[go: up one dir, main page]

JP4575651B2 - Manufacturing method of laminated structure and laminated structure - Google Patents

Manufacturing method of laminated structure and laminated structure Download PDF

Info

Publication number
JP4575651B2
JP4575651B2 JP2003159534A JP2003159534A JP4575651B2 JP 4575651 B2 JP4575651 B2 JP 4575651B2 JP 2003159534 A JP2003159534 A JP 2003159534A JP 2003159534 A JP2003159534 A JP 2003159534A JP 4575651 B2 JP4575651 B2 JP 4575651B2
Authority
JP
Japan
Prior art keywords
cross
sectional pattern
layer
laminated structure
conductive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003159534A
Other languages
Japanese (ja)
Other versions
JP2004358602A (en
Inventor
睦也 高橋
高幸 山田
宏之 堀田
崇之 後藤
武志 津野
雅人 木ノ内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Mitsubishi Heavy Industries Ltd
Fujifilm Business Innovation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd, Mitsubishi Heavy Industries Ltd, Fujifilm Business Innovation Corp filed Critical Fuji Xerox Co Ltd
Priority to JP2003159534A priority Critical patent/JP4575651B2/en
Publication of JP2004358602A publication Critical patent/JP2004358602A/en
Application granted granted Critical
Publication of JP4575651B2 publication Critical patent/JP4575651B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Micromachines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、積層造形方法によって製造される微小光学部品や微小機械部品、あるいは、これらを形成する金型などの微小構造体を製造する積層構造体の製造方法および積層構造体に関し、特に高さが数百ミクロン以上となる積層構造体の製造方法および積層構造体に関する。
【0002】
【従来の技術】
積層造形方法は、コンピュータで設計された複雑な形状の3次元物体を短納期で形成する方法として近年急速に普及している。積層造形方法で作成された3次元物体は、種々の装置の部品モデル(プロトタイプ)として、部品の動作や形状の良否を調べるために利用される。この方法が適用される部品のサイズは、数cm以上の比較的大きな部品が多かったが、精密に加工して形成される微小光学部品や微小機械部品などの微小構造体の製造にも、この方法を適用したいという要求がある。
【0003】
図9〜図13を参照して、上記のような積層造形方法を適用した第1の従来例による積層構造体の製造方法を説明する。
【0004】
図9(a)に示すように、シリコンウエハ基板11を準備し、ポリイミドによる離型層12を形成し、続いて積層構造体の構成材料であるAl薄膜13をスパッタ法、あるいは真空蒸着法などにより0.5μm着膜する。離型層12はAl薄膜13との密着力を適正に保つ役割をする。
【0005】
図9(b)に示すように、フォトリソグラフィー法によりAl薄膜13を積層構造体の断面形状に一括してパターニングし、複数の断面パターン部材13−1,13−2を形成する。この断面パターン部材13−1,13−2が形成された基板全体をドナー基板15と呼ぶ。
【0006】
図10に示すように、真空槽21中のXYθステージ22上にドナー基板15を固定する。また、XYθステージ22上方のZステージ23に、断面パターン部材13−1,13−2を積層するターゲット基板24を固定する。そして、真空槽21内を真空に排気した後、ターゲット基板24の表面24aおよび断面パターン部材13−1の表面13−1aにAr中性ビームからなるFAB(Fast Atom Beam)26をFAB源25から照射し、ターゲット基板24および断面パターン部材13−1の表面を清浄化する。
【0007】
図11に示すように、Zステージ23を下降させ、ターゲット基板24の表面24aと一方の断面パターン部材13−1を当接させ、更に荷重として50kgf/cm2を掛け、5分間押し付けておくと、ターゲット基板24と断面パターン部材13−1が強固に接合する。なお、その接合強度は50〜100MPaである。
【0008】
図12に示すように、Zステージ23を上昇させると、断面パターン部材13−1はドナー基板15からターゲット基板24に転写される。これは、ドナー基板15上の断面パターン部材13−1と、この下の離型層12の密着力よりも、断面パターン部材13−1とターゲット基板24との接合力の方が大きいためである。
【0009】
図13に示すように、図10〜図12の工程を繰り返してターゲット基板24に他の断面パターン部材13−2を転写して積層構造体27を形成し、最後に積層構造体27をターゲット基板24から取り外す(特許文献1参照。)。
【0010】
図14, 図15を参照して、第2の従来例による積層構造体の製造方法を説明する。
【0011】
図14(a)に示すように、シリコンウエハ基板31の上下面に熱酸化膜32−1,32−2が形成された支持基板33を準備する。支持基板33は、平面度に留意して平面度が数ミクロン程度のものを用いる。
【0012】
図14(b)に示すように、支持基板33の熱酸化膜32−1の上面に密着力強化剤を塗布した後、フォトレジストをスピン塗布して接着層34を形成する。
密着力強化剤を塗布することにより支持基板33と接着層34との間の密着力を、接着層34と後述する図14(c)に示す板状部材35との間の接着力よりも大きくなるようにしている。
【0013】
図14(c)に示すように、両面が鏡面研磨され、平面度が数ミクロン程度で、厚さ500ミクロンのシリコンウエハからなり、上面にだけ酸化膜36が形成された板状部材35を準備し、上記接着層34が乾く前に板状部材35を貼り付け、その後、150℃、30分間ベイクして、2枚の支持基板33と板状部材35を接着する。
【0014】
図15(a)に示すように、通常のフォトリソグラフィー法にて板状部材35の表面の酸化膜36を、最終的に製造される構造体の各断面形状に一括してパターニングし、酸化膜パターン層36−1,36−2を得る。エッチングは図示しないレジストパターンをマスクとし、バッファードフッ酸により行う。
【0015】
図15(b)に示すように、その基板全体を図示せぬ誘導結合型プラズマ(ICP:Inductive coupled plasma)エッチング装置に導入し、酸化膜パターン層36−1,36−2をマスクとして、板状部材35が支持基板33の上面位置まで貫通するようにエッチングし、断面パターン部材35−1,35−2を得る。
【0016】
図15(c)に示すように、酸化膜パターン層36−1,36−2をバッファードフッ酸によりエッチングすることによって、構造体の断面パターン部材35−1,35−2が形成されたドナー基板37を得る。
【0017】
次に、第1の従来例で説明した図10〜図13と同様に、ターゲット基板24に複数の断面パターン部材35−1,35−2を転写して積層構造体を形成し、最後に積層構造体をターゲット基板24から取り外す。この第2の従来例においては、第1の従来例のように断面パターン部材13−1,13−2となるAl薄膜13を着膜する代わりに、断面パターン部材35−1、35−2となる厚い板状部材35を支持基板33に貼り付けているため、短時間で厚い断面パターン部材35−1,35−2を形成することができる。また、断面パターン部材35−1,35−2も厚いので積層数も減らすことができる。従って、短時間で積層構造体を製造することができる(特許文献2参照。)。
【0018】
【特許文献1】
特許第3161362号
【特許文献2】
特開2002−18798号公報
【0019】
【発明が解決しようとする課題】
しかし、従来の特許文献1による積層構造体の製造方法においては、厚さ0.5μmの薄膜である断面パターン部材13−1,13−2を積層して、高さ数100μmから数mmの積層構造体27を製造するため、積層数が非常に多くなり、製造時間が長くなる。積層数を減らすためには、薄膜の厚さを数10μmから数100μmと厚くすればよいが、スパッタ法や真空蒸着法の着膜速度は0.05〜0.1μm/分程度と遅いため、薄膜の着膜に時間がかかる。このように、薄膜の着膜、あるいは積層に多大な時間がかかるという問題があった。
【0020】
一方、特許文献2の積層構造体の製造方法においては、支持基板33に板状部材35を貼り付けるときの押し付け力を適切な大きさにする必要があり、押し付け力が大きいと硬化前の軟質の接着層34が両者の間からはみ出して無くなってしまい、逆に押し付け力が小さいと板状部材35が接着層34に確実に密着せず接着力が低下する。接着層34がない部分や密着力が低下した部分は、パターニング工程を経るうちに断面パターン部材35−1,35−2が支持基板33から剥がれてしまう。断面パターン部材35−1,35−2が剥がれないようにするためには押し付け力を適切とすればよいが、そのマージンが小さいため適切な押し付け力とすることが難しい。従って、歩留まり良く、断面パターン部材35−1,35−2を形成することが難しいため、製造する積層構造体の歩留まりが低下するという問題があった。
【0021】
本発明は、かかる点に鑑みてなされたものであり、高さが数100μm以上となる積層構造体を、短時間で歩留まり良く製造することができる積層構造体の製造方法および積層構造体を提供することを目的とする。
【0022】
【課題を解決するための手段】
本発明は、上記目的を達成するため、構造体の断面パターンに対応する複数の断面パターン部材が形成されたドナー基板を準備し、前記ドナー基板にターゲット基板を対向配置し、このターゲット基板を前記断面パターン部材に位置合わせして圧接したのち離間を行う処理を繰り返すことによって、前記断面パターン部材を積層して接合された積層構造体を前記ターゲット基板上に形成する積層構造体の製造方法において、前記ドナー基板の準備は、前記ドナー基板上に離型層および2層以上から構成される導電層を順次形成し、前記構造体の断面パターンを反転した反転パターン層を前記導電層上に形成する第1の工程と、前記反転パターン層の前記構造体の断面パターンに対応する空間部分にメッキにより前記複数の断面パターン部材を形成する第2の工程と、前記反転パターン層を除去する第3の工程を含み、前記断面パターン部材の接合は、接合面を清浄化し、清浄化した前記接合面を直接接触させて行うことを特徴とする積層構造体の製造方法を提供する。
【0023】
この方法によれば、着膜速度が速いメッキによって断面パターン部材を形成するようにしたので、厚い断面パターン部材を短時間で形成することができる。
【0024】
本発明は、上記目的を達成するため、構造体の断面パターンに対応する複数の断面パターン部材の各々の間に軟質金属からなる層を介して積層され、前記軟質金属からなる前記層の清浄化された接合面と前記断面パターン部材の清浄化された接合面とが直接接触して接合され、前記軟質金属からなる前記層が2層以上から構成されることを特徴とする積層構造体を提供する。
【0025】
この構成によれば、軟質金属からなる層を電極として断面パターン部材をメッキによって形成することができる。軟質金属からなる層は、断面パターン部材同士を圧接したとき、塑性変形するため、断面パターン部材同士の密着性が向上し、接合力が高くなる。
【0026】
【発明の実施の形態】
図1(a)〜(d)に、本発明の第1の実施の形態に係る積層構造体の製造工程を示す。本実施の形態と従来技術との違いはドナー基板の製造方法である。
【0027】
図1(a)に示すように、シリコンウエハ基板41上に、後述する断面パターン部材との密着力を適切な範囲に制御することができる離型層42を形成し、この上に後述するメッキ処理を行うための導電層43を形成する。
【0028】
図1(b)に示すように、フォトリソグラフィー法により、数10〜数100ミクロンの膜厚を有する厚いレジストパターン層44−1,44−2,44−3を形成する。なお、このレジストパターン層44−1,44−2,44−3は、積層構造体の断面パターンを反転した形状になっている。
【0029】
図1(c)に示すように、導電層43を電極として短時間で厚い膜を形成することができるメッキ処理により、レジストパターン層44−1,44−2,44−3の間に構造体材料を埋め込んで断面パターン部材45−1,45−2を形成する。メッキ処理における着膜速度は、数μm/分とスパッタのそれに比べて数10倍早い。
【0030】
図1(d)に示すように、レジストパターン層44−1,44−2,44−3を除去し、積層構造体の断面パターン部材45−1,45−2をマスクにして導電層43を、43−1,43−2で示すようにエッチングする。これによってドナー基板46が完成する。
【0031】
図2に示すように、真空槽21中のXYθステージ22上にドナー基板46を固定すると共に、断面パターン部材45−1,45−2が積層されるターゲット基板24をZステージ23上に固定し、ターゲット基板24とドナー基板46の表面24a,45−1aにFAB源25からFAB26を照射し、両者の表面24a,45−1aを清浄化する。
【0032】
図3に示すように、Zステージ23を下降させてターゲット基板24とドナー基板46を当接させ、荷重を印加した後、Zステージ23を上昇させる。
【0033】
図4に示すように、ターゲット基板24に、断面パターン部材45−1と共に導電層43−1が転写される。これは、導電層43−1が接しているのが離型層42であり、離型層42と導電層43−1の密着力が、ターゲット基板24と断面パターン部材45−1との接合力、および断面パターン部材45−1と導電層43−1との密着力よりも弱いためである。
【0034】
図5に示すように、XYθステージ22を動かして、ターゲット基板24に転写済みの断面パターン部材45−1に密着された導電層43−1と、断面パターン部材45−2との位置合わせを行った後、両者43−1,45−2の表面43−1a,45−2aにFAB26を照射して、その表面43−1a,45−2aを清浄化する。この後、図3に示したように、Zステージ23を下降させて両者43−1,45−2を当接させ、荷重を印加した後、Zステージ23を上昇させる。
【0035】
図6に示すように、導電層43−1に、断面パターン部材45−2と共に導電層43−2が転写される。このように、断面パターン部材を繰り返し転写して積層することにより、積層構造体51を製造する。
【0036】
このように、第1の実施の形態によれば、着膜速度が速いメッキによって断面パターン部材45−1,45−2を形成するようにしたので、厚い断面パターン部材45−1,45−2を短時間で形成することができる。このため、断面パターン部材45−1,45−2の積層数も減らすことができ、高さが数100μm以上となる積層構造体51を短時間で製造することができる。
【0037】
また、従来の図14に示したように支持基板33と板状部材35とを貼り付けずに、離型層42の上に断面パターン部材45−1,45−2を形成するようにしたので、離型層42と断面パターン部材45−1,45−2との密着力を適正かつ確実に保持することができ、パターニング工程中に断面パターン部材45−1,45−2が基板から剥がれてしまうこともない。これによって、歩留まりを向上させることができる。従って、高さが数100μm以上となる積層構造体51を、短時間で歩留まり良く製造することができる。
【0038】
なお、この第1の実施の形態は、次のように様々に変形可能である。
【0039】
例えば、上記の図1(d)に示した工程では、露出している導電層43を除去する形態を示したが、必ずしも除去しなくてもよい。しかし、除去した方が次の理由により好ましい。離型層42と接しているのは導電層43であるため、断面パターン部材45−1,45−2を転写するときに剥がれが生じるのは、導電層43と離型層42との界面である。
【0040】
また、図4に示したように、その剥がれによって断面パターン部材45−1と共に導電層43−1も転写される。この際、導電層43−1と離型層42との密着力は、両者43−1と42が接している面積が小さいほうが低くなる。従って、密着力が低くなって転写しやすくなるように、図1(d)に示すように余分な導電層43をエッチングして除去することが好ましい。また、導電層43−1、43−2は断面パターン部材45−1、45−2をマスクにして選択的にエッチングして除去したが、必ずしも選択性がなく、断面パターン部材が同時にエッチングされてもよい。断面パターン部材がエッチングされる場合には、最終的に所定の厚さとなるよう、予め、断面パターン部材のエッチング量分だけ厚く断面パターン部材をメッキにより形成しておくことが好ましい。
【0041】
また、導電層43としては、導電性を有する材料であればよく、必要に応じて2層以上としてもよい。上層(断面パターン部材側)をAuとすることによりメッキ材料の選択性が広がり、また下層(離型層側)をアルミニウムあるいはアルミニウム合金として離型層をポリイミドとすることにより導電層と離型層の密着力が最も適切となる。また、純Al、Al−Cu合金、Auなどの軟質な金属材料で構成することが好ましい。また、この理由を次に述べる。
【0042】
図4に示したように、断面パターン部材45−1と共に導電層43−1が転写されるため、次の断面パターン部材45−2とは導電層43−1が接合することになる。断面パターン部材45−2の接合面には、表面粗さに対応する凸凹が存在するが、導電層43−1が軟質である方が接合する際に、導電層43−1が塑性変形して、その接合面の凸凹が埋まって当接面積が広くなり接合強度が増すので断面パターン部材45−2が転写しやすくなる。従って、導電層43は軟質である方が好ましい。また、導電層の形成方法は、メッキやスパッタなどの薄膜形成方法ならば何でも良く、導電層の構成などにより適宜選択される。例えば、前述したような、導電層の上層をAu、下層をアルミニウムの2層構造とする場合には、アルミニウムの上にAuをメッキで形成することは難しいので、Auはスパッタにより形成することが好ましい。
【0043】
また、純Al、Al−Cu合金、Auなどの軟質な材料を接合面となる断面パターン部材45−1,45−2の上(表面)に形成しても、同様に接合強度が増すので好ましい。ただし、軟質な導電層43が積層構造体51に含まれて剛性が低下するため、高い剛性を必要とする積層構造体を製造する場合は好ましくない。
【0044】
次に、このような高い剛性を必要とする積層構造体を製造する第2の実施の形態に係る積層構造体の製造方法を説明する。
【0045】
図1(a)および(b)に示した工程を経た後、図1(c)に示したメッキ処理工程において、レジストパターン層44−1,44−2,44−3の間に断面パターン部材45−1,45−2を形成した後、レジストパターン層44−1,44−2,44−3および断面パターン部材45−1,45−2全ての上面を研磨することによって、断面パターン部材45−1,45−2の接合面の凹凸を無くし、平滑面とする。そして、図1(d)に示したように、レジストパターン層44−1,44−2,44−3を除去し、断面パターン部材45−1,45−2をマスクにして導電層43を、43−1,43−2で示すようにエッチングし、ドナー基板46を完成させる。
【0046】
ただし、断面パターン部材45−1,45−2の接合面を平滑面とする処理は、図1(d)に示したレジストパターン層44−1,44−2,44−3の除去後に行っても良い。
【0047】
図2に示したように、真空槽21中のXYθステージ22上にドナー基板46を固定すると共に、ターゲット基板24をZステージ23上に固定し、FAB26の照射によってターゲット基板24とドナー基板46の表面24a,45−1aを清浄化する。
【0048】
図3に示したように、Zステージ23を下降させて両者24,46を当接させ、荷重を印加した後、Zステージ23を上昇させ、図4に示したように、ターゲット基板24に、断面パターン部材45−1と共に導電層43−1を転写する。
【0049】
図7に示すように、XYθステージ22を動かして、ターゲット基板24に転写済みの断面パターン部材45−1に密着された導電層43−1(図3参照)と、断面パターン部材45−2との位置合わせを行った後、次の断面パターン部材45−2を接合する前の表面清浄化を行う。この際、FAB26の照射により導電層43−1をエッチングして導電層43−1を除去する。この後、Zステージ23を下降させて、ターゲット基板24上の断面パターン部材45−1とドナー基板46上の断面パターン部材45−2を当接させ、荷重を印加した後、Zステージ23を上昇させる。
【0050】
図8に示すように、断面パターン部材45−1に他の断面パターン部材45−2が転写される。
【0051】
第2の実施の形態によれば、導電層43が除去された断面パターン部材を繰り返し転写して積層することにより、導電層43が間に介在しない高い剛性の積層構造体を製造することができる。断面パターン部材45−1,45−2の上面は、平滑面であるので、断面パターン部材同士の接合強度が大きくなる。
【0052】
ただし、断面パターン部材45−1と45−2同士が確実に接合されるように、導電層43−1,43−2と離型層42との密着力が最も適切となるように、導電層43を純AlあるいはAl−Cu合金とし、離型層42をポリイミドとすることが望ましい。
【0053】
また、図1(b)に示した反転パターンは、その形状精度が良好となるように、厚膜レジストをリソグラフィー法によりパターニングして形成することが好ましい。このようなパターニング方法としては光、あるいはX線に感光する厚膜レジストを用いてパターニングする方法があるが、より低コストとなる光に感光する厚膜レジストを用いてパターニングするのが更に好ましい。
【0054】
【実施例】
以下、このような効果を奏する積層構造体の製造方法によって、実際に積層構造体51を製造した工程を、上記の図1〜図6を参照して説明する。
【0055】
図1(a)に示すように、シリコンウエハ基板41を準備し、その基板41の表面にポリイミドをスピンコート法により塗布し、最高温度350℃でベークし、離型層42を形成した。続いて、厚さ0.5μmのAuをスパッタ法により着膜して導電層43を形成した。
【0056】
図1(b)に示すように、導電層43の上に膜厚50μmの厚膜レジストを形成した後、露光・現像を行って、積層構造体の断面パターンを反転した形状のレジストパターン層44−1,44−2,44−3を形成した。
【0057】
図1(c)に示すように、メッキを行って、レジストパターン層44−1,44−2,44−3の間にCuを膜厚50μmとなるまで形成することによって、断面パターン部材45−1,45−2を形成した。なお、Cuの着膜速度は2μm/分であった。なお、断面パターン部材45−1,45−2は、Niであってもよい。
【0058】
図1(d)に示すように、レジストパターン層44−1,44−2,44−3をアッシングして除去した後、断面パターン部材45−1,45−2をマスクにして、導電層43を選択的にエッチングし、ドナー基板46を製造した。
【0059】
図2に示すように、真空槽21中のXYθステージ22上にドナー基板46を固定し、Zステージ23上にターゲット基板24を固定し、槽内を5×10-5Paまで真空排気した。続いて、ターゲット基板24と断面パターン部材45−1の表面24a,45−1aに、FAB源25からFAB26照射し、表面活性化処理を施した。FAB処理条件は、FAB電圧1.5kV、FAB電流15mA、処理時間5分とした。
【0060】
図3に示すように、Zステージ23を下降させ、ターゲット基板24と断面パターン部材45−1とを当接させ、更に荷重として50kgf/cm2を掛け、5分間押し付けた。この結果、ターゲット基板24と断面パターン部材45−1とが強固に接合した。なお、その接合強度は50〜100MPaである。
【0061】
図4に示すように、Zステージ23を上昇させると、断面パターン部材45−1は、ドナー基板46からターゲット基板24に転写された。
【0062】
図5に示すように、XYθステージ22を動かして、ターゲット基板24に転写済みの断面パターン部材45−1に密着された導電層43−1と、断面パターン部材45−2との位置合わせを行った後、両者43−1,45−2の表面43−1a,45−2aにFAB26を照射して、その表面43−1a,45−2aを清浄化した。この後、図3に示したように、Zステージ23を下降させて両者43−1,45−2を当接させ、荷重を印加した後、Zステージ23を上昇させた。
【0063】
図6に示すように、導電層43−1に、断面パターン部材45−2と共に導電層43−2が転写される。このように、断面パターン部材を繰り返し転写して積層することにより、積層構造体51を製造した。このように本実施例によれば、高さが数100μm以上となる積層構造体51を、短時間で歩留まり良く製造することができた。
【0064】
【発明の効果】
以上説明したように、本発明の積層構造体の製造方法によれば、着膜速度が速いメッキによって断面パターン部材を形成するようにしたので、厚い断面パターン部材を短時間で形成することができる。このため、断面パターン部材の積層数も減らすことができ、高さが数100μm以上となる積層構造体を短時間で製造することができる。また、従来のように支持基板と板状部材とを貼り付けずに、離型層の上に断面パターン部材を形成するようにしたので、離型層と断面パターン部材との密着力を適正かつ確実に保持することができ、パターニング工程中に断面パターン部材が基板から剥がれてしまうこともない。これによって、歩留まりを向上させることができる。
【0065】
本発明の積層構造体によれば、軟質金属からなる層電極として複数断面パターン部材を、着膜速度の速いメッキによって形成できるので、高さが数100μm以上となる積層構造体を、短時間で歩留まり良く製造することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係る積層構造体の製造工程を示し、(a)はシリコンウエハ基板上への離型層および導電層の形成工程、(b)は積層構造体の断面の反転パターンであるレジストパターン層の形成工程、(c)はレジストパターン層の間への断面パターン部材形成のためのメッキ処理工程、(d)は断面パターン部材を形成したドナー基板形成のためのエッチング工程を示す図である。
【図2】真空槽中においてドナー基板とターゲット基板との表面を清浄化する工程を示す図である。
【図3】真空槽中においてドナー基板にターゲット基板による荷重を印加する工程を示す図である。
【図4】真空槽中においてターゲット基板に断面パターン部材と共に導電層を転写する工程を示す図である。
【図5】真空槽中においてXYθステージを動かして、ターゲット基板に転写済みの断面パターン部材に密着された導電層と、断面パターン部材との位置合わせを行い、両者の表面を清浄化する工程を示す図である。
【図6】真空槽中において断面パターン部材の導電層に、他の断面パターン部材と共に導電層を転写する工程を示す図である。
【図7】真空槽中においてターゲット基板に断面パターン部材と共に導電層を転写した後、その導電層を除去する工程を示す図である。
【図8】真空槽中においてターゲット基板の断面パターン部材に直接、他の断面パターン部材を転写する工程を示す図である。
【図9】第1の従来例における積層構造体の製造工程を示し、(a)はシリコンウエハ基板上への離型層およびAl薄膜の形成工程、(b)は断面パターン部材を形成したドナー基板形成のためのエッチング工程を示す図である。
【図10】第1の従来例において真空槽中でドナー基板とターゲット基板との表面を清浄化する工程を示す図である。
【図11】第1の従来例において真空槽中でドナー基板にターゲット基板による荷重を印加する工程を示す図である。
【図12】第1の従来例において真空槽中でターゲット基板に断面パターン部材を転写する工程を示す図である。
【図13】第1の従来例において真空槽中でターゲット基板の断面パターン部材に他の断面パターン部材を転写する工程を示す図である。
【図14】第2の従来例における積層構造体の製造工程を示し、(a)はシリコンウエハ基板の上下面に熱酸化膜を形成した支持基板の形成工程、(b)は支持基板の熱酸化膜上面への接着層の形成工程、(c)は支持基板に接着層を介して表面に酸化膜が形成された板状部材を接着する工程を示す図である。
【図15】第2の従来例における積層構造体の製造工程を示し、(a)は酸化膜パターン層の形成工程、(b)は酸化膜パターン層をマスクとした断面パターン部材のエッチング工程、(c)は断面パターン部材を形成したドナー基板の形成工程である。
【符号の説明】
11,31,41 シリコンウエハ基板
12,42 離型層
13 Al薄膜
13−1,13−2 断面パターン部材
13−1a,45−1a,45−2a 断面パターン部材の表面
15,37,46 ドナー基板
21 真空槽
22 XYθステージ
23 Zステージ
24 ターゲット基板
24a ターゲット基板の表面
25 FAB源
26 FAB
27,51,52 積層構造体
32−1,32−2 熱酸化膜
33 支持基板
34 接着層
35 板状部材
36 酸化膜
35−1,35−2 断面パターン部材
36−1,36−2 酸化膜パターン層
43,43−1,43−2 導電層
43−1a 導電層の表面
44−1,44−2,44−3 レジストパターン層
45−1,45−2 断面パターン部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a laminated structure and a laminated structure for producing a micro optical component, a micro mechanical component, or a micro structure such as a mold for forming the micro optical component or the micro mechanical component manufactured by the additive manufacturing method. The present invention relates to a method for manufacturing a laminated structure having a thickness of several hundred microns or more and a laminated structure.
[0002]
[Prior art]
The additive manufacturing method has been rapidly spreading in recent years as a method of forming a complicated-shaped three-dimensional object designed by a computer with a short delivery time. A three-dimensional object created by the additive manufacturing method is used as a part model (prototype) for various apparatuses to check the quality of the operation and shape of the part. The size of the parts to which this method is applied was many relatively large parts of several centimeters or more. However, this method is also used for the production of micro structures such as micro optical parts and micro machine parts formed by precision processing. There is a demand to apply the method.
[0003]
With reference to FIGS. 9-13, the manufacturing method of the laminated structure by the 1st prior art example to which the above additive manufacturing methods are applied is demonstrated.
[0004]
As shown in FIG. 9A, a silicon wafer substrate 11 is prepared, a release layer 12 made of polyimide is formed, and subsequently, an Al thin film 13 which is a constituent material of the laminated structure is sputtered or vacuum deposited. To form a 0.5 μm film. The release layer 12 serves to keep the adhesive force with the Al thin film 13 properly.
[0005]
As shown in FIG. 9B, the Al thin film 13 is collectively patterned into a cross-sectional shape of the laminated structure by photolithography to form a plurality of cross-sectional pattern members 13-1 and 13-2. The entire substrate on which the cross-sectional pattern members 13-1 and 13-2 are formed is referred to as a donor substrate 15.
[0006]
As shown in FIG. 10, the donor substrate 15 is fixed on the XYθ stage 22 in the vacuum chamber 21. A target substrate 24 on which the cross-sectional pattern members 13-1 and 13-2 are stacked is fixed to the Z stage 23 above the XYθ stage 22. Then, after evacuating the inside of the vacuum chamber 21, an FAB (Fast Atom Beam) 26 made of an Ar neutral beam is applied to the surface 24 a of the target substrate 24 and the surface 13-1 a of the cross-sectional pattern member 13-1 from the FAB source 25. Irradiate to clean the surface of the target substrate 24 and the cross-sectional pattern member 13-1.
[0007]
As shown in FIG. 11, the Z stage 23 is lowered, the surface 24a of the target substrate 24 is brought into contact with one of the cross-sectional pattern members 13-1, and the load is 50 kgf / cm. 2 Is applied and pressed for 5 minutes, the target substrate 24 and the cross-sectional pattern member 13-1 are firmly bonded. In addition, the joining strength is 50-100 Mpa.
[0008]
As shown in FIG. 12, when the Z stage 23 is raised, the cross-sectional pattern member 13-1 is transferred from the donor substrate 15 to the target substrate 24. This is because the bonding force between the cross-sectional pattern member 13-1 and the target substrate 24 is greater than the adhesion between the cross-sectional pattern member 13-1 on the donor substrate 15 and the release layer 12 below. .
[0009]
As shown in FIG. 13, the steps of FIGS. 10 to 12 are repeated to transfer another cross-sectional pattern member 13-2 to the target substrate 24 to form a laminated structure 27. Finally, the laminated structure 27 is transferred to the target substrate. It removes from 24 (refer patent document 1).
[0010]
With reference to FIG. 14 and FIG. 15, the manufacturing method of the laminated structure by the 2nd prior art example is demonstrated.
[0011]
As shown in FIG. 14A, a support substrate 33 having thermal oxide films 32-1 and 32-2 formed on the upper and lower surfaces of a silicon wafer substrate 31 is prepared. As the support substrate 33, a substrate having a flatness of about several microns is used in consideration of the flatness.
[0012]
As shown in FIG. 14B, after an adhesion enhancing agent is applied to the upper surface of the thermal oxide film 32-1 of the support substrate 33, an adhesive layer 34 is formed by spin-coating a photoresist.
By applying the adhesion reinforcing agent, the adhesion between the support substrate 33 and the adhesive layer 34 is larger than the adhesion between the adhesive layer 34 and the plate-like member 35 shown in FIG. It is trying to become.
[0013]
As shown in FIG. 14 (c), a plate-like member 35 is prepared in which both surfaces are mirror-polished, are made of a silicon wafer having a flatness of about several microns and a thickness of 500 microns, and an oxide film 36 is formed only on the upper surface. Then, the plate-like member 35 is attached before the adhesive layer 34 dries, and then, the two support substrates 33 and the plate-like member 35 are bonded by baking at 150 ° C. for 30 minutes.
[0014]
As shown in FIG. 15A, the oxide film 36 on the surface of the plate-like member 35 is collectively patterned into each cross-sectional shape of the finally manufactured structure by a normal photolithography method, and the oxide film Pattern layers 36-1 and 36-2 are obtained. Etching is performed with buffered hydrofluoric acid using a resist pattern (not shown) as a mask.
[0015]
As shown in FIG. 15B, the entire substrate is introduced into an inductive coupled plasma (ICP) etching apparatus (not shown), and the oxide film pattern layers 36-1 and 36-2 are used as masks. Etching is performed so that the shaped member 35 penetrates to the upper surface position of the support substrate 33 to obtain cross-sectional pattern members 35-1 and 35-2.
[0016]
As shown in FIG. 15C, the oxide film pattern layers 36-1 and 36-2 are etched with buffered hydrofluoric acid to form the cross-sectional pattern members 35-1 and 35-2 of the structure. A substrate 37 is obtained.
[0017]
Next, similarly to FIGS. 10 to 13 described in the first conventional example, a plurality of cross-sectional pattern members 35-1 and 35-2 are transferred to the target substrate 24 to form a laminated structure, and finally laminated. The structure is removed from the target substrate 24. In the second conventional example, instead of depositing the Al thin film 13 to be the cross-sectional pattern members 13-1 and 13-2 as in the first conventional example, the cross-sectional pattern members 35-1 and 35-2 Since the thick plate-like member 35 is attached to the support substrate 33, the thick cross-sectional pattern members 35-1 and 35-2 can be formed in a short time. Further, since the cross-sectional pattern members 35-1 and 35-2 are also thick, the number of stacked layers can be reduced. Therefore, a laminated structure can be manufactured in a short time (see Patent Document 2).
[0018]
[Patent Document 1]
Japanese Patent No. 3161362
[Patent Document 2]
Japanese Patent Laid-Open No. 2002-18798
[0019]
[Problems to be solved by the invention]
However, in the conventional manufacturing method of the laminated structure according to Patent Document 1, the cross-sectional pattern members 13-1 and 13-2, which are thin films having a thickness of 0.5 μm, are stacked, and the stacking height is several hundred μm to several mm. Since the structure 27 is manufactured, the number of stacked layers is extremely increased, and the manufacturing time is increased. In order to reduce the number of stacked layers, the thickness of the thin film may be increased from several tens of μm to several hundreds of μm. However, since the deposition rate of the sputtering method or vacuum deposition method is as slow as about 0.05 to 0.1 μm / min, It takes time to deposit a thin film. As described above, there is a problem that it takes a lot of time to deposit or laminate a thin film.
[0020]
On the other hand, in the manufacturing method of the laminated structure of Patent Document 2, it is necessary to set the pressing force when the plate-like member 35 is attached to the support substrate 33 to an appropriate level. The adhesive layer 34 protrudes from the gap between the two and disappears. On the other hand, if the pressing force is small, the plate-like member 35 is not securely adhered to the adhesive layer 34 and the adhesive force is reduced. The cross-sectional pattern members 35-1 and 35-2 are peeled off from the support substrate 33 during the patterning process at the portion where the adhesive layer 34 is not present or the portion where the adhesive force is reduced. In order to prevent the cross-sectional pattern members 35-1 and 35-2 from being peeled off, the pressing force may be appropriate. However, since the margin is small, it is difficult to obtain an appropriate pressing force. Therefore, it is difficult to form the cross-sectional pattern members 35-1 and 35-2 with a high yield, and there is a problem in that the yield of the laminated structure to be manufactured decreases.
[0021]
The present invention has been made in view of the above points, and provides a manufacturing method of a laminated structure and a laminated structure capable of producing a laminated structure having a height of several hundred μm or more with a high yield in a short time. The purpose is to do.
[0022]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a donor substrate on which a plurality of cross-sectional pattern members corresponding to the cross-sectional pattern of the structure is formed, and disposes the target substrate opposite to the donor substrate. In the method for manufacturing a laminated structure in which the laminated structure formed by laminating the cross-sectional pattern members and joining them is formed on the target substrate by repeating the process of aligning and pressing the cross-sectional pattern members and then separating them. Preparation of the donor substrate includes a release layer on the donor substrate and Consists of two or more layers A first step of sequentially forming a conductive layer and forming an inverted pattern layer on the conductive layer by inverting the cross-sectional pattern of the structure; and a space portion corresponding to the cross-sectional pattern of the structure of the inverted pattern layer. A second step of forming the plurality of cross-sectional pattern members by plating and a third step of removing the reversal pattern layer; Provided is a method for producing a laminated structure, which is performed by directly contacting the surfaces.
[0023]
According to this method, since the cross-sectional pattern member is formed by plating with a high deposition rate, a thick cross-sectional pattern member can be formed in a short time.
[0024]
In order to achieve the above object, the present invention provides a cleaning of the layer made of the soft metal, which is laminated via a layer made of a soft metal between each of the plurality of cross-sectional pattern members corresponding to the cross-sectional pattern of the structure. The bonded surface and the cleaned bonded surface of the cross-sectional pattern member are directly contacted and bonded. The layer made of the soft metal is composed of two or more layers. A laminated structure is provided.
[0025]
According to this configuration, the cross-sectional pattern member can be formed by plating using a layer made of a soft metal as an electrode. Since the layer made of a soft metal is plastically deformed when the cross-sectional pattern members are pressed together, the adhesion between the cross-sectional pattern members is improved and the bonding force is increased.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
1A to 1D show a manufacturing process of a laminated structure according to the first embodiment of the present invention. The difference between this embodiment and the prior art is a method for manufacturing a donor substrate.
[0027]
As shown in FIG. 1A, a release layer 42 capable of controlling the adhesion with a cross-sectional pattern member to be described later within an appropriate range is formed on a silicon wafer substrate 41, and plating to be described later is formed thereon. A conductive layer 43 for processing is formed.
[0028]
As shown in FIG. 1B, thick resist pattern layers 44-1, 44-2, and 44-3 having a film thickness of several tens to several hundreds of microns are formed by photolithography. The resist pattern layers 44-1, 44-2, and 44-3 have shapes obtained by inverting the cross-sectional pattern of the laminated structure.
[0029]
As shown in FIG. 1C, a structure is formed between the resist pattern layers 44-1, 44-2, and 44-3 by plating that can form a thick film in a short time using the conductive layer 43 as an electrode. The material is embedded to form cross-sectional pattern members 45-1 and 45-2. The deposition speed in the plating process is several μm / min, which is several tens of times faster than that of sputtering.
[0030]
As shown in FIG. 1D, the resist pattern layers 44-1, 44-2, 44-3 are removed, and the conductive layer 43 is formed using the cross-sectional pattern members 45-1, 45-2 of the laminated structure as a mask. , 43-1 and 43-2 are etched. Thereby, the donor substrate 46 is completed.
[0031]
As shown in FIG. 2, the donor substrate 46 is fixed on the XYθ stage 22 in the vacuum chamber 21, and the target substrate 24 on which the cross-sectional pattern members 45-1 and 45-2 are stacked is fixed on the Z stage 23. The surfaces 24a and 45-1a of the target substrate 24 and the donor substrate 46 are irradiated with the FAB 26 from the FAB source 25 to clean both surfaces 24a and 45-1a.
[0032]
As shown in FIG. 3, the Z stage 23 is lowered to bring the target substrate 24 and the donor substrate 46 into contact with each other, and after applying a load, the Z stage 23 is raised.
[0033]
As shown in FIG. 4, the conductive layer 43-1 is transferred to the target substrate 24 together with the cross-sectional pattern member 45-1. This is because the release layer 42 is in contact with the conductive layer 43-1, and the adhesion between the release layer 42 and the conductive layer 43-1 is the bonding force between the target substrate 24 and the cross-sectional pattern member 45-1. This is because the adhesive strength between the cross-sectional pattern member 45-1 and the conductive layer 43-1 is weaker.
[0034]
As shown in FIG. 5, the XYθ stage 22 is moved to align the cross-sectional pattern member 45-2 with the conductive layer 43-1 in close contact with the cross-sectional pattern member 45-1 transferred to the target substrate 24. After that, the surfaces 43-1a and 45-2a of both 43-1 and 45-2 are irradiated with the FAB 26 to clean the surfaces 43-1a and 45-2a. After that, as shown in FIG. 3, the Z stage 23 is lowered to bring the both 43-1 and 45-2 into contact, and after applying a load, the Z stage 23 is raised.
[0035]
As shown in FIG. 6, the conductive layer 43-2 is transferred to the conductive layer 43-1 along with the cross-sectional pattern member 45-2. Thus, the laminated structure 51 is manufactured by repeatedly transferring and laminating the cross-sectional pattern members.
[0036]
As described above, according to the first embodiment, since the cross-sectional pattern members 45-1 and 45-2 are formed by plating with a high deposition rate, the thick cross-sectional pattern members 45-1 and 45-2 are formed. Can be formed in a short time. For this reason, the lamination | stacking number of the cross-section pattern members 45-1 and 45-2 can also be reduced, and the lamination | stacking structure body 51 whose height is several hundred micrometers or more can be manufactured in a short time.
[0037]
Further, as shown in FIG. 14, the cross-sectional pattern members 45-1 and 45-2 are formed on the release layer 42 without attaching the support substrate 33 and the plate-like member 35. The adhesive force between the release layer 42 and the cross-sectional pattern members 45-1 and 45-2 can be appropriately and reliably maintained, and the cross-sectional pattern members 45-1 and 45-2 are peeled off from the substrate during the patterning process. There is no end to it. Thereby, the yield can be improved. Therefore, the laminated structure 51 having a height of several hundred μm or more can be manufactured in a short time and with a high yield.
[0038]
The first embodiment can be variously modified as follows.
[0039]
For example, in the process shown in FIG. 1D, the exposed conductive layer 43 is removed. However, the exposed conductive layer 43 is not necessarily removed. However, the removal is preferable for the following reason. Since the conductive layer 43 is in contact with the release layer 42, peeling occurs when transferring the cross-sectional pattern members 45-1 and 45-2 at the interface between the conductive layer 43 and the release layer 42. is there.
[0040]
Further, as shown in FIG. 4, the conductive layer 43-1 is also transferred together with the cross-sectional pattern member 45-1 by the peeling. At this time, the adhesive force between the conductive layer 43-1 and the release layer 42 becomes lower as the area where both 43-1 and 42 are in contact is smaller. Therefore, it is preferable to remove the excess conductive layer 43 by etching as shown in FIG. The conductive layers 43-1 and 43-2 are selectively removed by using the cross-sectional pattern members 45-1 and 45-2 as a mask, but they are not necessarily selective, and the cross-sectional pattern members are etched simultaneously. Also good. When the cross-sectional pattern member is etched, it is preferable that the cross-sectional pattern member is previously formed by plating so as to be thicker by the etching amount of the cross-sectional pattern member so as to finally have a predetermined thickness.
[0041]
Further, the conductive layer 43 may be any material having conductivity, and may have two or more layers as necessary. The selectivity of the plating material is expanded by making the upper layer (cross-sectional pattern member side) Au, and the conductive layer and the release layer are made by making the lower layer (release layer side) aluminum or aluminum alloy and the release layer polyimide. The most suitable adhesion is. Moreover, it is preferable to comprise with soft metal materials, such as pure Al, an Al-Cu alloy, and Au. The reason for this will be described next.
[0042]
As shown in FIG. 4, since the conductive layer 43-1 is transferred together with the cross-sectional pattern member 45-1, the conductive layer 43-1 is bonded to the next cross-sectional pattern member 45-2. The joint surface of the cross-sectional pattern member 45-2 has unevenness corresponding to the surface roughness, but when the conductive layer 43-1 is softer, the conductive layer 43-1 is plastically deformed. Since the unevenness of the joint surface is filled to increase the contact area and the joint strength is increased, the cross-sectional pattern member 45-2 is easily transferred. Accordingly, the conductive layer 43 is preferably soft. The method for forming the conductive layer may be any thin film forming method such as plating or sputtering, and is appropriately selected depending on the configuration of the conductive layer. For example, when the upper layer of the conductive layer is made of Au and the lower layer is made of aluminum as described above, it is difficult to form Au on the aluminum by plating, so that Au can be formed by sputtering. preferable.
[0043]
It is also preferable to form a soft material such as pure Al, Al—Cu alloy, Au, etc. on the cross-sectional pattern members 45-1 and 45-2 (surface) serving as bonding surfaces because the bonding strength is also increased. . However, since the soft conductive layer 43 is included in the laminated structure 51 and the rigidity is lowered, it is not preferable when a laminated structure that requires high rigidity is manufactured.
[0044]
Next, the manufacturing method of the laminated structure which concerns on 2nd Embodiment which manufactures the laminated structure which requires such high rigidity is demonstrated.
[0045]
After the steps shown in FIGS. 1A and 1B, in the plating process shown in FIG. 1C, the cross-sectional pattern member is interposed between the resist pattern layers 44-1, 44-2, 44-3. After forming 45-1 and 45-2, the cross-sectional pattern member 45 is polished by polishing the upper surfaces of the resist pattern layers 44-1, 44-2 and 44-3 and the cross-sectional pattern members 45-1 and 45-2. The unevenness of the bonding surfaces of −1 and 45-2 is eliminated and a smooth surface is obtained. Then, as shown in FIG. 1D, the resist pattern layers 44-1, 44-2, 44-3 are removed, and the conductive layer 43 is formed using the cross-sectional pattern members 45-1, 45-2 as a mask. Etching is performed as indicated by 43-1 and 43-2 to complete the donor substrate 46.
[0046]
However, the process of making the joint surfaces of the cross-sectional pattern members 45-1 and 45-2 smooth is performed after removing the resist pattern layers 44-1, 44-2, and 44-3 shown in FIG. Also good.
[0047]
As shown in FIG. 2, the donor substrate 46 is fixed on the XYθ stage 22 in the vacuum chamber 21, and the target substrate 24 is fixed on the Z stage 23, and the target substrate 24 and the donor substrate 46 are irradiated by irradiation with the FAB 26. The surfaces 24a and 45-1a are cleaned.
[0048]
As shown in FIG. 3, the Z stage 23 is lowered to bring them into contact with each other 24 and 46, and after applying a load, the Z stage 23 is raised, and as shown in FIG. The conductive layer 43-1 is transferred together with the cross-sectional pattern member 45-1.
[0049]
As shown in FIG. 7, the XYθ stage 22 is moved so that the conductive layer 43-1 (see FIG. 3) in close contact with the cross-sectional pattern member 45-1 transferred to the target substrate 24, and the cross-sectional pattern member 45-2. After the alignment, the surface is cleaned before the next cross-sectional pattern member 45-2 is joined. At this time, the conductive layer 43-1 is etched by irradiation with the FAB 26 to remove the conductive layer 43-1. Thereafter, the Z stage 23 is lowered to bring the cross-sectional pattern member 45-1 on the target substrate 24 into contact with the cross-sectional pattern member 45-2 on the donor substrate 46, and after applying a load, the Z stage 23 is raised. Let
[0050]
As shown in FIG. 8, another cross-sectional pattern member 45-2 is transferred to the cross-sectional pattern member 45-1.
[0051]
According to the second embodiment, a cross-sectional pattern member from which the conductive layer 43 has been removed is repeatedly transferred and stacked, whereby a highly rigid stacked structure without the conductive layer 43 interposed therebetween can be manufactured. . Since the upper surfaces of the cross-sectional pattern members 45-1 and 45-2 are smooth surfaces, the bonding strength between the cross-sectional pattern members is increased.
[0052]
However, the conductive layer so that the adhesion between the conductive layers 43-1 and 43-2 and the release layer 42 is most appropriate so that the cross-sectional pattern members 45-1 and 45-2 are securely bonded to each other. Desirably, 43 is pure Al or an Al—Cu alloy, and the release layer 42 is polyimide.
[0053]
The reverse pattern shown in FIG. 1B is preferably formed by patterning a thick film resist by a lithography method so that the shape accuracy is good. As such a patterning method, there is a method of patterning using a thick film resist that is sensitive to light or X-rays, but it is more preferable to pattern using a thick film resist that is sensitive to light, which is lower in cost.
[0054]
【Example】
Hereinafter, the process of actually manufacturing the laminated structure 51 by the manufacturing method of the laminated structure having such effects will be described with reference to FIGS.
[0055]
As shown in FIG. 1A, a silicon wafer substrate 41 was prepared, polyimide was applied to the surface of the substrate 41 by spin coating, and baked at a maximum temperature of 350 ° C. to form a release layer 42. Subsequently, a conductive layer 43 was formed by depositing Au having a thickness of 0.5 μm by sputtering.
[0056]
As shown in FIG. 1B, after forming a thick film resist having a thickness of 50 μm on the conductive layer 43, exposure / development is performed to form a resist pattern layer 44 having a shape obtained by inverting the cross-sectional pattern of the laminated structure. -1, 44-2, 44-3 were formed.
[0057]
As shown in FIG. 1C, plating is performed to form Cu between the resist pattern layers 44-1, 44-2, 44-3 until the film thickness reaches 50 μm, thereby obtaining a cross-sectional pattern member 45-. 1,45-2 was formed. The deposition rate of Cu was 2 μm / min. The cross-sectional pattern members 45-1 and 45-2 may be Ni.
[0058]
As shown in FIG. 1D, after the resist pattern layers 44-1, 44-2, 44-3 are removed by ashing, the conductive layer 43 is formed using the cross-sectional pattern members 45-1, 45-2 as a mask. Was selectively etched to manufacture a donor substrate 46.
[0059]
As shown in FIG. 2, the donor substrate 46 is fixed on the XYθ stage 22 in the vacuum chamber 21, the target substrate 24 is fixed on the Z stage 23, and the interior of the chamber is 5 × 10. -Five It was evacuated to Pa. Subsequently, the surface 24a, 45-1a of the target substrate 24 and the cross-sectional pattern member 45-1 was irradiated with FAB 26 from the FAB source 25 to perform surface activation treatment. The FAB processing conditions were an FAB voltage of 1.5 kV, an FAB current of 15 mA, and a processing time of 5 minutes.
[0060]
As shown in FIG. 3, the Z stage 23 is lowered, the target substrate 24 and the cross-sectional pattern member 45-1 are brought into contact with each other, and the load is 50 kgf / cm. 2 And pressed for 5 minutes. As a result, the target substrate 24 and the cross-sectional pattern member 45-1 were firmly bonded. In addition, the joining strength is 50-100 Mpa.
[0061]
As shown in FIG. 4, when the Z stage 23 is raised, the cross-sectional pattern member 45-1 is transferred from the donor substrate 46 to the target substrate 24.
[0062]
As shown in FIG. 5, the XYθ stage 22 is moved to align the cross-sectional pattern member 45-2 with the conductive layer 43-1 in close contact with the cross-sectional pattern member 45-1 transferred to the target substrate 24. After that, the surfaces 43-1a and 45-2a of both 43-1 and 45-2 were irradiated with FAB26 to clean the surfaces 43-1a and 45-2a. Thereafter, as shown in FIG. 3, the Z stage 23 was lowered to bring both the 43-1 and 45-2 into contact, and after applying a load, the Z stage 23 was raised.
[0063]
As shown in FIG. 6, the conductive layer 43-2 is transferred to the conductive layer 43-1 along with the cross-sectional pattern member 45-2. Thus, the laminated structure 51 was manufactured by repeatedly transferring and laminating the cross-sectional pattern members. As described above, according to this example, the laminated structure 51 having a height of several hundred μm or more could be manufactured in a short time with a high yield.
[0064]
【The invention's effect】
As described above, according to the method for manufacturing a laminated structure of the present invention, since the cross-sectional pattern member is formed by plating with a high deposition rate, a thick cross-sectional pattern member can be formed in a short time. . For this reason, the number of laminated cross-sectional pattern members can be reduced, and a laminated structure having a height of several hundred μm or more can be manufactured in a short time. In addition, since the cross-sectional pattern member is formed on the release layer without attaching the support substrate and the plate-like member as in the prior art, the adhesive force between the release layer and the cross-sectional pattern member is appropriately and The cross-sectional pattern member is not peeled off from the substrate during the patterning process. Thereby, the yield can be improved.
[0065]
According to the laminated structure of the present invention, a multi-sectional pattern member can be formed by plating with a high deposition rate as a layer electrode made of a soft metal, so that a laminated structure having a height of several hundred μm or more can be formed in a short time. It can be manufactured with good yield.
[Brief description of the drawings]
FIGS. 1A and 1B show a manufacturing process of a multilayer structure according to a first embodiment of the present invention, in which FIG. 1A shows a process for forming a release layer and a conductive layer on a silicon wafer substrate, and FIG. (C) is a plating process for forming a cross-sectional pattern member between the resist pattern layers, and (d) is a donor substrate forming the cross-sectional pattern member. It is a figure which shows the etching process for.
FIG. 2 is a diagram illustrating a process of cleaning the surfaces of a donor substrate and a target substrate in a vacuum chamber.
FIG. 3 is a diagram showing a process of applying a load by a target substrate to a donor substrate in a vacuum chamber.
FIG. 4 is a diagram illustrating a process of transferring a conductive layer together with a cross-sectional pattern member to a target substrate in a vacuum chamber.
FIG. 5 shows a process of moving the XYθ stage in the vacuum chamber to align the cross-sectional pattern member with the conductive layer in close contact with the cross-sectional pattern member that has been transferred to the target substrate, and to clean the surfaces of the two. FIG.
FIG. 6 is a diagram showing a process of transferring a conductive layer together with other cross-sectional pattern members to a conductive layer of a cross-sectional pattern member in a vacuum chamber.
FIG. 7 is a diagram showing a process of removing the conductive layer after transferring the conductive layer together with the cross-sectional pattern member to the target substrate in the vacuum chamber.
FIG. 8 is a diagram showing a process of transferring another cross-sectional pattern member directly to the cross-sectional pattern member of the target substrate in the vacuum chamber.
FIGS. 9A and 9B show a manufacturing process of the laminated structure in the first conventional example, in which FIG. 9A shows a release layer and Al thin film forming process on a silicon wafer substrate, and FIG. 9B shows a donor on which a cross-sectional pattern member is formed. It is a figure which shows the etching process for board | substrate formation.
FIG. 10 is a diagram showing a process of cleaning the surfaces of a donor substrate and a target substrate in a vacuum chamber in the first conventional example.
FIG. 11 is a diagram showing a step of applying a load by a target substrate to a donor substrate in a vacuum chamber in the first conventional example.
FIG. 12 is a diagram showing a process of transferring a cross-sectional pattern member to a target substrate in a vacuum chamber in the first conventional example.
FIG. 13 is a diagram showing a process of transferring another cross-sectional pattern member to the cross-sectional pattern member of the target substrate in the vacuum chamber in the first conventional example.
14A and 14B show a manufacturing process of a laminated structure according to a second conventional example, in which FIG. 14A shows a support substrate forming process in which a thermal oxide film is formed on the upper and lower surfaces of a silicon wafer substrate, and FIG. (C) is a figure which shows the process of adhere | attaching the plate-shaped member in which the oxide film was formed in the surface through the contact bonding layer to the support substrate through the formation process of the contact bonding layer to an oxide film upper surface.
15A and 15B show a manufacturing process of a laminated structure according to a second conventional example, in which FIG. 15A shows an oxide film pattern layer forming process, and FIG. 15B shows a cross-sectional pattern member etching process using the oxide film pattern layer as a mask; (C) is a step of forming a donor substrate on which a cross-sectional pattern member is formed.
[Explanation of symbols]
11, 31, 41 Silicon wafer substrate
12, 42 release layer
13 Al thin film
13-1, 13-2 Cross-sectional pattern member
13-1a, 45-1a, 45-2a Surface of cross-sectional pattern member
15, 37, 46 Donor substrate
21 Vacuum chamber
22 XYθ stage
23 Z stage
24 Target substrate
24a Target substrate surface
25 FAB source
26 FAB
27, 51, 52 Laminated structure
32-1, 32-2 Thermal oxide film
33 Support substrate
34 Adhesive layer
35 Plate member
36 Oxide film
35-1, 35-2 Cross-sectional pattern members
36-1, 36-2 Oxide film pattern layer
43, 43-1, 43-2 conductive layer
43-1a Surface of conductive layer
44-1, 44-2, 44-3 resist pattern layer
45-1, 45-2 Cross-sectional pattern members

Claims (11)

構造体の断面パターンに対応する複数の断面パターン部材が形成されたドナー基板を準備し、前記ドナー基板にターゲット基板を対向配置し、このターゲット基板を前記断面パターン部材に位置合わせして圧接したのち離間を行う処理を繰り返すことによって、前記断面パターン部材を積層して接合された積層構造体を前記ターゲット基板上に形成する積層構造体の製造方法において、
前記ドナー基板の準備は、
前記ドナー基板上に離型層および2層以上から構成される導電層を順次形成し、前記構造体の断面パターンを反転した反転パターン層を前記導電層上に形成する第1の工程と、
前記反転パターン層の前記構造体の断面パターンに対応する空間部分にメッキにより前記複数の断面パターン部材を形成する第2の工程と、
前記反転パターン層を除去する第3の工程を含み、
前記断面パターン部材の接合は、接合面を清浄化し、清浄化した前記接合面を直接接触させて行うことを特徴とする積層構造体の製造方法。
After preparing a donor substrate on which a plurality of cross-sectional pattern members corresponding to the cross-sectional pattern of the structure are formed, disposing a target substrate opposite to the donor substrate, aligning the target substrate with the cross-sectional pattern member, and pressing the target substrate In the method for manufacturing a laminated structure in which the laminated structure formed by laminating the cross-sectional pattern members and bonded thereto is formed on the target substrate by repeating the separation process.
Preparation of the donor substrate is:
A first step of sequentially forming a release layer and a conductive layer composed of two or more layers on the donor substrate, and forming an inverted pattern layer on the conductive layer by inverting the cross-sectional pattern of the structure;
A second step of forming the plurality of cross-sectional pattern members by plating in a space portion corresponding to the cross-sectional pattern of the structure of the reverse pattern layer;
A third step of removing the reverse pattern layer;
The cross-sectional pattern member is joined by cleaning the joint surface and bringing the cleaned joint surface into direct contact with each other.
前記第1の工程は、厚膜レジストをフォトリソグラフィー法によりパターニングして前記反転パターン層を形成することを特徴とする請求項1に記載の積層構造体の製造方法。  2. The method for manufacturing a laminated structure according to claim 1, wherein in the first step, the reverse pattern layer is formed by patterning a thick film resist by a photolithography method. 前記第3の工程は、前記断面パターン部材をマスクとして、露出している前記導電層を除去することを特徴とする請求項1に記載の積層構造体の製造方法。  2. The method for manufacturing a laminated structure according to claim 1, wherein in the third step, the exposed conductive layer is removed using the cross-sectional pattern member as a mask. 3. 前記断面パターン部材の接合は、前記ターゲット基板の上に、前記断面パターン部材と共に前記導電層を接合することを特徴とする請求項1に記載の積層構造体の製造方法。  The method for manufacturing a laminated structure according to claim 1, wherein the cross-sectional pattern member is bonded to the conductive layer together with the cross-sectional pattern member on the target substrate. 前記離型層はポリイミドからなり、前記離型層と接する導電層はアルミニウムおよびアルミニウム合金の何れかからなることを特徴とする請求項1に記載の積層構造体の製造方法。  The method for producing a laminated structure according to claim 1, wherein the release layer is made of polyimide, and the conductive layer in contact with the release layer is made of aluminum or an aluminum alloy. 前記導電層は、軟質金属からなることを特徴とする請求項1に記載の積層構造体の製造方法。  The method for manufacturing a laminated structure according to claim 1, wherein the conductive layer is made of a soft metal. 前記軟質金属は、アルミニウム、アルミニウム合金および金の何れかであることを特徴とする請求項6に記載の積層構造体の製造方法。  The method for producing a laminated structure according to claim 6, wherein the soft metal is any one of aluminum, an aluminum alloy, and gold. 前記導電層は、上層が金からなり、下層がアルミニウムあるいはアルミニウム合金からなることを特徴とする請求項に記載の微小構造体の製造方法。2. The method for manufacturing a microstructure according to claim 1 , wherein an upper layer of the conductive layer is made of gold and a lower layer is made of aluminum or an aluminum alloy. 構造体の断面パターンに対応する複数の断面パターン部材が形成されたドナー基板を準備し、前記ドナー基板にターゲット基板を対向配置し、このターゲット基板を前記断面パターン部材に位置合わせして圧接したのち離間を行う処理を繰り返すことによって、前記断面パターン部材を積層して接合された積層構造体を前記ターゲット基板上に形成する積層構造体の製造方法において、
前記ドナー基板の準備は、
前記ドナー基板上に離型層および導電層を順次形成し、前記構造体の断面パターンを反転した反転パターン層を前記導電層上に形成する第1の工程と、
前記反転パターン層の前記構造体の断面パターンに対応する空間部分にメッキにより前記複数の断面パターン部材を形成する第2の工程と、
前記反転パターン層を除去する第3の工程と、
前記第2または第3の工程は、前記断面パターン部材の表面を研磨して平滑面とする第4の工程を含み、
前記断面パターン部材の接合は、接合面を清浄化し、清浄化した前記接合面を直接接触させて行い、前記ターゲット基板の上に接合される断面パターン部材が、前記平滑面とされた断面パターン部材である場合は、前記平滑面とされた断面パターン部材と共に接合された導電層を除去し、この導電層が除去された断面パターン部材に、次の断面パターン部材と共に導電層を接合する処理を繰り返して積層構造体を製造することを特徴とする積層構造体の製造方法。
After preparing a donor substrate on which a plurality of cross-sectional pattern members corresponding to the cross-sectional pattern of the structure are formed, disposing a target substrate opposite to the donor substrate, aligning the target substrate with the cross-sectional pattern member, and pressing the target substrate In the method for manufacturing a laminated structure in which the laminated structure formed by laminating the cross-sectional pattern members and bonded thereto is formed on the target substrate by repeating the separation process.
Preparation of the donor substrate is:
A first step of sequentially forming a release layer and a conductive layer on the donor substrate, and forming an inverted pattern layer on the conductive layer by reversing a cross-sectional pattern of the structure;
A second step of forming the plurality of cross-sectional pattern members by plating in a space portion corresponding to the cross-sectional pattern of the structure of the reverse pattern layer;
A third step of removing the reverse pattern layer;
The second or third step includes a fourth step of polishing the surface of the cross-sectional pattern member to form a smooth surface,
The cross-sectional pattern member is joined by cleaning the joint surface, bringing the cleaned joint surface into direct contact, and the cross-sectional pattern member joined on the target substrate being the smooth surface. If it is, the conductive layer joined together with the cross-sectional pattern member having the smooth surface is removed, and the process of joining the conductive layer together with the next cross-sectional pattern member to the cross-sectional pattern member from which the conductive layer has been removed is repeated. A method for producing a laminated structure, comprising producing a laminated structure.
構造体の断面パターンに対応する複数の断面パターン部材の各々の間に軟質金属からなる層を介して積層され、前記軟質金属からなる前記層の清浄化された接合面と前記断面パターン部材の清浄化された接合面とが直接接触して接合され、前記軟質金属からなる前記層が2層以上から構成されることを特徴とする積層構造体。The plurality of cross-sectional pattern members corresponding to the cross-sectional pattern of the structure are laminated via a layer made of a soft metal between each of the cross-sectional pattern members, and the cleaned joint surface of the layer made of the soft metal and the cleaning of the cross-sectional pattern member A laminated structure characterized in that the layer made of the soft metal is composed of two or more layers, which are joined in direct contact with the joined surface. 前記軟質金属は、アルミニウム、アルミニウム合金および金の何れかであることを特徴とする請求項10に記載の積層構造体。The laminated structure according to claim 10 , wherein the soft metal is any one of aluminum, an aluminum alloy, and gold.
JP2003159534A 2003-06-04 2003-06-04 Manufacturing method of laminated structure and laminated structure Expired - Fee Related JP4575651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003159534A JP4575651B2 (en) 2003-06-04 2003-06-04 Manufacturing method of laminated structure and laminated structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003159534A JP4575651B2 (en) 2003-06-04 2003-06-04 Manufacturing method of laminated structure and laminated structure

Publications (2)

Publication Number Publication Date
JP2004358602A JP2004358602A (en) 2004-12-24
JP4575651B2 true JP4575651B2 (en) 2010-11-04

Family

ID=34052566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003159534A Expired - Fee Related JP4575651B2 (en) 2003-06-04 2003-06-04 Manufacturing method of laminated structure and laminated structure

Country Status (1)

Country Link
JP (1) JP4575651B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4650113B2 (en) 2005-06-09 2011-03-16 富士ゼロックス株式会社 Laminated structure, donor substrate, and manufacturing method of laminated structure
JP4899681B2 (en) 2006-07-18 2012-03-21 富士ゼロックス株式会社 Microchannel device
JP5151204B2 (en) 2007-03-27 2013-02-27 富士ゼロックス株式会社 Microchannel device and method of manufacturing microchannel device
JP5119848B2 (en) 2007-10-12 2013-01-16 富士ゼロックス株式会社 Microreactor device
JP2010115624A (en) 2008-11-14 2010-05-27 Fuji Xerox Co Ltd Microchannel device, separation device, and separation method
JP5003702B2 (en) 2009-03-16 2012-08-15 富士ゼロックス株式会社 Microfluidic device and microfluidic control method
JP4831842B2 (en) 2009-10-28 2011-12-07 三菱重工業株式会社 Joining device control device and multilayer joining method
JP6065176B2 (en) 2012-09-27 2017-01-25 三菱重工工作機械株式会社 Room temperature bonding apparatus and room temperature bonding method
JP2017002383A (en) * 2015-06-15 2017-01-05 国立台湾科技大学National Taiwan University of Science and Technology Metal three-dimensional modeling apparatus and metal three-dimensional modeling method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0610159A (en) * 1992-06-26 1994-01-18 Fuji Electric Co Ltd Metal film pattern forming method
JPH11172412A (en) * 1997-12-08 1999-06-29 Fuji Xerox Co Ltd Production of microstructural body
WO2002086961A1 (en) * 2001-04-24 2002-10-31 Acm Research, Inc. Electropolishing metal layers on wafers having trenches or vias with dummy structures

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0610159A (en) * 1992-06-26 1994-01-18 Fuji Electric Co Ltd Metal film pattern forming method
JPH11172412A (en) * 1997-12-08 1999-06-29 Fuji Xerox Co Ltd Production of microstructural body
WO2002086961A1 (en) * 2001-04-24 2002-10-31 Acm Research, Inc. Electropolishing metal layers on wafers having trenches or vias with dummy structures

Also Published As

Publication number Publication date
JP2004358602A (en) 2004-12-24

Similar Documents

Publication Publication Date Title
JP4575651B2 (en) Manufacturing method of laminated structure and laminated structure
JPH0736350B2 (en) Method of manufacturing electrical connection element
JP5419929B2 (en) Molecular adhesive bonding method at low pressure
JP4528488B2 (en) Manufacturing method of laminated structure and laminated structure
US12162749B2 (en) Bond wave optimization method and device
JP2008114448A (en) Transfer substrate and transfer method using the same
JP3941348B2 (en) Manufacturing method of microstructure
JP3627482B2 (en) Manufacturing method of microstructure
JP3612945B2 (en) Manufacturing method of microstructure
JP3627496B2 (en) Manufacturing method of microstructure
JP4318416B2 (en) Manufacturing method of microstructure
JP4427989B2 (en) Manufacturing method of microstructure
JP4608890B2 (en) Method and apparatus for manufacturing microstructure
JP2002036195A (en) Micro structural body and method of manufacturing the same
JP3864612B2 (en) Method and apparatus for manufacturing microstructure
JP3663940B2 (en) MICROSTRUCTURE MANUFACTURING DEVICE AND MICROSTRUCTURE MANUFACTURING METHOD
JP3882423B2 (en) Manufacturing method of microstructure
JP3821200B2 (en) Method and apparatus for manufacturing microstructure
JP4182630B2 (en) Diaphragm structure, microtransducer, and manufacturing method thereof
JP3627486B2 (en) Manufacturing method of microstructure
JP4800529B2 (en) Pattern formation method
JP2007000958A (en) Donor substrate, micro-structure and manufacturing method thereof
JP6541499B2 (en) Method of manufacturing micro device
JPH07130591A (en) Wafer fabrication method
CN118899225A (en) A wafer-level nanoparticle sintering packaging method for patterned sealing and bump co-bonding of microelectronic devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100820

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees