JP4568985B2 - Epoxy resin composition and semiconductor device - Google Patents
Epoxy resin composition and semiconductor device Download PDFInfo
- Publication number
- JP4568985B2 JP4568985B2 JP2000331772A JP2000331772A JP4568985B2 JP 4568985 B2 JP4568985 B2 JP 4568985B2 JP 2000331772 A JP2000331772 A JP 2000331772A JP 2000331772 A JP2000331772 A JP 2000331772A JP 4568985 B2 JP4568985 B2 JP 4568985B2
- Authority
- JP
- Japan
- Prior art keywords
- epoxy resin
- general formula
- resin composition
- carbon atoms
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229920000647 polyepoxide Polymers 0.000 title claims description 98
- 239000003822 epoxy resin Substances 0.000 title claims description 97
- 239000000203 mixture Substances 0.000 title claims description 57
- 239000004065 semiconductor Substances 0.000 title claims description 40
- 125000004432 carbon atom Chemical group C* 0.000 claims description 28
- 150000001875 compounds Chemical class 0.000 claims description 24
- 239000011256 inorganic filler Substances 0.000 claims description 19
- 229910003475 inorganic filler Inorganic materials 0.000 claims description 19
- 239000005011 phenolic resin Substances 0.000 claims description 18
- 125000003545 alkoxy group Chemical group 0.000 claims description 16
- 125000000217 alkyl group Chemical group 0.000 claims description 14
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 claims description 14
- PJANXHGTPQOBST-VAWYXSNFSA-N Stilbene Natural products C=1C=CC=CC=1/C=C/C1=CC=CC=C1 PJANXHGTPQOBST-VAWYXSNFSA-N 0.000 claims description 10
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical compound C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 claims description 10
- 235000021286 stilbenes Nutrition 0.000 claims description 10
- 238000005538 encapsulation Methods 0.000 claims description 9
- 235000010290 biphenyl Nutrition 0.000 claims description 7
- 239000004305 biphenyl Substances 0.000 claims description 7
- 125000003277 amino group Chemical group 0.000 claims description 6
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 claims description 6
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 5
- 238000007789 sealing Methods 0.000 claims description 4
- 229930185605 Bisphenol Natural products 0.000 claims description 3
- 239000006087 Silane Coupling Agent Substances 0.000 description 25
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 20
- 229910000679 solder Inorganic materials 0.000 description 20
- 229920005989 resin Polymers 0.000 description 16
- 239000011347 resin Substances 0.000 description 16
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 15
- 238000000034 method Methods 0.000 description 15
- -1 dicyclopentadiene modified phenol Chemical class 0.000 description 11
- 125000002529 biphenylenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3C12)* 0.000 description 10
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 10
- 238000002156 mixing Methods 0.000 description 10
- 239000000377 silicon dioxide Substances 0.000 description 9
- 238000010521 absorption reaction Methods 0.000 description 8
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 8
- 125000003700 epoxy group Chemical group 0.000 description 7
- 238000003756 stirring Methods 0.000 description 7
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000000465 moulding Methods 0.000 description 5
- 229920003986 novolac Polymers 0.000 description 5
- 239000004593 Epoxy Substances 0.000 description 4
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 4
- 230000002209 hydrophobic effect Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- QWVGKYWNOKOFNN-UHFFFAOYSA-N o-cresol Chemical compound CC1=CC=CC=C1O QWVGKYWNOKOFNN-UHFFFAOYSA-N 0.000 description 4
- 229910052763 palladium Inorganic materials 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 3
- ODJUOZPKKHIEOZ-UHFFFAOYSA-N 4-[2-(4-hydroxy-3,5-dimethylphenyl)propan-2-yl]-2,6-dimethylphenol Chemical compound CC1=C(O)C(C)=CC(C(C)(C)C=2C=C(C)C(O)=C(C)C=2)=C1 ODJUOZPKKHIEOZ-UHFFFAOYSA-N 0.000 description 3
- 0 Cc1cc(-c2cc(C)c(*3OC3)c(C)c2)cc(C)c1*COC Chemical compound Cc1cc(-c2cc(C)c(*3OC3)c(C)c2)cc(C)c1*COC 0.000 description 3
- VCCBEIPGXKNHFW-UHFFFAOYSA-N biphenyl-4,4'-diol Chemical group C1=CC(O)=CC=C1C1=CC=C(O)C=C1 VCCBEIPGXKNHFW-UHFFFAOYSA-N 0.000 description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 238000005476 soldering Methods 0.000 description 3
- 230000035882 stress Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 2
- NVVSVSWYKWRHED-UHFFFAOYSA-N 2-tert-butyl-4-[2-(3-tert-butyl-4-hydroxy-5-methylphenyl)ethenyl]-6-methylphenol Chemical compound CC(C)(C)C1=C(O)C(C)=CC(C=CC=2C=C(C(O)=C(C)C=2)C(C)(C)C)=C1 NVVSVSWYKWRHED-UHFFFAOYSA-N 0.000 description 2
- MHEPBAWJFVJKKU-UHFFFAOYSA-N 2-tert-butyl-4-[2-(5-tert-butyl-4-hydroxy-2-methylphenyl)ethenyl]-5-methylphenol Chemical compound CC1=CC(O)=C(C(C)(C)C)C=C1C=CC1=CC(C(C)(C)C)=C(O)C=C1C MHEPBAWJFVJKKU-UHFFFAOYSA-N 0.000 description 2
- YMTYZTXUZLQUSF-UHFFFAOYSA-N 3,3'-Dimethylbisphenol A Chemical compound C1=C(O)C(C)=CC(C(C)(C)C=2C=C(C)C(O)=CC=2)=C1 YMTYZTXUZLQUSF-UHFFFAOYSA-N 0.000 description 2
- YGYPMFPGZQPETF-UHFFFAOYSA-N 4-(4-hydroxy-3,5-dimethylphenyl)-2,6-dimethylphenol Chemical group CC1=C(O)C(C)=CC(C=2C=C(C)C(O)=C(C)C=2)=C1 YGYPMFPGZQPETF-UHFFFAOYSA-N 0.000 description 2
- AKRWBYMONJDTKS-UHFFFAOYSA-N 4-[(4-hydroxy-2,3,5-trimethylphenyl)methyl]-2,3,6-trimethylphenol Chemical compound CC1=C(O)C(C)=CC(CC=2C(=C(C)C(O)=C(C)C=2)C)=C1C AKRWBYMONJDTKS-UHFFFAOYSA-N 0.000 description 2
- AZZWZMUXHALBCQ-UHFFFAOYSA-N 4-[(4-hydroxy-3,5-dimethylphenyl)methyl]-2,6-dimethylphenol Chemical compound CC1=C(O)C(C)=CC(CC=2C=C(C)C(O)=C(C)C=2)=C1 AZZWZMUXHALBCQ-UHFFFAOYSA-N 0.000 description 2
- WTWMJYNGYCJIGR-UHFFFAOYSA-N 4-[2-(4-hydroxy-3,5-dimethylphenyl)ethenyl]-2,6-dimethylphenol Chemical compound CC1=C(O)C(C)=CC(C=CC=2C=C(C)C(O)=C(C)C=2)=C1 WTWMJYNGYCJIGR-UHFFFAOYSA-N 0.000 description 2
- XIWOCLAUIGPSNG-UHFFFAOYSA-N 4-[2-(5-tert-butyl-4-hydroxy-2-methylphenyl)ethenyl]-2,6-dimethylphenol Chemical compound CC1=CC(O)=C(C(C)(C)C)C=C1C=CC1=CC(C)=C(O)C(C)=C1 XIWOCLAUIGPSNG-UHFFFAOYSA-N 0.000 description 2
- HFISPWBCCFWMGP-UHFFFAOYSA-N 5-tert-butyl-4-(2-tert-butyl-4-hydroxy-5-methylphenyl)sulfanyl-2-methylphenol Chemical compound C1=C(O)C(C)=CC(SC=2C(=CC(O)=C(C)C=2)C(C)(C)C)=C1C(C)(C)C HFISPWBCCFWMGP-UHFFFAOYSA-N 0.000 description 2
- VBORWCZUTKJHEO-UHFFFAOYSA-N 6-tert-butyl-2-[2-(3-tert-butyl-2-hydroxy-6-methylphenyl)ethenyl]-3-methylphenol Chemical compound CC1=CC=C(C(C)(C)C)C(O)=C1C=CC1=C(C)C=CC(C(C)(C)C)=C1O VBORWCZUTKJHEO-UHFFFAOYSA-N 0.000 description 2
- UUDRHPQBSJNLSJ-UHFFFAOYSA-N 6-tert-butyl-2-[2-(5-tert-butyl-4-hydroxy-2-methylphenyl)ethenyl]-3-methylphenol Chemical compound CC1=CC(O)=C(C(C)(C)C)C=C1C=CC1=C(C)C=CC(C(C)(C)C)=C1O UUDRHPQBSJNLSJ-UHFFFAOYSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 239000007822 coupling agent Substances 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical group C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 125000005641 methacryl group Chemical group 0.000 description 2
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 229910001415 sodium ion Inorganic materials 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- 125000003396 thiol group Chemical group [H]S* 0.000 description 2
- 238000001721 transfer moulding Methods 0.000 description 2
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 2
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 2
- 239000001993 wax Substances 0.000 description 2
- KJCVRFUGPWSIIH-UHFFFAOYSA-N 1-naphthol Chemical compound C1=CC=C2C(O)=CC=CC2=C1 KJCVRFUGPWSIIH-UHFFFAOYSA-N 0.000 description 1
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- BPRYUXCVCCNUFE-UHFFFAOYSA-N 2,4,6-trimethylphenol Chemical compound CC1=CC(C)=C(O)C(C)=C1 BPRYUXCVCCNUFE-UHFFFAOYSA-N 0.000 description 1
- GSOYMOAPJZYXTB-UHFFFAOYSA-N 2,6-ditert-butyl-4-(3,5-ditert-butyl-4-hydroxyphenyl)phenol Chemical group CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(C=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 GSOYMOAPJZYXTB-UHFFFAOYSA-N 0.000 description 1
- XZSLGWCQEPZKBV-UHFFFAOYSA-N 2-[2-(2-hydroxy-3,5-dimethylphenyl)ethenyl]-4,6-dimethylphenol Chemical compound CC1=CC(C)=C(O)C(C=CC=2C(=C(C)C=C(C)C=2)O)=C1 XZSLGWCQEPZKBV-UHFFFAOYSA-N 0.000 description 1
- 125000000022 2-aminoethyl group Chemical group [H]C([*])([H])C([H])([H])N([H])[H] 0.000 description 1
- LXBGSDVWAMZHDD-UHFFFAOYSA-N 2-methyl-1h-imidazole Chemical compound CC1=NC=CN1 LXBGSDVWAMZHDD-UHFFFAOYSA-N 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- QOZWIYOFSFEUJC-UHFFFAOYSA-N 2-tert-butyl-4-(5-tert-butyl-4-hydroxy-2-methylphenyl)-5-methylphenol Chemical group CC1=CC(O)=C(C(C)(C)C)C=C1C1=CC(C(C)(C)C)=C(O)C=C1C QOZWIYOFSFEUJC-UHFFFAOYSA-N 0.000 description 1
- IYOJSNCIVRKWKJ-UHFFFAOYSA-N 2-tert-butyl-4-[2-(3-tert-butyl-4-hydroxyphenyl)ethenyl]phenol Chemical compound C1=C(O)C(C(C)(C)C)=CC(C=CC=2C=C(C(O)=CC=2)C(C)(C)C)=C1 IYOJSNCIVRKWKJ-UHFFFAOYSA-N 0.000 description 1
- RXBMYSARZYCCFQ-UHFFFAOYSA-N 2-tert-butyl-4-[2-(4-hydroxy-3-methylphenyl)ethenyl]-5-methylphenol Chemical compound C1=C(O)C(C)=CC(C=CC=2C(=CC(O)=C(C=2)C(C)(C)C)C)=C1 RXBMYSARZYCCFQ-UHFFFAOYSA-N 0.000 description 1
- QYTSPNXTMDPFOI-UHFFFAOYSA-N 2-tert-butyl-4-[2-(4-hydroxy-3-methylphenyl)ethenyl]-6-methylphenol Chemical compound C1=C(O)C(C)=CC(C=CC=2C=C(C(O)=C(C)C=2)C(C)(C)C)=C1 QYTSPNXTMDPFOI-UHFFFAOYSA-N 0.000 description 1
- LVNLBBGBASVLLI-UHFFFAOYSA-N 3-triethoxysilylpropylurea Chemical compound CCO[Si](OCC)(OCC)CCCNC(N)=O LVNLBBGBASVLLI-UHFFFAOYSA-N 0.000 description 1
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 description 1
- UUEWCQRISZBELL-UHFFFAOYSA-N 3-trimethoxysilylpropane-1-thiol Chemical compound CO[Si](OC)(OC)CCCS UUEWCQRISZBELL-UHFFFAOYSA-N 0.000 description 1
- MIFGCULLADMRTF-UHFFFAOYSA-N 4-[(4-hydroxy-3-methylphenyl)methyl]-2-methylphenol Chemical compound C1=C(O)C(C)=CC(CC=2C=C(C)C(O)=CC=2)=C1 MIFGCULLADMRTF-UHFFFAOYSA-N 0.000 description 1
- WZDLEYNMGWZAEJ-UHFFFAOYSA-N 4-[1-(4-hydroxy-3,5-dimethylphenyl)ethyl]-2,6-dimethylphenol Chemical compound C=1C(C)=C(O)C(C)=CC=1C(C)C1=CC(C)=C(O)C(C)=C1 WZDLEYNMGWZAEJ-UHFFFAOYSA-N 0.000 description 1
- QIRPHBPKRGXMJD-UHFFFAOYSA-N 4-[2-(3-tert-butyl-4-hydroxy-5-methylphenyl)ethenyl]-2,6-dimethylphenol Chemical compound CC1=C(O)C(C)=CC(C=CC=2C=C(C(O)=C(C)C=2)C(C)(C)C)=C1 QIRPHBPKRGXMJD-UHFFFAOYSA-N 0.000 description 1
- STTIGCCTRAFVSP-UHFFFAOYSA-N 4-[2-(4-hydroxy-3-methylphenyl)ethenyl]-2-methylphenol Chemical compound C1=C(O)C(C)=CC(C=CC=2C=C(C)C(O)=CC=2)=C1 STTIGCCTRAFVSP-UHFFFAOYSA-N 0.000 description 1
- YQLLUZIHMVXWIJ-UHFFFAOYSA-N 6-tert-butyl-2-(3-tert-butyl-2-hydroxy-6-methylphenyl)-3-methylphenol Chemical group CC1=CC=C(C(C)(C)C)C(O)=C1C1=C(C)C=CC(C(C)(C)C)=C1O YQLLUZIHMVXWIJ-UHFFFAOYSA-N 0.000 description 1
- OWEOAOVIPDYHKL-UHFFFAOYSA-N 6-tert-butyl-2-[2-(4-hydroxy-3,5-dimethylphenyl)ethenyl]-3-methylphenol Chemical compound CC1=C(O)C(C)=CC(C=CC=2C(=C(C=CC=2C)C(C)(C)C)O)=C1 OWEOAOVIPDYHKL-UHFFFAOYSA-N 0.000 description 1
- PJSWOUBPRPWVOS-UHFFFAOYSA-N CC1(C=CC(C(C=C2)=CC=CC2(C)N=N)=CC=C1)N1N=C1 Chemical compound CC1(C=CC(C(C=C2)=CC=CC2(C)N=N)=CC=C1)N1N=C1 PJSWOUBPRPWVOS-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- RMXQRHVIUMSGLJ-UHFFFAOYSA-N O.[Bi]=O Chemical compound O.[Bi]=O RMXQRHVIUMSGLJ-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- QAJIAAQXKDXBKI-UHFFFAOYSA-N [SiH4].CO[SiH](OC)OC Chemical compound [SiH4].CO[SiH](OC)OC QAJIAAQXKDXBKI-UHFFFAOYSA-N 0.000 description 1
- 125000005370 alkoxysilyl group Chemical group 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910000410 antimony oxide Inorganic materials 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 229910002026 crystalline silica Inorganic materials 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 1
- 238000006266 etherification reaction Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000011874 heated mixture Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 229910001410 inorganic ion Inorganic materials 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- IHHCJKNEVHNNMW-UHFFFAOYSA-N methane;phenol Chemical compound C.OC1=CC=CC=C1 IHHCJKNEVHNNMW-UHFFFAOYSA-N 0.000 description 1
- 239000006082 mold release agent Substances 0.000 description 1
- KBJFYLLAMSZSOG-UHFFFAOYSA-N n-(3-trimethoxysilylpropyl)aniline Chemical compound CO[Si](OC)(OC)CCCNC1=CC=CC=C1 KBJFYLLAMSZSOG-UHFFFAOYSA-N 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 235000007586 terpenes Nutrition 0.000 description 1
- USFPINLPPFWTJW-UHFFFAOYSA-N tetraphenylphosphonium Chemical compound C1=CC=CC=C1[P+](C=1C=CC=CC=1)(C=1C=CC=CC=1)C1=CC=CC=C1 USFPINLPPFWTJW-UHFFFAOYSA-N 0.000 description 1
- 235000010215 titanium dioxide Nutrition 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- DQZNLOXENNXVAD-UHFFFAOYSA-N trimethoxy-[2-(7-oxabicyclo[4.1.0]heptan-4-yl)ethyl]silane Chemical compound C1C(CC[Si](OC)(OC)OC)CCC2OC21 DQZNLOXENNXVAD-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Epoxy Resins (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、耐半田性に優れる半導体封止用エポキシ樹脂組成物、及びこれを用いた半導体装置に関するものである。
【0002】
【従来の技術】
IC、LSI等の半導体素子の封止方法としてエポキシ樹脂組成物のトランスファー成形が低コスト、大量生産に適しており、採用されて久しく、信頼性の点でもエポキシ樹脂や硬化剤であるフェノール樹脂の改良により特性の向上が図られてきた。
しかし、近年の電子機器の小型化、軽量化、高性能化の市場動向において、半導体素子の高集積化も年々進み、又、半導体装置の表面実装化が促進されるなかで、半導体封止用エポキシ樹脂組成物への要求は益々厳しいものとなってきている。このため、従来からのエポキシ樹脂組成物では解決できない問題点も出てきている。その最大の問題点は、表面実装の採用により半導体装置が半田浸漬、或いはリフロー工程で急激に200℃以上の高温にさらされ、吸湿した水分が爆発的に気化する際の応力により、半導体装置にクラックが発生したり、半導体素子、リードフレーム、インナーリード上の各種メッキされた各接合部分とエポキシ樹脂組成物の硬化物の界面で剥離が生じ、信頼性が著しく低下する現象である。
【0003】
半田処理による信頼性低下を改善するために、エポキシ樹脂組成物中の無機充填材の充填量を増加させることで低吸湿化、高強度化、低熱膨張化を達成し耐半田性を向上させるとともに、低溶融粘度の樹脂を使用して、成形時に低粘度で高流動性を維持させる手法が一般的となりつつある。
一方、半田処理による信頼性において、エポキシ樹脂組成物の硬化物と半導体装置内部に存在する半導体素子やリードフレーム等の基材との界面の接着性は非常に重要になってきている。この界面の接着力が弱いと、半田処理後の基材との界面で剥離が生じ、更にはこの剥離に起因し半導体装置にクラックが発生する。
【0004】
従来から耐半田性の向上を目的として、γ−グリシドキシプロピルトリメトキシシランやγ―アミノプロピルトリエトキシシラン等のカップリング剤がエポキシ樹脂組成物中に添加されてきた。しかし近年、実装時のリフロー温度の上昇や、Ni、Ni−Pd、Ni−Pd−Au等のプリプレーティングフレームの出現等で、益々厳しくなっている耐半田性に対する要求に対して、これらのカップリング剤では充分に対応できなくなっている。
【0005】
【発明が解決しようとする課題】
本発明は、吸湿後の半田処理においても硬化物の半導体装置にクラックや基材との剥離が発生しない耐半田性に優れる半導体封止用エポキシ樹脂組成物、及びこれを用いた半導体装置を提供するものである。
【0006】
【課題を解決するための手段】
本発明は、(A)エポキシ樹脂、(B)フェノール樹脂、(C)一般式(1)で示される化合物及び/又は一般式(1)で示される化合物の加水分解物、(D)無機充填材、(E)硬化促進剤を必須成分とすることを特徴とする半導体封止用エポキシ樹脂組成物、及びこれを用いて半導体素子を封止してなることを特徴とする半導体装置である。
【化6】
(R1は炭素数1〜5のアルコキシ基である。R2は炭素数1〜5のアルキル基又は炭素数1〜5のアルコキシ基である。R3は水素原子、グリシジルエーテル基、メルカプト基、アミノ基、ビニル基、アクリル基、又はメタクリル基である。mは平均値で1〜3の正数、nは1〜10の整数、sは0〜3の整数である。)
【0007】
【発明の実施の形態】
本発明に用いられるエポキシ樹脂は、エポキシ基を有するモノマー、オリゴマー、ポリマー全般を指し、例えば、ビフェニル型エポキシ樹脂、スチルベン型エポキシ樹脂、ハイドロキノン型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等の結晶性エポキシ樹脂、フェノールアラルキル型エポキシ樹脂(フェニレン骨格、ビフェニレン骨格等を有する)、ビスフェノールA型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、ナフトール型エポキシ樹脂等が挙げられるが、これらに限定されるものではない。又、これらは単独でも混合して用いても良い。耐湿信頼性向上のために、本発明に使用されるエポキシ樹脂中に含まれる塩素イオン、ナトリウムイオン、その他フリーのイオンは、極力少ないことが望ましい。
これらの内では、無機充填材の充填量を増加できる結晶性エポキシ樹脂、又はビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂が好ましい。
【0008】
結晶性エポキシ樹脂の内では、融点150℃以下のものが好ましい。150℃を越えると、溶融混練時に十分に融解せず均一分散できないので、この溶融混合物を用いたエポキシ樹脂組成物の成形品は不均一となり、強度が各部分によって異なるために半導体装置の性能が低下するので好ましくない。これらの条件を満たす結晶性エポキシ樹脂としては、例えば、ビフェニル型エポキシ樹脂、ビスフェノール型エポキシ樹脂、スチルベン型エポキシ樹脂等が挙げられる。
【0009】
ビフェニル型エポキシ樹脂としては、例えば、一般式(6)で示されるものが挙げられる。
【化7】
(R8は炭素数1〜6のアルキル基で、それらは同一もしくは異なっていてもよい。pは0〜4の整数)
具体例としては、4,4’−ジヒドロキシビフェニル、4,4’−ジヒドロキシ−3,3’,5,5’−テトラメチルビフェニル、4,4’−ジヒドロキシ−3,3’−ジターシャリブチル−6,6’−ジメチルビフェニル、2,2’−ジヒドロキシ−3,3’−ジターシャリブチル−6,6’−ジメチルビフェニル、4,4’−ジヒドロキシ−3,3’−ジターシャリブチル−5,5’−ジメチルビフェニル、又は4,4’−ジヒドロキシ−3,3’,5,5’−テトラターシャリブチルビフェニル等(置換位置の異なる異性体を含む)のグリシジルエーテル化物が挙げられる。
【0010】
ビスフェノール型エポキシ樹脂としては、例えば、一般式(7)で示されるものが挙げられる。
【化8】
具体例としては、ビス(4−ヒドロキシフェニル)メタン、ビス(3−メチル−4−ヒドロキシフェニル)メタン、ビス(3,5−ジメチル−4−ヒドロキシフェニル)メタン、ビス(2,3,5−トリメチル−4−ヒドロキシフェニル)メタン、1,1−ビス(3’,5’−ジメチル−4’−ヒドロキシフェニル)エタン、2,2−ビス(4’−ヒドロキシフェニル)プロパン、2,2−ビス(3’−メチル−4’−ヒドロキシフェニル)プロパン、2,2−ビス(3’,5’−ジメチル−4’−ヒドロキシフェニル)プロパン、2,2−ビス(3’−ターシャリブチル−4’−ヒドロキシフェニル)プロパン、又はビス(2−ターシャリブチル−5−メチル−4−ヒドロキシフェニル)スルフィド等のグリシジルエーテル化物が挙げられる。
【0011】
スチルベン型エポキシ樹脂としては、例えば、一般式(8)で示されるものが挙げられる。
【化9】
(R11は水素原子、炭素数1〜6のアルキル基で、それらは同一もしくは異なっていてもよい。R12は炭素数1〜6のアルキル基で、それらは同一もしくは異なっていてもよい。pは0〜4の整数)
具体例としては、3−ターシャリブチル−4,4’−ジヒドロキシ−5,3’−ジメチルスチルベン、3−ターシャリブチル−4,4’−ジヒドロキシ−3’,6−ジメチルスチルベン、3−ターシャリブチル−2,4’−ジヒドロキシ−3’,5’,6−トリメチルスチルベン、3−ターシャリブチル−4,4’−ジヒドロキシ−3’,5’,6−トリメチルスチルベン、3−ターシャリブチル−4,4’−ジヒドロキシ−3’,5,5’−トリメチルスチルベン、4,4’−ジヒドロキシ−3,3’−ジメチルスチルベン、4,4’−ジヒドロキシ−3,3’,5,5’−テトラメチルスチルベン、4,4’−ジヒドロキシ−3,3’−ジターシャリブチルスチルベン、4,4’−ジヒドロキシ−3,3’−ジターシャリブチル−6,6’−ジメチルスチルベン、2,2’−ジヒドロキシ−3,3’−ジターシャリブチル−6,6’−ジメチルスチルベン、2,4’−ジヒドロキシ−3,3’−ジターシャリブチル−6,6’−ジメチルスチルベン、2,2’−ジヒドロキシ−3,3’,5,5’−テトラメチルスチルベン、4,4’−ジヒドロキシ−3,3’−ジターシャリブチル−5,5’−ジメチルスチルベン、又は4,4’−ジヒドロキシ−3,3’,5,5’−テトラターシャリブチルスチルベン等(置換位置の異なる異性体を含む)のグリシジルエーテル化物が挙げられる。
【0012】
これらの内では、入手のし易さ、性能、原料価格等の点から、4,4’−ジヒドロキシビフェニル、4,4’−ジヒドロキシ−3,3’,5,5’−テトラメチルビフェニル、ビス(3,5−ジメチル−4−ヒドロキシフェニル)メタン、ビス(2,3,5−トリメチル−4−ヒドロキシフェニル)メタン、2,2−ビス(3’−メチル−4’−ヒドロキシフェニル)プロパン、2,2−ビス(3’,5’−ジメチル−4’−ヒドロキシフェニル)プロパン、ビス(2−ターシャリブチル−5−メチル−4−ヒドロキシフェニル)スルフィドのグリシジルエーテル化物(以上7種のエポキシ樹脂を、以下a群という)、3−ターシャリブチル−2,4’−ジヒドロキシ−3’,5’,6−トリメチルスチルベン、3−ターシャリブチル−4,4’−ジヒドロキシ−3’,5’,6−トリメチルスチルベン、3−ターシャリブチル−4,4’−ジヒドロキシ−3’,5,5’−トリメチルスチルベンのグリシジルエーテル化物(以上3種のエポキシ樹脂を、以下b群という)、4,4’−ジヒドロキシ−3,3’,5,5’−テトラメチルスチルベン、4,4’−ジヒドロキシ−3,3’−ジターシャリブチル−6,6’−ジメチルスチルベン、2,2’−ジヒドロキシ−3,3’−ジターシャリブチル−6,6’−ジメチルスチルベン、2,4’−ジヒドロキシ−3,3’−ジターシャリブチル−6,6’−ジメチルスチルベン、2,2’−ジヒドロキシ−3,3’,5,5’−テトラメチルスチルベン、又は4,4’−ジヒドロキシ−3,3’−ジターシャリブチル−5,5’−ジメチルスチルベンのグリシジルエーテル化物(以上6種のエポキシ樹脂を、以下c群という)から選択される1種以上が好ましい。
【0013】
a群の内、ビフェニル型エポキシ樹脂では、低粘度化効果が大きく、且つ反応性に富む4,4’−ジヒドロキシビフェニルの骨格が含まれているものが特に好ましい。その他のa群では、ビス(3,5−ジメチル−4−ヒドロキシフェニル)メタン、2,2−ビス(3’,5’−ジメチル−4’−ヒドロキシフェニル)プロパン、ビス(2−ターシャリブチル−5−メチル−4−ヒドロキシフェニル)スルフィドのグリシジルエーテル化物が特に好ましい。
又、スチルベン型エポキシ樹脂では、b群から選ばれる1種以上と、c群から選ばれる1種以上との混合物が、融点が低くなるため好ましい。これらの混合比、混合方法等は特に限定しない。例えば、スチルベン型エポキシ樹脂の原料であるスチルベン型フェノール類をグリシジルエーテル化する前に混合しておいたり、両方のスチルベン型エポキシ樹脂を溶融混合する方法等がある。
【0014】
ビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂の内では、一般式(4)で示されるものが好ましい。一般式(4)のエポキシ樹脂は、1分子中にエポキシ基を2個以上有するエポキシ樹脂であり、エポキシ基間にビフェニレン骨格を有することを特徴とする。一般式(4)のエポキシ樹脂とフェノール樹脂とを用いたエポキシ樹脂組成物の硬化物は、架橋密度が低いため可撓性が高く、かつ疎水性の構造を多く含むことから吸湿率が低いため、エポキシ樹脂組成物の成形時の熱応力、あるいは成形品である半導体装置の吸湿後の半田処理における発生応力が低減されるので、耐半田性が向上する。一方、エポキシ基間の疎水性構造が剛直なビフェニレン骨格であることから、架橋密度が低い割には耐熱性の低下が少ないという特徴を有しているので、熱時強度の低下が少ない。
【化10】
(R4、R5は炭素数1〜6のアルキル基で、それらは同一もしくは異なっていても良い。pは0〜3の整数、qは0〜4の整数。rは平均値で1〜10の正数。)
【0015】
一般式(4)のエポキシ樹脂の具体例を以下に示すが、これらに限定されるものではない。
【化11】
【0016】
本発明に用いられるフェノール樹脂としては、分子内にフェノール性水酸基を有するモノマー、オリゴマー、ポリマー全般を指し、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂、トリフェノールメタン型樹脂、ビフェニレン骨格を有するフェノールアラルキル樹脂等が挙げられるが、これらに限定されるものではない。又、これらは単独でも混合して用いても良い。耐湿信頼性向上のためには、フェノール樹脂中に含まれる塩素イオン、ナトリウムイオン、その他フリーのイオンは、極力少ないことが望ましい。
【0017】
これらの内では、一般式(5)で示されるフェノール樹脂が好ましい。一般式(5)のフェノール樹脂は、1分子中にフェノール性水酸基を2個以上有するフェノール樹脂であり、フェノール性水酸基間にビフェニレン骨格を有することを特徴とする。エポキシ樹脂と一般式(5)のフェノール樹脂とを用いたエポキシ樹脂組成物の硬化物は、架橋密度が低いため可撓性が高く、かつ疎水性の構造を多く含むことから吸湿率が低いため、エポキシ樹脂組成物の成形時の熱応力、あるいは成形品である半導体装置の吸湿後の半田処理における発生応力が低減されるので、耐半田性が向上する。一方、フェノール性水酸基間の疎水性構造が剛直なビフェニレン骨格であることから、架橋密度が低い割には耐熱性の低下が少ないという特徴を有しているので、熱時強度の低下が少ない。
【化12】
(R6、R7は炭素数1〜6のアルキル基で、それらは同一もしくは異なっていても良い。pは0〜3の整数、qは0〜4の整数、rは平均値で1〜10の正数。)
【0018】
一般式(5)のフェノール樹脂の具体例を以下に示すが、これらに限定されるものではない。
【化13】
全エポキシ樹脂のエポキシ基と全フェノール樹脂のフェノール性水酸基との当量比としては、好ましくは0.5〜2.0、特に好ましくは0.7〜1.5である。0.5〜2.0の範囲を外れると、硬化性、耐湿信頼性等が低下するので好ましくない。
【0019】
本発明に用いられるシランカップリング剤は、一般式(1)で示される化合物と一般式(1)で示される化合物の加水分解物からなる群から選択される1種以上である。
一般式(1)の化合物は、同一分子内にアミノ基及びフェニル基を有することを特徴とする。アミノ基はNi−PdやNi−Pd−Au等のフレーム材に対する接着性を、フェニル基は耐水性や耐熱性をそれぞれ向上させることにより、一般式(1)の化合物を配合したエポキシ樹脂組成物で封止した半導体装置は、耐半田性が向上する。
一般式(1)中のR1は、炭素数1〜5のアルコキシ基であるが、それらの中でも加水分解が比較的容易に起こることからメトキシ基又はエトキシ基が好ましい。R2は、炭素数1〜5のアルコキシ基、又は炭素数1〜5のアルキル基であるが、R1と同様にアルコキシ基としてはメトキシ基又はエトキシ基が接着性を向上させるため好ましい。R3は、水素原子、グリシジルエーテル基、メルカプト基、アミノ基、ビニル基、アクリル基、又はメタクリル基から選ばれる有機官能基であり、樹脂成分のエポキシ基やフェノール性水酸基と反応する。mは平均値で1〜3の正数であるが、接着性の観点からm=3がより好ましい。nは1〜10の整数であるが、n=3のものが一般的で入手しやすい。sは0〜3の整数である。
以下、一般式(1)の化合物の具体例を示すが、これらに限定されるものではない。
【化14】
【0020】
一般式(1)の化合物において、末端基が1級アミノ基である一般式(2)の化合物だと、1級アミノ基が導入されることで、接着強度がより向上し、耐半田性の改善を図ることができる。
【化15】
(R1は炭素数1〜5のアルコキシ基である。R2は炭素数1〜5のアルキル基又は炭素数1〜5のアルコキシ基である。mは平均値で1〜3の正数、nは1〜10の整数である。)
【0021】
一般式(1)の化合物において、p=0でR3がビニル基である一般式(3)の化合物だと、ビニル基が導入されることで、耐熱性が向上し、耐半田性の改善を図ることができる。
【化16】
(R1は炭素数1〜5のアルコキシ基である。R2は炭素数1〜5のアルキル基又は炭素数1〜5のアルコキシ基である。mは平均値で1〜3の正数、nは1〜10の整数である。)
【0022】
一般式(1)の化合物の加水分解物は、予めアルコキシ基が加水分解されているため、容易に無機充填材や各種基材表面の水酸基と水素結合或いは共有結合を形成し、耐半田性を向上させることが可能となる。
加水分解の方法としては、特に限定するものではないが、例えば、一般式(1)の化合物と純水を混合し、混合物が2層に分離しなくなるまで十分攪拌混合する方法等が挙げられる。
【0023】
本発明のシランカップリング剤は、他のシランカップリング剤と併用できる。
併用できるシランカップリング剤としては、1分子中にアルコキシシリル基と、エポキシ基等の有機官能基を有するシラン化合物全般を指し、例えば、γ−アミノプロピルトリエトキシシラン、N−β(アミノエチル)−γ−アミノプロピルトリメトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン、γ−ウレイドプロピルトリエトキシシラン等のアミノ基を有するシラン、γ−グリシドキシプロピルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシ基を有するシラン、γ−メルカプトプロピルトリメトキシシラン等のメルカプト基を有するシラン、ビニルトリメトキシシラン等のビニル基を有するシラン、γ−(メタクリロキシプロピル)トリメトキシシラン等のメタクリル基を有するシラン等が挙げられるが、これらに限定されるものではない。又、これらは単独でも混合して用いても良い。
本発明のシランカップリング剤の添加量としては、全エポキシ樹脂組成物中に0.05〜2重量%が好ましく、特に0.1〜0.4重量%が好ましい。
【0024】
通常、カップリング剤はインテグラルブレンドによりエポキシ樹脂組成物中に混合されるが、本発明のシランカップリング剤は、予めエポキシ樹脂やフェノール樹脂の全部又は一部に加熱混合しても良い。本発明のシランカップリング剤は、半導体装置の内部に存在する各種基材とエポキシ樹脂組成物の硬化物の界面での親和性の向上や、化学結合の形成による界面の接着性の向上にも効果がある。
この場合は、配合されたシランカップリング剤が、エポキシ樹脂組成物の成形時に各種基材との界面に効率的に移行しやすいことが必要になる。このために有効な手法が、本発明のシランカップリング剤を予め樹脂成分に加熱混合させる方法である。
【0025】
又、本発明のシランカップリング剤は、無機充填材表面に存在することにより、無機充填材とエポキシ樹脂組成物中の有機成分を化学的に結合させ、界面の接着性の向上に有効であると考えられる。このように無機充填材と有機成分との界面の接着性を向上させるためには、本発明のシランカップリング剤が無機充填材表面に存在すること、より好ましくは吸着又は固定化していることが必要で、このため、本発明のシランカップリング剤で無機充填材表面を処理すると、界面の接着性が向上するので、熱時強度や耐半田性の向上に効果がある。
無機充填材表面に本発明のシランカップリング剤を処理する方法としては、例えば、攪拌している無機充填材にシランカップリング剤、あるいはそのアルコール等の溶液を噴霧し、更に攪拌を行った後、室温に放置したり、あるいは加熱することにより表面処理無機充填材を得る方法等を挙げることができる。
又、表面処理した無機充填材を用いる他に、本発明のシランカップリング剤をインテグラルブレンド又は樹脂成分と予め加熱混合する手法とを併用しても良い。
【0026】
本発明に用いられる無機充填材の種類については特に制限はなく、一般に封止材料に用いられているものを使用することができる。例えば、溶融破砕シリカ、溶融球状シリカ、結晶シリカ、2次凝集シリカ、アルミナ、チタンホワイト、水酸化アルミニウム、タルク、クレー、ガラス繊維等が挙げられ、特に溶融球状シリカが好ましい。形状は限りなく真球状であることが好ましく、又、粒子の大きさの異なるものを混合することにより充填量を多くすることができる。
無機充填材の配合量としては、全エポキシ樹脂組成物中に65〜94重量%が好ましく、より好ましくは75〜91重量%である。65重量%未満だと、無機充填材による補強効果が十分に発現せず、且つ吸湿要因である樹脂成分の配合量が多くなるので、エポキシ樹脂組成物の硬化物の吸湿量が増大してしまうため、半田処理時に半導体装置にクラックが発生しやすくなるため好ましくない。94重量%を越えると、エポキシ樹脂組成物の流動性が低下し、成形時に充填不良やチップシフト、パッドシフト、ワイヤースイープが発生しやすくなるため好ましくない。
【0027】
本発明に用いられる硬化促進剤としては、前記エポキシ樹脂とフェノール樹脂との架橋反応を促進するものであれば良く、例えば、1,8−ジアザビシクロ(5,4,0)ウンデセン−7等のアミン系化合物、トリフェニルホスフィン、テトラフェニルホスフォニウム・テトラフェニルボレート塩等の有機リン系化合物、2−メチルイミダゾール等のイミダゾール化合物等が挙げられるが、これらに限定されるものではない。又、これらは単独でも混合して用いても良い。
【0028】
本発明のエポキシ樹脂組成物は、(A)〜(E)成分の他、必要に応じて臭素化エポキシ樹脂、酸化アンチモン、リン化合物等の難燃剤、酸化ビスマス水和物等の無機イオン交換体、カーボンブラック、ベンガラ等の着色剤、シリコーンオイル、シリコーンゴム等の低応力化剤、天然ワックス、合成ワックス、高級脂肪酸及びその金属塩類もしくはパラフィン等の離型剤、酸化防止剤等の各種添加剤を配合することができる。
本発明のエポキシ樹脂組成物は、(A)〜(E)成分、及びその他の添加剤等をミキサーを用いて混合後、熱ロール、加熱ニーダー、押出機等の混練機で溶融混練し、冷却後粉砕して得られる。
本発明のエポキシ樹脂組成物を用いて、半導体素子等の電子部品を封止し、半導体装置を製造するには、トランスファーモールド、コンプレッションモールド、インジェクションモールド等の成形方法で硬化成形すればよい。特に、本発明のエポキシ樹脂組成物は、Ni、Ni−Pd、Ni−Pd−Au等のプリプレーティングフレームを用いた半導体装置に適している。
【0029】
以下、本発明を実施例で具体的に説明するが、本発明はこれらに限定されるものではない。配合割合は重量部とする。
実施例1
式(9)のビフェニル型エポキシ樹脂を主成分とする樹脂(エポキシ当量190、融点105℃) 6.2重量部
【化17】
【0030】
式(10)のフェノールアラルキル樹脂(水酸基当量174、軟化点75℃)5.7重量部
【化18】
【0031】
式(11)のシランカップリング剤(以下、シランカップリング剤Aという)0.4重量部
【化19】
【0032】
をミキサーを用いて常温で混合した後、表面温度が90℃と45℃の2本ロールを用いて混練し、冷却後粉砕して、エポキシ樹脂組成物を得た。得られたエポキシ樹脂組成物を以下の方法で評価した。結果を表1に示す。
【0033】
評価方法
スパイラルフロー:EMMI−1−66に準じたスパイラルフロー測定用の金型を用いて、金型温度175℃、注入圧力6.9×106Pa、硬化時間120秒で測定した。単位はcm。
熱時強度:240℃での曲げ強さをJIS K 6911に準じて測定した。
単位はN/mm2。
耐半田性:トランスファー成形機を用いて、金型温度175℃、射出圧力7.4×106Pa、硬化時間120秒で100ピンTQFP(パッケージサイズは14×14mm、厚み1.4mm、シリコンチップサイズは8.0×8.0mm、リードフレームはNi−Pd−Au製)を成形し、175℃、8時間で後硬化させた。得られたパッケージを85℃、相対湿度85%の環境下で72時間又は168時間放置し、その後240℃の半田槽に10秒間浸漬した。顕微鏡で外部クラックを観察し、クラック発生率[(クラック発生パッケージ数)/(全パッケージ数)×100]を%で表示した。又、チップとエポキシ樹脂組成物の硬化物との剥離面積の割合を超音波探傷装置を用いて測定し、剥離率[(剥離面積)/(チップ面積)×100]として、5個のパッケージの平均値を求め、%で表示した。
【0034】
(実施例2〜10、比較例1〜3)
表1の配合に従い、実施例1と同様にしてエポキシ樹脂組成物を得、実施例1と同様にして評価した。結果を表1に示す。
なお実施例1で用いた以外のエポキシ樹脂、フェノール樹脂、シランカップリング剤、加水分解物、加熱混合物、表面処理した無機充填材の詳細を以下に示す。
・式(12)のシランカップリング剤(以下、シランカップリング剤Bという)、
【化20】
【0035】
・オルソクレゾールノボラック型エポキシ樹脂(エポキシ当量196、軟化点55℃)、
・式(13)のスチルベン型エポキシ樹脂を主成分とする樹脂(エポキシ当量187、融点110℃)、
【化21】
【0036】
・式(14)のビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂(エポキシ当量272、軟化点58℃)、
【化22】
【0037】
・式(15)のビフェニレン骨格を有するフェノールアラルキル樹脂(水酸基当量200、軟化点65℃)、
【化23】
・フェノールノボラック樹脂(水酸基当量105、軟化点105℃)
【0038】
[加水分解物の製造例]
シランカップリング剤Aと純水を重量比80:20で混合し、この混合物が2層に分離しなくなるまで十分攪拌混合し、加水分解物Aを得た。
【0039】
[加熱混合物の製造例]
(溶融混合物A)
式(9)のビフェニル型エポキシ樹脂を主成分とする樹脂6.2重量部と式(10)のフェノールアラルキル樹脂5.7重量部を110℃で完全に溶融混合させた後、シランカップリング剤Aを0.4重量部加えて溶融混合物Aを得た。
(溶融混合物B)
式(10)のフェノールアラルキル樹脂5.7重量部を110℃で完全に溶融させた後、シランカップリング剤Aを0.2重量部加えて溶融混合物Bを得た。
【0040】
[表面処理した無機充填材の製造例]
(処理シリカA)
溶融球状シリカ87重量部をミキサーで攪拌しながら、シランカップリング剤Aを0.4重量部滴下し加えた。そのまま攪拌を15分間継続したのち、室温で8時間放置し、処理シリカAを得た。
(処理シリカB)
溶融球状シリカ87重量部をミキサーで攪拌しながら、シランカップリング剤Aを0.2重量部滴下し加えた。そのまま攪拌を15分間継続したのち、80℃で3時間加熱し、処理シリカBを得た。
【表1】
【0041】
【発明の効果】
本発明に従うと、熱時強度に優れ、半導体素子、リードフレーム等の各種部材との接着性、基板実装時の耐半田性、特にNi、Ni−Pd、Ni−Pd−Au等のプリプレーティングフレームとの密着性に優れた半導体封止用エポキシ樹脂組成物、及びこれを用いた半導体装置が得られる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an epoxy resin composition for semiconductor encapsulation having excellent solder resistance and a semiconductor device using the same.
[0002]
[Prior art]
Transfer molding of an epoxy resin composition as a sealing method for semiconductor elements such as IC and LSI is suitable for mass production at low cost and has been used for a long time. Improvements have been made to improve properties.
However, due to the recent trend of smaller, lighter, and higher performance electronic devices, higher integration of semiconductor elements has progressed year by year, and surface mounting of semiconductor devices has been promoted. The demand for epoxy resin compositions has become increasingly severe. For this reason, the problem which cannot be solved with the conventional epoxy resin composition has also come out. The biggest problem is that the semiconductor device is exposed to a high temperature of 200 ° C. or higher in the solder dipping or reflow process due to the use of surface mounting, and the moisture absorbed by the moisture is explosively vaporized. This is a phenomenon in which cracks occur or peeling occurs at the interface between various plated joints on the semiconductor element, lead frame, and inner lead and the cured product of the epoxy resin composition, resulting in a significant decrease in reliability.
[0003]
In order to improve reliability reduction due to solder processing, increase the amount of inorganic filler in the epoxy resin composition to achieve low moisture absorption, high strength, low thermal expansion, and improve solder resistance. A technique of maintaining low fluidity and high fluidity during molding using a low melt viscosity resin is becoming common.
On the other hand, in the reliability by soldering, the adhesiveness at the interface between a cured product of the epoxy resin composition and a substrate such as a semiconductor element or a lead frame existing inside the semiconductor device has become very important. If the adhesive strength at this interface is weak, peeling occurs at the interface with the base material after the solder treatment, and further, cracks occur in the semiconductor device due to this peeling.
[0004]
Conventionally, a coupling agent such as γ-glycidoxypropyltrimethoxysilane or γ-aminopropyltriethoxysilane has been added to an epoxy resin composition for the purpose of improving solder resistance. However, in recent years, these cups have responded to the increasingly demanding soldering resistance due to the rise in reflow temperature during mounting and the appearance of pre-plating frames such as Ni, Ni-Pd and Ni-Pd-Au. The ring agent is no longer sufficient.
[0005]
[Problems to be solved by the invention]
The present invention provides an epoxy resin composition for semiconductor encapsulation excellent in solder resistance that does not cause cracks or peeling from a substrate in a cured semiconductor device even in solder treatment after moisture absorption, and a semiconductor device using the same To do.
[0006]
[Means for Solving the Problems]
The present invention includes (A) an epoxy resin, (B) a phenol resin, (C) a compound represented by the general formula (1) and / or a hydrolyzate of the compound represented by the general formula (1), (D) inorganic filling And (E) an epoxy resin composition for semiconductor encapsulation characterized by comprising a curing accelerator as an essential component, and a semiconductor device characterized by sealing a semiconductor element using the epoxy resin composition.
[Chemical 6]
(R1 is an alkoxy group having 1 to 5 carbon atoms. R2 is an alkyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms. R3 is a hydrogen atom, a glycidyl ether group, a mercapto group, or an amino group. , A vinyl group, an acrylic group, or a methacryl group, m is an average value of a positive number of 1 to 3, n is an integer of 1 to 10, and s is an integer of 0 to 3.)
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The epoxy resin used in the present invention refers to monomers, oligomers, and polymers in general having an epoxy group. For example, crystalline epoxy resins such as biphenyl type epoxy resins, stilbene type epoxy resins, hydroquinone type epoxy resins, and bisphenol F type epoxy resins. , Phenol aralkyl type epoxy resin (having phenylene skeleton, biphenylene skeleton, etc.), bisphenol A type epoxy resin, orthocresol novolac type epoxy resin, dicyclopentadiene modified phenol type epoxy resin, triphenolmethane type epoxy resin, naphthol type epoxy resin However, it is not limited to these. These may be used alone or in combination. In order to improve moisture resistance reliability, it is desirable that the amount of chlorine ions, sodium ions, and other free ions contained in the epoxy resin used in the present invention be as small as possible.
Among these, a crystalline epoxy resin that can increase the filling amount of the inorganic filler or a phenol aralkyl type epoxy resin having a biphenylene skeleton is preferable.
[0008]
Among the crystalline epoxy resins, those having a melting point of 150 ° C. or lower are preferable. If it exceeds 150 ° C., it will not be melted sufficiently during melt kneading and cannot be uniformly dispersed, so the molded product of the epoxy resin composition using this molten mixture will be non-uniform, and the strength of the semiconductor device will be different because the strength varies depending on each part. Since it falls, it is not preferable. Examples of crystalline epoxy resins that satisfy these conditions include biphenyl type epoxy resins, bisphenol type epoxy resins, and stilbene type epoxy resins.
[0009]
Examples of the biphenyl type epoxy resin include those represented by the general formula (6).
[Chemical 7]
(R8 is an alkyl group having 1 to 6 carbon atoms, and they may be the same or different. P is an integer of 0 to 4)
Specific examples include 4,4′-dihydroxybiphenyl, 4,4′-dihydroxy-3,3 ′, 5,5′-tetramethylbiphenyl, 4,4′-dihydroxy-3,3′-ditertiarybutyl- 6,6'-dimethylbiphenyl, 2,2'-dihydroxy-3,3'-ditertiarybutyl-6,6'-dimethylbiphenyl, 4,4'-dihydroxy-3,3'-ditertiarybutyl-5 Examples thereof include glycidyl etherified products such as 5′-dimethylbiphenyl or 4,4′-dihydroxy-3,3 ′, 5,5′-tetratertiarybutylbiphenyl (including isomers having different substitution positions).
[0010]
Examples of the bisphenol type epoxy resin include those represented by the general formula (7).
[Chemical 8]
Specific examples include bis (4-hydroxyphenyl) methane, bis (3-methyl-4-hydroxyphenyl) methane, bis (3,5-dimethyl-4-hydroxyphenyl) methane, bis (2,3,5- Trimethyl-4-hydroxyphenyl) methane, 1,1-bis (3 ′, 5′-dimethyl-4′-hydroxyphenyl) ethane, 2,2-bis (4′-hydroxyphenyl) propane, 2,2-bis (3′-methyl-4′-hydroxyphenyl) propane, 2,2-bis (3 ′, 5′-dimethyl-4′-hydroxyphenyl) propane, 2,2-bis (3′-tertiarybutyl-4) Examples thereof include glycidyl etherified products such as' -hydroxyphenyl) propane and bis (2-tertiarybutyl-5-methyl-4-hydroxyphenyl) sulfide.
[0011]
Examples of the stilbene type epoxy resin include those represented by the general formula (8).
[Chemical 9]
(R11 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, which may be the same or different. R12 is an alkyl group having 1 to 6 carbon atoms, which may be the same or different. P is An integer from 0 to 4)
Specific examples include 3-tertiarybutyl-4,4′-dihydroxy-5,3′-dimethylstilbene, 3-tertiarybutyl-4,4′-dihydroxy-3 ′, 6-dimethylstilbene, 3-tersia. Ributyl-2,4′-dihydroxy-3 ′, 5 ′, 6-trimethylstilbene, 3-tert-butyl-4,4′-dihydroxy-3 ′, 5 ′, 6-trimethylstilbene, 3-tert-butyl -4,4'-dihydroxy-3 ', 5,5'-trimethylstilbene, 4,4'-dihydroxy-3,3'-dimethylstilbene, 4,4'-dihydroxy-3,3', 5,5 ' -Tetramethylstilbene, 4,4'-dihydroxy-3,3'-ditertiarybutylstilbene, 4,4'-dihydroxy-3,3'-ditertiarybutyl-6,6'-dimethylstilbene, 2,2 ' Dihydroxy-3,3′-ditertiarybutyl-6,6′-dimethylstilbene, 2,4′-dihydroxy-3,3′-ditertiarybutyl-6,6′-dimethylstilbene, 2,2′-dihydroxy- 3,3 ′, 5,5′-tetramethylstilbene, 4,4′-dihydroxy-3,3′-ditertiarybutyl-5,5′-dimethylstilbene, or 4,4′-dihydroxy-3,3 ′ , 5,5′-tetratertiarybutyl stilbene and the like (including isomers having different substitution positions).
[0012]
Among these, 4,4′-dihydroxybiphenyl, 4,4′-dihydroxy-3,3 ′, 5,5′-tetramethylbiphenyl, bis and the like from the viewpoints of availability, performance, raw material price, etc. (3,5-dimethyl-4-hydroxyphenyl) methane, bis (2,3,5-trimethyl-4-hydroxyphenyl) methane, 2,2-bis (3′-methyl-4′-hydroxyphenyl) propane, 2,2-bis (3 ′, 5′-dimethyl-4′-hydroxyphenyl) propane, glycidyl etherified product of bis (2-tertiarybutyl-5-methyl-4-hydroxyphenyl) sulfide (above seven kinds of epoxy) Resin is hereinafter referred to as group a), 3-tert-butyl-2,4′-dihydroxy-3 ′, 5 ′, 6-trimethylstilbene, 3-tert-butyl-4,4′-dihydroxy -3 ′, 5 ′, 6-trimethylstilbene, 3-tert-butyl-4,4′-dihydroxy-3 ′, 5,5′-trimethylstilbene glycidyl etherified compound (the above three epoxy resins are referred to as b below) Group)), 4,4′-dihydroxy-3,3 ′, 5,5′-tetramethylstilbene, 4,4′-dihydroxy-3,3′-ditertiarybutyl-6,6′-dimethylstilbene, 2 2,2′-dihydroxy-3,3′-ditertiarybutyl-6,6′-dimethylstilbene, 2,4′-dihydroxy-3,3′-ditertiarybutyl-6,6′-dimethylstilbene, 2,2 Glycidyl etherified product of '-dihydroxy-3,3', 5,5'-tetramethylstilbene or 4,4'-dihydroxy-3,3'-ditertiarybutyl-5,5'-dimethylstilbene The seeds of the epoxy resin, one or more is preferably selected from the following referred to group c).
[0013]
Among the group a, the biphenyl type epoxy resin is particularly preferably one containing a 4,4′-dihydroxybiphenyl skeleton which has a large effect of reducing viscosity and is highly reactive. In the other group a, bis (3,5-dimethyl-4-hydroxyphenyl) methane, 2,2-bis (3 ′, 5′-dimethyl-4′-hydroxyphenyl) propane, bis (2-tertiarybutyl) A glycidyl etherified product of -5-methyl-4-hydroxyphenyl) sulfide is particularly preferred.
In the stilbene type epoxy resin, a mixture of one or more selected from the b group and one or more selected from the c group is preferable because the melting point becomes low. These mixing ratios and mixing methods are not particularly limited. For example, there is a method in which stilbene type phenols which are raw materials of stilbene type epoxy resins are mixed before glycidyl etherification, or both stilbene type epoxy resins are melt mixed.
[0014]
Among the phenol aralkyl type epoxy resins having a biphenylene skeleton, those represented by the general formula (4) are preferable. The epoxy resin of the general formula (4) is an epoxy resin having two or more epoxy groups in one molecule, and has a biphenylene skeleton between the epoxy groups. The cured product of the epoxy resin composition using the epoxy resin of the general formula (4) and the phenol resin has high flexibility because of low crosslink density and low moisture absorption because it contains a lot of hydrophobic structures. Further, since the thermal stress at the time of molding the epoxy resin composition or the stress generated in the solder treatment after moisture absorption of the semiconductor device which is the molded product is reduced, the solder resistance is improved. On the other hand, since the hydrophobic structure between epoxy groups is a rigid biphenylene skeleton, it has a feature that there is little decrease in heat resistance for a low crosslink density, so there is little decrease in hot strength.
[Chemical Formula 10]
(R4 and R5 are alkyl groups having 1 to 6 carbon atoms, which may be the same or different. P is an integer of 0 to 3, q is an integer of 0 to 4. r is an average value of 1 to 10) positive number.)
[0015]
Although the specific example of the epoxy resin of General formula (4) is shown below, it is not limited to these.
Embedded image
[0016]
The phenol resin used in the present invention refers to monomers, oligomers and polymers generally having a phenolic hydroxyl group in the molecule. For example, phenol novolak resin, cresol novolak resin, terpene modified phenol resin, dicyclopentadiene modified phenol resin, Examples thereof include, but are not limited to, phenol methane type resins and phenol aralkyl resins having a biphenylene skeleton. These may be used alone or in combination. In order to improve moisture resistance reliability, it is desirable that chlorine ions, sodium ions, and other free ions contained in the phenol resin be as small as possible.
[0017]
Among these, the phenol resin represented by the general formula (5) is preferable. The phenol resin of the general formula (5) is a phenol resin having two or more phenolic hydroxyl groups in one molecule, and has a biphenylene skeleton between the phenolic hydroxyl groups. The cured product of the epoxy resin composition using the epoxy resin and the phenol resin of the general formula (5) has high flexibility because of low crosslink density and low moisture absorption because it contains a lot of hydrophobic structures. Further, since the thermal stress at the time of molding the epoxy resin composition or the stress generated in the solder treatment after moisture absorption of the semiconductor device which is the molded product is reduced, the solder resistance is improved. On the other hand, since the hydrophobic structure between the phenolic hydroxyl groups is a rigid biphenylene skeleton, it has a feature that there is little decrease in heat resistance for a low crosslinking density, so there is little decrease in hot strength.
Embedded image
(R6 and R7 are alkyl groups having 1 to 6 carbon atoms, and they may be the same or different. P is an integer of 0 to 3, q is an integer of 0 to 4, and r is an average value of 1 to 10. positive number.)
[0018]
Although the specific example of the phenol resin of General formula (5) is shown below, it is not limited to these.
Embedded image
The equivalent ratio of epoxy groups of all epoxy resins to phenolic hydroxyl groups of all phenol resins is preferably 0.5 to 2.0, particularly preferably 0.7 to 1.5. If it is out of the range of 0.5 to 2.0, curability, moisture resistance reliability and the like are lowered, which is not preferable.
[0019]
The silane coupling agent used in the present invention is at least one selected from the group consisting of a compound represented by the general formula (1) and a hydrolyzate of the compound represented by the general formula (1).
The compound of the general formula (1) is characterized by having an amino group and a phenyl group in the same molecule. Epoxy resin composition containing compound of general formula (1) by improving amino group adhesion to frame materials such as Ni-Pd and Ni-Pd-Au and phenyl group improving water resistance and heat resistance. The semiconductor device encapsulated with the improved solder resistance.
R1 in the general formula (1) is an alkoxy group having 1 to 5 carbon atoms, and among them, a methoxy group or an ethoxy group is preferable because hydrolysis occurs relatively easily. R2 is an alkoxy group having 1 to 5 carbon atoms or an alkyl group having 1 to 5 carbon atoms, and similarly to R1, a methoxy group or an ethoxy group is preferable as an alkoxy group because the adhesiveness is improved. R3 is an organic functional group selected from a hydrogen atom, a glycidyl ether group, a mercapto group, an amino group, a vinyl group, an acrylic group, or a methacryl group, and reacts with an epoxy group or a phenolic hydroxyl group of the resin component. Although m is a positive number of 1 to 3 on average, m = 3 is more preferable from the viewpoint of adhesiveness. n is an integer of 1 to 10, but n = 3 is common and easily available. s is an integer of 0-3.
Hereinafter, although the specific example of a compound of General formula (1) is shown, it is not limited to these.
Embedded image
[0020]
In the compound of the general formula (1), if the terminal group is a compound of the general formula (2) whose primary group is a primary amino group, the adhesive strength is further improved and the solder resistance is improved by introducing the primary amino group. Improvements can be made.
Embedded image
(R1 is an alkoxy group having 1 to 5 carbon atoms. R2 is an alkyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms. M is an average value and is a positive number of 1 to 3, n is It is an integer from 1 to 10.)
[0021]
In the compound of the general formula (1), if p = 0 and the compound of the general formula (3) in which R3 is a vinyl group, introduction of the vinyl group improves heat resistance and improves solder resistance. Can be planned.
Embedded image
(R1 is an alkoxy group having 1 to 5 carbon atoms. R2 is an alkyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms. M is an average value and is a positive number of 1 to 3, n is It is an integer from 1 to 10.)
[0022]
Since the hydrolyzate of the compound of the general formula (1) has an alkoxy group hydrolyzed in advance, it easily forms a hydrogen bond or a covalent bond with a hydroxyl group on the surface of an inorganic filler or various base materials, and has solder resistance. It becomes possible to improve.
Although it does not specifically limit as a method of a hydrolysis, For example, the method of mixing the compound of general formula (1) and pure water, and stirring and mixing enough until a mixture does not isolate | separate into two layers etc. are mentioned.
[0023]
The silane coupling agent of the present invention can be used in combination with other silane coupling agents.
Examples of silane coupling agents that can be used in combination include all silane compounds having an alkoxysilyl group and an organic functional group such as an epoxy group in one molecule, such as γ-aminopropyltriethoxysilane, N-β (aminoethyl). Silane having an amino group such as γ-aminopropyltrimethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, γ-ureidopropyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, β- (3 , 4-epoxycyclohexyl) ethyltrimethoxysilane and other epoxy group silanes, γ-mercaptopropyltrimethoxysilane and other mercapto group silanes, vinyltrimethoxysilane and other vinyl group silanes, γ- (methacryloxy) Such as propyl) trimethoxysilane Silane having Le group including but not limited to. These may be used alone or in combination.
As addition amount of the silane coupling agent of this invention, 0.05 to 2 weight% is preferable in all the epoxy resin compositions, and 0.1 to 0.4 weight% is especially preferable.
[0024]
Usually, the coupling agent is mixed into the epoxy resin composition by integral blending. However, the silane coupling agent of the present invention may be preliminarily mixed with all or part of the epoxy resin or phenol resin. The silane coupling agent of the present invention also improves the affinity at the interface between various substrates present in the semiconductor device and the cured product of the epoxy resin composition, and also improves the adhesion at the interface by forming chemical bonds. effective.
In this case, it is necessary that the blended silane coupling agent easily efficiently migrates to the interface with various base materials when the epoxy resin composition is molded. For this purpose, an effective method is a method in which the silane coupling agent of the present invention is previously heated and mixed with the resin component.
[0025]
In addition, the silane coupling agent of the present invention is effective in improving the adhesion at the interface by chemically bonding the inorganic filler and the organic component in the epoxy resin composition by being present on the surface of the inorganic filler. it is conceivable that. Thus, in order to improve the adhesiveness of the interface between the inorganic filler and the organic component, the silane coupling agent of the present invention is present on the surface of the inorganic filler, more preferably adsorbed or immobilized. For this reason, when the surface of the inorganic filler is treated with the silane coupling agent of the present invention, the adhesiveness at the interface is improved, which is effective in improving the strength during heating and the solder resistance.
As a method for treating the surface of the inorganic filler with the silane coupling agent of the present invention, for example, after spraying a solution of the silane coupling agent or an alcohol thereof on the stirring inorganic filler, and further stirring And a method of obtaining a surface-treated inorganic filler by standing at room temperature or heating.
In addition to using the surface-treated inorganic filler, a method of heating and mixing the silane coupling agent of the present invention with an integral blend or a resin component in advance may be used in combination.
[0026]
There is no restriction | limiting in particular about the kind of inorganic filler used for this invention, What is generally used for the sealing material can be used. Examples thereof include fused crushed silica, fused spherical silica, crystalline silica, secondary agglomerated silica, alumina, titanium white, aluminum hydroxide, talc, clay, glass fiber, and the like, and fused spherical silica is particularly preferable. The shape is preferably infinitely spherical, and the amount of filling can be increased by mixing particles having different particle sizes.
As a compounding quantity of an inorganic filler, 65 to 94 weight% is preferable in all the epoxy resin compositions, More preferably, it is 75 to 91 weight%. If it is less than 65% by weight, the reinforcing effect of the inorganic filler is not sufficiently exhibited, and the amount of the resin component that is a moisture absorption factor increases, so the moisture absorption of the cured product of the epoxy resin composition increases. Therefore, it is not preferable because cracks are likely to occur in the semiconductor device during the soldering process. If it exceeds 94% by weight, the fluidity of the epoxy resin composition is lowered, and defective filling, chip shift, pad shift, and wire sweep are likely to occur during molding, which is not preferable.
[0027]
The curing accelerator used in the present invention is not particularly limited as long as it promotes the crosslinking reaction between the epoxy resin and the phenol resin. For example, amines such as 1,8-diazabicyclo (5,4,0) undecene-7 are used. Examples thereof include, but are not limited to, organic compounds such as triphenylphosphine and tetraphenylphosphonium / tetraphenylborate salts, and imidazole compounds such as 2-methylimidazole. These may be used alone or in combination.
[0028]
In addition to the components (A) to (E), the epoxy resin composition of the present invention includes a brominated epoxy resin, an antimony oxide, a flame retardant such as a phosphorus compound, and an inorganic ion exchanger such as a bismuth oxide hydrate. Various additives such as colorants such as carbon black and bengara, stress reducing agents such as silicone oil and silicone rubber, mold release agents such as natural waxes, synthetic waxes, higher fatty acids and their metal salts or paraffin, and antioxidants. Can be blended.
The epoxy resin composition of the present invention is prepared by mixing the components (A) to (E) and other additives using a mixer, and then melt-kneading with a kneader such as a hot roll, a heating kneader, or an extruder, and cooling. Obtained by post-grinding.
In order to seal an electronic component such as a semiconductor element and manufacture a semiconductor device using the epoxy resin composition of the present invention, it may be cured by a molding method such as a transfer mold, a compression mold, or an injection mold. In particular, the epoxy resin composition of the present invention is suitable for a semiconductor device using a preplating frame such as Ni, Ni—Pd, or Ni—Pd—Au.
[0029]
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to these. The blending ratio is parts by weight.
Example 1
Resin based on biphenyl type epoxy resin of formula (9) (epoxy equivalent 190, melting point 105 ° C.) 6.2 parts by weight
[0030]
5.7 parts by weight of phenol aralkyl resin of formula (10) (hydroxyl equivalent 174, softening point 75 ° C.)
[0031]
0.4 parts by weight of the silane coupling agent of formula (11) (hereinafter referred to as silane coupling agent A)
[0032]
Were mixed at room temperature using a mixer, then kneaded using two rolls having surface temperatures of 90 ° C. and 45 ° C., cooled and pulverized to obtain an epoxy resin composition. The obtained epoxy resin composition was evaluated by the following methods. The results are shown in Table 1.
[0033]
Evaluation Method Spiral Flow: Using a mold for spiral flow measurement according to EMMI-1-66, measurement was performed at a mold temperature of 175 ° C., an injection pressure of 6.9 × 10 6 Pa, and a curing time of 120 seconds. The unit is cm.
Hot strength: The bending strength at 240 ° C. was measured according to JIS K 6911.
The unit is N / mm 2 .
Solder resistance: Using a transfer molding machine, mold temperature is 175 ° C., injection pressure is 7.4 × 10 6 Pa, curing time is 120 seconds, 100-pin TQFP (package size is 14 × 14 mm, thickness is 1.4 mm, silicon chip The size was 8.0 × 8.0 mm and the lead frame was made of Ni—Pd—Au, and post-cured at 175 ° C. for 8 hours. The obtained package was left for 72 hours or 168 hours in an environment of 85 ° C. and 85% relative humidity, and then immersed in a solder bath at 240 ° C. for 10 seconds. External cracks were observed with a microscope, and the crack generation rate [(number of crack generation packages) / (total number of packages) × 100] was displayed in%. Further, the ratio of the peeled area between the chip and the cured product of the epoxy resin composition was measured using an ultrasonic flaw detector, and the peel rate [(peeled area) / (chip area) × 100] The average value was calculated and expressed in%.
[0034]
(Examples 2 to 10, Comparative Examples 1 to 3)
According to the composition of Table 1, an epoxy resin composition was obtained in the same manner as in Example 1 and evaluated in the same manner as in Example 1. The results are shown in Table 1.
The details of the epoxy resin, phenol resin, silane coupling agent, hydrolyzate, heating mixture, and surface-treated inorganic filler other than those used in Example 1 are shown below.
A silane coupling agent of formula (12) (hereinafter referred to as silane coupling agent B),
Embedded image
[0035]
Orthocresol novolac type epoxy resin (epoxy equivalent 196, softening point 55 ° C.),
A resin mainly composed of a stilbene type epoxy resin of the formula (13) (epoxy equivalent 187, melting point 110 ° C.),
Embedded image
[0036]
A phenol aralkyl type epoxy resin having an biphenylene skeleton of the formula (14) (epoxy equivalent 272, softening point 58 ° C.),
Embedded image
[0037]
A phenol aralkyl resin having a biphenylene skeleton of the formula (15) (hydroxyl equivalent: 200, softening point: 65 ° C.),
Embedded image
・ Phenol novolac resin (hydroxyl equivalent 105, softening point 105 ° C)
[0038]
[Production example of hydrolyzate]
Silane coupling agent A and pure water were mixed at a weight ratio of 80:20, and the mixture was sufficiently stirred and mixed until the mixture was not separated into two layers to obtain hydrolyzate A.
[0039]
[Production example of heated mixture]
(Melted mixture A)
A silane coupling agent is prepared by completely melting and mixing 6.2 parts by weight of a resin mainly composed of a biphenyl type epoxy resin of the formula (9) and 5.7 parts by weight of a phenol aralkyl resin of the formula (10) at 110 ° C. 0.4 parts by weight of A was added to obtain a molten mixture A.
(Molten mixture B)
After completely melting 5.7 parts by weight of the phenol aralkyl resin of the formula (10) at 110 ° C., 0.2 part by weight of the silane coupling agent A was added to obtain a molten mixture B.
[0040]
[Production example of surface-treated inorganic filler]
(Processed silica A)
While stirring 87 parts by weight of fused spherical silica with a mixer, 0.4 part by weight of silane coupling agent A was added dropwise. Stirring was continued for 15 minutes, and the mixture was allowed to stand at room temperature for 8 hours to obtain treated silica A.
(Processed silica B)
While stirring 87 parts by weight of fused spherical silica with a mixer, 0.2 part by weight of silane coupling agent A was added dropwise. Stirring was continued for 15 minutes, followed by heating at 80 ° C. for 3 hours to obtain treated silica B.
[Table 1]
[0041]
【The invention's effect】
According to the present invention, it has excellent thermal strength, adhesion to various members such as semiconductor elements and lead frames, and solder resistance when mounted on a substrate, especially a pre-plating frame such as Ni, Ni-Pd, Ni-Pd-Au, etc. The epoxy resin composition for semiconductor sealing excellent in adhesiveness and a semiconductor device using the same are obtained.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000331772A JP4568985B2 (en) | 2000-10-31 | 2000-10-31 | Epoxy resin composition and semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000331772A JP4568985B2 (en) | 2000-10-31 | 2000-10-31 | Epoxy resin composition and semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002128994A JP2002128994A (en) | 2002-05-09 |
JP4568985B2 true JP4568985B2 (en) | 2010-10-27 |
Family
ID=18808067
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000331772A Expired - Fee Related JP4568985B2 (en) | 2000-10-31 | 2000-10-31 | Epoxy resin composition and semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4568985B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4639463B2 (en) * | 2000-11-20 | 2011-02-23 | 住友ベークライト株式会社 | Epoxy resin composition and semiconductor device |
JP4692885B2 (en) * | 2003-02-18 | 2011-06-01 | 住友ベークライト株式会社 | Epoxy resin composition and semiconductor device |
CN1301296C (en) * | 2004-06-14 | 2007-02-21 | 江苏中电华威电子股份有限公司 | Redix composition |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08277322A (en) * | 1995-04-06 | 1996-10-22 | Sunstar Eng Inc | Liquid epoxy resin sealant |
JPH10237160A (en) * | 1997-02-24 | 1998-09-08 | Toray Ind Inc | Epoxy resin composition, and semiconductor device |
JPH10279665A (en) * | 1997-04-01 | 1998-10-20 | Toray Ind Inc | Epoxy resin composition for semiconductor encapsulation |
WO2002024808A1 (en) * | 2000-09-25 | 2002-03-28 | Hitachi Chemical Co., Ltd. | Epoxy resin molding material for sealing |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002012742A (en) * | 2000-06-28 | 2002-01-15 | Sumitomo Bakelite Co Ltd | Epoxy resin composition and semiconductor device |
-
2000
- 2000-10-31 JP JP2000331772A patent/JP4568985B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08277322A (en) * | 1995-04-06 | 1996-10-22 | Sunstar Eng Inc | Liquid epoxy resin sealant |
JPH10237160A (en) * | 1997-02-24 | 1998-09-08 | Toray Ind Inc | Epoxy resin composition, and semiconductor device |
JPH10279665A (en) * | 1997-04-01 | 1998-10-20 | Toray Ind Inc | Epoxy resin composition for semiconductor encapsulation |
WO2002024808A1 (en) * | 2000-09-25 | 2002-03-28 | Hitachi Chemical Co., Ltd. | Epoxy resin molding material for sealing |
Also Published As
Publication number | Publication date |
---|---|
JP2002128994A (en) | 2002-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2006098425A1 (en) | Epoxy resin composition and semiconductor device | |
WO2004074344A1 (en) | Epoxy resin composition and semiconductor device | |
JP2007302771A (en) | Epoxy resin composition for sealing | |
JP2005320446A (en) | Epoxy resin composition for sealing semiconductor and semiconductor device | |
JPH06345847A (en) | Epoxy resin composition and semiconductor device | |
JP4899243B2 (en) | Epoxy resin composition and semiconductor device | |
JP4568985B2 (en) | Epoxy resin composition and semiconductor device | |
JP2002012742A (en) | Epoxy resin composition and semiconductor device | |
JP2002293885A (en) | Epoxy resin composition and semiconductor device | |
JP4706089B2 (en) | Epoxy resin composition and semiconductor device | |
JP4639463B2 (en) | Epoxy resin composition and semiconductor device | |
JP2003105059A (en) | Epoxy resin composition and semiconductor device | |
JP2002241583A (en) | Epoxy resin composition and semiconductor device | |
JP4830202B2 (en) | Epoxy resin composition and semiconductor device | |
JP4742414B2 (en) | Semiconductor device | |
JP2001240726A (en) | Epoxy resin composition and semiconductor device | |
JP2000281751A (en) | Epoxy resin composition and semiconductor device | |
JP3821218B2 (en) | Epoxy resin composition for semiconductor encapsulation and semiconductor device | |
JP4595194B2 (en) | Semiconductor device | |
JP2001247749A (en) | Epoxy resin composition and semiconductor device | |
JP2001240724A (en) | Epoxy resin composition and semiconductor device | |
JP4379973B2 (en) | Epoxy resin composition and semiconductor device | |
JP2000273277A (en) | Epoxy resin composition and semiconductor device | |
JP2001247653A (en) | Epoxy resin composition and semiconductor device | |
JP2002256061A (en) | Epoxy resin composition and semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070521 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100126 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100202 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100401 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100713 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100726 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130820 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100401 |
|
LAPS | Cancellation because of no payment of annual fees |