JP4049510B2 - Processing method of glass substrate material or glass ceramic substrate material for information storage medium - Google Patents
Processing method of glass substrate material or glass ceramic substrate material for information storage medium Download PDFInfo
- Publication number
- JP4049510B2 JP4049510B2 JP2000070704A JP2000070704A JP4049510B2 JP 4049510 B2 JP4049510 B2 JP 4049510B2 JP 2000070704 A JP2000070704 A JP 2000070704A JP 2000070704 A JP2000070704 A JP 2000070704A JP 4049510 B2 JP4049510 B2 JP 4049510B2
- Authority
- JP
- Japan
- Prior art keywords
- substrate material
- glass
- processing
- information storage
- diamond
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Manufacturing Of Magnetic Record Carriers (AREA)
- Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
- Surface Treatment Of Glass (AREA)
- Glass Compositions (AREA)
- Magnetic Record Carriers (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、情報記憶装置に用いられる情報記憶媒体用ガラス基板材またはガラスセラミックス基板材の加工方法に関する。尚、本明細書において「情報記憶媒体」とは、パーソナルコンピュータのハードディスクとして使用される、固定型ハードディスク,リムーバル型ハードディスク,カード型ハードディスクや、デジタルビデオカメラ・デジタルカメラにおいて使用可能なディスク状情報記憶媒体等を意味する。
【0002】
【従来の技術】
近年、従来の固定型情報記憶装置に対して、リムーバル方式やカード方式等の情報記憶装置が検討、実用段階にありデジタルビデオカメラ,デジタルカメラ等の用途展開も始まりつつある。この様な動向により、パーソナルコンピュータのマルチメディア化やデジタルビデオカメラ,デジタルカメラ等の普及が近年急速に進みつつあり、動画や音声等の大きなサイズのデータを扱うべく、大容量の情報磁気記憶装置が求められている。これに対応するため、情報記憶媒体はビットおよびトラック密度を増加させ、ビットセルのサイズを縮小化して面記録密度を大きくなければならず、一方磁気ヘッドはビットセルの縮小化に合わせディスク表面により近接して作動する、ニアコンタクトレコーディング、更にコンタクトレコーディング方式を採用する方向へ進みつつある。
【0003】
このように磁気記録機密度の向上に伴い、これら情報記憶媒体用基板材に求められる強度やその他の物性(表面粗度等)もより高度となり、このためアルミニウム合金からガラスセラミックスや化学強化ガラスへ材料のシフトが進行しつつある。これら化学強化ガラス材料やガラスセラミックス材料の加工方法は、一般的に1次加工→二次加工→研磨の3段階により構成される。一次加工については、遊離砥粒(SiC系)による加工,ラップ方式によるダイヤモンドペレット加工方式がある。また、二次加工については、近年加工レートの向上や表面粗度の向上、研磨の短時間化を目的とした幾つかの加工方法が提案されている。二次加工方法として提案されているものとしては、ラップ方式による#2000以上のダイヤモンドペレットによる加工方法,ロータリー方式による片面枚葉式のレジンまたはメタルダイヤモンドホイールによる加工方法,さらにロータリー方式による片面枚葉式のレジンまたはメタルダイヤモンドホイールにエリッド機構を施した加工方法が評価されている。
【0004】
しかしいずれの加工方法においても、基板表面のスクラッチ・研削痕・基板材料を固定するための吸引による吸着痕(枚葉式)・板厚の変動等の問題を有しており、昨今の加工時間の短時間化・低コスト・高精度を目的とした、情報記憶媒体用ガラス基板材またはガラスセラミックス基板材の加工方法としては十分に対応できる加工方法とは言い難いものとなっている。
【0005】
【発明が解決しようとする課題】
本発明の目的は、前記従来技術に見られる諸欠点を解消すべく、情報記憶媒体用ガラス基板材またはガラスセラミックス基板材材に好適な加工方法を提供することにある。
【0006】
【課題を解消するための手段】
本発明者は、上記目的を達成するために鋭意試験研究を重ねた結果、情報記憶媒体用ガラス基板材またはガラスセラミック基板材の加工方法において、一次ラップ加工はレジン,メタル,ビトリファイド等のダイヤモンドペレットによるラップ加工、次いで二次加工はダイヤモンドパッドによる加工とすることにより、表面の平滑性およびスクラッチ・研削痕・吸引痕等の欠陥がなく、しかも短時間での加工が可能となることを見い出し、本発明に至った。
【0007】
すなわち、請求項1に記載の発明は、一次ラップ加工と二次加工を含む基板材の加工方法であって、
該一次ラップ加工はレジン,メタル,ビトリファイド等のボンドにダイヤモンド砥粒が固定されたダイヤモンドペレットを用いてラップ加工することを特徴とし、
該二次加工は、該一次ラップ加工の後、ダイヤモンドパッドにて精研削加工する工程であって、該ダイヤモンドパッドは平坦な頂部を有した多数のタイル状凸起を有し、該タイル状凸起は樹脂系素材にダイヤモンド砥粒が固定されてなることを特徴とする、情報記憶媒体用ガラス基板材またはガラスセラミックス基板材の加工方法であり、
請求項2に記載の発明は、前記一次ラップ加工において、レジン,メタル,ビトリファイド等のボンドに固定されたダイヤモンド砥粒の粒度が#800〜#1500であることを特徴とする、請求項1に記載の情報記憶媒体用ガラス基板材またはガラスセラミックス基板材の加工方法であり、
請求項3に記載の発明は、前記ダイヤモンドペレットのボンドのヌープ硬度は、300×10〜800×10N/mm2の範囲内であることを特徴とする、請求項1又は2記載の情報記憶媒体用ガラス基板材またはガラスセラミックス基板材の加工方法であり、
請求項4に記載の発明は、前記二次加工において、ダイヤモンドパッドのダイヤモンド粒径が1〜15μmの範囲内であることを特徴とする、請求項1から3のうちいずれか一項記載の情報記憶媒体用ガラス基板材またはガラスセラミックス基板材の加工方法であり、
請求項5に記載の発明は、前記ダイヤモンドパッドの該タイル状凸起のビッカース硬度は、5×10〜40×10N/mm2の範囲内であることを特徴とする、請求項1から4のうちいずれか一項記載の情報記憶媒体用ガラス基板材またはガラスセラミックス基板材の加工方法であり、
請求項6に記載の発明は、前記加工方法において二次加工後のガラス基板材またはガラスセラミックス基板材の表面粗度Ra(算術平均粗さ)が50〜800Å,Rp(最大山頂高さ)およびRv(最大谷底深さ)が300〜3000Åであることを特徴とする、請求項1から5のうちいずれか一項記載の情報記憶媒体用ガラス基板材またはガラスセラミックス基板材の加工方法であり、
請求項7に記載の発明は、前記ガラス基板材の加工方法において、加工されるガラス基板材は、SiO2―Al2O3―R2O(但し、Rはアルカリ金属元素の中から選ばれる少なくとも1種以上)系化学強化ガラスであることを特徴とする、請求項1から6のうちいずれか一項記載の情報記憶媒体用ガラス基板材の加工方法であり、
請求項8に記載の発明は、前記ガラスセラミック基板材の加工方法において、加工されるガラスセラミックス基板材は、SiO2―Al2O3―Li2O系ガラスセラミックスまたはSiO2―Al2O3―MgO―TiO2系ガラスセラミックスであることを特徴とする、請求項1から7のうちいずれか一項記載の情報記憶媒体用ガラスセラミックス基板材の加工方法であり、
請求項9に記載の発明は、前記ガラス基板材またはガラスセラミック基板材の加工方法において、二次加工におけるダイヤモンドパッドのダイヤモンド粒径が1〜15μmの範囲内であり、かつ加工スラリーは1.0〜1.5μmの範囲のZrO2またはAl2O3のいずれかの研磨材を3〜20wt%含有することを特徴とする、請求項1から8のうちいずれか一項記載の情報記憶媒体用ガラス基板材またはガラスセラミックス基板材の加工方法であり、
請求項10に記載の発明は、請求項1から9のうちいずれか一項記載の方法により加工されたことを特徴とする、情報記憶媒体用ガラス基板材またはガラスセラミックス基板材である。
尚、本明細書中において、Rp(最大山頂高さ)は基板表面の基準長さにおける、粗さ曲線の平均線と最大凸部の山頂との距離を示し、Rv(最大谷底深さ)は基板表面の基準長さにおける、粗さ曲線の平均線と最大凹部の谷底との距離を示す。
【0008】
本発明の情報記憶媒体用ガラス基板材またはガラスセラミックス基板材の加工方法を上記のように限定した理由を以下に示す。
【0009】
本発明の基板材の加工方法は、一次ラップ加工と二次加工を含む。
まず、一次ラップ加工は比較的短時間で二次加工に好適な表面状態を得るために、レジン、メタル、ビトリファイド等のボンドにダイヤモンド砥粒が固定されたダイヤモンドペレットを用いて加工する。ダイヤモンドペレットに固定されたダイヤモンド砥粒の粒度は、基板材表面のスクラッチやクラックの発生を抑制するために、#800以上が好ましい。また、加工レートの減少に伴い加工時間が長時間化し高価となると同時に、ダイヤモンド砥粒の目づまり・目つぶれを防止するために、該ダイヤモンド砥粒の粒度は#1500以下が好ましい。
一次ラップ加工に用いるダイヤモンドペレットのボンドのヌープ硬度は、加工性の点から、300×10〜800×10N/mm2の範囲内であることが好ましく、500×10〜700×10N/mm2の範囲内であることがより好ましい。
次に、二次加工について説明する。
本発明に係る二次加工は、前記一次ラップ加工の後、ダイヤモンドパッドにて精研削加工する工程である。該ダイヤモンドパッドは平坦な頂部を有した多数のタイル状凸起を有し、該タイル状凸起は樹脂系素材にダイヤモンド砥粒が固定されてなることが、本発明において最も重要であり、本発明のポイントである。
ガラスセラミックス基板材を、一次ラップ加工した後、二次加工として、樹脂系素材にダイヤモンド砥粒が固定されてなるタイル状凸起を有したダイヤモンドパッドにて精研削加工することによって、例えば、Ni−P等メッキするに好適な表面性状の精研削面を得ることができる。
また、ガラス又はガラスセラミックス基板材を、遊離砥粒を用いて研磨する場合にあっては、一次ラップ加工した後、二次加工として、樹脂系素材にダイヤモンド砥粒が固定されてなるタイル状凸起を有したダイヤモンドパッドにて精研削加工することによって、その後の遊離砥粒を用いた研磨の際、良好な平滑性の研磨面を短時間で仕上げることを可能とすることができる。これに対して、ラップ加工の後直接研磨すると、良好な平滑性の研磨面に仕上げるのは困難であるか、又は非常に長い加工時間を必要とする。また、ロータリー式ダイヤモンドホイール方式においても、得られる研磨面は十分ではない。
前記タイル状凸起は平坦な頂部を有する。該タイル状凸起の平坦な頂部は、該タイル状凸起がダイヤモンドパッドの一方の面に多数敷かれ、仮想平面を形成することによって、精研削に供する。
前記タイル状凸起は良好な精研削効果を得るために、約1mm未満の隙間でダイヤモンドパッドの一方の面に多数敷かれることが好ましい。また、精研削の際、研削液が均等に行き渡り、かつ、研削屑が円滑に排出されるよう、ダイヤモンドパッドは、複数のタイル状凸起ごとに、幅約1〜10mmの溝加工を施した物が好ましい。
前記タイル状凸起の樹脂系素材としては、ポリウレタン系、フェノール樹脂系、メラミン樹脂系等の素材を使用することができる。
本発明の二次加工に用いるダイヤモンドパッドの該タイル状凸起のビッカース硬度は、5×10〜40×10N/mm2の範囲内であることが好ましく、10×10〜30×10N/mm2の範囲内であることがより好ましい。
【0010】
ダイヤモンドパッドはその固定されるダイヤモンド砥粒の粒径が15μmを越えると目標とする表面粗度が得られず、1μm未満では加工時間の増大に伴うコスト増により、得られる基板材は非常に高価な物となってしまう。尚、前記ダイヤモンド粒径で構成されるダイヤモンドパッドによって加工された後の基板表面粗度Ra(算術平均粗さ)は、50〜800Å,Rp(最大山頂高さ)およびRv(最大谷底深さ)は300〜3000Åの範囲とすることが好ましい。
【0011】
また、ダイヤモンドパッドによる加工を行う時に研削液を用いるが、本発明では研削液の代わりに加工スラリーとしてZrO2またはAl2O3の研磨材を含有した研磨液を併用する事で加工レートの向上や表面平滑性を向上させることも可能である。これらの研磨材は1.0〜1.5μmの範囲のいずれかの研磨材を3〜20wt%含有させたスラリーで加工することが好ましい。
【0012】
尚、これらの加工方法で加工されるガラス基板材は、SiO2―Al2O3―R2O(但し、Rはアルカリ金属元素の中から選ばれる少なくとも1種以上)系化学強化ガラス,SiO2―Al2O3―Li2O系ガラスセラミックス,SiO2―Al2O3―MgO―TiO2系ガラスセラミックスに適しており、特にSiO2―Al2O3―MgO―CaO―Li2O―Na2O―ZrO2―Y2O3―TiO2―As2O3系化学強化ガラス,SiO2―Al2O3―Li2O―Na2O―ZrO2―As2O3系化学強化ガラスや、SiO2―Al2O3―MgO―ZnO―Li2O―P2O5―ZrO2―K2O―Sb2O3系ガラスセラミックス,SiO2―Al2O3―MgO―CaO―BaO―TiO2―P2O5―As2O3系ガラスセラミックス,SiO2―Al2O3―MgO―CaO―SrO―BaO―TiO2―ZrO2―Bi2O3―Sb2O3系ガラスセラミックス材に適している。更に含有している結晶相でいえば、二珪酸リチウム,SiO2系結晶(石英,クリストバライト,トリジマイト等),コージェライト,エンスタタイト,チタンサンアルミニウムマグネシウム,スピネル系結晶([Mgおよび/またはZn]Al2O4,[Mgおよび/またはZn]2TiO4およびこれら2結晶間の固溶体を指す),フォルステライト,スポジューメンおよびこれら結晶の固溶体を結晶相として含有するガラスセラミックスに非常に適したものである。
【0013】
【発明の実施の形態】
次に本発明の好適な実施例について説明する。表1,表2には本発明の加工方法にて加工した情報記憶媒体用ガラス基板材,ガラスセラミックス基板材の組成、およびガラス基板材,ガラスセラミックス基板材の状態と各材料のヤング率,比重,ビッカース硬度(Hv)を示した。また表3,表4には表1,表2に記載のガラス基板材,ガラスセラミックス基板材の実施加工例11種と、比較加工例として現在一般的に採用されている加工方法を示した。またこれらの実施加工例として、一次ラップのダイヤモンドペレットの番手、二次加工のダイヤモンドパッドのダイヤモンド粒径、加工スラリー研磨材の種類と粒径,含有量,加工後の表面粗度Ra,Rv,Rp、および表面外観として、スクラッチ(細かい傷),ピット(深い穴状の凹み)の有無をそれぞれ示した。さらに本発明の加工方法および一般的な加工方法で得られた各基板表面の外観状態の顕微鏡写真(ノマルスキー式顕微鏡写真または表面欠陥検査装置による写真)をそれぞれ図1〜8に示す。ここで図1は実施加工例5のノマルスキ顕微鏡写真、図2は実施加工例5の表面欠陥検査装置による写真。図3は実施加工例10のノマルスキ顕微鏡写真、図4は実施加工例10の表面欠陥検査装置による写真。図5は比較加工例1のノマルスキ顕微鏡写真、図6は比較加工例1の表面欠陥検査装置による写真。図7は比較加工例2のノマルスキ顕微鏡写真、図8は比較加工例2表面欠陥検査装置による写真である。
【0014】
【表1】
【0015】
【表2】
【0016】
【表3】
【0017】
【表4】
【0018】
【表5】
【0019】
本発明の加工実施例はそれぞれ3.5”ディスク基板を用い、一次ラップ加工は、12B式両面加工機により#800〜#1500番手のダイヤモンドペレット(ボンドのヌープ硬度は、600×10N/mm2)を用い、加工荷重が100〜250g/cm2,加工回転数が20〜50rpmの範囲で加工を行った。
ついで二次加工として、それぞれのダイヤモンド粒径のダイヤモンド砥粒が樹脂系素材に固定されたタイル状凸起を有するダイヤモンドパッドを用いて精研削加工した。ここでは、1.34×1.34×0.30mmの寸法のタイル状物を0.50mmの隙間で敷してタイル状凸起とし、更に、11×11個のタイル状凸起ごとに、深さ0.5mm、幅2.0mmの溝加工を施したダイヤモンドパッドを用いた。このダイヤモンドパッドの、タイル状凸起が敷かれた側の面を、図9に示す。
このダイヤモンドパッドのタイル状凸起部分のビッカース硬度は、20×10N/mm2であった。ダイヤモンドパッドは約1〜10mmの溝加工を施した物を12B式両面加工機の上下定盤へ貼り付け、加工荷重が100〜250g/cm2,加工回転数が20〜50rpmの範囲で約5〜25分で加工を行った。
【0020】
表3,4および図1〜8に示されるとおり、本発明の加工方法は、加工後の表面粗度が従来の加工法に比べて著しく改善され、且つ、従来問題とされた基板表面のスクラッチ,ピット,研削痕,吸着痕が発生していないものであり情報記憶媒体用ガラス基板材またはガラスセラミックス基板材の加工方法として優れる方法である。尚、本発明の加工方法で加工された基板材は、後工程の研磨の短時間化を可能にすると同時に、平滑性に優れた基板を得ることが可能なものであった。
【0021】
【発明の効果】
以上述べたように、本発明の加工方法によれば、上記従来技術に見られる諸欠点を解消しつつ、あらゆる情報記憶媒体用ガラス基板材またはガラスセラミックス基板材の加工が平滑性・表面欠陥性に優れると同時に、短加工時間による低コスト化に優れた情報記憶媒体用ガラス基板材またはガラスセラミックス基板材の加工方法を提供することができる。
【図面の簡単な説明】
【図1】実施加工例5のノマルスキ顕微鏡による基板表面状態の写真。
【図2】実施加工例5の表面欠陥検査装置による基板表面状態の写真。
【図3】実施加工例10のノマルスキ顕微鏡による基板表面状態の写真。
【図4】実施加工例10の表面欠陥検査装置による基板表面状態の写真。
【図5】比較加工例1のノマルスキ顕微鏡による基板表面状態の写真。
【図6】比較加工例1の表面欠陥検査装置による基板表面状態の写真。
【図7】比較加工例2のノマルスキ顕微鏡による基板表面状態の写真。
【図8】比較加工例2表面欠陥検査装置による基板表面状態の写真。
【図9】ダイヤモンドパッドのタイル状凸起が敷かれた側の面。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for processing a glass substrate material or glass ceramic substrate material for an information storage medium used in an information storage device. In this specification, “information storage medium” refers to a disk-type information storage that can be used in a fixed hard disk, a removable hard disk, a card hard disk, a digital video camera, or a digital camera, which is used as a hard disk of a personal computer. Means medium.
[0002]
[Prior art]
In recent years, information storage devices such as a removable method and a card method have been studied and put into practical use with respect to conventional fixed information storage devices, and applications of digital video cameras, digital cameras, etc. are beginning to be developed. Due to these trends, the use of multimedia in personal computers and the spread of digital video cameras, digital cameras, etc. have been rapidly progressing in recent years, and large-capacity information magnetic storage devices have been developed to handle large-size data such as movies and voices. Is required. To accommodate this, information storage media must increase bit and track density, reduce bit cell size and increase surface recording density, while magnetic heads are closer to the disk surface as bit cells shrink. In the direction of adopting near contact recording and further contact recording methods.
[0003]
As the density of magnetic recording machines is improved, the strength and other physical properties (surface roughness, etc.) required for these information storage medium substrates have become higher. Therefore, from aluminum alloys to glass ceramics and chemically strengthened glass. Material shift is progressing. The processing method of these chemically strengthened glass materials and glass ceramic materials is generally composed of three stages: primary processing → secondary processing → polishing. As for primary processing, there are processing by loose abrasive grains (SiC type) and diamond pellet processing method by a lapping method. As for secondary processing, several processing methods have been proposed in recent years for the purpose of improving the processing rate, improving the surface roughness, and shortening the polishing time. Proposed secondary processing methods include processing methods using # 2000 or more diamond pellets by the lapping method, processing methods using a single-sided single-sided resin or metal diamond wheel using the rotary method, and single-sided single-sided wafers using the rotary method. A processing method in which an erid mechanism is applied to a resin or metal diamond wheel of the type has been evaluated.
[0004]
However, each processing method has problems such as scratches on the surface of the substrate, grinding marks, suction marks due to suction to fix the substrate material (single-wafer type), and fluctuations in the plate thickness. As a processing method of a glass substrate material for an information storage medium or a glass ceramic substrate material for the purpose of shortening the time, lowering cost, and high accuracy, it is difficult to say that it is a processing method that can be sufficiently handled.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a processing method suitable for a glass substrate material for an information storage medium or a glass ceramic substrate material so as to eliminate the various disadvantages found in the prior art.
[0006]
[Means for solving problems]
As a result of intensive studies and studies to achieve the above object, the present inventor, as a result of processing a glass substrate material or glass ceramic substrate material for an information storage medium, primary lapping is diamond pellets such as resin, metal, vitrified, etc. It is found that lapping by secondary machining and then secondary machining are performed by diamond pad, and there are no defects such as surface smoothness and scratches, grinding marks, suction marks, etc., and it is possible to process in a short time. The present invention has been reached.
[0007]
That is, the invention described in claim 1 is a processing method of a substrate material including primary lapping and secondary processing,
The primary lapping is characterized by lapping using diamond pellets in which diamond abrasive grains are fixed to a bond of resin, metal, vitrified, etc.
The secondary processing is a step of fine grinding with a diamond pad after the primary lapping, and the diamond pad has a large number of tile-shaped protrusions having a flat top, and the tile-shaped projections. Origin is a processing method of a glass substrate material or glass ceramic substrate material for information storage media, characterized in that diamond abrasive grains are fixed to a resin material,
The invention according to claim 2 is characterized in that in the primary lapping, the grain size of diamond abrasive grains fixed to a bond of resin, metal, vitrified, etc. is # 800 to # 1500. It is a processing method of the glass substrate material or glass ceramic substrate material for information storage medium described,
3. The information storage medium according to claim 1, wherein the Knoop hardness of the bond of the diamond pellet is within a range of 300 × 10 to 800 × 10 N / mm 2. Glass substrate material or glass ceramic substrate material processing method,
The invention according to claim 4 is the information according to any one of claims 1 to 3, wherein in the secondary processing, the diamond pad has a diamond particle diameter in the range of 1 to 15 μm. A method for processing a glass substrate material or a glass ceramic substrate material for a storage medium,
The invention described in claim 5 is characterized in that the Vickers hardness of the tile-like protrusion of the diamond pad is in the range of 5 × 10 to 40 × 10 N / mm 2 . It is a processing method of a glass substrate material or a glass ceramic substrate material for an information storage medium according to any one of them,
The invention according to claim 6 is that the glass substrate material or glass ceramic substrate material after the secondary processing in the processing method has a surface roughness Ra (arithmetic average roughness) of 50 to 800 mm, Rp (maximum summit height) and It is a processing method of the glass substrate material for information storage media or the glass-ceramics substrate material as described in any one of Claims 1-5 characterized by Rv (maximum valley bottom depth) being 300-3000 mm,
According to a seventh aspect of the present invention, in the method for processing a glass substrate material, the glass substrate material to be processed is selected from SiO 2 —Al 2 O 3 —R 2 O (where R is an alkali metal element). It is a processing method of the glass substrate material for information storage media according to any one of claims 1 to 6, characterized in that it is at least one or more) type chemically strengthened glass.
The invention according to claim 8 is the glass ceramic substrate material processing method, wherein the glass ceramic substrate material to be processed is SiO 2 —Al 2 O 3 —Li 2 O glass ceramic or SiO 2 —Al 2 O 3. The method for processing a glass ceramic substrate material for an information storage medium according to any one of claims 1 to 7, wherein the glass ceramic substrate material is a MgO-TiO 2 glass ceramic.
The invention according to claim 9 is the processing method of the glass substrate material or glass ceramic substrate material, wherein the diamond pad has a diamond particle diameter in the range of 1 to 15 μm in the secondary processing, and the processing slurry is 1.0. The information storage medium according to any one of claims 1 to 8, characterized by containing 3 to 20 wt% of an abrasive of either ZrO 2 or Al 2 O 3 in the range of ~ 1.5 µm. A method for processing a glass substrate material or a glass ceramic substrate material,
The invention according to claim 10 is a glass substrate material or glass ceramic substrate material for an information storage medium, which is processed by the method according to any one of claims 1 to 9.
In the present specification, Rp (maximum peak height) indicates the distance between the average line of the roughness curve and the peak of the maximum convex portion at the reference length of the substrate surface, and Rv (maximum valley depth). The distance between the average line of the roughness curve and the valley bottom of the maximum recess in the reference length of the substrate surface is shown.
[0008]
The reason why the method for processing the glass substrate material for information storage medium or the glass ceramic substrate material of the present invention is limited as described above will be described below.
[0009]
The substrate material processing method of the present invention includes primary lapping and secondary processing.
First, in order to obtain a surface state suitable for secondary processing in a relatively short time, primary lapping is performed using diamond pellets in which diamond abrasive grains are fixed to a bond such as resin, metal, or vitrified. The grain size of the diamond abrasive grains fixed to the diamond pellet is preferably # 800 or more in order to suppress the generation of scratches and cracks on the surface of the substrate material. Further, in order to prevent the clogging / clogging of the diamond abrasive grains at the same time as the machining rate decreases and the machining time becomes long and expensive, the diamond abrasive grains preferably have a grain size of # 1500 or less.
The Knoop hardness of the bond of the diamond pellet used for the primary lapping is preferably in the range of 300 × 10 to 800 × 10 N / mm 2 from the viewpoint of workability, and is preferably 500 × 10 to 700 × 10 N / mm 2 . More preferably within the range.
Next, secondary processing will be described.
The secondary processing according to the present invention is a step of fine grinding with a diamond pad after the primary lapping. It is most important in the present invention that the diamond pad has a large number of tile-shaped protrusions having a flat top, and the diamond-shaped protrusions are fixed to a resin-based material. It is a point of the invention.
After the glass ceramic substrate material is subjected to primary lapping, as a secondary processing, fine grinding is performed with a diamond pad having a tile-like protrusion in which diamond abrasive grains are fixed to a resin material, for example, Ni A fine ground surface having surface properties suitable for plating such as -P can be obtained.
In the case of polishing glass or glass ceramic substrate material using loose abrasive grains, after the primary lapping process, as a secondary process, the tile-shaped projections in which diamond abrasive grains are fixed to the resin material By fine grinding with a diamond pad having protrusions, it is possible to finish a polished surface with good smoothness in a short time during subsequent polishing using loose abrasive grains. On the other hand, when lapping directly after lapping, it is difficult to finish a polished surface with good smoothness or requires a very long processing time. Further, even in the rotary diamond wheel system, the obtained polished surface is not sufficient.
The tile-like protrusion has a flat top. The flat top of the tile-shaped protrusion is subjected to fine grinding by forming a large number of tile-shaped protrusions on one surface of the diamond pad and forming a virtual plane.
In order to obtain a good fine grinding effect, a large number of the tile-like protrusions are preferably laid on one surface of the diamond pad with a gap of less than about 1 mm. In addition, the diamond pad was subjected to a groove processing with a width of about 1 to 10 mm for each of the plurality of tile-shaped protrusions so that the grinding fluid was evenly distributed during grinding and the grinding waste was smoothly discharged. Things are preferred.
As the tile-shaped protruding resin material, polyurethane, phenol resin, melamine resin, or the like can be used.
The Vickers hardness of the tile-like protrusion of the diamond pad used in the secondary processing of the present invention is preferably in the range of 5 × 10 to 40 × 10 N / mm 2 , and 10 × 10 to 30 × 10 N / mm 2. It is more preferable to be within the range.
[0010]
If the diamond pad has a diamond abrasive grain size of more than 15 μm, the target surface roughness cannot be obtained. If it is less than 1 μm, the resulting substrate material is very expensive due to increased costs associated with increased processing time. It becomes a thing. The substrate surface roughness Ra (arithmetic mean roughness) after being processed by the diamond pad having the diamond particle size is 50 to 800 mm, Rp (maximum peak height) and Rv (maximum valley depth). Is preferably in the range of 300 to 3000cm.
[0011]
In addition, a grinding fluid is used when processing with a diamond pad. In the present invention, the processing rate is improved by using a polishing fluid containing a ZrO 2 or Al 2 O 3 abrasive instead of the grinding fluid. It is also possible to improve surface smoothness. These abrasives are preferably processed with a slurry containing 3 to 20 wt% of any abrasive in the range of 1.0 to 1.5 μm.
[0012]
The glass substrate material processed by these processing methods is SiO 2 —Al 2 O 3 —R 2 O (where R is at least one selected from alkali metal elements), chemically tempered glass, SiO Suitable for 2- Al 2 O 3 -Li 2 O glass ceramics, SiO 2 -Al 2 O 3 -MgO-TiO 2 glass ceramics, especially SiO 2 -Al 2 O 3 -MgO-CaO-Li 2 O —Na 2 O—ZrO 2 —Y 2 O 3 —TiO 2 —As 2 O 3 chemically strengthened glass, SiO 2 —Al 2 O 3 —Li 2 O—Na 2 O—ZrO 2 —As 2 O 3 Tempered glass, SiO 2 —Al 2 O 3 —MgO—ZnO—Li 2 O—P 2 O 5 —ZrO 2 —K 2 O—Sb 2 O 3 glass ceramics, SiO 2 —Al 2 O 3 —MgO— CaO—BaO—TiO 2 —P 2 O 5 —As 2 O 3 system Glass ceramics are suitable for SiO 2 -Al 2 O 3 -MgO- CaO-SrO-BaO-TiO 2 -ZrO 2 -Bi 2 O 3 -Sb 2 O 3 based glass ceramic material. Speaking of the crystal phases contained, lithium disilicate, SiO 2 crystal (quartz, cristobalite, tridymite, etc.), cordierite, enstatite, titanium san aluminum magnesium, spinel crystal ([Mg and / or Zn]) Al 2 O 4 , [Mg and / or Zn] 2 TiO 4 and solid solution between these two crystals), forsterite, spodumene, and glass ceramics containing a solid solution of these crystals as crystal phases. is there.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Next, preferred embodiments of the present invention will be described. Tables 1 and 2 show the composition of the glass substrate material for the information storage medium and the glass ceramic substrate material processed by the processing method of the present invention, the state of the glass substrate material and the glass ceramic substrate material, and the Young's modulus and specific gravity of each material. , Vickers hardness (Hv) is shown. Tables 3 and 4 show 11 types of working examples of glass substrate materials and glass ceramic substrate materials shown in Tables 1 and 2 and processing methods that are currently generally employed as comparative processing examples. In addition, as examples of the workings, the number of the primary lap diamond pellets, the diamond particle size of the diamond pad of the secondary processing, the type and particle size of the processing slurry abrasive, the content, the surface roughness Ra, Rv after processing, As Rp and surface appearance, the presence or absence of scratches (fine scratches) and pits (deep hole-like dents) were shown. Furthermore, micrographs (Nomarski micrographs or photographs taken by a surface defect inspection apparatus) of the appearance of the surface of each substrate obtained by the processing method of the present invention and general processing methods are shown in FIGS. Here, FIG. 1 is a Nomarski micrograph of the working example 5, and FIG. 2 is a photograph taken by the surface defect inspection apparatus of the working example 5. FIG. 3 is a Nomarski micrograph of the working example 10, and FIG. 4 is a photograph taken by the surface defect inspection apparatus of the working example 10. FIG. 5 is a Nomarski micrograph of Comparative Processing Example 1, and FIG. 6 is a photograph of the surface defect inspection apparatus of Comparative Processing Example 1. FIG. 7 is a Nomarski micrograph of Comparative Processing Example 2, and FIG. 8 is a photo of Comparative Processing Example 2 surface defect inspection apparatus.
[0014]
[Table 1]
[0015]
[Table 2]
[0016]
[Table 3]
[0017]
[Table 4]
[0018]
[Table 5]
[0019]
Each of the working examples of the present invention uses 3.5 "disk substrates, and the primary lapping is performed by using a 12B double-sided processing machine with # 800 to # 1500th diamond pellets (Bond Knoop hardness is 600 × 10 N / mm 2). ), The machining load was 100 to 250 g / cm 2 and the machining rotation speed was 20 to 50 rpm.
Then, as a secondary processing, fine grinding was performed using a diamond pad having a tile-like protrusion in which diamond abrasive grains having respective diamond particle sizes were fixed to a resin material. Here, tiled objects having dimensions of 1.34 × 1.34 × 0.30 mm are laid out with a gap of 0.50 mm to form tile-shaped protrusions, and for each 11 × 11 tile-shaped protrusions, A diamond pad with a groove of 0.5 mm depth and 2.0 mm width was used. FIG. 9 shows the surface of the diamond pad on the side where the tile-like protrusions are laid.
The Vickers hardness of the tile-like protruding portion of this diamond pad was 20 × 10 N / mm 2 . A diamond pad with a groove processing of about 1 to 10 mm is pasted on the upper and lower surface plates of a 12B double-sided processing machine, the processing load is 100 to 250 g / cm 2 , and the processing rotation speed is about 5 to about 50 rpm. Processing took -25 minutes.
[0020]
As shown in Tables 3 and 4 and FIGS. 1 to 8, the processing method of the present invention has the surface roughness after processing remarkably improved as compared with the conventional processing method, and scratches on the substrate surface, which has been a problem in the past. , Pits, grinding marks, and suction marks are not generated, and is an excellent method for processing a glass substrate material for an information storage medium or a glass ceramic substrate material. Note that the substrate material processed by the processing method of the present invention can shorten the time required for polishing in the subsequent process, and at the same time, can obtain a substrate having excellent smoothness.
[0021]
【The invention's effect】
As described above, according to the processing method of the present invention, the processing of any glass substrate material or glass ceramic substrate material for information storage media can be performed with smoothness and surface defects while eliminating the various disadvantages found in the prior art. In addition, it is possible to provide a method for processing a glass substrate material for an information storage medium or a glass ceramic substrate material, which is excellent in cost reduction due to a short processing time.
[Brief description of the drawings]
FIG. 1 is a photograph of the surface state of a substrate using a Nomarski microscope in Working Example 5.
FIG. 2 is a photograph of a substrate surface state obtained by a surface defect inspection apparatus according to Working Example 5;
FIG. 3 is a photograph of a substrate surface state obtained by a Nomarski microscope in Working Example 10.
4 is a photograph of a substrate surface state obtained by a surface defect inspection apparatus according to Working Example 10. FIG.
5 is a photograph of the substrate surface state using a Nomarski microscope in Comparative Processing Example 1. FIG.
6 is a photograph of the surface state of the substrate by the surface defect inspection apparatus of Comparative Processing Example 1. FIG.
7 is a photograph of the substrate surface state by a Nomarski microscope in Comparative Processing Example 2. FIG.
FIG. 8 is a photograph of a substrate surface state obtained by a comparative processing example 2 surface defect inspection apparatus.
FIG. 9 shows the surface of the diamond pad on which the tile-like protrusions are laid.
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000070704A JP4049510B2 (en) | 1999-03-24 | 2000-03-14 | Processing method of glass substrate material or glass ceramic substrate material for information storage medium |
MYPI20001130A MY137347A (en) | 1999-03-24 | 2000-03-22 | Method for machining a glass substrate or a glass-ceramic substrate for an information storage medium |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11-79327 | 1999-03-24 | ||
JP7932799 | 1999-03-24 | ||
JP2000070704A JP4049510B2 (en) | 1999-03-24 | 2000-03-14 | Processing method of glass substrate material or glass ceramic substrate material for information storage medium |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000339672A JP2000339672A (en) | 2000-12-08 |
JP4049510B2 true JP4049510B2 (en) | 2008-02-20 |
Family
ID=26420345
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000070704A Expired - Fee Related JP4049510B2 (en) | 1999-03-24 | 2000-03-14 | Processing method of glass substrate material or glass ceramic substrate material for information storage medium |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4049510B2 (en) |
MY (1) | MY137347A (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1391537A (en) | 1999-09-21 | 2003-01-15 | 株式会社小原 | Holding member for information storage disk and information storage disk drive device |
US7169031B1 (en) | 2005-07-28 | 2007-01-30 | 3M Innovative Properties Company | Self-contained conditioning abrasive article |
US7494519B2 (en) | 2005-07-28 | 2009-02-24 | 3M Innovative Properties Company | Abrasive agglomerate polishing method |
US8603350B2 (en) | 2009-07-17 | 2013-12-10 | Ohara Inc. | Method of manufacturing substrate for information storage media |
JP2011040144A (en) * | 2009-07-17 | 2011-02-24 | Ohara Inc | Method for manufacturing substrate for information storage medium |
JP2012064295A (en) * | 2009-11-10 | 2012-03-29 | Showa Denko Kk | Method for manufacturing glass substrate for magnetic recording medium |
JP5624829B2 (en) * | 2010-08-17 | 2014-11-12 | 昭和電工株式会社 | Method for manufacturing glass substrate for magnetic recording medium |
JP2012089221A (en) * | 2010-10-22 | 2012-05-10 | Showa Denko Kk | Method for manufacturing glass substrate for magnetic recording medium |
KR102438534B1 (en) | 2019-03-06 | 2022-08-30 | 가부시키가이샤 오하라 | Inorganic composition articles and crystallized glass |
DE112023000364T5 (en) * | 2022-01-14 | 2024-09-19 | AGC Inc. | CRYSTALLIZED GLASS, GLASS SUBSTRATE FOR HIGH FREQUENCY DEVICE, HIGH FREQUENCY FILTER DEVICE, LIQUID CRYSTAL ANTENNA, AMORPHOUS GLASS AND METHOD FOR PRODUCING A CRYSTALLIZED GLASS |
-
2000
- 2000-03-14 JP JP2000070704A patent/JP4049510B2/en not_active Expired - Fee Related
- 2000-03-22 MY MYPI20001130A patent/MY137347A/en unknown
Also Published As
Publication number | Publication date |
---|---|
MY137347A (en) | 2009-01-30 |
JP2000339672A (en) | 2000-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2002342915A (en) | Glass substrate for magnetic recording medium and method of manufacturing the same | |
JP4049510B2 (en) | Processing method of glass substrate material or glass ceramic substrate material for information storage medium | |
US20100247977A1 (en) | Subastrate for a magnetic disk and method of manufacturing the same | |
JP6490842B2 (en) | Grinding tool, glass substrate manufacturing method, magnetic disk glass substrate manufacturing method, and magnetic disk manufacturing method | |
JPH10296610A (en) | Grinding method | |
US20080017610A1 (en) | Process for producing glass substrate for magnetic disk | |
KR20060045820A (en) | Glass substrate for vertical magnetic recording disks and manufacturing method thereof | |
CN102985971A (en) | Method for producing glass substrate for magnetic disks, and method for producing magnetic disk | |
JP4267743B2 (en) | Polishing method of glass ceramic substrate for information storage medium | |
US20080085428A1 (en) | Silicon Substrate For Magnetic Recording Meduim, Method Of Manufacturing The Silicon Susbstrate And Magnetic Recording Medium | |
CN104011795A (en) | Manufacturing method for magnetic-disk glass substrate | |
JPH08174428A (en) | Fixed abrasive grain type polishing surface plate | |
JP2001191247A (en) | Both surface grinding method of disc-like substrate, manufacturing method of substrate for information recording medium and manufacturing method of information recording medium | |
JP6170557B2 (en) | Manufacturing method of glass substrate for magnetic disk, manufacturing method of magnetic disk, grinding wheel | |
JPH09176620A (en) | Abrasive composition for production of base of magnetic recording medium and production of base of magnetic recording medium | |
JPH01304174A (en) | Polishing fluid and method of polishing hard disc base plate | |
CN104137181A (en) | Method for manufacturing glass substrate for magnetic disk | |
JP5071603B2 (en) | Method for manufacturing glass substrate for magnetic information recording medium | |
JP5111818B2 (en) | Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk | |
WO2012090378A1 (en) | Method for manufacturing glass substrate for magnetic information-recording medium | |
JP2006095678A (en) | Polishing method for glass substrate for magnetic recording medium | |
CN105580079B (en) | The manufacturing method of glass substrate for disc and the manufacturing method of disk and grinding tool | |
CN105580077B (en) | Method for manufacturing glass substrate for magnetic disk and method for manufacturing magnetic disk | |
JP5731245B2 (en) | Manufacturing method of glass substrate for magnetic disk | |
WO2013100157A1 (en) | Method for producing glass substrate for magnetic disks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060206 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070801 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070904 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071025 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071026 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071029 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071120 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071127 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101207 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101207 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313532 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101207 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101207 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111207 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111207 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121207 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121207 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121207 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131207 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |