are input to the control device 50 of the exhaust gas processing device 1. The control device 50 is configured to be incorporated in an engine control device that is usually called an engine control unit, and controls corona discharge of the charge aggregation unit 10 and regeneration means of the filter unit 20.

この帯電凝集部10は、複数、例えば、6本の帯電凝集ユニット11を並列に配置して構成される。この帯電凝集ユニット11は、図3〜図5に示すように、低電圧電極で形成される集塵電極11aと高電圧電極で形成されるコロナ電極11bとを有して構成される。   The charging aggregation unit 10 is configured by arranging a plurality of, for example, six charging aggregation units 11 in parallel. As shown in FIGS. 3 to 5, the charging and aggregating unit 11 includes a dust collecting electrode 11 a formed of a low voltage electrode and a corona electrode 11 b formed of a high voltage electrode.

特に、帯電凝集部10は、帯電凝集ユニット11を並列配置した多管構造とするのが好ましい。帯電凝集部10に投入可能な電力はPM捕集能力と大きな関係があるため、エンジンのアイドリングから最高回転速度までの広い運転範囲で帯電凝集部10の機能を十分に発揮させようとすると、単管で長くするか、多管で短くするかのいずれかとなるが、自動車では配置スペースが限られることと、絶縁状態を常時保つのに長いものは強度面及び振動面で不利であることを考慮すると、多管構造が有利となるためである。   In particular, the charging aggregation unit 10 preferably has a multi-tube structure in which the charging aggregation units 11 are arranged in parallel. Since the electric power that can be input to the charging aggregation unit 10 has a large relationship with the PM collecting ability, if the function of the charging aggregation unit 10 is sufficiently exerted in a wide operating range from idling to the maximum rotation speed of the engine, Either a long tube or a short tube will be used. However, in an automobile, the installation space is limited, and considering that the long one to keep the insulation state is disadvantageous in terms of strength and vibration. This is because a multi-tube structure is advantageous.

この集塵電極11aは、例えば、SUS304製等の導電性の材料で、円筒状体等の筒状体に形成され、上流側はガス入口室11cに、下流側はガス出口室11dに接続される。この集塵電極である筒状体11aはガス通路の通路壁を兼ねる。この筒状体11aの断面形状としては特に限定されない。コロナ放電の安定性等を考えると円形が好ましいが、正方形等でもよく、特に、コロナ電極11bを複数設ける場合には、楕円形、三角形、長方形、その他の多角形であってもよい。   The dust collecting electrode 11a is made of a conductive material such as SUS304, and is formed in a cylindrical body such as a cylindrical body. The upstream side is connected to the gas inlet chamber 11c and the downstream side is connected to the gas outlet chamber 11d. The The cylindrical body 11a as the dust collecting electrode also serves as a passage wall of the gas passage. The cross-sectional shape of the cylindrical body 11a is not particularly limited. Considering the stability of the corona discharge, a circular shape is preferable, but it may be a square or the like. In particular, when a plurality of corona electrodes 11b are provided, an elliptical shape, a triangular shape, a rectangular shape, or other polygonal shapes may be used.

コロナ電極11bは、電界集中係数の高い電極であればよく、細線電極、角状電極、突起構造付き電極等の線状(ワイヤ状)や棒状等の線状体、例えば、SUS304製の中空ワイヤ等で形成される。そして、筒状体11bの内部、例えば、筒状体の軸心部分等の中央に配置される。また、図5に示すように、筒状体11bの内部に、複数のコロナ電極11bを設けてもよい。   The corona electrode 11b may be an electrode having a high electric field concentration coefficient, and may be a linear body (wire shape) such as a thin wire electrode, a square electrode, or a projection-structured electrode, or a linear body such as a rod, such as a hollow wire made of SUS304. Etc. are formed. And it arrange | positions inside the cylindrical body 11b, for example, the center, such as an axial center part of a cylindrical body. Further, as shown in FIG. 5, a plurality of corona electrodes 11b may be provided inside the cylindrical body 11b.

この集塵電極11aとコロナ電極11bは互いに碍子等により電気的に絶縁状態にして構成される。この集塵電極11aは電気的に接地(アース)され、接地電位に保たれるが、必要に応じて、別電位に保持される。一方、コロナ電極11bは高圧電源に接続される。この高圧電源で発生し、コロナ電極11bに印加する高電圧は、一般的には、負極性の直流電圧を用いるのが好ましいが、直流、交流、パルス状のいずれであってもよく、また、極性も、負極性でも正極性でもあってもよい。また、電圧は、この筒状体11aとコロナ電極11bとの間を通過する排気ガスG中にコロナ放電を発生できる電圧であればよい。   The dust collection electrode 11a and the corona electrode 11b are configured to be electrically insulated from each other by an insulator or the like. The dust collecting electrode 11a is electrically grounded (grounded) and maintained at the ground potential, but is maintained at another potential as necessary. On the other hand, the corona electrode 11b is connected to a high voltage power source. The high voltage generated by this high-voltage power source and applied to the corona electrode 11b is generally preferably a negative direct-current voltage, but may be any of direct current, alternating current, pulsed, The polarity may be negative or positive. Moreover, the voltage should just be a voltage which can generate | occur | produce a corona discharge in the exhaust gas G which passes between this cylindrical body 11a and the corona electrode 11b.

衝撃付与装置40は、集塵電極11aに堆積したPMの剥がれを促進するために、集塵電極11aに、衝撃や振動等を加えるための装置であり、電気集塵機の槌打ち用装置や、バグフィルタの衝撃付与装置や、粉体装置で使用される衝撃付与装置等を使用できる。より具体的には、強力な磁力で固定されたピストンを圧縮空気の供給で高速離脱させて衝撃力を発生するエア式ハンマリング装置(エアハンマ/エアノッカー)や、電磁石のエネルギーを利用してピストンロッドを高速で移動させて衝撃力を発生させる電磁式ハンマリング装置(電磁式マグハンマ)や、リニアソレノイドを利用したスライディングハンマーや、電磁ソレノイドを使用した衝撃発生装置等である。   The impact applying device 40 is a device for applying impact, vibration, etc. to the dust collecting electrode 11a in order to promote the peeling of the PM accumulated on the dust collecting electrode 11a. An impact applying device for a filter, an impact applying device used in a powder device, or the like can be used. More specifically, a pneumatic hammering device (air hammer / air knocker) that generates an impact force by releasing a piston fixed with a strong magnetic force at high speed by supplying compressed air, or a piston rod using the energy of an electromagnet These are an electromagnetic hammering device (electromagnetic maghammer) that generates an impact force by moving at a high speed, a sliding hammer that uses a linear solenoid, an impact generator that uses an electromagnetic solenoid, and the like.

そして、帯電凝集部10の筒状体11aの通路壁を冷却壁(ガス冷却部)とし、帯電凝集部10で排気ガスGを冷却できるように構成する。つまりこの筒状体11aの外面側を自然空冷又は強制冷却するように構成する。   The passage wall of the cylindrical body 11a of the charging aggregation portion 10 is used as a cooling wall (gas cooling portion) so that the exhaust gas G can be cooled by the charging aggregation portion 10. That is, the outer surface side of the cylindrical body 11a is configured to be naturally air-cooled or forcedly cooled.

この自然空冷においては、筒状体11aの外面を保温したり、筒状体11aを更に、排気ガス処理装置1のケース等の別の筒体(図示しない)で密閉せずに、大気開放状態にしたり、ケースとなる別の筒体を通気孔を設けたものにする等、外気との接触を容易にし、自然対流伝熱が行われ易くする。また、熱放射による冷却効果を促進できるように、周囲の部材の温度を低くしたり、熱伝導による冷却効果を上げるために、低温の熱伝導体と接触させたりする。更に、筒状体11aの外部への放熱を促進する冷却用のフィンを筒状体11aの外面に設けることもできる。この冷却用フィンとしては、例えば、熱交換器等で一般的に用いられている平滑環状フィン、スロットフィン、テントフィン、短冊フィン、ワイヤーループフィン等がある。   In this natural air cooling, the outer surface of the cylindrical body 11a is kept warm, or the cylindrical body 11a is not sealed with another cylindrical body (not shown) such as a case of the exhaust gas treatment device 1, and is in an open air state. For example, it is easy to make contact with the outside air, such as providing a ventilation hole for another cylindrical body serving as a case, so that natural convection heat transfer is easily performed. Moreover, in order to promote the cooling effect by heat radiation, the temperature of surrounding members is lowered, or in order to increase the cooling effect by heat conduction, it is brought into contact with a low-temperature heat conductor. Furthermore, cooling fins that promote heat dissipation to the outside of the cylindrical body 11a can be provided on the outer surface of the cylindrical body 11a. Examples of the cooling fins include smooth annular fins, slot fins, tent fins, strip fins, and wire loop fins that are generally used in heat exchangers.

また、強制冷却においては、ファン等により筒状体11aの外面に送風して対流伝熱による強制冷却をしたり、筒状体11aを冷却水等の冷媒が通過する二重管構造とし、筒状体11aを冷媒で強制冷却するように構成する。これらの冷却手段に限られず、一般的な冷却手段を適用できる。   Further, in forced cooling, a fan or the like blows air to the outer surface of the cylindrical body 11a to perform forced cooling by convective heat transfer, or the cylindrical body 11a has a double tube structure through which a coolant such as cooling water passes. The structure 11a is configured to be forcibly cooled with a refrigerant. Not limited to these cooling means, general cooling means can be applied.

そして、車両に搭載した排気ガス処理装置1では、車両の走行により、帯電凝集部10の外気に露出した筒状体11等の部分に強い風が当たるので、自然対流や熱放射による自然放熱によって排気ガスGが冷却される。そのため、特別あるいは能動的な冷却手段を設けなくても、積極的な保温手段を設けなければ、冷却効果を得ることができる。   In the exhaust gas treatment device 1 mounted on the vehicle, a strong wind is applied to a portion of the cylindrical body 11 exposed to the outside air of the charging and aggregating unit 10 due to traveling of the vehicle. The exhaust gas G is cooled. Therefore, even if no special or active cooling means is provided, a cooling effect can be obtained unless an active heat retaining means is provided.

このガス冷却は、処理対象ガスGが200℃以上の温度である場合において、特に有効である。つまり、処理対象ガスが200℃以上であると、SOF等の成分の多くは蒸発してガス化しているが、このガス冷却により排気ガスGをそれ以下の温度にして、SOF等の蒸発成分を凝縮させて液化することができ、この液化した成分の粘着性により、ベトベト状態の鳥もちのような効果を発揮できるので、Soot等の微小粒子を非常に効率よく凝集できるようになる。つまり、液化したSOF分の存在は、Soot凝集の接着剤的作用を発揮する。   This gas cooling is particularly effective when the processing target gas G is at a temperature of 200 ° C. or higher. In other words, when the gas to be processed is 200 ° C. or higher, most of the components such as SOF are evaporated and gasified, but by this gas cooling, the exhaust gas G is brought to a temperature lower than that and the evaporated components such as SOF are changed. It can be condensed and liquefied, and the stickiness of this liquefied component can exert an effect similar to that of a sticky bird, so that microparticles such as Soot can be aggregated very efficiently. That is, the presence of the liquefied SOF component exerts the adhesive action of soot aggregation.

また、帯電凝集部10の帯電凝集ユニット11においては、図6〜図8に示すように、帯電凝集部10の筒状体11aの内側表面近傍の排気ガスGの流れに対して乱流を促進する乱流促進手段11eを筒状体11aの表面又は表面近傍に設けることができる。この乱流促進手段11eは筒状体11aの表面を加工して設けてもよく、筒状体11aとは別体の構造物を筒状体11aの表面に当接又は浮かせて配置してもよい。   Further, in the charging aggregation unit 11 of the charging aggregation unit 10, as shown in FIGS. 6 to 8, turbulence is promoted with respect to the flow of the exhaust gas G in the vicinity of the inner surface of the cylindrical body 11 a of the charging aggregation unit 10. The turbulent flow promoting means 11e can be provided on or near the surface of the cylindrical body 11a. The turbulent flow promoting means 11e may be provided by processing the surface of the cylindrical body 11a, or a structure separate from the cylindrical body 11a may be disposed in contact with or floating on the surface of the cylindrical body 11a. Good.

この乱流促進手段11eは凹凸構造とすることもでき、この凹凸構造は、単数又は複数の線状体(丸棒や角棒)を筒状体11aにスパイラル状にして挿入し、筒状体11aの内側表面に巻き付けたり、筒状体11aの内側表面に溝きりにより台形形状の凸部や、格子溝や螺旋溝等の規則正しい凹凸を設けて、内面溝付き管構造とすることもできる。また、リング状の凸部を筒状体11aの内側表面に筒状体11aの軸方向に間隔をおいて形成したり、三次元構造を持つフィンで形成したり、ブラスト処理して乱雑な凹凸を形成したりすることもできる。これらの凹凸は一様に形成されていてもよく、分散配置されていてもよい。   The turbulent flow promoting means 11e may have an uneven structure, and this uneven structure is formed by inserting one or more linear bodies (round bars or square bars) in a spiral shape into the cylindrical body 11a. It is also possible to provide an internally grooved tube structure by wrapping around the inner surface of 11a, or providing regular irregularities such as trapezoidal convex portions, lattice grooves, and spiral grooves by grooving on the inner surface of the cylindrical body 11a. In addition, ring-shaped convex portions are formed on the inner surface of the cylindrical body 11a at intervals in the axial direction of the cylindrical body 11a, formed with fins having a three-dimensional structure, or blasted and rough irregularities. Can also be formed. These irregularities may be formed uniformly or may be distributed.

更に、筒状体11aを加工するだけでなく、加工により凹凸を設けた板材や、既に凹凸を有して形成されている板材を、筒状体11aに挿入可能に整形して挿入してもよく、既に凹凸を有して市販されているような面状体を筒状体11aを挿入してもよい。この面状体としては、金網やパンチングメタル、エキスパンダメタル等のシート状突起物が有用であり、スリットグリル、ダイヤスクリーン、ディンプルスクリーン(孔無し)、ディンプルスクリーン(孔有り)、スリット出窓スクリーン、ブリッジ出窓スクリーン、三角出窓スクリーン、半円出窓スクリーン等々の打ち抜きスクリーンを使用できる。   Furthermore, not only the cylindrical body 11a is processed, but also a plate material provided with irregularities by processing, or a plate material that is already formed with irregularities is shaped and inserted so as to be insertable into the cylindrical body 11a. The cylindrical body 11a may be inserted into a planar body that is already commercially available with irregularities. Sheet-like projections such as wire mesh, punching metal, and expander metal are useful as this planar body, and slit grills, diamond screens, dimple screens (without holes), dimple screens (with holes), slit bay screens, A punching screen such as a bridge bay screen, a triangular bay screen, a semi-circular bay screen, etc. can be used.

この乱流促進手段11eの乱流促進により、流路断面方向の攪拌作用を大きくすることができるので、流路空間全体において排気ガス中の成分の帯電に要する時間の短縮化、帯電粒子の集塵電極の対向面への接触の容易化、排気ガスの対向面近傍における主流方向流速の低速化に伴う滞留時間の増加を図ることができ、静電力による帯電粒子の捕捉を一層促進することができる。   The turbulent flow promotion by the turbulent flow promoting means 11e can increase the agitating action in the cross-sectional direction of the flow path, thereby shortening the time required for charging the components in the exhaust gas in the entire flow path space and collecting charged particles. It is possible to facilitate the contact of the dust electrode with the opposing surface, increase the residence time associated with the reduction of the main flow velocity in the vicinity of the exhaust gas opposing surface, and further promote the capture of charged particles by electrostatic force. it can.

また、帯電凝集部10の帯電凝集ユニット11を、次のように構成することもできる。図9〜図13に示すように、帯電凝集ユニット11のガス通路壁、即ち、帯電凝集部10のガス通路壁を、筒状体11fで形成し、低電圧電極となる集塵電極11aをガス通路壁11fの表面近傍に配置された導電性の筒状体で形成する。また、コロナ電極11bを筒状体11fの内部に配置した線状体の高電圧電極で形成する。この筒状体11fと集塵電極11aは共に導電材料で形成してもよいが、筒状体11fを絶縁材料で形成し、集塵電極11aを導電材料で形成すると、帯電凝集ユニット11の表面が筒状体11fにより電気的に絶縁されるので、漏電等に対する安全性が増す。   Further, the charging aggregation unit 11 of the charging aggregation unit 10 can also be configured as follows. As shown in FIGS. 9 to 13, the gas passage wall of the charging and aggregating unit 11, that is, the gas passage wall of the charging and aggregating unit 10 is formed of a cylindrical body 11 f, and the dust collecting electrode 11 a serving as a low-voltage electrode is gas. It is formed of a conductive cylindrical body disposed near the surface of the passage wall 11f. Further, the corona electrode 11b is formed of a linear high-voltage electrode arranged inside the cylindrical body 11f. Both the cylindrical body 11f and the dust collecting electrode 11a may be formed of a conductive material. However, if the cylindrical body 11f is formed of an insulating material and the dust collecting electrode 11a is formed of a conductive material, the surface of the charge aggregation unit 11 is formed. Is electrically insulated by the cylindrical body 11f, the safety against leakage etc. is increased.

また、図9〜図12に示すように集塵電極11aの表面又は表面近傍に乱流促進手段11eを設けたり、図13に示すように集塵電極11aを乱流促進手段11eで形成すると、乱流促進手段11eによる効果を得ることができる。   Further, when the turbulent flow promoting means 11e is provided on or near the surface of the dust collecting electrode 11a as shown in FIGS. 9 to 12, or when the dust collecting electrode 11a is formed with the turbulent flow promoting means 11e as shown in FIG. The effect by the turbulent flow promoting means 11e can be obtained.

この構成では、集塵電極11aを筒状体11fと別体にして形成しているので、集塵電極11aはガス通路壁の機能が不要となる。そのため、集塵電極11aはガス通過性を有してもよくなり、表面積を増加できるので、より凝集肥大化の効果を大きくすることができる。また、筒状体11fを絶縁体で形成すると、帯電凝集ユニット11の表面を電気的に絶縁でき、漏電等に対する安全性を増すことができる。   In this configuration, since the dust collecting electrode 11a is formed separately from the cylindrical body 11f, the dust collecting electrode 11a does not need the function of the gas passage wall. Therefore, the dust collection electrode 11a may have gas permeability and can increase the surface area, so that the effect of cohesive enlargement can be further increased. Further, when the cylindrical body 11f is formed of an insulator, the surface of the charging and aggregating unit 11 can be electrically insulated, and the safety against leakage etc. can be increased.

フィルタ部20は、帯電凝集部10から、粗大化して再飛散してくる凝集体を捕集して除去するためのフィルタを有して構成される。このフィルタは、耐熱性に優れたSiCやコージェライト等のセラミック製であってもよいが、ステンレス等の金属製のフィルタで形成すると、捕集したPMを燃焼除去する際に、高温にしても溶損し難いので、有炎燃焼により簡単に再生することができるようになる。   The filter unit 20 is configured to have a filter for collecting and removing aggregates that are coarsened and re-scattered from the charge aggregation unit 10. This filter may be made of ceramics such as SiC and cordierite having excellent heat resistance. However, if the filter is made of a metal filter such as stainless steel, the collected PM may be heated at a high temperature. Since it is difficult to melt, it can be easily regenerated by flaming combustion.

このフィルタ部20は、上流側の帯電凝集部10で捕集対象成分であるSootを凝集肥大化させてから捕集するので、圧力損失の小さい、比較的目の粗いフィルタで形成することができる。また、フィルタ部20には、触媒を担持しない非連続再生式のフィルタを用いることもでき、触媒を担持した連続再生式のフィルタを用いることもできる。   Since the filter unit 20 collects the soot that is a collection target component in the upstream charging aggregation unit 10 after aggregation and enlargement, the filter unit 20 can be formed with a relatively coarse filter having a small pressure loss. . The filter unit 20 may be a non-continuous regeneration filter that does not carry a catalyst, or a continuous regeneration filter that carries a catalyst.

そして、このフィルタ部20は、Sootの捕集量が増加し目詰まりしてきた時に、Sootを燃焼除去するために、フィルタ部20の再生が必要になり、そのための加熱手段が必要になる。   When the amount of soot collected increases and the filter portion 20 becomes clogged, the filter portion 20 needs to be regenerated in order to burn and remove the soot, and a heating means for that purpose is required.

この加熱手段としては、加熱用ヒータやバーナーや短絡用電極等が考えられる。
加熱用ヒーターでは、フィルタ部材の表面、又は、表面と内部に金属線等のヒーターを埋め込んで、このヒーターに通電することにより発熱させてフィルタ部20を昇温する。この加熱ヒーター方式の場合は、ヒーターの電気抵抗値と投入電力でフィルタ部20の昇温や維持温度をコントロールする。
As the heating means, a heater, a burner, a short-circuit electrode, or the like can be considered.
In the heater for heating, a heater such as a metal wire is embedded in the surface of the filter member or in the surface and inside, and the heater is heated by energizing the heater to raise the temperature of the filter unit 20. In the case of this heater method, the temperature rise and maintenance temperature of the filter unit 20 are controlled by the electric resistance value of the heater and the input power.

また、バーナーは、フィルタ部20の直前に燃焼ガスを供給してフィルタ部20を加熱して昇温するものであり、このバーナーに外部燃料(車両用燃料との共用も可能)を供給して燃焼し、高温ガスを発生させる。この高温ガスによりフィルタ部20を昇温させるが、排気ガス中に高温ガスが注入されるので、排気ガス中のPMも着火させてフィルタ部20の昇温に寄与させることができる。   The burner supplies combustion gas immediately before the filter unit 20 and heats the filter unit 20 to raise the temperature. The burner is supplied with external fuel (which can be shared with vehicle fuel). Burns and generates hot gases. Although the temperature of the filter unit 20 is increased by the high temperature gas, since the high temperature gas is injected into the exhaust gas, PM in the exhaust gas can be ignited to contribute to the temperature increase of the filter unit 20.

短絡用電極は、Sootが溜まってくると隣接して設けた電極間、あるいは、フィルタ部材の電導部分に隣接して設けた電極で形成され、この電極間あるいはフィルタ部材の電導部分と電極間の隙間が捕集されたSootで埋まると、電気的に短絡し、この短絡により発生した火花でSootが自己燃焼する。   The shorting electrode is formed between electrodes provided adjacent to each other when the soot accumulates, or an electrode provided adjacent to the conductive portion of the filter member, and between the electrodes or between the conductive portion of the filter member and the electrode. When the gap is filled with the collected soot, it is electrically short-circuited, and the soot is self-burned by the spark generated by this short-circuit.

なお、セラミックスフィルタの場合は、加熱手段による局部的な加熱では、フィルタの温度を均一にし難く、再生ムラや温度差に起因する熱割れが発生し易いが、金属フィルタの場合は、温度の均一化が容易である。また、金属フィルタの場合は、加熱ヒーターやバーナーなどによる外部加熱方式以外にも、短絡用電極による方式を用いることもできる。   In the case of ceramic filters, local heating by heating means makes it difficult to make the temperature of the filter uniform, and heat cracking due to uneven reproduction and temperature difference is likely to occur, but in the case of metal filters, the temperature is uniform. Is easy. In the case of a metal filter, a method using a short-circuit electrode can be used in addition to an external heating method using a heater or a burner.

酸化触媒30は、セラミックのハニカム構造等の担持体に、白金等の酸化触媒を担持させて形成され、ガス冷却によっても液化しないで、気相状態でフィルタ部20を通過するSOF等の蒸発成分を浄化する。   The oxidation catalyst 30 is formed by supporting an oxidation catalyst such as platinum on a support such as a ceramic honeycomb structure, and is not liquefied even by gas cooling, but an evaporation component such as SOF that passes through the filter unit 20 in a gas phase state. To purify.

そして、この排気ガス処理装置1においては、次のようにして排気ガスGを浄化する。 最上流側の帯電凝集部10では、ガス入口室11cから各々の帯電凝集ユニット11の筒状体(集塵電極)11aの内部に排気ガスGを通過させる。それと共に、コロナ電極11bと集塵電極11aとの間に高電圧を印加して、集塵電極11aの内部にコロナ放電を形成し、その内部を通過する排気ガスG中のPMのSoot(スート:煤)等の捕集対象成分を帯電させ、この帯電した粒子を凝集する。   And in this exhaust gas processing apparatus 1, the exhaust gas G is purified as follows. In the most upstream charging aggregation section 10, the exhaust gas G is allowed to pass from the gas inlet chamber 11 c into the cylindrical body (dust collection electrode) 11 a of each charging aggregation unit 11. At the same time, a high voltage is applied between the corona electrode 11b and the dust collecting electrode 11a to form a corona discharge inside the dust collecting electrode 11a, and the soot of PM in the exhaust gas G passing through the inside of the dust collecting electrode 11a. : Charge the target component such as 煤) and agglomerate the charged particles.

この帯電凝集部10では、コロナ放電による帯電を利用して、排気ガス中のSoot等の固形成分を帯電させる。それと共に、排気ガスGが冷却され、この冷却により凝縮したミスト状のSOF(可溶性有機成分)等の液体成分がバインダーの役割を果す。そのため、この排気ガス処理装置1では、冷却により凝縮した液体成分のバインダー機能を利用できるので、繊細なSootの粒子を、より効率良く凝集することができる。つまり、帯電凝縮部10で、コロナ放電の電気集塵機能に加えて、ガス冷却により凝縮したSOF等の液体成分の接着機能を利用して、排気ガスG中の浮遊微粒子を効率よく凝集肥大化できる。   In the charging aggregation unit 10, solid components such as soot in the exhaust gas are charged using charging by corona discharge. At the same time, the exhaust gas G is cooled, and a liquid component such as a mist-like SOF (soluble organic component) condensed by this cooling serves as a binder. Therefore, in this exhaust gas processing apparatus 1, since the binder function of the liquid component condensed by cooling can be used, fine soot particles can be aggregated more efficiently. That is, in the charging condensing unit 10, in addition to the electrostatic dust collecting function of corona discharge, the floating fine particles in the exhaust gas G can be efficiently agglomerated and enlarged using the adhesion function of liquid components such as SOF condensed by gas cooling. .

この凝集体は、コロナ電極11bと集塵電極11aの間の電場により、クローン力により集塵電極11aに移動し、一時的には集塵電極11aの表面に捕集されるが、集塵電極11aに触れて徐々に電荷を失い、また、壁面上で更に粗大化し、その結果、排気ガスGの流れにより集塵電極11aの表面から剥離し再飛散する。   The aggregate is moved to the dust collecting electrode 11a by the clonal force by the electric field between the corona electrode 11b and the dust collecting electrode 11a, and is temporarily collected on the surface of the dust collecting electrode 11a. The electric charge is gradually lost by touching 11a, and further becomes coarse on the wall surface. As a result, it peels off from the surface of the dust collecting electrode 11a by the flow of the exhaust gas G and re-scatters.

そして、この再飛散してくる凝集体や直接流入する捕集対象成分を、フィルタ部20で捕集するが、再飛散したり、SOFの回りに凝集したりした凝集体は、粗大化及び肥大化しているため、フィルタの目が比較的粗くても効率良く捕集することができる。従って、通常の物理的なフィルタだけで機械的にトラップする場合に比べ、より繊細なSootの粒子を効率良く捕集することができる。なお、フィルタ部20で、圧力損失の小さい目の粗いフィルタを用いることができるので、圧力損失を小さくでき、また、目詰まりまでの間、かなりの長時間連続運転することができる。   Then, the re-scattered aggregates and the components to be collected that directly flow in are collected by the filter unit 20, but the aggregates that are re-scattered or aggregated around the SOF are coarsened and enlarged. Therefore, even if the filter has a relatively coarse mesh, it can be collected efficiently. Therefore, finer soot particles can be efficiently collected as compared with a case where mechanical trapping is performed only with a normal physical filter. In addition, since the filter part 20 can use a coarse filter with a small pressure loss, a pressure loss can be made small, and it can operate continuously for a considerable long time until clogging.

また、最下流の酸化触媒30においては、ガス化したまま帯電凝集部10とフィルタ部20を通過してきたSOF等の成分を酸化して除去する。これにより、凝縮しなかったSOF等の蒸発成分も除去できるので、PMの除去能力を更に高めることができる。   Further, in the most downstream oxidation catalyst 30, components such as SOF that have passed through the charge aggregation unit 10 and the filter unit 20 while being gasified are oxidized and removed. Thereby, evaporation components such as SOF that have not been condensed can also be removed, so that the PM removal capability can be further enhanced.

これらの結果、排気ガス処理装置1に流入した排気ガスGは、浄化された排気ガスGcとしてこの排気ガス処理装置1から排出される。
そして、Soot等の捕集対象成分が蓄積されて目詰まりが進行し、所定の限界値(閾値)を超えた場合には、フィルタに設けた加熱手段(図示しない)等によりフィルタを加熱して、フィルタの温度をSootの自己着火可能な温度(500℃程度)以上に上昇させてSootを燃焼除去する。このフィルタの温度上昇は局部的であっても、一旦Sootの燃焼が開始されると燃焼熱が発生し燃焼の伝播が起こるので、フィルタ全体のSootを燃焼除去して、フィルタ全体を再生できる。この場合に、フィルタ部20を金属製のフィルタで形成すると、Sootを燃焼除去する際に、高温にしても溶損し難いので、有炎燃焼により簡単に再生することができる。
As a result, the exhaust gas G flowing into the exhaust gas processing device 1 is discharged from the exhaust gas processing device 1 as purified exhaust gas Gc.
Then, when the collection target component such as Soot is accumulated and clogging progresses and exceeds a predetermined limit value (threshold value), the filter is heated by a heating means (not shown) provided in the filter. Then, the temperature of the filter is raised to a temperature at which the soot can be ignited (about 500 ° C.) or more to burn and remove the soot. Even if the temperature rise of the filter is localized, once the combustion of the soot is started, combustion heat is generated and the propagation of the combustion occurs. Therefore, the soot of the entire filter can be burned and removed to regenerate the entire filter. In this case, when the filter unit 20 is formed of a metal filter, the soot is hardly melted even at a high temperature when the soot is burned and removed, so that the soot can be easily regenerated by flaming combustion.

そして、本発明においては、車両のエンジンブレーキ動作時に、帯電凝集部10への通電を停止する。この帯電凝集部10への投入電力のON/OFF制御では、図2のAで示すように、エンジンブレーキの非動作時にONとし、エンジンブレーキの動作時にOFFとすることを基本とする。但し、エンジンブレーキの動作時に燃料噴射を停止した時点から排気ガス(新気そのまま)が気筒内から帯電凝集部10に到達するまでの時間を配慮をする必要がある。つまり、投入電力を節約するためには、図2のBで示すように、エンジンブレーキの動作のON時よりも投入電力のOFF時を少しの時間Δt1だけ遅くすることが好ましい。また、投入電力のON時は、図2のB,Cで示すように、エンジンブレーキの動作をOFFした時よりも少しの時間Δt2だけ遅くする方が燃費向上の面から好ましい。   In the present invention, the energization of the charging and aggregating unit 10 is stopped during the engine braking operation of the vehicle. In the ON / OFF control of the input power to the charging and aggregating unit 10, as shown by A in FIG. 2, it is basically set to ON when the engine brake is not operating and OFF when the engine brake is operating. However, it is necessary to consider the time from when the fuel injection is stopped during the operation of the engine brake to when the exhaust gas (fresh air as it is) reaches the charging and aggregating portion 10 from the inside of the cylinder. In other words, in order to save the input power, it is preferable to delay the time when the input power is OFF by a little time Δt1 as compared with the time when the operation of the engine brake is ON, as indicated by B in FIG. Further, as shown by B and C in FIG. 2, when the input power is turned on, it is preferable from the viewpoint of improving fuel efficiency that the engine brake operation is delayed by a little time Δt2 than when the operation of the engine brake is turned off.

このエンジンブレーキ時には、内燃機関の気筒(シリンダ)内への燃料噴射が停止され、燃料噴射量がゼロになるので、排気ガス中にPMが発生しないので、排気ガスの浄化性能を低下させることなく、帯電凝集部10の凝集能力を回復できる。   During this engine braking, the fuel injection into the cylinder of the internal combustion engine is stopped and the fuel injection amount becomes zero, so PM is not generated in the exhaust gas, so that the exhaust gas purification performance is not degraded. The aggregation ability of the charged aggregation portion 10 can be recovered.

また、帯電凝集部10への通電停止により、肥大化して堆積したPMの静電気力を失わせて再飛散させて、フィルタ部20で捕集させることができるので、排気ガスの浄化性能を低下させることなく、帯電凝集部10の凝集能力を回復できる。   Further, by stopping energization to the charging and aggregating unit 10, the electrostatic force of the PM which has been enlarged and accumulated can be lost and re-scattered and collected by the filter unit 20, thereby reducing the exhaust gas purification performance. The aggregation ability of the charged aggregation part 10 can be recovered without any problem.

また、エンジンブレーキ動作時に、衝撃付与装置40により、帯電凝集部10に衝撃を与える。これにより、帯電凝集部10への通電停止により静電気力を失ったPMを剥がれるのを促進することができる。   Further, during the engine braking operation, the impact applying device 40 applies an impact to the charging aggregation portion 10. As a result, it is possible to promote the removal of the PM that has lost its electrostatic force due to the stop of energization of the charge aggregation portion 10.

この帯電凝集部10に堆積したPMを除去することは、堆積したPMによる乱流促進手段11eの埋没から乱流促進手段11eを露出させることになるので、特に、乱流促進手段11eを設けた帯電凝集部10の凝集能力の回復に大きな効果がある。   The removal of the PM accumulated on the charged aggregation portion 10 exposes the turbulence promoting means 11e from the burial of the turbulence promoting means 11e due to the accumulated PM, so that the turbulence promoting means 11e is particularly provided. This has a great effect on the recovery of the aggregation ability of the charged aggregation portion 10.

本発明に係るガス処理装置の構成を模式的に示す図である。It is a figure which shows typically the structure of the gas processing apparatus which concerns on this invention. エンジンブレーキのON/OFFと投入電力のON/OFFのタイミングを示す図である。It is a figure which shows the timing of ON / OFF of an engine brake and ON / OFF of input electric power. 帯電凝集ユニットの側断面図である。It is a sectional side view of a charge aggregation unit. 筒状体の断面形状が円形の帯電凝集ユニットを示す断面図である。It is sectional drawing which shows the charging aggregation unit whose cross-sectional shape of a cylindrical body is circular. 筒状体の断面形状が端部が円形の偏平体で、コロナ電極が複数ある帯電凝集ユニットを示す断面図である。FIG. 3 is a cross-sectional view showing a charging and aggregating unit in which a cylindrical body is a flat body having a circular end and a plurality of corona electrodes. 乱流促進手段を設けた帯電凝集ユニットの側断面図である。It is a sectional side view of the charging aggregation unit provided with the turbulent flow promoting means. 乱流促進手段を設けた筒状体の断面形状が円形の帯電凝集ユニットを示す断面図である。It is sectional drawing which shows the charging aggregation unit with a circular cross-sectional shape of the cylindrical body which provided the turbulent flow promotion means. 乱流促進手段を設けた筒状体の断面形状が端部が円形の偏平体で、コロナ電極が複数ある帯電凝集ユニットを示す断面図である。FIG. 5 is a cross-sectional view showing a charging and aggregating unit in which a tubular body provided with turbulent flow promoting means is a flat body having a circular end and a plurality of corona electrodes. 集塵電極と筒状体を別体で形成した帯電凝集ユニットの側断面図である。It is a sectional side view of the charge aggregation unit which formed the dust collection electrode and the cylindrical body separately. 乱流促進手段を設けた集塵電極とは別体に形成した筒状体の断面形状が円形の帯電凝集ユニットを示す断面図である。It is sectional drawing which shows the charging aggregation unit with a circular cross-sectional shape of the cylindrical body formed separately from the dust collection electrode which provided the turbulent flow promotion means. 乱流促進手段を設けた集塵電極とは別体に形成した筒状体の断面形状が端部が円形の偏平体で、コロナ電極が複数ある帯電凝集ユニットを示す断面図である。FIG. 4 is a cross-sectional view showing a charging and aggregating unit in which a cylindrical body formed separately from a dust collecting electrode provided with turbulent flow promoting means is a flat body having a circular end and a plurality of corona electrodes. 乱流促進手段を設けた集塵電極とは別体に形成した筒状体の断面形状が矩形の帯電凝集ユニットを示す断面図である。It is sectional drawing which shows the charging aggregation unit whose cross-sectional shape of the cylindrical body formed separately from the dust collection electrode which provided the turbulent flow promotion means is a rectangle. 乱流促進手段を兼ねる集塵電極とは別体に形成した筒状体の断面形状が長方形で、コロナ電極が複数ある帯電凝集ユニットを示す断面図である。FIG. 5 is a cross-sectional view showing a charging and aggregating unit in which a cylindrical body formed separately from a dust collecting electrode serving also as a turbulent flow promoting means is rectangular and has a plurality of corona electrodes.

符号の説明Explanation of symbols

1 排気ガス処理装置
10 帯電凝集部
20 フィルタ部
30 酸化触媒
40 衝撃付与装置
50 制御装置
DESCRIPTION OF SYMBOLS 1 Exhaust-gas processing apparatus 10 Charge aggregation part 20 Filter part 30 Oxidation catalyst 40 Impact application apparatus 50 Control apparatus

Claims (5)

車両に搭載した内燃機関の排気ガス中の捕集対象成分をコロナ放電により帯電させて凝集する帯電凝集部を上流側に、該凝集させた成分を捕集するフィルタ部を下流側に備えた排気ガス処理装置の排気ガス処理方法において、
前記内燃機関の運転条件に基づいて前記帯電凝集部へ投入する放電電力を制御すると共に、前記内燃機関がエンジンブレーキ動作により燃料噴射量がゼロになったときには前記帯電凝集部への通電を停止し、エンジンブレーキ動作を検出している間は、前記帯電凝集部への通電の停止を継続することを特徴とする排気ガス処理方法。
Exhaust gas equipped with a charge aggregation part that collects and aggregates the components to be collected in the exhaust gas of the internal combustion engine mounted on the vehicle by corona discharge, and a filter part that collects the aggregated components on the downstream side In the exhaust gas treatment method of a gas treatment device,
Based on the operating conditions of the internal combustion engine, the discharge power supplied to the charging aggregation unit is controlled, and when the fuel injection amount becomes zero due to the engine braking operation of the internal combustion engine, the energization to the charging aggregation unit is stopped. The exhaust gas processing method is characterized by continuing to stop energization of the charging and aggregating portion while detecting the engine braking operation.
前記帯電凝集部への通電を停止したときに、前記帯電凝集部に衝撃を与えることを特徴とする請求項1記載の排気ガス処理方法。   2. The exhaust gas processing method according to claim 1, wherein when the energization to the charging aggregation portion is stopped, an impact is applied to the charging aggregation portion. 車両に搭載した内燃機関の排気ガス中の捕集対象成分をコロナ放電により帯電させて凝集する帯電凝集部を上流側に、該凝集させた成分を捕集するフィルタ部を下流側に備えた排気ガス処理装置であって、
前記内燃機関の運転条件に基づいて前記帯電凝集部へ投入する放電電力を制御すると共に、前記内燃機関がエンジンブレーキ動作により燃料噴射量がゼロになったときには前記帯電凝集部への通電を停止し、エンジンブレーキ動作を検出している間は、前記帯電凝集部への通電の停止を継続する排気ガス処理制御装置を備えたことを特徴とする排気ガス処理装置。
Exhaust gas equipped with a charge aggregation part that collects and aggregates the components to be collected in the exhaust gas of the internal combustion engine mounted on the vehicle by corona discharge, and a filter part that collects the aggregated components on the downstream side A gas treatment device,
Based on the operating conditions of the internal combustion engine, the discharge power supplied to the charging aggregation unit is controlled, and when the fuel injection amount becomes zero due to the engine braking operation of the internal combustion engine, the energization to the charging aggregation unit is stopped. An exhaust gas processing apparatus comprising an exhaust gas processing control device that continues to stop energization of the charging and aggregating unit while detecting an engine brake operation.
前記帯電凝集部への通電を停止したときに、前記帯電凝集部に衝撃を与えることを特徴とする請求項3記載の排気ガス処理装置。   4. The exhaust gas processing apparatus according to claim 3, wherein when the energization to the charging aggregation portion is stopped, an impact is applied to the charging aggregation portion. 前記フィルタ部の下流側に酸化触媒を設けたことを特徴とする請求項3又は請求項4に記載の排気ガス処理装置。   The exhaust gas processing apparatus according to claim 3 or 4, wherein an oxidation catalyst is provided on a downstream side of the filter unit.
JP2005238573A 2005-08-19 2005-08-19 Exhaust gas treatment method and exhaust gas treatment apparatus Expired - Fee Related JP4581130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005238573A JP4581130B2 (en) 2005-08-19 2005-08-19 Exhaust gas treatment method and exhaust gas treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005238573A JP4581130B2 (en) 2005-08-19 2005-08-19 Exhaust gas treatment method and exhaust gas treatment apparatus

Publications (2)

Publication Number Publication Date
JP2007051608A JP2007051608A (en) 2007-03-01
JP4581130B2 true JP4581130B2 (en) 2010-11-17

Family

ID=37916214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005238573A Expired - Fee Related JP4581130B2 (en) 2005-08-19 2005-08-19 Exhaust gas treatment method and exhaust gas treatment apparatus

Country Status (1)

Country Link
JP (1) JP4581130B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011148461A1 (en) * 2010-05-25 2011-12-01 トヨタ自動車株式会社 Control device for internal combustion engine
DE102010044343A1 (en) * 2010-09-03 2012-03-08 Emitec Gesellschaft Für Emissionstechnologie Mbh Device with an annular electrode for reducing soot particles in the exhaust gas of an internal combustion engine
JP5945122B2 (en) * 2012-01-31 2016-07-05 ダイハツ工業株式会社 In-vehicle power generation system
JP2013244428A (en) * 2012-05-24 2013-12-09 Kazunori Koishi Filter with vibrator
KR101515798B1 (en) 2013-02-28 2015-05-04 편성자 Harmful gases purifying device
CN118934164A (en) * 2024-08-16 2024-11-12 江苏鲲鹏电力设备有限公司 A diesel generator exhaust purification device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02227152A (en) * 1989-02-28 1990-09-10 Mitsubishi Heavy Ind Ltd Dust collecting electrode hammering method
JP2000213331A (en) * 1999-01-20 2000-08-02 Zexel Corp Exhaust emission control device
JP2001098931A (en) * 1999-09-29 2001-04-10 Denso Corp Exhaust emission control device for internal combustion engine
JP2002143720A (en) * 2000-11-09 2002-05-21 Sumitomo Heavy Ind Ltd Electrostatic precipitator
JP2004162600A (en) * 2002-11-13 2004-06-10 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device for internal combustion engine
JP2005076497A (en) * 2003-08-29 2005-03-24 Nissin Electric Co Ltd Exhaust gas treatment method and exhaust gas treatment device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02227152A (en) * 1989-02-28 1990-09-10 Mitsubishi Heavy Ind Ltd Dust collecting electrode hammering method
JP2000213331A (en) * 1999-01-20 2000-08-02 Zexel Corp Exhaust emission control device
JP2001098931A (en) * 1999-09-29 2001-04-10 Denso Corp Exhaust emission control device for internal combustion engine
JP2002143720A (en) * 2000-11-09 2002-05-21 Sumitomo Heavy Ind Ltd Electrostatic precipitator
JP2004162600A (en) * 2002-11-13 2004-06-10 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device for internal combustion engine
JP2005076497A (en) * 2003-08-29 2005-03-24 Nissin Electric Co Ltd Exhaust gas treatment method and exhaust gas treatment device

Also Published As

Publication number Publication date
JP2007051608A (en) 2007-03-01

Similar Documents

Publication Publication Date Title
JP4529013B2 (en) Gas processing equipment
JP4244022B2 (en) Gas processing equipment
WO2006101070A1 (en) Exhaust gas treating device and exhaust gas treating method
JP2010528228A (en) System and method for treating diesel exhaust particulate matter
JP2011052544A (en) Exhaust gas treatment apparatus
WO2011100091A2 (en) Advanced particulate matter control apparatus and methods
JP4581130B2 (en) Exhaust gas treatment method and exhaust gas treatment apparatus
JP2005232972A (en) Exhaust emission control device
JP2014118850A (en) Exhaust gas treatment device of internal combustion engine
JP3702230B2 (en) Method for agglomerating fine particles in exhaust gas, method for removing fine particles and apparatus therefor
JP5929704B2 (en) Exhaust gas treatment device for internal combustion engine
JP4896629B2 (en) Exhaust gas treatment equipment
CN104763493A (en) Automobile tail gas particulate matter trap and filter element
JP4304238B2 (en) Method and apparatus for exhaust gas purification of internal combustion engine
KR20070050620A (en) Concentrated Plasma Emission Particle Treatment System
CN110985171A (en) System for regenerating DPF under controllable NTP working condition and control method
JP2005232971A (en) Exhaust emission control device
JP2012136954A (en) Exhaust-gas treatment device for internal combustion engine
JP2006029267A (en) Exhaust emission control device
JP3600582B2 (en) Method and apparatus for treating engine exhaust gas
JP2004092589A (en) Exhaust gas purification device for internal combustion engine
JP2007021380A (en) Particle-packed bed dust collecting device
JP4604803B2 (en) Exhaust treatment device
KR100926136B1 (en) Automatic regenerative electrostatic precipitator for vehicle exhaust gas treatment
JP2004293417A (en) Exhaust emission control method of internal combustion engine and its device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100811

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100811

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees