[go: up one dir, main page]

JP4549031B2 - Magnetic disk substrate holding member and method of manufacturing the same - Google Patents

Magnetic disk substrate holding member and method of manufacturing the same Download PDF

Info

Publication number
JP4549031B2
JP4549031B2 JP2003062946A JP2003062946A JP4549031B2 JP 4549031 B2 JP4549031 B2 JP 4549031B2 JP 2003062946 A JP2003062946 A JP 2003062946A JP 2003062946 A JP2003062946 A JP 2003062946A JP 4549031 B2 JP4549031 B2 JP 4549031B2
Authority
JP
Japan
Prior art keywords
magnetic disk
holding member
disk substrate
less
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003062946A
Other languages
Japanese (ja)
Other versions
JP2004269317A (en
Inventor
伸一郎 益山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003062946A priority Critical patent/JP4549031B2/en
Publication of JP2004269317A publication Critical patent/JP2004269317A/en
Application granted granted Critical
Publication of JP4549031B2 publication Critical patent/JP4549031B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、磁気ディスク基板を保持するのに用いるスペーサ等の磁気ディスク基板用保持部材及びその製造方法に関するものである。
【0002】
【従来の技術】
従来、コンピュータや家電の外部記録装置として使用される磁気ディスク装置は、回転軸に固定されたハブに、磁気ディスク基板とスペーサとを交互に組込み、締め付けることにより、磁気ディスク基板を一定間隔に固定して保持するようになっていた。そして、上記回転軸及び磁気ディスク基板を回転させるとともに、各磁気ディスク基板上に磁気ヘッドを非接触状態で移動させることにより、各磁気ディスク基板への情報書き込みや、情報の読み取りを行なっていた。
【0003】
ところで、近年、磁気ディスク基板の高密度化や磁気ディスク装置の大容量化が要求されており、そのためには磁気ディスク基板の表面を高度に平滑化および平坦化するとともに、磁気ディスク基板の変形や歪みを防ぎ、磁気ヘッドと磁気ディスク基板との距離をできるだけ小さくする必要がある。そのため、磁気ディスク基板をセラミックスやガラス等により形成するとともに、各磁気ディスク基板を保持するスペーサ等の磁気ディスク基板用保持部材(以下、単に保持部材という)を、上記磁気ディスク基板との熱膨張差が小さく、温度変化による変形や経時劣化が殆どなく、高精度に加工することが可能なフォルステライトを主成分とするセラミック焼結体により形成することが提案されている。
【0004】
また、磁気ディスク基板には静電気が発生することがあり、この静電気によって磁気ディスク基板に記録されている情報が破壊されるおそれがあることから、上記フォルステライトを主成分とするセラミック焼結体に酸化鉄を添加して半導電性を持たせ、磁気ディスク基板に帯電した電荷を逃がし、記録情報が破壊されるのを防止することが示されている(特許文献1参照)。
【0005】
【特許文献1】
特開2002−193659号公報
【特許文献2】
特開2002−230933号公報
【特許文献3】
特開2002−216449号公報
【0006】
【発明が解決しようとする課題】
セラミック焼結体からなる保持部材を、磁気ヘッドと磁気ディスク基板との距離が0.1μm以下の磁気ディスク装置に組み込んで使用すると、磁気ヘッドと磁気ディスク基板との間に異物が噛み込んだり、磁気ヘッドにより異物が磁気ディスク基板に押し付けられ、磁気ヘッドや磁気ディスク基板上の記録層を破壊し、情報の書き込みや読み取りができなくなるといった課題があった。
【0007】
即ち、保持部材を形成するセラミック焼結体は、セラミック原料を焼き固めた多結晶体であり、その表面には多数のボイドが存在するとともに、所定形状とするために研削加工が施されたセラミック焼結体の表面には研削傷が形成されるのであるが、保持部材の製作時に発生した研削粉や研磨粉あるいは脱粒粉等の異物が保持部材表面のボイド中や研削傷中に入り込んでおり、これらの異物が磁気ディスク装置の駆動時における振動等によってボイドや研削傷からこぼれ落ち、磁気ディスク基板上に落ちた異物が磁気ヘッドにより押し付けられたり、磁気ヘッドとの間に噛み込むことにより発生していた。
【0008】
セラミック焼結体の製造工程において、原料の粉砕工程では図2に示すボールミルを用いる。この時、原料スラリー12がアルミナ製の粉砕ボール11で粉砕される際に異物が混入し、これらの異物がモース硬度7を越える非常に硬いものである場合、上記の問題は顕著に発生する。
【0009】
そこで、研削加工や研磨加工により所定の寸法形状となるように形成された保持部材のボイドや研削傷上に入り込んでいる研削粉研磨粉あるいは脱粒粉等の異物を除去するため、紫外線やオゾンによる洗浄、界面活性剤を使用した洗浄、バブル洗浄、超音波洗浄等のさまざま洗浄処理が行われているが、いずれの洗浄方法を用いたとしても上記の異物を完全に除去することは難しい。
【0010】
また、保持部材に熱処理を施したり、樹脂膜を被着することで上記異物の低減を図った提案もあるが、コストアップや膜剥れ等の問題もあり、信頼性の面で不安が残っている(特許文献2及び特許文献3参照。)。
【0011】
【課題を解決するための手段】
本発明は以上の課題を解決すべく種々検討を行なった結果、磁気ディスク基板用保持部材が、主成分となるフォルステライトと導電成分となる酸化鉄とを平均粒径が0.9μm以下となるように粉砕し焼成してなる、2MgO・SiOを主結晶相とし、副結晶相としてMgFe、Fe、Feの少なくとも1種の結晶のみを有するセラミック焼結体からなり、このセラミック焼結体は、モース硬度が7を超える化合物の含有量が0.5重量%以下であるとともに、化合物の中でも非常に硬く、磁気ディスク装置クラッシュの一因となる可能性の非常に高いAlの含有量がZrOの含有量よりも少なく0.1重量%以下に抑えることによって、信頼性の高い保持部材を提供することができる。
【0012】
また、モース硬度が7を超える化合物であるAlの混入量を0.1重量%以下に抑えた保持部材構成とする製造方法としては、保持部材原料を粉砕する工程において、ジルコニアビーズを用いたビーズミル粉砕することが、品質、設備投資の点からみても有効であることを見出した。
【0013】
【発明の実施の形態】
以下、本発明の実施形態を説明する。
【0014】
本発明の磁気ディスク基板用保持部材は、磁気ディスク基板を一定間隔で保持するためのものである。そして、本発明の磁気ディスク基板用保持部材は、主成分となるフォルステライトと導電成分となる酸化鉄とを平均粒径が0.9μm以下となるように粉砕し焼成してなる、2MgO・SiOを主結晶相とし、副結晶相としてMgFe、Fe、Feの少なくとも1種の結晶のみを有するセラミック焼結体からなり、このセラミック焼結体は、モース硬度が7を超える非常に硬い化合物の含有量が0.5重量%以下であるとともに、Alの含有量をZrOの含有量よりも少なく0.1重量%以下としたものである。
【0015】
例えばAlやSiCのようにモース硬度7以上の化合物が存在していた場合、保持部材の研削傷やボイド中に入り込んだ研削粉研磨粉あるいは脱粒粉等の異物の中にも、これらモース硬度7以上の化合物が存在することになり、このような異物が磁気ディスク装置起動時における振動等によって、ボイドや研削傷等から落下し、磁気ディスク装置クラッシュの要因となる可能性は非常に高い。特にAlは保持部材原料の製造工程において、原料粉末粉砕用の粉砕ボールとしても一般的によく用いられ、粉砕時の粉砕ボールの磨より、保持部材中に存在していることが多く、しかも、モース硬度9と非常に硬いため、前述の磁気ディスク装置クラッシュの問題は顕著に発生する。従って、特にAlの含有量を0.1重量%以下とすることが重要である。本発明のように、モース硬度7以上の化合物を限りなく少なくすることは、磁気ディスク装置クラッシュの可能性が低くなるということであり、信頼性の高い保持部材を供給することにつながる。
【0016】
以下、本発明の磁気ディスク基板用保持部材の製造方法について説明する。
まず、出発原料として主成分となるフォルステライトに導電成分となる酸化鉄を加えた粉末と水とを混合してスラリー化し、このスラリーの粉砕は図1のビーズミルで行なう。ビーズミルで用いる粉砕ビーズには、ジルコニアビーズを用いることとする。前述のスラリーはスラリー供給口2から供給され、回転ロータ3で攪袢されて、ジルコニア製の粉砕ビーズ1との磨砕により粉砕され、スクリーン4を通ってスラリー出口5より排出される。このスラリーを循環粉砕し、平均粒径が0.9μm以下に到達した時点で全スラリーを排出後、バインダを添加し、噴霧乾燥することにより、造粒粉を作製する。この造粒粉を約1ton/cmの圧力で所定形状に成形後、1200〜1500℃の温度で焼成し、研削加工や研磨加工を施すことで、所定形状の磁気ディスク基板用保持部材を作製する。
【0017】
以上の製造工程にて作製された磁気ディスク基板用保持部材は、主成分となるフォルステライトと導電成分となる酸化鉄とを平均粒径が0.9μm以下となるように粉砕し焼成してなる、2MgO・SiOを主結晶相とし、副結晶相としてMgFe、Fe、Feの少なくとも1種の結晶のみを有するセラミック焼結体からなり、このセラミック焼結体は、モース硬度が7を超える非常に硬い化合物の含有量が0.5重量%以下であるとともに、Alの含有量がZrOの含有量よりも少なく0.1重量%以下に抑えた保持部材となり得る。
【0018】
即ち、主成分としてモース硬度7以下のフォルステライト(2MgO・SiO)、酸化鉄を用い、ジルコニア製の粉砕ビーズを用いたビーズミルで粉砕することよって、モース硬度7を超える化合物の含有量を0.5重量%以下とすることができるとともに、Alの含有量を0.1重量%以下とすることができる。
【0019】
【実施例】
主成分となるフォルステライトに導電成分となる酸化鉄を加えた粉末と水とを攪拌機にて混ぜスラリー化させた原料を、図1に示すビーズミル(本発明実施例)、図2に示すボールミル(比較例)の2種類の粉砕方式で平均粒径0.9μm以下を目標に粉砕し、実際の粒度分布を測定した。尚、粉砕条件は表1の通りである。次に、この粉砕後のスラリーにバインダを添加噴霧乾燥し造粒粉を作製した。この造粒粉を1ton/cmの圧力で所定形状に成形し、1280℃の温度で焼成して焼結体を得た。得られた焼結体については、ICPによる組成定量分析、見掛け比重、ボイド占有率を測定し、結果は表2に示す。表3は参考用として構成化合物のモース硬度を示す。
【0020】
まず、表1において、目標の粒度を満足する為に、比較例であるボールミルでは粉砕時間が160時間と大幅に長くなっているが、本発明実施例であるビーズミルを用いたものは非常に短時間での粉砕が可能であった。また、両者の粒度分布を比較すると、ボールミルに比べビーズミルは非常にシャープな分布になっていることが判る。尚、図2に示すボールミルのライナーと粉砕ボール11をジルコニア製にすることも考えられるが、粉砕時間の短縮は期待できず、ジルコニアが非常に高価であり設備投資金額が莫大となることが予想されることから有効な手法とは言い難い。
【0021】
次に、表2において、ボールミルを用いた比較例ではライナーや粉砕ボールからの磨耗でAl23が約2重量%混入しているが、ビーズミルを用いた本発明実施例ではAl23の混入が出発原料の不純物レベルで0.06重量%と非常に少ない。逆にビーズミルはZrO2の混入が0.15重量%程度確認されたが、混入量も少なく、ZrO2はモース硬度7の材料であることから、磁気ディスク装置のクラッシュに及ぼす影響は小さい。見掛け比重とボイド占有率測定結果からは、ボールミル粉砕に比べ、ビーズミル粉砕の方が緻密化されており、ボイドも少なくなっていることが確認された。これはビーズミル粉砕で粒度分布が非常にシャープとなっているからであり、磁気ディスク装置クラッシュに悪影響を及ぼす異物が減少する効果も期待できる。
【0022】
【表1】

Figure 0004549031
【0023】
【表2】
Figure 0004549031
【0024】
【表3】
Figure 0004549031
【0025】
【発明の効果】
以上のように、本発明によれば、主成分となるフォルステライトと導電成分となる酸化鉄とを平均粒径が0.9μm以下となるように粉砕し焼成してなる、2MgO・SiOを主結晶相とし、副結晶相としてMgFe、Fe、Feの少なくとも1種の結晶のみを有する焼結体からなる磁気ディスク基板用保持部材であって、前記セラミック焼結体は、モース硬度が7を超える非常に硬い化合物の含有量が0.5重量%以下であるとともに、Alの含有量がZrOの含有量よりも少なく0.1重量%以下とすることによって、磁気ディスク基板との熱膨張差が小さく、高精度加工が可能であり、静電気除去効果を持ち合わせるとともに、磁気ディスク装置のクラッシュ要因となる高硬度の異物の含有量が少ないので、信頼性の高い保持部材を提供することができる。しかも、上記セラミック焼結体の製造工程において、ジルコニアビーズを用いたビーズミルで原料の粉砕、混合を行なうことで、磁気ディスク装置のクラッシュの要因となる高硬度の異物の混入量が少なく、粒度分布が非常にシャープな原料を比較的安価に製造できるので、見掛け比重が大きくてボイド占有率の低い、緻密化された信頼性の高い保持部材を提供することができる。
【図面の簡単な説明】
【図1】本発明の磁気ディスク基板用保持部材の製造工程で使用するビーズミルの模式図である。
【図2】一般的な原料粉末の粉砕に使用されるボールミルの模式図である。
【符号の説明】
1:粉砕ビーズ
2:スラリー供給口
3:回転ローター
4:スクリーン
5:スラリー出口
11:粉砕ボール
12:原料スラリー[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a magnetic disk substrate holding member such as a spacer used for holding a magnetic disk substrate, and a method of manufacturing the same.
[0002]
[Prior art]
Conventionally, a magnetic disk device used as an external recording devices for computers and consumer electronics is the fixed to the rotating shaft hub, the embedded a magnetic disk substrate and the spacer alternately by tightening, the magnetic disk substrate regular intervals It was supposed to be fixed and held. Then, with rotating the rotary shaft, and a magnetic disk substrate, by moving in a non-contact state of the magnetic head to the magnetic disk substrate, and writing of information to the magnetic disk substrate, it is read Riogyo information It was.
[0003]
Incidentally, in recent years, there has been a demand for higher density magnetic disk substrates and larger capacity of magnetic disk devices . To that end, the surface of the magnetic disk substrate is highly smoothed and flattened, and the deformation of the magnetic disk substrate is reduced. It is necessary to prevent distortion and make the distance between the magnetic head and the magnetic disk substrate as small as possible . For this reason , the magnetic disk substrate is formed of ceramics, glass, or the like, and a magnetic disk substrate holding member (hereinafter simply referred to as a holding member) such as a spacer for holding each magnetic disk substrate is subjected to a thermal expansion difference from the magnetic disk substrate. It is proposed to form a ceramic sintered body containing forsterite as a main component, which can be processed with high accuracy, with little deformation and little deterioration due to temperature change and deterioration over time.
[0004]
Further, the magnetic disk substrate may static electricity is generated, the ceramic sintered body of this static electricity since the information recorded on the magnetic disk substrate is Re hyperemesis be destroyed, mainly of the forsterite It has been shown that iron oxide is added to make it semiconductive to release charges charged on the magnetic disk substrate and prevent destruction of recorded information (see Patent Document 1).
[0005]
[Patent Document 1]
JP 2002-193659 A [Patent Document 2]
Japanese Patent Laid-Open No. 2002-230933 [Patent Document 3]
JP-A-2002-216449 [0006]
[Problems to be solved by the invention]
When a holding member made of a ceramic sintered body is used by being incorporated in a magnetic disk device in which the distance between the magnetic head and the magnetic disk substrate is 0.1 μm or less, foreign matter is caught between the magnetic head and the magnetic disk substrate, There has been a problem that foreign matters are pressed against the magnetic disk substrate by the magnetic head, destroying the magnetic head and the recording layer on the magnetic disk substrate, making it impossible to write or read information.
[0007]
That is, the ceramic sintered body forming the holding member is a polycrystalline body obtained by baking and solidifying a ceramic raw material, and there are a large number of voids on the surface, and the ceramic is subjected to grinding to obtain a predetermined shape. Grinding flaws are formed on the surface of the sintered body, but foreign matter such as grinding powder, polishing powder, or degranulated powder generated during production of the holding member has entered the voids or grinding flaws on the surface of the holding member. These foreign matters are spilled from voids or grinding flaws due to vibration during driving of the magnetic disk device, etc., and the foreign matter that has fallen on the magnetic disk substrate is pressed by the magnetic head or bites into the magnetic head. It was.
[0008]
In the manufacturing process of the ceramic sintered body, the ball mill shown in FIG. At this time, when the raw material slurry 12 is pulverized with the pulverization balls 11 made of alumina, foreign matters are mixed, and when these foreign matters are very hard and have a Mohs hardness of 7, the above problem is remarkably generated.
[0009]
Therefore, in order to remove foreign matter such as grinding powder , polishing powder, or degranulated powder entering the voids of the holding member and grinding scratches formed so as to have a predetermined size and shape by grinding or polishing, ultraviolet rays or ozone cleaning by washing using a detergent, bubble washing is different cleaning process of ultrasonic cleaning or the like is we row, it also completely remove the foreign matter as using any method of washing difficult.
[0010]
In addition, there are proposals to reduce the above-mentioned foreign matter by heat-treating the holding member or applying a resin film, but there are also problems such as cost increase and film peeling, and there remains anxiety in terms of reliability. (See Patent Document 2 and Patent Document 3).
[0011]
[Means for Solving the Problems]
As a result of various studies to solve the above problems, the magnetic disk substrate holding member has an average particle size of 0.9 μm or less of forsterite as a main component and iron oxide as a conductive component. Ceramic sintered body having 2MgO · SiO 2 as a main crystal phase and having only at least one crystal of MgFe 2 O 4 , Fe 3 O 4 , and Fe 2 O 3 as a sub-crystal phase. This ceramic sintered body has a Mohs hardness of more than 7 in a compound content of 0.5% by weight or less and is extremely hard among the compounds, which may contribute to the crash of the magnetic disk device. A highly reliable holding member can be provided by suppressing the content of Al 2 O 3 that is very high to be less than 0.1% by weight less than the content of ZrO 2 .
[0012]
As the configuration and production method made you holding member with reduced amount of mixed Al 2 O 3 which is a compound having a Mohs hardness of more than 7 to 0.1 wt% or less, in the step of pulverizing the holding member material, It was found that grinding with a bead mill using zirconia beads is also effective from the viewpoint of quality and capital investment.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
[0014]
The holding member for a magnetic disk substrate of the present invention is for holding the magnetic disk substrate at regular intervals. Then, the magnetic disk substrate holding member of the present invention comprises 2MgO · SiO formed by pulverizing and firing forsterite as a main component and iron oxide as a conductive component so that the average particle size becomes 0.9 μm or less. 2 is composed of a ceramic sintered body having only a main crystal phase and at least one crystal of MgFe 2 O 4 , Fe 3 O 4 , Fe 2 O 3 as a sub-crystal phase. The ceramic sintered body has a Mohs hardness. The content of a very hard compound having a ratio of more than 7 is 0.5% by weight or less, and the content of Al 2 O 3 is less than the content of ZrO 2 and is 0.1% by weight or less.
[0015]
For example, when the compound of the above Mohs hardness of 7, as as Al 2 O 3 or SiC is present, even in a foreign matter grinding powder and abrasive powder or shedding dust that has entered into the grinding flaws and voids of the holding member, will be those Mohs hardness of 7 or more compounds are present, due to vibration, etc. such foreign objects at startup magnetic disk device, dropped from voids or grinding scratches, the possibility that the cause of the crash of the magnetic disk device Very expensive. In particular Al 2 O 3 the process of manufacturing retaining member material, generally used may be a grinding balls for raw material powder grinding, more wear, the grinding balls during pulverization, it is present in the holding member many, moreover, because very hard and Mohs hardness 9, a problem of the aforementioned magnetic disk drive crash that occur markedly. Therefore, it is particularly important that the content of Al 2 O 3 is 0.1 wt% or less. As in the present invention, reducing as much as possible the Mohs hardness of 7 or more compounds, the possibility of the magnetic disk device crash is that the low Kunar, leads to supply high holding member of reliability.
[0016]
Hereinafter, a method for manufacturing the magnetic disk substrate holding member of the present invention will be described.
First, a powder obtained by adding iron oxide as a conductive component to forsterite as a main component as a starting material and water are mixed to form a slurry, and the slurry is pulverized by a bead mill shown in FIG. As the pulverized beads used in the bead mill, zirconia beads are used. The aforementioned slurry is supplied from the slurry supply port 2, stirred by the rotary rotor 3, pulverized by grinding with the zirconia pulverized beads 1, and discharged from the slurry outlet 5 through the screen 4. This slurry is pulverized and pulverized. When the average particle size reaches 0.9 μm or less , all the slurry is discharged, and then a binder is added and spray-dried to produce granulated powder. After forming this granulated powder into a predetermined shape at a pressure of about 1 ton / cm 2 , it is fired at a temperature of 1200 to 1500 ° C., and subjected to grinding and polishing, thereby producing a magnetic disk substrate holding member having a predetermined shape. To do.
[0017]
The magnetic disk substrate holding member manufactured by the above manufacturing process is obtained by pulverizing and firing forsterite as a main component and iron oxide as a conductive component so that the average particle size is 0.9 μm or less. This ceramic sintered body is composed of a ceramic sintered body having 2MgO.SiO 2 as a main crystal phase and only at least one kind of crystals of MgFe 2 O 4 , Fe 3 O 4 , and Fe 2 O 3 as a sub-crystal phase. The content of a very hard compound having a Mohs hardness exceeding 7 is 0.5% by weight or less, and the content of Al 2 O 3 is less than the content of ZrO 2 and is suppressed to 0.1% by weight or less. Can be a holding member.
[0018]
That is, Mohs hardness of 7 or less forsterite as the main component (2MgO · SiO 2), using an iron oxide, thus the grinding in a bead mill using zirconia milling beads, the content of the compound exceeding the Mohs hardness 7 it is possible to 0.5 wt% or less, the content of Al 2 O 3 can be 0.1 wt% or less.
[0019]
【Example】
A raw material obtained by mixing a powder obtained by adding iron oxide as a conductive component to forsterite as a main component and water with a stirrer into a slurry is used as a bead mill (invention example) shown in FIG. 1 and a ball mill shown in FIG. The actual particle size distribution was measured by crushing with an average particle size of 0.9 μm or less by the two types of crushing methods of (Comparative Example). The grinding conditions are as shown in Table 1. Next, to prepare a granulated powder was added to the spray dried Vine da to the slurry after the pulverization. This granulated powder was molded into a predetermined shape at a pressure of 1 ton / cm 2 and fired at a temperature of 1280 ° C. to obtain a sintered body. About the obtained sintered compact, composition quantitative analysis by ICP, apparent specific gravity, and void occupation rate were measured, and the results are shown in Table 2. Table 3 shows the Mohs hardness of the constituent compounds for reference.
[0020]
First, in Table 1, in order to satisfy the target particle size, in the ball mill which is a comparative example, the pulverization time is significantly long as 160 hours, but the one using the bead mill which is the embodiment of the present invention is very short. Grinding in time was possible. Further, comparing the particle size distributions of the two, it can be seen that the bead mill has a much sharper distribution than the ball mill. Although the ball mill liner and the pulverized ball 11 shown in FIG. 2 may be made of zirconia, shortening of the pulverization time cannot be expected, and zirconia is very expensive and the capital investment is expected to be enormous. Therefore, it is hard to say that it is an effective method.
[0021]
Next, in Table 2, in the comparative example using a ball mill is Al 2 O 3 in the wear from the liner and grinding balls are mixed from about 2 wt%, in the present invention embodiment using a bead mill Al 2 O 3 Is very low at 0.06% by weight in terms of impurities in the starting material. On the contrary, in the bead mill, ZrO 2 contamination was confirmed to be about 0.15% by weight, but the amount of contamination was small, and ZrO 2 is a material with a Mohs hardness of 7, so the influence on the crash of the magnetic disk device is small. From the apparent specific gravity and void occupancy measurement results, it was confirmed that the bead mill pulverization was more dense and the voids were smaller than the ball mill pulverization. This is because the particle size distribution is very sharp by bead mill grinding, and an effect of reducing foreign matters that adversely affect the crash of the magnetic disk device can be expected.
[0022]
[Table 1]
Figure 0004549031
[0023]
[Table 2]
Figure 0004549031
[0024]
[Table 3]
Figure 0004549031
[0025]
【The invention's effect】
As described above, according to the present invention, 2MgO · SiO 2 obtained by crushing and firing forsterite as a main component and iron oxide as a conductive component so as to have an average particle size of 0.9 μm or less is obtained. A holding member for a magnetic disk substrate comprising a sintered body having only a crystal of MgFe 2 O 4 , Fe 3 O 4 , and Fe 2 O 3 as a main crystal phase and a sub-crystal phase. In the bonded body, the content of a very hard compound having a Mohs hardness of more than 7 is 0.5% by weight or less, and the content of Al 2 O 3 is less than the content of ZrO 2 and is 0.1% by weight or less. By doing so, the difference in thermal expansion from the magnetic disk substrate is small, high-precision processing is possible, it has a static elimination effect, and the content of high-hardness foreign matter that causes a crash of the magnetic disk device Because small, it is possible to provide a highly reliable holding member. Moreover, in the manufacturing process of the ceramic sintered body, the raw material is pulverized and mixed in a bead mill using zirconia beads, so that the amount of high-hardness foreign matter that causes a crash of the magnetic disk device is small, and the particle size distribution However, since a very sharp raw material can be manufactured at a relatively low cost, it is possible to provide a dense and highly reliable holding member having a large apparent specific gravity and a low void occupancy.
[Brief description of the drawings]
FIG. 1 is a schematic view of a bead mill used in a manufacturing process of a magnetic disk substrate holding member of the present invention.
FIG. 2 is a schematic view of a ball mill used for pulverizing general raw material powders.
[Explanation of symbols]
1: grinding beads 2: slurry supply port 3: rotating rotor 4: screen 5: slurry outlet 11: grinding ball 12: raw material slurry

Claims (2)

主成分となるフォルステライトと導電成分となる酸化鉄とを平均粒径が0.9μm以下となるように粉砕し焼成してなる、2MgO・SiOを主結晶相とし、副結晶相としてMgFe、Fe、Feの少なくとも1種の結晶のみを有するセラミック焼結体からなる磁気ディスク基板用保持部材であって、モース硬度が7を超える化合物の含有量が0.5重量%以下であるとともに、Alの含有量がZrOの含有量よりも少なく0.1重量%以下であることを特徴とする磁気ディスク基板用保持部材。2MgO · SiO 2 formed by pulverizing and firing forsterite as a main component and iron oxide as a conductive component to have an average particle size of 0.9 μm or less is used as a main crystal phase, and MgFe 2 as a sub crystal phase. A holding member for a magnetic disk substrate made of a ceramic sintered body having only at least one crystal of O 4 , Fe 3 O 4 , and Fe 2 O 3 , wherein the content of the compound having a Mohs hardness of more than 7 is 0.00. A magnetic disk substrate holding member, wherein the holding member is 5% by weight or less and the content of Al 2 O 3 is less than the content of ZrO 2 and is 0.1% by weight or less. 請求項1に記載の磁気ディスク基板用保持部材の製造方法であって、主成分であるフォルステライトと導電成分となる酸化鉄と水とを攪拌機にて混ぜてスラリー化させた原料をジルコニアビーズを用いたビーズミルで平均粒径が0.9μm以下となるように粉砕する工程と、粉砕後のスラリーにバインダを添加し噴霧乾燥して造粒粉を得る工程と、該造粒粉を加圧成形して焼成する工程とを含むことを特徴とする磁気ディスク基板用保持部材の製造方法。  A method for manufacturing a magnetic disk substrate holding member according to claim 1, wherein zirconia beads are produced by mixing forsterite as a main component, iron oxide as a conductive component, and water into a slurry by mixing with a stirrer. A process of pulverizing the bead mill to have an average particle size of 0.9 μm or less, a process of adding a binder to the pulverized slurry and spray-drying to obtain a granulated powder, and pressing the granulated powder And a step of firing the magnetic disk substrate holding member.
JP2003062946A 2003-03-10 2003-03-10 Magnetic disk substrate holding member and method of manufacturing the same Expired - Fee Related JP4549031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003062946A JP4549031B2 (en) 2003-03-10 2003-03-10 Magnetic disk substrate holding member and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003062946A JP4549031B2 (en) 2003-03-10 2003-03-10 Magnetic disk substrate holding member and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2004269317A JP2004269317A (en) 2004-09-30
JP4549031B2 true JP4549031B2 (en) 2010-09-22

Family

ID=33124666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003062946A Expired - Fee Related JP4549031B2 (en) 2003-03-10 2003-03-10 Magnetic disk substrate holding member and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP4549031B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TR201905690T4 (en) 2011-11-11 2019-05-21 Sakai Chemical Industry Co Hydrotalcite and its production method.
JP6366068B2 (en) * 2015-01-30 2018-08-01 太平洋セメント株式会社 Position adjustment member for concrete burial

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11189463A (en) * 1997-12-26 1999-07-13 Kyocera Corp Semiconductive ceramic, and jig and tool, holder for magnetic disk substrate and magnetic disk by using the same
JP2002193659A (en) * 2000-12-22 2002-07-10 Kyocera Corp Semiconductive ceramic and holding component for magnetic disk substrate using the same
JP2003055760A (en) * 2001-08-10 2003-02-26 Tosoh Corp ITO sputtering target and method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11189463A (en) * 1997-12-26 1999-07-13 Kyocera Corp Semiconductive ceramic, and jig and tool, holder for magnetic disk substrate and magnetic disk by using the same
JP2002193659A (en) * 2000-12-22 2002-07-10 Kyocera Corp Semiconductive ceramic and holding component for magnetic disk substrate using the same
JP2003055760A (en) * 2001-08-10 2003-02-26 Tosoh Corp ITO sputtering target and method of manufacturing the same

Also Published As

Publication number Publication date
JP2004269317A (en) 2004-09-30

Similar Documents

Publication Publication Date Title
JP2006186381A (en) Cmp product
JP6060166B2 (en) Manufacturing method of glass substrate for magnetic disk
JP4549031B2 (en) Magnetic disk substrate holding member and method of manufacturing the same
CN114481050A (en) Cylindrical sputtering target, sintered body, formed body and method for producing the same
JP2008024528A (en) Method of manufacturing glass substrate for magnetic disc
JP2008084520A (en) Substrate for magnetic head, magnetic head, and recording medium-drive
JP4049510B2 (en) Processing method of glass substrate material or glass ceramic substrate material for information storage medium
JP2003288766A (en) Holding member for magnetic disk substrate and method for manufacturing the same
WO2008056710A1 (en) Ceramic sinter, magnetic head substrate and magnetic head using the ceramic sinter, and recording medium drive unit
KR20060045820A (en) Glass substrate for vertical magnetic recording disks and manufacturing method thereof
US6194336B1 (en) Highly toughened alumina sintered bodies and their manufacturing process
JP4025791B2 (en) Magnetic head slider material, magnetic head slider, and method for manufacturing magnetic head slider material
JP2009154096A (en) Ball mill
JPH08174428A (en) Fixed abrasive grain type polishing surface plate
US5713969A (en) Abrasives composition and process for producing substrate for magnetic recording medium
JP2587767B2 (en) Crusher components
JP5295109B2 (en) SUBSTRATE FOR MAGNETIC HEAD, MAGNETIC HEAD, AND RECORDING MEDIUM DRIVE DEVICE
JP2006018905A (en) Magnetic head slider material, magnetic head slider, and manufacturing method of magnetic head slider material
JP4090771B2 (en) Semiconductive ceramic, and magnetic disk substrate holding member and jig using the same
JP5037798B2 (en) Ceramic sintered body and magnetic head substrate
JP2008243354A (en) Magnetic head substrate, its manufacturing method, magnetic head using this, and recording medium driving apparatus
JPH07296377A (en) Substrate for hard disc and production thereof
JP4925233B2 (en) Diamond particle abrasive
CN108751722A (en) A kind of computer hard disk substrate devitrified glass and preparation method
JP2631924B2 (en) Manufacturing method of alumina pulverizer member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100706

R150 Certificate of patent or registration of utility model

Ref document number: 4549031

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees