[go: up one dir, main page]

JP4531697B2 - Manufacturing method of structure that functions as seat, backrest, partition, etc. and structure manufactured by the method - Google Patents

Manufacturing method of structure that functions as seat, backrest, partition, etc. and structure manufactured by the method Download PDF

Info

Publication number
JP4531697B2
JP4531697B2 JP2005508899A JP2005508899A JP4531697B2 JP 4531697 B2 JP4531697 B2 JP 4531697B2 JP 2005508899 A JP2005508899 A JP 2005508899A JP 2005508899 A JP2005508899 A JP 2005508899A JP 4531697 B2 JP4531697 B2 JP 4531697B2
Authority
JP
Japan
Prior art keywords
membrane
support member
membrane member
membrane support
tension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2005508899A
Other languages
Japanese (ja)
Other versions
JPWO2005025379A1 (en
Inventor
和幸 堀内
賢 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takano Co Ltd
Original Assignee
Takano Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takano Co Ltd filed Critical Takano Co Ltd
Publication of JPWO2005025379A1 publication Critical patent/JPWO2005025379A1/en
Application granted granted Critical
Publication of JP4531697B2 publication Critical patent/JP4531697B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14065Positioning or centering articles in the mould
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C31/00Details or accessories for chairs, beds, or the like, not provided for in other groups of this subclass, e.g. upholstery fasteners, mattress protectors, stretching devices for mattress nets
    • A47C31/02Upholstery attaching means
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C7/00Parts, details, or accessories of chairs or stools
    • A47C7/02Seat parts
    • A47C7/28Seat parts with tensioned springs, e.g. of flat type
    • A47C7/282Seat parts with tensioned springs, e.g. of flat type with mesh-like supports, e.g. elastomeric membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14336Coating a portion of the article, e.g. the edge of the article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14065Positioning or centering articles in the mould
    • B29C2045/14147Positioning or centering articles in the mould using pins or needles penetrating through the insert
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2713/00Use of textile products or fabrics for preformed parts, e.g. for inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/44Furniture or parts thereof
    • B29L2031/443Chairs

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Laminated Bodies (AREA)
  • Chair Legs, Seat Parts, And Backrests (AREA)

Description

【技術分野】
本発明は、構造物およびその製造方法に関する。更に詳述すると、本発明は、膜部材と該膜部材が面を形成するようにその周縁の全部または一部を保持する膜支持部材とを備え、座や背凭れ、パーティション等として機能する面を有する構造物およびその製造方法に関する。
技術用語
本明細書において”膜部材”とは、実施構造物(製品)に求められる構造物としての強度、弾力性を発揮させる張力を生じる柔軟性あるいは全ての素材を含むものであり、例えばメッシュあるいはフィルム若しくは布地、不織布等が含まれる。また、本明細書において、”熱収縮性”とは、加熱されることで収縮する性質を意味し、少なくとも目的の面が形成されると共に構造物に要求される弾力性を発揮させる程度の張力を生じさせる収縮を伴うものを含む。
【背景技術】
特開2001−78852には、メッシュシートより成る膜部材とこの膜部材の周縁を保持する枠状の膜支持部材103とを備え、椅子のフレームに組み付けられて椅子の座として機能する構造物101の製造方法が開示されている。この製造方法では、Fig.36に示すように、熱収縮性を有する膜部材102を無張力下あるいは構造物として必要な張力より弱い張力で膜支持部材103に固定してから、膜部材102に対して両面から加熱したアルミ板112を押し当ててプレスを行い、これにより膜部材102の加熱を行って、膜部材102を収縮させて構造物101として必要な弾力性を発揮させる張力を与え、平坦な座面を形成するようにしている。
しかしながら、この製法では、加熱したアルミ板112を膜部材102に直接押し当てることによって膜部材102を加熱しているので、膜部材102が溶けてしまったり、あるいは膜部材102のメッシュ模様に斑(むら)を生じさせてしまう等の椅子の構造物としての性能や外観が損なわれてしまう問題がある。
また、アルミ板112の接近あるいは接触によって、膜支持部材103も同時に加熱されてしまうことも起こる。このため膜支持部材103が溶け又は変形して、椅子構造物としての強度や性能、外観が損なわれてしまう問題がある。特に膜支持部材103の素材として利用されることの多いポリプロピレン等の樹脂は、比較的低温域の熱で軟化することから変形し易い。
また、人間工学上あるいはや美観上の問題等から座面や背凭れ面などを曲面とすることが求められる場合があるが、従来の膜部材102は熱収縮によって四方八方にほぼ均等に張られるため、例えば枠状の膜支持部材103を湾曲した形状とするだけでは、膜部材102を意図した曲面に張ることは難しい。
【発明の開示】
本発明は、膜部材に必要な張力を付与する加熱処理時に、膜支持部材や膜部材の機能や外観を損ねてしまうことのない構造物の製造方法並びに構造物を提供することを目的とする。また、本発明は、膜部材を意図した曲面形状にできる構造物の製造方法並びに構造物を提供することを目的とする。
かかる目的を達成するために請求の範囲第1項記載の発明は、膜部材と該膜部材が面を形成するようにその周縁の全部または一部を保持する膜支持部材とを備える椅子の座や背の製造方法において、膜部材として熱収縮性を有する弾性素材を用い、膜部材を無張力下あるいは構造物として必要な張力より弱い張力で膜支持部材に固定し、膜部材の少なくとも一方の面に膜部材から離して配置され、かつ熱収縮後の膜部材と平行な加熱面を有すると共に周縁部に膜部材に向かって突出する遮熱部を有する加熱板により、膜支持部材における温度を当該膜支持部材の溶融温度よりも低温の状態に維持しながら膜部材を加熱し、膜部材を熱収縮させて該膜部材に構造物として必要な弾力性を発揮させる張力を与えるようにしている。したがって、膜支持部材を溶融させることなく膜部材を熱収縮させるように加熱するので、膜部材への加熱時に膜支持部材が溶けてしまったり変形してしまうことを防止でき、構造物としての性能例えば強度や外観が損なわれてしまうことを防止できる。また、膜部材から離れた位置から加熱板により加熱が行なわれ、膜部材が加熱板に接触することがなく、膜部材が溶けてしまうことを防止でき、膜部材がメッシュである場合にはメッシュ模様に斑(むら)が生じてしまうことを防止でき、構造物としての性能例えば強度や外観が損なわれてしまうことを防止できる。さらに、膜部材の加熱を行う加熱板は、周縁部に膜部材に向かって突出する遮熱部によって囲われているので、遮熱部によって自然対流熱伝達並びに放射伝熱を防ぎ、加熱板の熱が膜支持部材に伝わってしまうことを防いで主として膜部材を加熱でき、膜支持部材における温度が溶融温度未満としながら膜部材が熱収縮するように加熱できる。さらに、加熱板の周縁部から膜支持部材側に熱が逃げてしまうことを抑えられるので、即ち加熱板の熱損失を低減できるので、効率的に膜部材の加熱が行える。さらに、加熱板の温度を均一にでき、膜部材を均一に加熱できる。さらに、遮熱部は、加熱板が膜部材に触れてしまうことを防止するスペーサとしての役割も果たす。
ここで、遮熱部と前記膜支持部材との間に空隙を設定することが好ましい。この場合、空隙によって膜支持部材に加熱板の熱が伝わり難くなり、主として膜部材を加熱でき、膜支持部材が溶けてしまうことを防止できる。
また、膜部材の他方の面には、膜支持部材の内輪郭形状よりも小さな相似形状の加熱板を配置し、かつ該加熱板と前記膜支持部材との間に空隙を設けることが好ましい。この場合には、膜部材の表裏両面から同時に加熱でき、表面と裏面とを同時に収縮させるので歪みや反りを生ずることはなく、かつ短時間で膜部材を収縮させて必要な張力を付与でき、処理の迅速化が図れるので好ましい。また、膜部材の表面側と裏面側との熱収縮量を均等にでき、膜部材に均一に張力を付与することができる。しかも、加熱板と膜支持部材との間に生じる空隙によって膜支持部材に加熱板の熱が伝わり難くなり、主として膜部材のみを加熱でき、膜支持部材における温度は溶融温度未満としながら膜部材が熱収縮するように加熱できる。
また、膜部材の加熱は膜部材の収縮変形の進行に従って加熱板を膜部材に向かって移動させて行なうことが好ましい。この場合、加熱板と膜部材との接触をさけながらもこれらの間の距離をなるべく近づけて、短時間で膜部材に必要な張力を付与できる。
また、膜部材と膜支持部材とは、膜部材が膜支持部材を射出成形する型内に無張力下あるいは構造物として必要な張力より弱い張力で配置されると共に膜部材の縁が膜支持部材を成形するキャビティ内に配置された状態でキャビティ内に熱可塑性樹脂を射出するインサート成形により、膜部材を膜支持部材に固定するようにしている。したがって、インサート成形の間に膜部材を張った状態に維持したり、膜部材を型に取り付けるときに膜部材に予張力を与える必要がないので、張力付与装置を設ける必要が無く製造装置を簡素化することができる。また、膜部材の縁は膜支持部材と一体化され、はみ出ることがないので、膜支持部材から膜部材を切り取るトリミング作業が不要になり、作業工程数を削減できるし、構造物を製造するのに必要な膜部材の量を減らすことができる。さらに、膜部材の縁が膜支持部材に一体化されるので、構造物としての外観を向上することができる。ここで、膜支持部材を形成する熱可塑性樹脂が収縮することで膜部材は弛み易いが、この弛みを膜部材を加熱することで除去して、膜部材に張力を持たせることができる。
また、膜支持部材の融点は加熱処理される膜部材の融点に比べてかなり低くても良く、膜部材の加熱処理温度よりも低い場合もある。しかし、膜支持部材として膜部材の熱収縮温度よりも高い融点の熱可塑性樹脂、例えば膜支持部材としてポリエステル、膜部材としてエラストマ性ポリエステルを用いることもある。この場合には、膜支持部材を溶融温度よりも低温の状態に維持するための手段を必要としないため、膜部材と膜支持部材とが一体化された構造物を加熱炉に連続的に装入して膜部材の加熱処理をしても、膜支持部材における温度は溶融温度未満であり、膜支持部材が溶けてしまう又は変形してしまうことを防止できるので、加熱処理作業が効率的に行な得る。
また、本発明は、膜部材と該膜部材が面を形成するようにその周縁の全部または一部を保持する膜支持部材とを備える構造物の製造方法において、膜部材として同一加熱温度下での熱収縮量が異なる少なくとも2種の弾性素材を縦糸と横糸として組み合わせたものを用い、膜部材を無張力下あるいは構造物として必要な張力より弱い張力で膜支持部材に固定し、その後に膜部材を加熱し、膜部材を熱収縮させて該膜部材に構造物として必要な弾力性を発揮させる張力を与えると共に膜部材の縦方向と横方向とで収縮量・張力を異ならせ、熱収縮量の差によって張力の分布を不均一にして面を非平坦例えば曲面の三次元的な面を形成するようにしている。したがって、膜部材の熱収縮量の差を利用して膜部材を意図した曲面形状とできる。これにより、座面や背凭れ面などを人間工学や美観上の問題等から優れた形状とすることができ、またデザインの自由度を高めることができ、構造物としての外観や性能を向上することができる。
ここで、膜部材は曲線を描くべき方向の熱収縮量よりも直線を描くべき方向の熱収縮量が大きくなるようにしても良い。この場合には、熱収縮量の大きい弾性素材は直線を描き、当該直線を描く弾性素材に規制されるようにして、熱収縮量の小さい弾性素材は曲線を描き、この結果、膜部材が曲面を形成するようになる。
また、以上の製造方法により製造された構造物は、膜部材に必要な張力を付与する加熱処理時に、膜支持部材や膜部材の機能や外観を損ねてしまうことのない椅子の座や背などの構造物を提供することができる。また、膜部材が人間工学や美観上の点から優れた曲面に張られた構造物を提供することができる。この構造物は、例えば一般用椅子、事務用椅子、作業用椅子、看護用椅子等の椅子全般、さらには自転車、二輪自動車、四輪自動車、バス等の車輌の座、背凭れ、肘パネル、ヘッドレスト等、さらにはパーティションやパネルとして利用できる。
【図面の簡単な説明】
Fig.1A〜Fig.1Cは本発明の構造物の製造手順の一例を説明する縦断面図であり、Fig.1Aは型に膜部材を設置した状態、Fig.1Bは膜部材に加熱処理を施す状態、Fig.1Cは加熱処理が完了した状態をそれぞれ示す。Fig.2は本発明の構造物を椅子の座として実施した例を示す一部断面斜視図である。Fig.3は膜部材を加熱する加熱手段の一例を示すもので、加熱板上の熱源の配置例を示す概略平面図である。Fig.4は断熱性治具を用いて膜部材を主として加熱する例を示す概略中央断面側面図である。Fig.5は断熱性治具を用いて膜部材を主として加熱するための他の例を示す概略中央断面側面図である。Fig.6は膜部材を主として加熱するための更に他の構成例を示す概略中央断面側面図である。Fig.7A〜7Cは本発明の第2の実施形態に係る構造物の製造手順の一例を示す縦断面側面図であり、Fig.7Aは型に膜部材を設置した状態、Fig.7Bは膜部材に加熱処理を施す状態、Fig.7Cは構造物が完成した状態をそれぞれ示す。Fig.8は本発明の第3の実施形態に係る構造物の一例を示す斜視図である。Fig.9A〜9Bは同一加熱温度下での熱収縮量が異なる2種の弾性素材を組み合わせて構成される膜部材の一例を示し、Fig.9Aは縦方向にポリエステル糸、横方向にエラストマー糸を用いた例を示し、Fig.9Bは縦方向にエラストマー糸、横方向にポリエステル糸を用いた例を示す。Fig.10A〜10Bは同一加熱温度下での熱収縮量が異なる2種の弾性素材を組み合わせて構成される膜部材の他の例を示し、Fig.10Aは縦方向にエラストマー糸、横方向にエラストマー糸とポリエステル糸とを交互に配置した例を示し、Fig.10Bは縦方向にポリエステル糸、横方向にエラストマー糸とポリエステル糸とを交互に配置した例を示す。Fig.11は縦糸と横糸の配置密度の関係を示す図で、Fig.11Aは縦糸と横糸の密度を同じとした場合の例を示し、Fig.11Bは横糸の密度を縦糸の密度よりも大とした場合の例を示す。Fig.12は膜部材及び膜支持部材固定手法の他の形態を示す平面図で、膜部材の一部の図示を省略している。Fig.13はFig.12の概略中央断面側面図である。Fig.14は構造物を椅子の座に適用した場合の椅子のフレームへ取り付ける状態を示す説明図である。Fig.15A〜15Cはカバー部材の製造手順を示す縦断面側面図であり、Fig.15Aは型に構造物を取り付ける状態、Fig.15Bは樹脂を射出した状態、Fig.15Cはカバー部材を一体化した構造物が完成した状態をそれぞれ示す。Fig.16A〜16Bは構造物のゲート位置の一例を示す平面図であり、Fig.16Aは膜支持部材のゲート位置を、Fig.16Bはカバー部材のゲート位置をそれぞれ示す。Fig.17は他の断面形状の構造物の例を示す横断面図である。Fig.18A〜18Cは構造物の製造手順の他の例を示す縦断面図であり、Fig.18Aは型に膜部材をセットした状態、Fig.18Bは樹脂を射出して膜支持部材を成形した状態、Fig.18Cは上型を取り外した状態をそれぞれ示す。Fig.19A〜19CはFig.18A〜18Cの工程で成形された構造物にカバー部材を連続して射出成形する工程を示す図で、Fig.19Aはカバー部材用の上型を取り付ける状態、Fig.19Bは樹脂を射出してカバー部材を成形した状態、Fig.19Cは型から取り出したカバー部材を一体化した構造物の縦断面図である。Fig.20A〜20Bは構造物の製造手順の他の例を示す縦断面図であり、Fig.20Aは膜支持部材をインサート成形した状態、Fig.20Bは二色射出成形によってカバー部材を成形する状態をそれぞれ示す。Fig.21は膜支持部材にカバー部材を接着する様子を示す説明図である。Fig.22は断面楕円形状の膜支持部材を成形する型の縦断面図である。Fig.23はL形膜支持部材からなる構造物と椅子の脚フレームとの取付け関係を示す縦断面図である。Fig.24はキャビティ内における膜部材と射出樹脂との関係の一例を示す説明図である。Fig.25はキャビティ内における膜部材と射出樹脂との関係の他の例を示す説明図である。Fig.26は逃げ部を有する膜部材を示す斜視図である。Fig.27はFig.26の膜部材と射出樹脂との関係の一例を示す説明図である。Fig.28はキャビティ内におけるFig.26の膜部材と射出樹脂との関係の他の例を示す説明図である。Fig.29は逃げ部および流通孔を有する膜部材を示す斜視図である。Fig.30は更に他の形状の型に膜部材を取り付けた状態を示す説明図である。Fig.31は他の形状の構造物の一例を示す縦断面側面図である。Fig.32は膜部材と膜支持部材との別の固定構造を示す縦断面図である。Fig.33は別の形状の構造物を示す縦断面側面図である。Fig.34は更に他の形状の構造物を示す縦断面側面図である。Fig.35A〜35Bは更に別の形状の構造物を示す縦断面側面図であり、Fig.35Aは組み合わせ前、Fig.35Bは組み合わせ後を示す。Fig.36は従来の構造物の製造方法を示す縦断面側面図である。
【発明を実施するための最良の形態】
以下、本発明の構成を図面に示す最良の形態に基づいて詳細に説明する。
Fig.1に本発明方法を椅子の座の製造に適用した第1の実施形態を示す。この椅子の座を構成する構造物1は、例えばFig.2に示すように膜部材2と、この膜部材2が面を形成するように膜部材2の周縁の一部又は全部を保持する膜支持部材3とから成り、椅子のフレーム例えば脚フレーム等に組み付けられて椅子の構成部品例えば座として機能するものである。この構造物1は、膜部材2を無張力下あるいは構造物1として必要な張力より弱い張力で膜支持部材3に固定した後に膜部材2のみを加熱することによって、膜支持部材3における温度を当該膜支持部材3の溶融温度よりも低温の状態に維持しながら膜部材2を熱収縮する程度に加熱し、膜部材2を熱収縮させて該膜部材2に構造物1として必要な弾力性を発揮させる張力を与えるようにしている。
この本実施形態では、膜支持部材3はそれ自体で膜部材2の張力を支持できる剛性を有しているものとしている。即ち、膜支持部材3は他の構造物例えば椅子の脚フレーム等に取り付けなくても、膜部材2が構造物1として必要な張力を得られるように形を保つ剛性を有している。このため、構造物1をフレーム4に取り付けるときに膜部材2に必要な張力を与える必要がないので、取付作業を容易にすることができる。因みに、本実施形態の場合の膜部材2とその全周縁を保持する膜支持部材3の形状は、略矩形のシート状と略矩形の枠状としているが、構造物1としての形状は特に限定されるものではない。
尚、本実施形態において、膜部材2は、例えばポリエステル糸とエラストマ性ポリエステル糸との織物によって構成されるメッシュシート、例えば商品名ダイヤフローラ(東洋紡株式会社製)で知られているメッシュシートを用いている。但し、膜部材2は、熱収縮性を有する弾性素材であれば良く、この例に限定されるものではない。膜部材2をメッシュとすることで、高い通気性を得て座り心地の良い快適な構造物1が得ることができる。また、膜支持部材3は、熱可塑性の合成樹脂製としている。膜支持部材3を形成する熱可塑性樹脂は、例えばPET(ポリエチレンテレフタレート)やPP(ポリプロピレン)等のオレフィン系樹脂を採用することが好ましい。本実施形態のように膜支持部材3をオレフィン系樹脂製とすると共に膜部材2をポリエステル製とすることで、これらの接合にビス等を使っていなければ構造物1を分離せずにそのままリサイクルすることができる。座として使用される部材を全てプラスチックやエラストマにより形成して金属部品を使用しないようにすることで、廃棄時に分別の必要が無く、廃棄やリサイクルを容易に行うことができる。但し、このことは膜部材2と膜支持部材3の材料が本実施形態の例に限定されることを意味していない。
これら膜部材2と膜支持部材3とは、本実施形態では、膜支持部材3を射出成形によって成形する際に、予め形成されている膜部材2をインサートとして組み込むことによって一体化するようにしている。但し、膜部材2と膜支持部材3の固定方法はこれに限定されるものではない。
インサート成形は、例えばFig.1Aに示すように、膜支持部材3および膜部材2をインサート成形するための上金型7および下金型8より成る型5に対して熱収縮性を有する膜部材2を無張力下にあるいは構造物1として必要な張力より弱い張力をかけた状態のままで取り付けてから型を閉じ、キャビティ6に熱可塑性樹脂を射出して固化させることにより膜支持部材3の成形を行う。その後、型から取り出されたインサート成形品即ち構造物1を必要に応じて支持台60に取付てからFig.1Bに示すように加熱処理を行って膜部材2を熱収縮させて構造物1として必要な弾力性を発揮する張力を与える。
ここで、本実施形態の下金型8のキャビティ6には、構造物1の膜支持部材3に上下方向の貫通孔9を形成するための中子ピン10が設けられている。膜部材2を型5に取り付けるときは各中子ピン10に膜部材2の縁を突き刺して仮固定し位置決めするようにしている。このため、膜部材2を型5の外部から支持しなくても、周縁がキャビティ6内に収まるように正確に位置決めすることができる。また、型5の外部に膜部材2を支持する装置を設ける必要が無いので、製造装置を簡素化することができる。また、膜部材2の縁はキャビティ6内からはみ出すことなく膜支持部材3と一体化されるので、膜支持部材3から膜部材2を切り取るトリミング作業が不要になり、作業工程数を削減できるし、構造物1を製造するのに必要な膜部材2の量を減らすことができる。さらに、膜部材2の周縁11が膜支持部材3に一体化されるので、構造物1としての外観を向上することができる。
ここで、膜部材2はメッシュシートであるので、これを膜支持部材3の射出成形により一体化する際にはメッシュの織地の糸と糸の隙間を樹脂が通過して膜部材2を覆うように樹脂が回り込むようになる。これによって、予め形成されている膜部材2が、射出成形により形成される膜支持部材3に一体化され固着される。
そして、キャビティ6に射出した熱可塑性樹脂が固化してから、図示していない突出し装置の作動によって構造物1となる成形品を型5から取り出してから、Fig.1Bに示すように加熱処理装置の支持台60の上に載置する。加熱処理は、膜支持部材3における温度を当該膜支持部材3の溶融温度よりも低温の状態に維持しながら膜部材2を熱収縮する程度に加熱することによって行われる。このとき、膜支持部材3の射出成形時には、膜部材2の上金型7および下金型8に挟まれている部分は、収縮する程には加熱されていないので、ある程度緩んでいる。そして、膜支持部材3は固化すると収縮するので、膜部材2の弛みは一層大きくなる。この弛みを加熱による収縮で除去すると共に所定の張力を付与することができる。
加熱処理において用いる膜部材2を加熱する手段53には、本実施形態では例えば電熱ヒータにより加熱される金属製の加熱板を用いる。但し、加熱手段53はこの電熱ヒータの例に限定されるものではない。例えば、熱風、蒸気、光等を加熱源とする加熱手段をして用いても良いし、加熱板を介さずに電熱ヒータの熱を直接に膜部材2にかけるようにしても良い。
加熱板53は、膜支持部材3に対して熱を与えないように膜支持部材3の内側壁面で形成される内輪郭形状よりも小さな相似形状、例えば本実施形態の場合には四隅が丸まった矩形状に形成され、熱収縮によって張り詰める膜部材2とほぼ平行となる加熱面を有している。この場合、膜部材2の全体を均一に加熱できる。但し、加熱板53の形状はこれに限定されない。また、加熱板53を加熱するためのヒーター54は、加熱板53における温度分布が均一となるように設けることが好ましい。例えばFig.3に示すように、複数のヒーター54を等間隔に加熱板53に配置するようにする。これにより、加熱板53における温度分布が均一となるようにして、膜部材2の全体を均一に加熱できるようにする。また、本実施形態では、Fig.1Bに示すように膜部材2の表面側と裏面側との両面に加熱板53を配置するようにしている。この場合、膜部材2の表裏両面から同時に加熱でき、表面と裏面とを同時に収縮させるので歪みや反りを生ずることはなく、かつ短時間で膜部材2を収縮させて必要な張力を付与でき、処理の迅速化が図れるので好ましい。また、膜部材2の表面側と裏面側との熱収縮量を均等にでき、膜部材2に均一に張力を付与することができる。但し、加熱板53の配置は必ずしも本実施形態の例に限定されない。例えば膜部材2の表裏いずれか一方のみに加熱板53を配置しても良い。また、膜部材2の表裏いずれか一方側のみに加熱板53を配置し、他方側には熱反射板として例えば鏡面仕上げされた金属板等を配置し、当該一方側からは加熱板53により、当該他方側からは熱反射板で反射された熱により、膜部材2を加熱するようにしても良い。
ここで、膜支持部材3における温度を当該膜支持部材3の溶融温度よりも低温の状態に維持しながら膜部材2を加熱する手法としては、例えば以下が挙げられる。第一の手法としては、Fig.1Bに示すように、膜支持部材3の内輪郭形状よりも小さな相似形状の加熱板53を採用し、かつ加熱板53と膜支持部材3との間に空隙L1を設けるようにする。この場合、空隙L1によって膜支持部材3に加熱板53の熱が伝わり難くなり、主として膜部材2を加熱でき、膜支持部材3が溶けてしまうことを防止できる。第二の手法としては、Fig.1Bに示すように、加熱板53の周縁部から膜部材2に向かって突出する遮熱部としての遮熱板55を設けるものである。この場合、加熱板53の熱が自然対流伝熱によって膜支持部材3に伝わってしまうことを遮熱板55によって防ぎ、主として膜部材2を加熱でき、膜支持部材3が溶けてしまうことを防止できる。さらに、加熱板53の縁部から膜支持部材3側に熱が逃げてしまうことを抑えられるので、効率的に膜部材2の加熱が行えると共に熱損失を低減できる。さらに、周囲からの冷気の進入を遮熱板55が防ぐので、遮熱板55の囲いの内側の加熱板53の温度を均一にでき、膜部材2を均一に加熱できる。さらに、遮熱板55は、加熱板53が膜部材2に触れてしまうことを防止するスペーサとしての役割も果たす。尚、遮熱板55には、例えばセラミックスなどの熱伝導率の小さい断熱性材料を利用することが好ましいがこの材質に限られるものではない。更に本実施形態では、膜支持部材3に加熱板53の熱が伝わってしまうことをより確実に防止するべく、遮熱板55を備えかつ遮熱板55と膜支持部材3との間に空隙L1を設定するようにしているが、場合によってはいずれか一方のみを実施するものであっても構わない。
尚、膜支持部材3における温度を当該膜支持部材3の溶融温度よりも低温の状態に維持しながら膜部材2を加熱する方法としては、上記例に限定されない。例えば、セラミックスなどの断熱性材料で構成される膜支持部材3を覆う治具を用いて、その状態で膜部材2の加熱を行なうようにしても良い。例えばFig.4に示す断熱性治具56は、膜支持部材3に対応した枠状に形成され、且つ上側部材56aと下側部材56bとに分割可能に構成されている。上側部材56aと下側部材56bとで膜支持部材3を挟み込むことで、膜支持部材3が覆われて、枠状の膜支持部材3の内側の膜部材2のみが露出するようになる。この場合、膜部材2の加熱温度が膜支持部材3の溶融温度よりも高くとも断熱性治具56により膜支持部材3の加熱が防がれるので、加熱手段53に特別な配慮を施さなくても膜部材2のみを加熱でき、膜支持部材3が溶けてしまうことを防止できる。さらに、膜支持部材3の温度を低下させる冷却手段を設けるようにしても良い。例えばFig.5に示すように、膜部材2と対向する位置にはヒータ54を備えると共に、膜支持部材3の周囲には冷却手段57を備える加熱装置58を用いて、膜部材2の加熱を行なっても良い。冷却手段57は例えば冷却水が流れる冷却水路である。この場合、冷却手段57により膜支持部材3の周囲の温度を低下させて、膜支持部材3における温度を当該膜支持部材3の溶融温度よりも低温の状態に維持しながら膜部材2の加熱を行なえる。
また、加熱手段53として熱風、蒸気、光等を発生させる装置を用いる場合には、例えばFig.6に示すように、膜支持部材3に当たらないように膜部材2のみを狙って、熱風や蒸気を吹き付けたり、光を照射するようにしても良い。この場合、Fig.6の破線に示すように、膜支持部材3に熱風、蒸気、光等が当たらない範囲で、加熱手段53を移動させるようにしても良い。勿論、Fig.4に示す断熱性治具56を用いる場合には、このような配慮も必要なくなる。また、膜部材2の加熱時に、膜支持部材3に対して冷風を吹き付けるようにしても良い。
ここで、膜部材2の加熱は膜部材2から離れた位置より行なうことが好ましい。この場合、膜部材2が加熱板53に接触して溶けてしまう、或いは膜部材2のメッシュ模様に斑(むら)が生じてしまう、といったことが防止され、構造物としての機能や外観が損なわれてしまうことを防止できる。例えば本実施形態では、膜部材2と非接触となる位置に加熱板53を配置するようにしている。但し、椅子の構造物としての強度上の性能低下の虞がなく、かつ膜部材2が外部から見えない場合には、例えば膜部材2を覆う表皮部材を取り付ける場合や、膜部材2の裏面側などには、加熱板53を膜部材2に接触させても良い。例えば膜部材2の裏面側に配置される下側加熱板53bを、膜部材2とほぼ接触する位置、換言すれば膜部材2を押圧することなく膜部材2に触れている位置、に配置しても良い。
また、加熱手段53は、膜部材2の収縮変形に追従するように移動可能であることが好ましい。この場合、加熱手段53と膜部材2との距離をなるべく近づけて、短時間で膜部材2に必要な張力を付与できる。例えば本実施形態では、膜部材2に対して接近するように伸長すると共に膜部材2から離れるように収縮する伸縮自在なシリンダ装置59を用いて、膜部材2の弛みが突出している側、本実施形態の場合には膜部材2の表面側に配置される上側加熱板53aを昇降可能に支持している。勿論、膜部材2の裏面(内)側に弛むような場合には、下側加熱板53をシリンダ59で昇降させるようにしても良い。このシリンダ装置59は、Fig.1Bに示すように、膜部材2が弛んでいる加熱初期の段階では、膜部材2と触れないように膜部材2から離れた位置で加熱板53を支持し、加熱が進み膜部材2の弛みが除去されるに従って、Fig.1Cに示すように、加熱板53を膜部材2に近づけるように伸長する。尚、加熱板53の移動の制御、即ちシリンダ装置59の伸縮の制御は、自動または手動のいずれであっても良い。自動制御の場合は、例えば加熱時間と膜部材2の変形との相関関係を予め求めておき、加熱時間に応じて加熱板53を移動させるようにしても良く、或いは、膜部材2と加熱板53との距離を検出するセンサーを設けておき、当該センサーからの出力信号に応じて膜部材2と加熱板53とが一定距離を保つように加熱板53を移動させようにしても良い。また、加熱板53の移動は段階的すなわち断続的または連続的のいずれであっても良い。例えば本実施形態では、熱収縮後に膜部材2が形成する面と上側加熱板53aの加熱面との距離が、40mm→30mm→15mmと段階的に変化するように、上側加熱板53aを移動させるようにしている。尚、Fig.1Bの例では、上側加熱板53aを移動させているが、下側加熱板53bを移動させても良く、或いは上側加熱板53aと下側加熱板53bとの双方を移動させても良い。尚、加熱手段53を移動可能に設けることは好適な例ではあるが、この構成に限定されるものではない。
ここで、膜部材2としてポリエステル糸とエラストマ性ポリエステル糸との織物によって構成されるメッシュシートを採用した本実施形態の場合、膜部材2を加熱する際の温度および加熱時間は、例えば以下の範囲とすることが好ましい。膜部材2にほぼ接触するように配置する場合の加熱板53、例えば下側加熱板53bの温度は、例えば120〜250℃程度の範囲とすることが好ましく、180〜190℃程度の範囲とすることがより好ましい。膜部材2と非接触となるように配置する場合の加熱板53、例えば上側加熱板53aの温度は、例えば180〜300℃程度の範囲とすることが好ましく、190〜240℃程度の範囲とすることがより好ましい。加熱時間は例えば40〜120秒程度とすることが好ましい。また、膜部材2の加熱中における膜支持部材3の温度は常温または常温に近い温度であることが望ましく、また、当該加熱中における膜部材2と膜支持部材3との温度差は5〜200℃程度あることが好ましく、150℃以上あることがより好ましい。但し、最適な加熱条件は選択される膜部材2の素材等によって変わり得るものであり、必ずしも上記の条件には限定されない。
以上のように膜部材2の加熱を行うことで、Fig.1Cに示すように膜部材2を収縮させ、構造物1として必要な弾力性を持たせることができる。ここで、加熱直後の膜部材2に大きな負荷をかけてしまうと、膜部材2の変形が起こり易いので、そのような負荷をかけることのないように膜部材2の除熱ないし冷却を行なうことが好ましい。例えば本実施形態では、加熱により膜支持部材3に必要な張力を付与し、その後、構造物1を他の構造物例えばフレーム4に取り付けてしばらく放置して、自然冷却するようにしている。この場合、熱収縮時の膜支持部材3の変形を防ぐことができる。尚、構造物1のフレーム4への取付は、ねじ止めには限られず、例えば膜支持部材3に係止爪を一体形成して、これをフレーム4若しくは受け金具側の受け部、例えば孔や凹部にワンタッチで係止するようにしても良い。
次に、Fig.7a〜7Cの本発明の他の実施形態について説明する。尚、以下に説明する他の実施形態において上述の実施形態と同様の構成要素については、同一符号を付してその詳細な説明を省略する。
この構造物の製造方法は、まず、膜支持部材3を射出成形する型5内に無張力下あるいは構造物1として必要な張力より弱い張力で膜部材2が予め配置され、膜部材2の縁が膜支持部材3を成形するキャビティ6内に配置された状態でキャビティ6内に熱可塑性樹脂を射出するインサート成形により、膜部材2を無張力下あるいは構造物1として必要な張力より弱い張力で膜支持部材3に固定するように成形される。次いで、型5から取り出したインサート成形品たる未完の構造物を加熱炉61内へ導入して、炉内雰囲気によって膜支持部材3における温度を膜支持部材3の溶融温度よりも低温の状態に維持しながら膜部材2を加熱し、膜部材2を熱収縮させて該膜部材2に構造物1として必要な弾力性を発揮させる張力を与えるようにしている。
ここで、膜支持部材3における温度を膜支持部材2の溶融温度よりも低温の状態に維持しながら加熱する手法としては、膜支持部材3の溶融温度が膜部材2の加熱処理(熱収縮)に必要な温度よりも低い場合には、Fig.4の断熱性治具56を用いることによって、また膜部材2を収縮させる温度よりも溶融温度が高温の樹脂例えばPET(ポリエチレンテレフタレート)などのポリエステル系樹脂を膜支持部材3に用いる場合には膜支持部材3の溶融温度よりも低く膜部材2を収縮させる温度よりも高い温度の炉内雰囲気を設定することによって達成される。この場合、膜部材2と膜支持部材3とが一体化された構造物1を加熱炉61に入れて加熱しても、膜支持部材3が溶けてしまう又は変形してしまうことを防止できる。尚、膜部材2は、例えば上述の実施形態と同じ物を用いて良い。但し、膜部材2と膜支持部材3はこれらの材料に必ずしも限定されるものではなく、膜部材2が収縮する温度よりも膜支持部材3の融点が高温となる他の材料の組合せを用いても良い。しかし、例えばFig.4に示すような、セラミックス等の断熱性材料で構成される治具56を用いて膜支持部材3を覆う場合には、膜部材2を収縮させる温度よりも融点が高温である材料を膜支持部材3に用いる必要性はない。膜部材2を加熱する際の加熱炉61内の温度は、例えば120〜250℃程度の範囲とすることが好ましく、180〜190℃程度の範囲とすることがより好ましい。また、加熱時間は例えば40〜120秒程度とすることが好ましい。尚、膜支持部材3を射出成形する際に膜部材2と膜支持部材3を一体化する方法は、例えば上述した第1の実施形態と同様として良いので、詳細な説明は省略する。
ここで、加熱炉61は、遠赤外線炉の使用が好ましい。この場合、遠赤外線が膜部材2を構成する樹脂材の内部まで加熱し、膜部材2を均一に収縮させ、均一に張力を付与できる利点がある。但し、加熱炉61は、膜部材2に必要な張力を付与し得る温度に加熱できるものであれば良く、その種類がこの例に限定されるものではない。
膜部材2と膜支持部材3の一体成形品である構造物1は、加熱炉61に入れられて加熱される。尚、符号62は膜部材2の加熱時に膜支持部材3を支持する支持台である。加熱炉61を使用することにより、膜部材2を均一な温度で加熱できる。従って、膜部材2を均一に収縮させ、均一に張力を付与することが可能となる。また、膜部材2に対して間接的に熱を加えるため、換言すれば加熱した部材を直接膜部材2に押し付けることをしないため、膜部材2が溶けてしまったり、あるいはメッシュ模様に斑(むら)が生じてしまう、といったことが防止される。また、大型の加熱炉61を用いることで複数の構造物1を一度に加熱することも可能となり、構造物1の大量生産も可能となる。例えば複数の構造物1を耐熱性ベルトコンベヤに載置して、加熱炉61の中を順次移動させる連続処理炉としても良い。
次に本発明の第3の実施形態について主にFig.8を用いて説明する。この構造物の製造方法は、膜部材2として同一加熱温度下での熱収縮量が異なる少なくとも2種の弾性素材を組み合わせたものを用い、加熱処理により膜部材2を熱収縮させて該膜部材2に構造物1として必要な弾力性を発揮させる張力を与える際に、膜部材2の熱収縮量の差によって三次元的な面を形成するようにしたものである。
本実施形態における膜支持部材3は、任意の三次元形状例えばFig.8に示すような、座の前部が下に向き湾曲した略矩形状の枠形とされている。そして膜部材2は、座面の前後方向(縦方向とも呼ぶ)に張られる縦糸63と、この縦糸63と直交する左右方向(横方向とも呼ぶ)に張られる横糸64とが編まれて成るメッシュシートであって、且つ横糸64の方が縦糸63よりも熱収縮量が大きく強い張力が得られるものとして採用されている。例えば本実施形態では、縦糸63に太さ300デニールのポリエステル糸を用い、横糸64に太さ1850デニールのエラストマ性ポリエステル糸を用いた。従って、膜支持部材3の湾曲部65においては、横糸64は当該湾曲部65,65間を直線的に結ぶと共に、縦糸63は横糸64に規制されるようにして横糸64の間を通って、膜支持部材3の湾曲部65に応じた曲線を描く。この結果、膜支持部材3の湾曲部65に対応して膜部材2が曲面を成すようになる。
このように、同一加熱条件下での熱収縮量が異なる少なくとも2種の弾性素材の組合せ法などを様々に変更することにより、膜部材2で構成される構造物の面を任意の三次元形状とすることができ、椅子の構造物等に応用した場合にそのデザインの自由度を高めると共に、外観や性能を向上することができる。尚、この場合の縦糸63の収縮率((元の長さ−収縮後の長さ)/元の長さ×100)は例えば3.3〜6.6%程度、横糸64の収縮率は例えば8.5〜9.0%程度とすることが好ましい。但し、素材に要求される収縮率は、椅子の形状や膜部材2が形成する面に要求される弾性力などによって変わり得るものであり、必ずしも上記例には限定されない。また、膜部材2を膜支持部材3に取り付ける方法や手段、膜部材2を加熱する方法や手段などは、第1または第2の実施形態と同様とすることが好ましいが、必ずしもこれらの例に限定されるものではない。
但し、所望の曲面を形成するための膜部材2の構成は、必ずしも上記例に限定されない。
例えば縦糸と横糸の素材を異なるものとすることも好ましい実施の一形態である。例えばFig.9A及びFig.9Bに示すように、縦糸方向と横糸向の一方をエラストマー糸66とし、他方をポリエステル糸67とするもののほか、Fig.10A及びFig.10Bに示すように、縦糸と横糸の一方をエラストマー糸66とポリエステル糸67とが交互に配置されたものとし、他方をエラストマー糸66またはポリエステル糸67としても良い。或いは、縦方向と横方向とで柔らかさ即ち弾性係数の異なるエラストマー糸を用いる。尚、エラストマー糸としては、エラストマ性ポリエステル糸、例えばペルプレン(東洋紡株式会社の登録商標)やハイトレル(東レ・デュポン社の登録商標)などを利用できる。
また、同じ素材から成る糸であっても製法によって収縮量を異ならせることも可能である。例えば、エラストマー糸の収縮量には上限があるので、膜部材2の製造段階における織り工程での仕上げ時にエラストマー糸を融着させる時の温度を高くすると、この時のエラストマー糸の収縮量が大きくなるので、膜部材2を膜支持部材3に取り付けた後に行なう膜部材2への張力付与工程でのエラストマー糸の収縮量が少なくなる。例えば170℃で仕上げた膜部材2より、190℃で仕上げた膜部材2の方が、張力付与工程時におけるエラストマー糸の収縮量が小さくなる。上記性質を利用すれば、膜部材2の製造時における温度を調整することで、膜部材2への張力付与工程時におけるエラストマー糸の収縮量を所望のものに調整することができる。さらに例えばポリエステル糸は、染色時に糸を加熱する温度や加熱を行なう回数などの染色方法によっても収縮量が異なるので、当該染色方法を選択することによって、膜部材2への張力付与工程時におけるポリエステル糸の収縮量を所望のものに調整することができる。さらに、膜部材2を構成する糸の断面形状や糸の太さ等を適宜選択することによっても、膜部材2への張力付与工程時における当該糸の収縮量を所望のものに調整できる。
さらに、例えばFig.11A〜11Bに示すように、膜部材2を構成する縦糸63と横糸64の密度すなわち打ち込み本数を異ならせることによっても、縦方向と横方向とで膜部材2の収縮量・張力を異ならせることができる。さらに、上述した方法を組み合わせて用いても良い。さらに、膜部材2として縦方向と横方向とで熱収縮量が異なるフィルムなどを用いても良い。また、膜部材2における一部分とその他の部分との熱収縮量を異ならせるようにしても良い。
なお、上述の実施形態は本発明の好適な実施の一例ではあるがこれに限定されるものではなく、本発明の要旨を逸脱しない範囲において種々変形実施可能である。例えば膜部材2と膜支持部材3の形状は、本実施形態の例に限定されるものではない。例えば、Fig.13に示すように膜部材2を筒状ないし袋状として膜支持部材3を内包するようにしても良い。また、膜支持部材3は、膜部材2が目的とする形状の面を形成し得るものであれば良く、必ずしも完全な環状を形成するものには限られず、半環状やU字型状、L字型状のものであっても良く、更には図示していないフレームから突き出た2本の棒材であっても良い。更に膜支持部材3は膜部材2の周縁全部又は一部を保持するものであって、好ましくは膜部材2の周縁の少なくとも対向する2辺を保持するものである。ここで、上記の対向する2辺は平行関係にある必要はなく、三角形などの多角形の交わる2辺あるいは非平行な2辺若しくは円形ないし楕円形の向かい合う位置関係にある一部など、膜部材2に張力を生じさせ得るあらゆる形状及び位置関係を含むものである。例えばFig.12,13に示すように、膜支持部材3は、膜部材2の対向する1対の側縁部を保持する保持部材51の間を連結部材52で連結した略H型状のものであっても良い。このような形状の膜支持部材3と膜部材2との組み合わせの場合には、膜支持部材3に保持されていない側から、加熱板や他の加熱手段を配置するようにしても良い。尚、Fig.12に示すように袋状の膜部材2の場合、ねじ止め用の孔を膜部材2に予め設けておいても良く、或いは保持部材51または連結部材52と対向する膜部材2にねじ止め用のボルトを貫通させるようにしても良い。また、膜支持部材3の断面形状は、Fig.1及びFig.2等に示す例では矩形状にしているが、これには限られず例えば円形状やチューブ形状にしたり、あるいは多角形状やL型形状などの必要に応じた形状とできる。これらの形状は、椅子のフレームへの取付やデザインなどに応じて設定することができる。
また、膜部材2としては、熱収縮性を有し尚且つ構造物1として必要な弾力性及び強度を備えた膜状物であれば良く、例えばナイロン製のメッシュシートであっても良い。また、メッシュシートには限られず、フィルムやビニルや布地、不織布等の他の材質のものでも良い。フィルムとしては、例えばポリ塩化ビニリデン製のフィルムを使用することができる。
また、第1の実施形態では膜支持部材3を熱可塑性樹脂により成形したが、これには限られず膜部材2よりも低い温度で硬化する熱硬化性樹脂を使用しても良い。この場合は、膜支持部材3が硬化する程度に加熱して膜部材2と膜支持部材3とを一体化し、その後に膜部材2を加熱して収縮させることができる。また、膜支持部材3を形成する熱可塑性樹脂はオレフィン系樹脂に限られず、例えばポリエステルのように膜支持部材3として一般に使用される既知若しくは新規の材質を利用することができる。また、膜支持部材3と膜部材2とのいずれもポリエステルで構成しても良い。この場合も構造物1をそのままリサイクルすることができる。
さらに、メッシュ製パネルとして、自動車のシートバック等に使用することも可能である。さらに、本発明に係る構造物1は、パーティションであっても良い。構造物1がパーティションである場合等には、膜支持部材3は、膜部材2の周縁よりも短い線状または点状の保持部が膜部材2の周縁に分散して配置される構成とし、これら複数の保持部により膜部材2を支持するようにしても良い。
また、本発明の用途としては、一般用椅子、事務用椅子、作業用椅子、看護用椅子等の椅子全般は勿論のこと、自転車、二輪自動車、四輪自動車、バス等の車輌の座、背凭れ、肘パネル、ヘッドレスト等への適用が有効である。
ところで、構造物1は、そのままで椅子の座や背凭れ等として使用することができるが、場合によっては膜部材2と膜支持部材3の上面及び外側面との全体を覆うように表皮部材を取り付けても良い。これにより、膜支持部材3の上面に露出される膜部材2の周縁部分を隠すことができると共に、外観を任意の色や模様にすることができる。さらにこの場合、表皮部材と膜支持部材3との間に、例えばポリウレタン等の発泡樹脂や繊維状のクッション材などを介在させても良い。これにより、硬質の膜支持部材3が着座者の体に直接当たることを防ぎ、着座者が痛みや不快感を与えることを防止し、使い心地を良好にできる。
さらに、この構造物1を椅子に取り付けるときは、例えばFig.14,Fig.17及びFig.21に示すように、構造物1の膜支持部材3と膜部材2との一体化部分を覆い隠すカバー部材13を設けても良い。この場合、カバー部材13により一体化部分を覆い隠すことができるので、見栄えを良くすることができると共に膜部材2と膜支持部材3との接合を補強できる。カバー部材13はオレフィン系樹脂製あるいはポリエステル製とすることが、構造物1の全体をそのままリサイクル可能とする上で好ましい。また、カバー部材13を例えばエラストマ性の樹脂製にすることにより、硬質の部材が着座者の体に直接当たることを防ぎ、着座者が痛みや不快感を与えることを防止し、使い心地を良好にできる。一方、カバー部材13を例えば硬度の高い樹脂製にすれば、構造物1としての強度を高めることができる。
ここで、膜支持部材3へのカバー部材13の装着は、例えばFig.15A〜15Cに示す手順のインサート成形によって行われる。このとき、Fig.14に示すように、カバー部材13には、構造物1の貫通孔9に嵌入するボス14を一体形成し、このボス14に椅子のフレーム4あるいはこれに固定された受け金具を貫通するボルト15によってねじ止めすることが好ましい。この場合には外観にボルトなどが露出しない座を提供できる。
即ち、Fig.15Aに示すように、加熱処理により膜部材2を収縮させる前の膜支持部材3および膜部材2の一体成形品を、カバー部材13を射出成形する金型16のキャビティに位置決め用の中子ピン17を用いて装着する。そして、Fig.15Bに示すように、PETやPPといった熱可塑性樹脂を射出する。熱可塑性樹脂の固化後に取り出すと、カバー部材13が膜支持部材3に一体化された構造物1を得ることができる。その後、膜部材2に加熱処理を施して膜部材2を収縮させ、構造物1として必要な張力を与えるようにする。このように、膜部材2が膜支持部材3に固着した部分にカバー部材13が一体化されるので、膜部材2の保持力を強くすることができる。尚、この例では膜部材2に加熱処理を行う前にカバー部材13を取り付けているが、これには限られず膜部材2の加熱処理を行った後にカバー部材13を被せて一体化しても良い。
尚、カバー部材13をインサート成形する場合には、Fig.16A〜16Cに示すように、膜支持部材3を射出成形する時のゲート18の位置と、カバー部材13を射出成形する時のゲート19の位置とは異ならせることが好ましい。例えばゲート18を180度置きに2カ所設けると共に、それらと90°ずれるようにゲート19を180度置きに2カ所設ければ、各射出成形時に生ずるウェルドマークの位置20,21を重ならないようにできるので、構造物1の強度を強くすることができる。具体的には、ウェルドマーク20,21同士が例えば10mm以上離れていれば構造物1としての剛性は殆ど損なわれず実質上問題ない。
また、カバー部材13は、少なくとも膜部材2と膜支持部材3の固着部分を覆っていれば良いが、場合によっては例えばFig.17に示すように膜支持部材3の上面から外側面まで全体を覆うように一体化しても良い。この場合、膜支持部材3とカバー部材13との両方で横断面矩形状の枠状物を形成できるので、膜支持部材3と膜部材2との固着面を隠して外観を良好にできる上に、構造物1があたかも一部材であるかのような外観を呈するので見栄えを良くすることができる。
また、例えば膜支持部材3の下面や内側面に膜部材2との固着面が露出しているときには、当該固着面部分を内側から覆い隠すカバー部材13を設けることも可能である。この場合も、カバー部材13により膜支持部材3と膜部材2の一体化部分を覆い隠すことができるので、外観を良くすることができる。
さらに、膜支持部材3を射出成形する金型5とカバー部材13を射出成形する金型16とは、金型の一部を共用するようにしても良い。例えばFig.18A〜Fig.19Cに示すように下金型8を共用する場合、まずFig.18Aに示すように、下金型8の中子ピン10を利用して膜部材2を緩い張力で取り付けてから上金型7を閉め、キャビティ内にゲート18から熱可塑性樹脂を射出して膜支持部材3を形成する。そして、膜支持部材3の固化後に、上金型7を外して膜支持部材3および膜部材2の一体成形品をそのまま下型8に残したまま(Fig.18C)、カバー部材13を形成するための金上型16を合わせて閉める(Fig.19A参照)。そしてFig.19Bに示すように、カバー部材形成用のゲート19から熱可塑性樹脂を射出してカバー部材13を形成する。カバー部材13の固化後、Fig.19Cに示すように、構造物1を取り出して膜部材2に加熱処理を施し、必要な張力を得るようにする。
また、Fig.20A〜Fig.20Bに示すように、カバー部材13を成形するキャビティを射出成形品との間に形成可能なスライドブロック41を備える型7を利用しても良い。この場合、膜支持部材3を射出成形するときは、Fig.20Aに示すように、スライドブロック41を内側の閉位置に固定した型内へ樹脂を射出して、膜支持部材3を成形する。その後、スライドブロック41を摺動させて外側の開位置に固定し、膜支持部材3とブロック41との間の空間へ樹脂を射出してFig.20Bに示すようにカバー部材13を成形する。また、カバー部材13の材料として熱硬化性樹脂を採用し、圧縮成形やトランスファー成形によりカバー部材13を成形するようにしても良い。この型7によれば、スライドブロック41を摺動させるだけで、構造物1として膜支持部材3および膜部材2とカバー部材13との一体成形品を成形できるので、型のコストおよび成形作業の労力を低減することができる。
更に、Fig.21に示すように予め射出成形等により作製したカバー部材13を、溶着あるいは接着により膜支持部材3の膜部材2との固着面を覆うように固着しても良い。この場合、カバー部材13を膜支持部材3および膜部材2の一体成形品に射出成形により一体化する場合に比べて安価に一体化することができる。尚、カバー部材13の接着に使用する接着剤は、オレフィン系樹脂製あるいはポリエステル製であることが、構造物1の全体をそのままリサイクルできるため好ましい。
さらに、膜部材2を膜支持部材3の中に完全に埋設させるように一体化することによって、カバー部材13を不要としても良い。膜支持部材3と膜部材2の一体化部分を隠すことができるので、外観を向上することができる。膜部材2を膜支持部材3の中に完全に埋設させる場合は、Fig.22に示すように、例えば膜部材2を表裏両側から押さえてキャビティ6の表裏両型面から離して支持する支持部材である中子ピン23,24を各金型7,8に設けるようにする。この場合、膜部材2が支持部材である中子ピン23,24によりキャビティ6の型面から離れて支持されるので、膜支持部材3の表裏両面に露出することは無い。ここで、各中子ピン23,24の先端には、互いに嵌合する凸部23aと凹部24aとを形成することが好ましい。これによれば、各中子ピン23,24に膜部材2を挟んで突き合わせたときに凸部23aが膜部材2に貫通してこれを固定することができるので、熱可塑性樹脂が射出されたときの膜部材2のずれを抑制することができる。
また、膜部材2は、膜支持部材3の下面側に露出させて一体化するようにしても良い。この場合は、例えばFig.23に示すように、膜支持部材3を椅子のフレーム4に載せて膜部材2と膜支持部材3との一体化部分を押さえ付けることにより、膜部材2の固着を補強することができる。
更に、Fig.24あるいはFig.25に示すように、ゲート18と対向するキャビティ面に膜部材2を面接触させるように取り付けるようにしても良い。この場合も、ゲート18から射出された熱可塑性樹脂27が膜部材2を押圧してゲート18と反対側の面に押し付けることができるので、インサート成形時の膜部材2のずれを防止することができる。尚、ここでは、膜部材2と型5とが面接触しているが、これには限られず線接触あるいは点接触であっても膜部材2が型5に押し付けられることで、膜部材2のインサート成形時のずれを抑制できる。
また、Fig.26〜Fig.28に示すように、膜部材2をキャビティ6内のゲート18が設けられた型面に面接触して取り付けられると共に、膜部材2のゲート18に向き合った部位に樹脂が通過可能な逃げ部26を形成するようにしても良い。ここで、逃げ部26の形状としては、Fig.26に示すように膜部材2の縁から切り込まれた形状としたり、あるいはFig.29に二点鎖線で示すように孔形状としても良い。この場合、ゲート18から射出された熱可塑性樹脂27が膜部材2の逃げ部26を通過して膜部材2の裏側に容易に回り込むことができるので、膜部材2をゲート18側の面に裏側から押し付けることができる。しかも、熱可塑性樹脂27が膜部材2に邪魔されることなくキャビティ6内を均等に行き渡ることができる。なお、Fig.27は上金型7にゲート18が配置されると共に膜部材2はキャビティ6の上面に面接触して取り付けられる場合を示し、Fig.28は下金型7にゲート18が配置されると共に膜部材2はキャビティ6の下型面に面接触して取り付けられる場合を示している。
また、例えばFig.22に示すように膜部材2を膜支持部材3の中に完全に埋設させる構造物1についても、型のゲートに向き合った部位に逃げ部26が形成された膜部材2を使用しても良い。この場合、ゲートから射出された熱可塑性樹脂が膜部材2の逃げ部26を通過して膜部材2の裏側に容易に回り込むことができるので、熱可塑性樹脂がキャビティ6内を均等に行き渡ることができる。この場合、Fig.29に示すように、逃げ部26の近傍に流通孔40を設けることが好ましい。これによれば、熱可塑性樹脂が逃げ部26および流通孔40を通過して膜部材2の表裏に容易に行き渡ることができる。
また、金型内における膜部材2の支持は、中子ピン10を設けずに型5の型面すなわちキャビティ面に係止突起を形成して、これに膜部材2を引っ掛けて型5に取り付けるようにしても良い。この場合に、構造物1に貫通孔9が必要で有れば、射出成形後に孔空け加工を施せば良い。あるいは、キャビティ6面に係止突起を設けずに、膜部材2を下金型8に載置するだけにしても良い。これらの場合も、膜部材2の周縁をキャビティ6に収容できるので、型5の外部で膜部材2を支持する装置を省略して製造装置を簡素化することができ、またトリミング作業を不要にして作業性及び外観を向上でき、さらに1つの構造物1を製造するのに必要な膜部材2の量を減らすことができる。
または、Fig.30に示すように、金型8に押さえ部材28を設けて膜部材2をキャビティ面に押し付けて固定するようにしても良い。ここでは、押さえ部材28は中子ピンを兼用している。この押さえ部材28は膜部材2に突き刺さらずにキャビティ6の型面に膜部材2を単に押圧している。この場合、膜支持部材3の射出成形時に膜部材2が熱可塑性樹脂27の射出により動いてしまうことを防ぐことができる。
さらに、射出成形によって膜支持部材3を形成する際に予め形成されている膜部材2を一体化することに限られず、圧縮成形法や注型法等の他の方法によって膜支持部材3を形成する際に膜部材2を一体化するようにしても良い。さらに、膜部材2と膜支持部材3とは、インサート成形などにより一体的に固着される場合に限られず、膜部材2と膜支持部材3とを予め別個に形成してから、膜部材2を無張力下あるいは構造物1として必要な張力より弱い張力で膜支持部材3に接着、ビス止め等により固着するようにしても良い。
ここで、予め別々に形成された膜部材2と膜支持部材3とを一体化する手法としては、様々な手法を適用することができる。例えば、表面に突起を有する膜支持部材3を形成して、この突起に膜部材2の周縁を引っ掛けて一体化するようにしても良い。または、膜支持部材3の表面に膜部材2の周縁を接着したり、あるいはボルト等によるねじ止めやホチキス止めで一体化するようにしても良い。
さらには、例えばFig.31に示すように膜部材2を膜支持部材3の表面に直接縫製または溶着あるいは接着するようにしても良い。ここでは、膜支持部材3を断面フック状にしているが、これには限られずFig.2に示すような膜支持部材3に膜部材2を直接縫製または溶着あるいは接着するようにしても良い。これらの場合、膜支持部材3は、膜部材2を縫製または溶着あるいは接着するのに適した取付部3eと、構造物1としての必要な強度を備えた枠部3fとの2種類の材質を2色成形等により備えるようにすることが好ましい。取付部3eとしては、例えば縫製用にはミシン掛けし易い軟らかい材質にしたり、溶着用には溶け易い材質にしたり、接着用には接着しやすい材質にする。これによれば、膜部材2との接合を強くできると共に、構造物1としての必要な強度を有することもできる。
これらのように膜部材2を膜支持部材3に直接縫製または溶着あるいは接着する場合も、膜部材2を膜支持部材3に取り付けるときに膜部材2に完成品として要求される張力を与える必要がないので、製造作業を容易に行うことができる。尚、縫製の糸材や接着剤は、オレフィン系樹脂製あるいはポリエステル製であることが、構造物1の全体をそのままリサイクルできるため、好ましい。
更に、Fig.32に示すように膜支持部材3を膜部材2の周縁部によりくるんでから、膜部材2同士を固着部29で縫製または溶着あるいは接着により固定することも可能である。ここで、膜支持部材3として、例えば4本の棒状部材を組み合わせて使用することも可能である。この場合、各膜支持部材3に膜部材2を取り付けた状態で矩形状に配置してフレーム4に固定する。その後、膜部材2を加熱して張力を得るようにする。この取付によれば、膜部材2が膜支持部材3に一巻きされるので、膜部材2に荷重が掛かったときに膜部材2が膜支持部材3に引っ掛かり、取付強度を強くすることができる。また、カバー部材13を接着ないし溶着、ビス止め等で一体化することによって、座または背凭れ等としての剛性が得られる。膜部材2への加熱処理前にカバー部材13を一体化する場合、膜部材2の張力に耐えられる剛性の枠状物を完成させてから、膜部材2に必要な張力を与えることができるようになる。膜部材2に作用する荷重を固着部29だけでなくカバー部材13あるいはフレーム4との一体化部分によっても受けることができるので、固着部29の強度は小さくても良い。この場合、膜支持部材3と膜部材2との一体化を射出成形よりも安価に行うことができる。
さらに、Fig.33及びFig.34に示すように、膜支持部材3を長手方向に沿って半割りした半割部材31,32で構成し、それらの間に膜部材2の周縁を挟み込んで接着やねじ止め、嵌合あるいは縫製等により一体化するようにしても良い。半割部材31,32としては成形品や押し出し材を使用することができ、Fig.33に示すように同じ形状の2枚の平板形状であったり、あるいはFig.34に示すように一方が断面L字形状の半割部材31で、他方がその内側に取り付けられる平坦形状の半割部材32であるようにしても良い。また、各半割部材31,32同士の接触面は平坦面に限られず細かい凹凸を有する面にしても良い。この場合、接着や溶着あるいは縫製の力を強くすることができる。
また、Fig.35A〜35Bに示すように、互いに向き合った面に凸部31aと凹部32aとを形成した半割部材31,3で構成する膜支持部材3を用いることも可能である。凸部31aと凹部32aとの間に膜部材2を挟み込むように嵌合させることによって、膜部材2の保持力を更に強くすることができる。更に、凸部31aの先端に突起31bを形成することが好ましい。これによれば、突起31bの部分を溶かすことにより、凹部32aとの溶着を強固に行うことができる。あるいは、突起31bが膜部材2に突き刺さるようにしても良く、この場合も抜け止めを図ることができる。
さらに、膜支持部材3にフレーム4への組付用の溝あるいは爪を形成しておき、この溝あるいは爪に膜部材2を挟み込んだ状態で膜支持部材3をフレーム4に組み付けるようにしても良い。このときは、例えば膜部材2の周縁を予めフレーム4に巻き付けておき、その上から膜支持部材3を填め付けるようにしたり、または膜部材2の周縁を予め膜支持部材3の溝に入れておいた状態で膜支持部材3をフレーム4に填め付けるようにしても良い。この場合は、膜部材2をフレーム4に組み付けてから加熱する。また、この場合に、膜支持部材3とフレーム4とは嵌合の締付力で固定されるようにしたり、あるいは膜支持部材3とフレーム4とをねじ止め等によって固定するようにしても良い。膜支持部材3とフレーム4とをねじ止め等によって固定するときは、ねじ止め用のボルトを膜部材2に貫通させることにより膜部材2の保持力を更に強くすることができる。さらに、膜支持部材3の溝とフレーム4との間に互いに嵌合する凸部と凹部とを形成することにより、これら凸部と凹部との間に膜部材2を挟むようにできるので、膜部材2の保持力を更に強くすることができる。
【Technical field】
  The present invention relates to a structure and a manufacturing method thereof. More specifically, the present invention includes a membrane member and a membrane support member that holds all or part of the periphery of the membrane member so that the membrane member forms a surface, and functions as a seat, a backrest, a partition, or the like. The present invention relates to a structure and a method for manufacturing the same.
Technical terms
  In the present specification, the “membrane member” includes flexibility or all materials that generate tension that exerts the strength and elasticity of the structure required for the implementation structure (product), such as a mesh or a film. Or a fabric, a nonwoven fabric, etc. are contained. Further, in this specification, “heat shrinkability” means a property of shrinking when heated, and at least a tension at which a desired surface is formed and the elasticity required for the structure is exhibited. Including those with shrinkage that causes
[Background]
  Japanese Patent Application Laid-Open No. 2001-78852 includes a membrane member made of a mesh sheet and a frame-like membrane support member 103 that holds the periphery of the membrane member, and is a structure 101 that functions as a chair seat by being assembled to a chair frame. A manufacturing method is disclosed. In this manufacturing method, as shown in FIG. 36, the membrane member 102 having heat shrinkability is fixed to the membrane support member 103 under no tension or with a tension that is weaker than the tension required for the structure, On the other hand, pressing is performed by pressing the aluminum plate 112 heated from both sides, whereby the membrane member 102 is heated, and the membrane member 102 is contracted to give a tension that exerts the necessary elasticity as the structure 101, A flat seating surface is formed.
  However, in this manufacturing method, since the film member 102 is heated by directly pressing the heated aluminum plate 112 against the film member 102, the film member 102 is melted or the mesh pattern of the film member 102 is uneven ( There is a problem in that the performance and appearance of the chair structure such as causing unevenness are impaired.
  Also, the membrane support member 103 may be heated at the same time due to the approach or contact of the aluminum plate 112. For this reason, there is a problem that the membrane support member 103 is melted or deformed, and the strength, performance, and appearance of the chair structure are impaired. In particular, a resin such as polypropylene that is often used as a material of the membrane support member 103 is easily deformed because it is softened by heat in a relatively low temperature range.
  Further, there are cases where it is required that the seating surface or the backrest surface is curved due to ergonomic or aesthetic problems, but the conventional membrane member 102 is stretched almost equally in all directions by heat shrinkage. Therefore, for example, it is difficult to stretch the membrane member 102 to an intended curved surface only by making the frame-like membrane support member 103 into a curved shape.
DISCLOSURE OF THE INVENTION
  It is an object of the present invention to provide a method for manufacturing a structure and a structure that do not impair the function and appearance of the membrane support member and the membrane member during the heat treatment for applying the necessary tension to the membrane member. . It is another object of the present invention to provide a method for manufacturing a structure and a structure that can form a curved shape of the membrane member.
  In order to achieve this object, the invention described in claim 1 includes a membrane member and a membrane support member that holds all or part of the periphery of the membrane member so as to form a surface.Chair seat and backIn the manufacturing method, an elastic material having heat shrinkability is used as the membrane member, and the membrane member is fixed to the membrane support member under no tension or with a tension that is weaker than the tension required as a structure.A heating plate that is disposed on at least one surface of the membrane member apart from the membrane member and has a heating surface parallel to the membrane member after heat shrinkage and has a heat shield portion protruding toward the membrane member at the peripheral portion,While maintaining the temperature of the membrane support member at a temperature lower than the melting temperature of the membrane support member, the membrane member is heated, and the membrane member is thermally contracted to cause the membrane member to exhibit the necessary elasticity as a structure. Like to give. Therefore, since the membrane member is heated so as to be thermally contracted without melting the membrane support member, the membrane support member can be prevented from being melted or deformed when heated to the membrane member, and the performance as a structure For example, it is possible to prevent the strength and appearance from being impaired.In addition, the heating plate is heated from a position away from the membrane member, the membrane member does not come into contact with the heating plate, and the membrane member can be prevented from melting. It is possible to prevent the pattern from becoming uneven (unevenness) and to prevent the performance as a structure, for example, strength and appearance from being impaired. Furthermore, since the heating plate that heats the membrane member is surrounded by a heat shield portion that protrudes toward the membrane member at the periphery, the heat shield portion prevents natural convection heat transfer and radiant heat transfer, The membrane member can be mainly heated by preventing heat from being transmitted to the membrane support member, and the membrane member can be heated so that the membrane member is thermally contracted while the temperature at the membrane support member is lower than the melting temperature. Furthermore, since heat can be prevented from escaping from the peripheral edge of the heating plate to the membrane support member side, that is, heat loss of the heating plate can be reduced, so that the membrane member can be efficiently heated. Furthermore, the temperature of the heating plate can be made uniform, and the membrane member can be heated uniformly. Further, the heat shield part also serves as a spacer for preventing the heating plate from touching the film member.
  here,It is preferable to set a gap between the heat shield and the membrane support member. In this case, it becomes difficult for the heat of the heating plate to be transmitted to the membrane support member due to the gap, and the membrane member can be mainly heated, and the membrane support member can be prevented from melting.
  Also,It is preferable that a heating plate having a similar shape smaller than the inner contour shape of the membrane support member is disposed on the other surface of the membrane member, and a gap is provided between the heating plate and the membrane support member. In this case, both the front and back surfaces of the membrane member can be heated at the same time, and the front and back surfaces shrink at the same time, so there is no distortion or warpage, and the membrane member can be shrunk in a short time to give the necessary tension, This is preferable because the processing can be speeded up. In addition, the amount of heat shrinkage between the front surface side and the back surface side of the membrane member can be made uniform, and tension can be uniformly applied to the membrane member. In addition, the gap between the heating plate and the membrane support member makes it difficult for the heat of the heating plate to be transmitted to the membrane support member, and only the membrane member can be heated, and the membrane member is kept at a temperature below the melting temperature. It can be heated to heat shrink.
  The heating of the membrane member is preferably performed by moving the heating plate toward the membrane member as the shrinkage deformation of the membrane member proceeds. In this case, while avoiding the contact between the heating plate and the membrane member, the distance between them can be made as close as possible, and the necessary tension can be applied to the membrane member in a short time.
  In addition, the membrane member and the membrane support member are arranged in a mold in which the membrane member is injection-molded with no tension or with a tension that is weaker than the tension required as a structure, and the edge of the membrane member is the membrane support member The membrane member is fixed to the membrane support member by insert molding in which a thermoplastic resin is injected into the cavity in a state in which the membrane member is disposed in the cavity. Therefore, there is no need to keep the membrane member stretched during insert molding or to apply pretension to the membrane member when attaching the membrane member to the mold, so there is no need to provide a tensioning device and the manufacturing device is simplified. Can be Further, since the edge of the membrane member is integrated with the membrane support member and does not protrude, trimming work for cutting the membrane member from the membrane support member becomes unnecessary, the number of work steps can be reduced, and a structure can be manufactured. It is possible to reduce the amount of membrane members required for the process. Furthermore, since the edge of the membrane member is integrated with the membrane support member, the appearance as a structure can be improved. Here, the thermoplastic resin forming the membrane supporting member contracts and the membrane member is easily loosened. However, the membrane member can be tensioned by removing the slack by heating the membrane member.
  The melting point of the membrane support member may be considerably lower than the melting point of the membrane member to be heat-treated, and may be lower than the heat treatment temperature of the membrane member. However, a thermoplastic resin having a melting point higher than the heat shrinkage temperature of the membrane member may be used as the membrane support member, for example, polyester as the membrane support member and elastomeric polyester as the membrane member. In this case, since a means for maintaining the membrane support member at a temperature lower than the melting temperature is not required, a structure in which the membrane member and the membrane support member are integrated is continuously mounted in the heating furnace. Even if the membrane member is heat-treated, the temperature in the membrane support member is lower than the melting temperature, and the membrane support member can be prevented from melting or deforming, so that the heat treatment operation is efficient. You can do it.
Also,The present invention relates to a method of manufacturing a structure including a membrane member and a membrane support member that holds all or part of the periphery of the membrane member so that the membrane member forms a surface. At least two kinds of elastic materials with different shrinkageAs warp and weftUsing a combination, the membrane member is fixed to the membrane support member under no tension or with a tension that is weaker than the tension required for the structure, and then the membrane member is heated to thermally shrink the membrane member to form a structure on the membrane member. Gives the tension necessary to demonstrate the elasticity required for the object andDifferent shrinkage and tension in the vertical and horizontal directions,Due to the difference in thermal shrinkage, the tension distribution is made non-uniform so that the surface is non-flat, for example, a three-dimensional surface is formed. Accordingly, the curved shape of the membrane member can be obtained by utilizing the difference in thermal shrinkage of the membrane member. As a result, the seating surface and the backrest surface can be made excellent in terms of ergonomics and aesthetics, and the degree of freedom in design can be increased, improving the appearance and performance as a structure. be able to.
  Here, the film member may be configured such that the amount of heat shrinkage in the direction to draw a straight line is larger than the amount of heat shrinkage in the direction to draw a curve. In this case, an elastic material with a large amount of heat shrinkage draws a straight line, and the elastic material with a small amount of heat shrinkage draws a curve so that the elastic material that draws the straight line is regulated. Will come to form.
  Moreover, the structure manufactured by the above manufacturing method does not impair the function and appearance of the membrane support member and the membrane member during the heat treatment for applying the necessary tension to the membrane member.Such as a chair seat or backA structure can be provided. Further, it is possible to provide a structure in which the membrane member is stretched on a curved surface that is excellent in terms of ergonomics and aesthetics. This structure includes, for example, general chairs, office chairs, work chairs, nursing chairs and the like, as well as bicycles, motorcycles, automobiles, buses and other vehicle seats, backrests, elbow panels, It can be used as a headrest, as well as partitions and panels.
[Brief description of the drawings]
  1A to 1C are longitudinal sectional views for explaining an example of the manufacturing procedure of the structure according to the present invention. Fig. 1A shows a state in which the membrane member is installed on the mold, and Fig. 1B shows that the membrane member is heated. Fig. 1C shows the state where the heat treatment is completed. FIG. 2 is a partially sectional perspective view showing an example in which the structure of the present invention is implemented as a chair seat. Fig. 3 shows an example of a heating means for heating the membrane member, and is a schematic plan view showing an example of arrangement of heat sources on the heating plate. Fig. 4 is a schematic central cross-sectional side view showing an example in which a membrane member is mainly heated using a heat insulating jig. FIG. 5 is a schematic cross-sectional side view showing another example for mainly heating the membrane member using a heat insulating jig. FIG. 6 is a schematic central sectional side view showing still another configuration example for mainly heating the membrane member. FIGS. 7A to 7C are longitudinal sectional side views showing an example of the manufacturing procedure of the structure according to the second embodiment of the present invention, FIG. 7A is a state in which a membrane member is installed in the mold, and FIG. Fig. 7C shows the state where the member is heat-treated, and Fig. 7C shows the state where the structure is completed. FIG. 8 is a perspective view showing an example of a structure according to the third embodiment of the present invention. 9A-9B shows an example of a membrane member composed of two types of elastic materials that differ in heat shrinkage under the same heating temperature. Fig. 9A shows polyester yarn in the longitudinal direction and elastomer yarn in the transverse direction. 9B shows an example in which an elastomer yarn is used in the vertical direction and a polyester yarn is used in the horizontal direction. Figures 10A to 10B show other examples of membrane members made by combining two kinds of elastic materials with different heat shrinkage under the same heating temperature. Fig. 10A shows elastomer yarns in the longitudinal direction and transverse directions. An example in which elastomer yarns and polyester yarns are alternately arranged is shown, and FIG. 10B shows an example in which polyester yarns are alternately arranged in the vertical direction and elastomer yarns and polyester yarns are alternately arranged in the horizontal direction. Fig. 11 is a diagram showing the relationship between the arrangement density of warp and weft. Fig. 11A shows an example in which the density of warp and weft is the same. Fig. 11B shows the density of weft is greater than the density of warp. An example is shown. Fig. 12 is a plan view showing another embodiment of the membrane member and membrane support member fixing method, and a part of the membrane member is not shown. FIG. 13 is a schematic cross-sectional side view of FIG. FIG. 14 is an explanatory diagram showing a state in which the structure is attached to the chair frame when applied to the chair seat. 15A to 15C are longitudinal sectional side views showing the manufacturing procedure of the cover member, Fig. 15A is a state where the structure is attached to the mold, Fig. 15B is a state where the resin is injected, and Fig. 15C is a case where the cover member is integrated. Each of the completed structures is shown. 16A to 16B are plan views showing an example of the gate position of the structure. FIG. 16A shows the gate position of the membrane support member, and FIG. 16B shows the gate position of the cover member. FIG. 17 is a cross-sectional view showing an example of a structure having another cross-sectional shape. 18A to 18C are longitudinal sectional views showing another example of the manufacturing procedure of the structure. Fig. 18A shows a state in which the membrane member is set on the mold, and Fig. 18B shows that the membrane support member is molded by injecting resin. 18C shows the state where the upper mold is removed. FIGS. 19A to 19C are diagrams showing a process of continuously injection-molding the cover member on the structure formed in the process of FIGS. 18A to 18C, and FIG. 19A is a state in which the upper die for the cover member is attached. .19B is a state in which a cover member is molded by injecting resin, and FIG. 19C is a longitudinal sectional view of a structure in which the cover member taken out from the mold is integrated. 20A to 20B are longitudinal sectional views showing other examples of the manufacturing procedure of the structure. Fig. 20A is a state in which the membrane supporting member is insert-molded, and Fig. 20B is a cover member being molded by two-color injection molding. Each state is shown. FIG. 21 is an explanatory view showing a state where the cover member is bonded to the membrane support member. FIG. 22 is a longitudinal sectional view of a mold for forming a membrane supporting member having an elliptical cross section. FIG. 23 is a longitudinal sectional view showing a mounting relationship between a structure composed of an L-shaped membrane support member and a leg frame of the chair. FIG. 24 is an explanatory view showing an example of the relationship between the membrane member and the injection resin in the cavity. FIG. 25 is an explanatory view showing another example of the relationship between the membrane member and the injection resin in the cavity. FIG. 26 is a perspective view showing a membrane member having a relief portion. FIG. 27 is an explanatory view showing an example of the relationship between the membrane member of FIG. 26 and the injection resin. FIG. 28 is an explanatory view showing another example of the relationship between the membrane member of FIG. 26 and the injection resin in the cavity. FIG. 29 is a perspective view showing a membrane member having a relief portion and a flow hole. FIG. 30 is an explanatory view showing a state in which the membrane member is attached to a mold having another shape. FIG. 31 is a longitudinal sectional side view showing an example of a structure having another shape. FIG. 32 is a longitudinal sectional view showing another fixing structure of the membrane member and the membrane support member. FIG. 33 is a longitudinal sectional side view showing a structure of another shape. FIG. 34 is a vertical cross-sectional side view showing a structure having another shape. FIGS. 35A to 35B are longitudinal cross-sectional side views showing structures of still other shapes, FIG. 35A shows before combination, and FIG. 35B shows after combination. FIG. 36 is a longitudinal sectional side view showing a conventional method of manufacturing a structure.
BEST MODE FOR CARRYING OUT THE INVENTION
  Hereinafter, the configuration of the present invention will be described in detail based on the best mode shown in the drawings.
  Fig. 1 shows a first embodiment in which the method of the present invention is applied to manufacture of a chair seat. The structure 1 constituting the seat of the chair includes, for example, a membrane member 2 as shown in FIG. 2 and a membrane that holds part or all of the periphery of the membrane member 2 so that the membrane member 2 forms a surface. It comprises a support member 3 and is assembled to a chair frame such as a leg frame to function as a component of the chair such as a seat. This structure 1 heats only the membrane member 2 after fixing the membrane member 2 to the membrane support member 3 under no tension or with a tension weaker than the tension required for the structure 1, thereby increasing the temperature in the membrane support member 3. While maintaining the temperature lower than the melting temperature of the membrane support member 3, the membrane member 2 is heated to such an extent that it is thermally contracted, and the membrane member 2 is thermally contracted to provide the elasticity necessary for the membrane member 2 as the structure 1. The tension that makes it appear is given.
  In this embodiment, it is assumed that the membrane support member 3 is rigid enough to support the tension of the membrane member 2 itself. In other words, the membrane support member 3 has a rigidity that keeps the shape so that the membrane member 2 can obtain the necessary tension as the structure 1 without being attached to another structure such as a leg frame of a chair. For this reason, when attaching the structure 1 to the flame | frame 4, since it is not necessary to give the tension | tensile_strength required for the film | membrane member 2, attachment work can be made easy. Incidentally, the shape of the membrane member 2 and the membrane support member 3 that holds the entire periphery thereof in the present embodiment is a substantially rectangular sheet shape and a substantially rectangular frame shape, but the shape as the structure 1 is particularly limited. Is not to be done.
  In the present embodiment, the membrane member 2 uses a mesh sheet made of, for example, a woven fabric of polyester yarn and elastomeric polyester yarn, for example, a mesh sheet known by trade name Diaflora (manufactured by Toyobo Co., Ltd.). ing. However, the membrane member 2 may be an elastic material having heat shrinkability, and is not limited to this example. By using the membrane member 2 as a mesh, it is possible to obtain a comfortable structure 1 that has high air permeability and is comfortable to sit on. The membrane support member 3 is made of a thermoplastic synthetic resin. The thermoplastic resin forming the membrane support member 3 is preferably an olefin resin such as PET (polyethylene terephthalate) or PP (polypropylene). As in this embodiment, the membrane support member 3 is made of an olefin resin and the membrane member 2 is made of polyester, so that the structure 1 is recycled without separation if screws or the like are not used for the joining. can do. By forming all members used as seats from plastic or elastomer so that metal parts are not used, there is no need for separation at the time of disposal, and disposal and recycling can be easily performed. However, this does not mean that the material of the membrane member 2 and the membrane support member 3 is limited to the example of this embodiment.
  In the present embodiment, the membrane member 2 and the membrane support member 3 are integrated by incorporating the previously formed membrane member 2 as an insert when the membrane support member 3 is formed by injection molding. Yes. However, the fixing method of the membrane member 2 and the membrane support member 3 is not limited to this.
  For example, as shown in FIG. 1A, the insert molding is a membrane member having heat shrinkability with respect to a mold 5 including an upper mold 7 and a lower mold 8 for insert-molding the membrane support member 3 and the membrane member 2. 2 is attached with no tension or with a tension weaker than that required for the structure 1, the mold is closed, and a thermoplastic resin is injected into the cavity 6 to be solidified. Perform molding. After that, the insert molded product taken out from the mold, that is, the structure 1 is attached to the support base 60 as necessary, and then heat treatment is performed as shown in FIG. Gives the tension necessary for elasticity.
  Here, the cavity 6 of the lower mold 8 of this embodiment is provided with a core pin 10 for forming a vertical through-hole 9 in the membrane support member 3 of the structure 1. When the membrane member 2 is attached to the mold 5, the edge of the membrane member 2 is pierced into each core pin 10 and temporarily fixed. For this reason, even if the membrane member 2 is not supported from the outside of the mold 5, it is possible to accurately position the peripheral edge within the cavity 6. In addition, since it is not necessary to provide a device for supporting the membrane member 2 outside the mold 5, the manufacturing apparatus can be simplified. Further, since the edge of the membrane member 2 is integrated with the membrane support member 3 without protruding from the cavity 6, trimming work for cutting the membrane member 2 from the membrane support member 3 becomes unnecessary, and the number of work steps can be reduced. The amount of the membrane member 2 necessary for manufacturing the structure 1 can be reduced. Furthermore, since the peripheral edge 11 of the membrane member 2 is integrated with the membrane support member 3, the appearance of the structure 1 can be improved.
  Here, since the membrane member 2 is a mesh sheet, when the membrane member 2 is integrated by injection molding of the membrane support member 3, the resin passes through the gap between the threads of the mesh fabric so that the membrane member 2 is covered. The resin starts to wrap around. Thereby, the membrane member 2 formed in advance is integrated and fixed to the membrane support member 3 formed by injection molding.
  Then, after the thermoplastic resin injected into the cavity 6 is solidified, the molded product to be the structure 1 is taken out from the mold 5 by the operation of the protruding device (not shown), and then the heat treatment apparatus as shown in FIG. 1B. It mounts on the support stand 60 of this. The heat treatment is performed by heating the membrane member 2 to such an extent that the membrane member 2 is thermally contracted while maintaining the temperature of the membrane support member 3 at a temperature lower than the melting temperature of the membrane support member 3. At this time, at the time of injection molding of the membrane support member 3, the portion sandwiched between the upper die 7 and the lower die 8 of the membrane member 2 is not heated to such an extent that it contracts, and thus is loosened to some extent. And since the film | membrane support member 3 will shrink | contract when it solidifies, the slack of the film | membrane member 2 will become still larger. This slackness can be removed by contraction by heating and a predetermined tension can be applied.
  In this embodiment, for example, a metal heating plate heated by an electric heater is used as the means 53 for heating the film member 2 used in the heat treatment. However, the heating means 53 is not limited to the example of this electric heater. For example, a heating means using hot air, steam, light or the like as a heating source may be used, or the heat of the electric heater may be directly applied to the film member 2 without using a heating plate.
  The heating plate 53 has a similar shape smaller than the inner contour shape formed on the inner wall surface of the membrane support member 3 so as not to apply heat to the membrane support member 3, for example, in the case of this embodiment, the four corners are rounded. It has a heating surface that is formed in a rectangular shape and is substantially parallel to the membrane member 2 that is stretched by thermal contraction. In this case, the entire membrane member 2 can be heated uniformly. However, the shape of the heating plate 53 is not limited to this. The heater 54 for heating the heating plate 53 is preferably provided so that the temperature distribution in the heating plate 53 is uniform. For example, as shown in FIG. 3, a plurality of heaters 54 are arranged on the heating plate 53 at equal intervals. Thereby, the temperature distribution in the heating plate 53 is made uniform so that the entire film member 2 can be heated uniformly. Moreover, in this embodiment, as shown in FIG. 1B, the heating plates 53 are arranged on both the front surface side and the back surface side of the membrane member 2. In this case, both the front and back surfaces of the membrane member 2 can be heated at the same time, and the front and back surfaces are contracted at the same time, so there is no distortion or warpage, and the membrane member 2 can be contracted in a short time to provide the necessary tension. This is preferable because the processing can be speeded up. Further, the amount of heat shrinkage between the front surface side and the back surface side of the film member 2 can be made uniform, and tension can be uniformly applied to the film member 2. However, the arrangement of the heating plate 53 is not necessarily limited to the example of this embodiment. For example, the heating plate 53 may be disposed only on either the front or back side of the membrane member 2. In addition, the heating plate 53 is disposed only on one of the front and back sides of the membrane member 2, and a mirror-finished metal plate, for example, is disposed on the other side as a heat reflecting plate, and the heating plate 53 from the one side, From the other side, the film member 2 may be heated by the heat reflected by the heat reflecting plate.
  Here, examples of the method for heating the membrane member 2 while maintaining the temperature of the membrane support member 3 at a temperature lower than the melting temperature of the membrane support member 3 include the following. As a first method, as shown in FIG. 1B, a heating plate 53 having a similar shape smaller than the inner contour shape of the membrane support member 3 is adopted, and a gap is formed between the heating plate 53 and the membrane support member 3. L1 is provided. In this case, it is difficult for the heat of the heating plate 53 to be transmitted to the membrane support member 3 by the gap L1, and the membrane member 2 can be mainly heated, and the membrane support member 3 can be prevented from melting. As a second method, as shown in FIG. 1B, a heat shield plate 55 is provided as a heat shield portion protruding from the peripheral edge portion of the heating plate 53 toward the film member 2. In this case, the heat shield plate 55 prevents the heat of the heating plate 53 from being transferred to the membrane support member 3 by natural convection heat transfer, and can mainly heat the membrane member 2 to prevent the membrane support member 3 from melting. it can. Furthermore, since heat can be prevented from escaping from the edge of the heating plate 53 to the membrane support member 3 side, the membrane member 2 can be efficiently heated and heat loss can be reduced. Further, since the heat shield plate 55 prevents cold air from entering from the surroundings, the temperature of the heating plate 53 inside the enclosure of the heat shield plate 55 can be made uniform, and the film member 2 can be heated uniformly. Further, the heat shield plate 55 also serves as a spacer that prevents the heating plate 53 from touching the film member 2. For the heat shield plate 55, it is preferable to use a heat insulating material having a low thermal conductivity such as ceramics, but is not limited to this material. Furthermore, in this embodiment, in order to more reliably prevent the heat of the heating plate 53 from being transmitted to the membrane support member 3, a heat shield plate 55 is provided and a gap is provided between the heat shield plate 55 and the membrane support member 3. Although L1 is set, depending on the case, only one of them may be implemented.
  The method for heating the membrane member 2 while maintaining the temperature of the membrane support member 3 at a temperature lower than the melting temperature of the membrane support member 3 is not limited to the above example. For example, the film member 2 may be heated in that state using a jig that covers the film support member 3 made of a heat insulating material such as ceramics. For example, the heat insulating jig 56 shown in FIG. 4 is formed in a frame shape corresponding to the membrane support member 3, and is configured to be divided into an upper member 56a and a lower member 56b. By sandwiching the membrane support member 3 between the upper member 56a and the lower member 56b, the membrane support member 3 is covered, and only the membrane member 2 inside the frame-like membrane support member 3 is exposed. In this case, even if the heating temperature of the membrane member 2 is higher than the melting temperature of the membrane support member 3, the heat insulating jig 56 prevents the membrane support member 3 from being heated. Also, only the membrane member 2 can be heated, and the membrane support member 3 can be prevented from melting. Furthermore, a cooling means for lowering the temperature of the membrane support member 3 may be provided. For example, as shown in FIG. 5, a heater 54 is provided at a position facing the membrane member 2, and a heating device 58 having a cooling means 57 is provided around the membrane support member 3 to heat the membrane member 2. You can do it. The cooling means 57 is a cooling water channel through which cooling water flows, for example. In this case, the temperature of the membrane support member 3 is lowered by the cooling means 57 and the membrane member 2 is heated while maintaining the temperature of the membrane support member 3 at a temperature lower than the melting temperature of the membrane support member 3. Yes.
  When a device that generates hot air, steam, light, or the like is used as the heating means 53, for example, as shown in Fig. 6, aiming only at the membrane member 2 so as not to hit the membrane support member 3, Steam may be blown or light may be irradiated. In this case, as shown by the broken line in FIG. 6, the heating means 53 may be moved within a range where hot air, steam, light or the like does not hit the membrane support member 3. Of course, when the heat insulating jig 56 shown in FIG. 4 is used, such consideration is not necessary. Further, when the membrane member 2 is heated, cold air may be blown against the membrane support member 3.
  Here, it is preferable to heat the membrane member 2 from a position away from the membrane member 2. In this case, it is prevented that the membrane member 2 comes into contact with the heating plate 53 and melts, or that the mesh pattern of the membrane member 2 is uneven, and the function and appearance as a structure are impaired. Can be prevented. For example, in the present embodiment, the heating plate 53 is disposed at a position that is not in contact with the membrane member 2. However, when there is no risk of deterioration in strength as a chair structure and the membrane member 2 is not visible from the outside, for example, when a skin member covering the membrane member 2 is attached, or on the back side of the membrane member 2 For example, the heating plate 53 may be brought into contact with the film member 2. For example, the lower heating plate 53b disposed on the back side of the membrane member 2 is disposed at a position where the lower heating plate 53b is substantially in contact with the membrane member 2, in other words, a position where the membrane member 2 is touched without pressing the membrane member 2. May be.
  The heating means 53 is preferably movable so as to follow the contraction deformation of the membrane member 2. In this case, the necessary tension can be applied to the membrane member 2 in a short time by reducing the distance between the heating means 53 and the membrane member 2 as much as possible. For example, in the present embodiment, a stretchable cylinder device 59 that extends so as to approach the membrane member 2 and contracts away from the membrane member 2 is used. In the case of the embodiment, the upper heating plate 53a disposed on the surface side of the membrane member 2 is supported so as to be movable up and down. Of course, when the back surface (inside) of the membrane member 2 is loosened, the lower heating plate 53 is used.bMay be moved up and down by a cylinder 59. As shown in FIG. 1B, the cylinder device 59 supports the heating plate 53 at a position away from the membrane member 2 so as not to touch the membrane member 2 at the initial stage of heating when the membrane member 2 is loose. As the heating progresses and the slack of the membrane member 2 is removed, the heating plate 53 is extended so as to approach the membrane member 2 as shown in FIG. 1C. Note that the movement control of the heating plate 53, that is, the expansion / contraction control of the cylinder device 59 may be either automatic or manual. In the case of automatic control, for example, a correlation between the heating time and the deformation of the film member 2 may be obtained in advance, and the heating plate 53 may be moved according to the heating time, or the film member 2 and the heating plate may be moved. A sensor for detecting the distance from the sensor 53 may be provided, and the heating plate 53 may be moved so that the film member 2 and the heating plate 53 maintain a certain distance according to an output signal from the sensor. Further, the movement of the heating plate 53 may be stepwise, that is, intermittent or continuous. For example, in the present embodiment, the upper heating plate 53a is moved so that the distance between the surface formed by the membrane member 2 after heat shrinkage and the heating surface of the upper heating plate 53a changes stepwise from 40 mm → 30 mm → 15 mm. I am doing so. In the example of Fig. 1B, the upper heating plate 53a is moved, but the lower heating plate 53b may be moved, or both the upper heating plate 53a and the lower heating plate 53b are moved. Also good. In addition, although it is a suitable example to provide the heating means 53 so that a movement is possible, it is not limited to this structure.
  Here, as membrane member 2TIn the case of the present embodiment in which a mesh sheet constituted by a woven fabric of reester yarn and elastomeric polyester yarn is employed, the temperature and heating time when the membrane member 2 is heated are preferably in the following ranges, for example. The temperature of the heating plate 53, for example, the lower heating plate 53b when arranged so as to be substantially in contact with the film member 2, is preferably in the range of about 120 to 250 ° C, for example, in the range of about 180 to 190 ° C. It is more preferable. The temperature of the heating plate 53, for example, the upper heating plate 53a when arranged so as to be in non-contact with the film member 2, is preferably in the range of about 180 to 300 ° C, for example, in the range of about 190 to 240 ° C. It is more preferable. The heating time is preferably about 40 to 120 seconds, for example. The temperature of the membrane support member 3 during heating of the membrane member 2 is desirably normal temperature or a temperature close to normal temperature, and the temperature difference between the membrane member 2 and the membrane support member 3 during the heating is 5 to 200. Preferably, the temperature is about 150C, and more preferably 150C or higher. However, the optimum heating conditions can vary depending on the material of the film member 2 to be selected, and are not necessarily limited to the above conditions.
  By heating the membrane member 2 as described above, the membrane member 2 can be contracted as shown in FIG. Here, if a large load is applied to the membrane member 2 immediately after heating, the membrane member 2 is likely to be deformed. Therefore, heat removal or cooling of the membrane member 2 is performed so as not to apply such a load. Is preferred. For example, in this embodiment, necessary tension is applied to the membrane support member 3 by heating, and then the structure 1 is attached to another structure such as the frame 4 and left for a while to cool naturally. In this case, deformation of the membrane support member 3 during heat shrinkage can be prevented. The attachment of the structure 1 to the frame 4 is not limited to screwing. For example, a locking claw is formed integrally with the membrane support member 3, and this is used as a receiving part on the frame 4 or the receiving metal side, such as a hole or You may make it latch to a recessed part by one touch.
  Next, another embodiment of the present invention shown in FIGS. 7a to 7C will be described. In other embodiments described below, the same components as those in the above-described embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  In this method of manufacturing a structure, first, the film member 2 is placed in advance in a mold 5 for injection-molding the film support member 3 under no tension or with a tension that is weaker than the tension required for the structure 1. Is inserted into the cavity 6 in a state where the film member 2 is placed in the cavity 6 for molding the membrane support member 3, and the membrane member 2 is placed under no tension or with a tension weaker than that required for the structure 1. It is shaped so as to be fixed to the membrane support member 3. Next, an incomplete structure as an insert molded product taken out from the mold 5 is introduced into the heating furnace 61, and the temperature in the membrane support member 3 is maintained at a lower temperature than the melting temperature of the membrane support member 3 by the furnace atmosphere. While the membrane member 2 is heated, the membrane member 2 is thermally shrunk to give the membrane member 2 a tension that exerts the elasticity required for the structure 1.
  Here, as a method of heating while maintaining the temperature in the membrane support member 3 at a temperature lower than the melting temperature of the membrane support member 2, the melting temperature of the membrane support member 3 is a heat treatment (thermal contraction) of the membrane member 2. If the temperature is lower than the temperature required for the resin, a resin having a melting temperature higher than the temperature at which the membrane member 2 is contracted, for example, polyester such as PET (polyethylene terephthalate), is used by using the heat insulating jig 56 shown in FIG. In the case where the system resin is used for the membrane support member 3, this is achieved by setting the furnace atmosphere at a temperature lower than the melting temperature of the membrane support member 3 and higher than the temperature at which the membrane member 2 contracts. In this case, even if the structure 1 in which the membrane member 2 and the membrane support member 3 are integrated is put in the heating furnace 61 and heated, the membrane support member 3 can be prevented from being melted or deformed. For example, the membrane member 2 may be the same as that of the above-described embodiment. However, the membrane member 2 and the membrane support member 3 are not necessarily limited to these materials, and a combination of other materials in which the melting point of the membrane support member 3 is higher than the temperature at which the membrane member 2 contracts is used. Also good. However, when the membrane support member 3 is covered with a jig 56 made of a heat insulating material such as ceramics as shown in FIG. 4, the melting point is higher than the temperature at which the membrane member 2 is contracted. There is no need to use a certain material for the membrane support member 3. The temperature in the heating furnace 61 when heating the membrane member 2 is preferably in the range of, for example, about 120 to 250 ° C, and more preferably in the range of about 180 to 190 ° C. The heating time is preferably about 40 to 120 seconds, for example. Note that the method for integrating the membrane member 2 and the membrane support member 3 when the membrane support member 3 is injection-molded may be the same as that of the first embodiment described above, for example, and detailed description thereof is omitted.
  Here, the heating furnace 61 is preferably a far-infrared furnace. In this case, there is an advantage that far infrared rays can be heated to the inside of the resin material constituting the film member 2 to uniformly contract the film member 2 and to apply a uniform tension. However, the heating furnace 61 should just be a thing which can be heated to the temperature which can provide the tension | tensile_strength required for the film | membrane member 2, and the kind is not limited to this example.
  The structure 1 that is an integrally molded product of the membrane member 2 and the membrane support member 3 is placed in a heating furnace 61 and heated. Reference numeral 62 denotes a support base that supports the membrane support member 3 when the membrane member 2 is heated. By using the heating furnace 61, the membrane member 2 can be heated at a uniform temperature. Accordingly, it is possible to uniformly contract the membrane member 2 and apply a uniform tension. In addition, since the film member 2 is indirectly heated, in other words, the heated member is not directly pressed against the film member 2, so that the film member 2 is melted or uneven (unevenness) in the mesh pattern. ) Is prevented. Further, by using the large heating furnace 61, it is possible to heat a plurality of structures 1 at a time, and mass production of the structures 1 is also possible. For example, a continuous processing furnace in which a plurality of structures 1 are placed on a heat-resistant belt conveyor and sequentially moved in the heating furnace 61 may be used.
  Next, a third embodiment of the present invention will be described mainly with reference to FIG. This structure manufacturing method uses a combination of at least two kinds of elastic materials having different heat shrinkage at the same heating temperature as the film member 2, and heat-shrinks the film member 2 by heat treatment. When a tension is applied to 2 to exert the elasticity necessary for the structure 1, a three-dimensional surface is formed by the difference in the amount of thermal contraction of the film member 2.
  The membrane support member 3 in the present embodiment has an arbitrary three-dimensional shape, for example, a substantially rectangular frame shape in which the front portion of the seat is curved downward as shown in FIG. The membrane member 2 is a mesh formed by knitting warps 63 stretched in the front-rear direction (also referred to as the longitudinal direction) of the seat surface and wefts 64 stretched in the left-right direction (also referred to as the lateral direction) perpendicular to the warp threads 63. It is a sheet, and the weft 64 is employed as a material having a larger amount of heat shrinkage than the warp 63 and capable of obtaining a strong tension. For example, in this embodiment, a polyester yarn having a thickness of 300 denier is used for the warp yarn 63, and an elastomeric polyester yarn having a thickness of 1850 denier is used for the weft yarn 64. Accordingly, in the curved portion 65 of the membrane support member 3, the weft 64 linearly connects the curved portions 65 and 65, and the warp yarn 63 passes between the weft 64 so as to be regulated by the weft 64, A curve corresponding to the curved portion 65 of the membrane support member 3 is drawn. As a result, the membrane member 2 forms a curved surface corresponding to the curved portion 65 of the membrane support member 3.
  As described above, the surface of the structure constituted by the membrane member 2 can be formed into an arbitrary three-dimensional shape by variously changing a combination method of at least two kinds of elastic materials having different heat shrinkage under the same heating condition. When applied to a chair structure or the like, the degree of freedom in design can be increased, and the appearance and performance can be improved. In this case, the shrinkage rate of the warp yarn 63 ((original length−length after shrinkage) / original length × 100) is, for example, about 3.3 to 6.6%, and the shrinkage rate of the weft yarn 64 is, for example, It is preferable to set it as about 8.5 to 9.0%. However, the shrinkage rate required for the material can vary depending on the shape of the chair and the elastic force required for the surface formed by the membrane member 2, and is not necessarily limited to the above example. The method and means for attaching the membrane member 2 to the membrane support member 3 and the method and means for heating the membrane member 2 are preferably the same as those in the first or second embodiment. It is not limited.
  However, the configuration of the film member 2 for forming a desired curved surface is not necessarily limited to the above example.
  For example, it is also a preferred embodiment that the warp and weft materials are different. For example, as shown in FIGS. 9A and 9B, one of the warp direction and the weft direction is an elastomer thread 66 and the other is a polyester thread 67, and as shown in FIGS. 10A and 10B, One of the weft yarns may be formed by alternately arranging the elastomer yarns 66 and the polyester yarns 67, and the other may be the elastomer yarns 66 or the polyester yarns 67. Alternatively, elastomer yarns having different softness, that is, elastic modulus in the vertical direction and the horizontal direction are used. As the elastomer yarn, an elastomeric polyester yarn such as Perprene (registered trademark of Toyobo Co., Ltd.) or Hytrel (registered trademark of Toray DuPont) can be used.
  Moreover, even if the yarns are made of the same material, it is possible to vary the amount of shrinkage depending on the manufacturing method. For example, since the shrinkage amount of the elastomer yarn has an upper limit, if the temperature at which the elastomer yarn is fused during finishing in the weaving process in the manufacturing stage of the membrane member 2 is increased, the shrinkage amount of the elastomer yarn at this time becomes large. Therefore, the amount of shrinkage of the elastomer yarn in the step of applying tension to the membrane member 2 performed after the membrane member 2 is attached to the membrane support member 3 is reduced. For example, the membrane member 2 finished at 190 ° C. has a smaller amount of shrinkage of the elastomer yarn during the tension applying step than the membrane member 2 finished at 170 ° C. If the said property is utilized, the shrinkage | contraction amount of the elastomer thread | yarn at the time of the tension | tensile_strength provision process to the film | membrane member 2 can be adjusted to a desired thing by adjusting the temperature at the time of manufacture of the film | membrane member 2. FIG. Furthermore, for example, the polyester yarn has a different shrinkage amount depending on the dyeing method such as the temperature at which the yarn is heated at the time of dyeing and the number of times of heating. Therefore, by selecting the dyeing method, the polyester yarn in the tension applying step to the membrane member 2 The amount of shrinkage of the yarn can be adjusted to a desired value. Furthermore, by appropriately selecting the cross-sectional shape of the yarn constituting the membrane member 2, the thickness of the yarn, and the like, the shrinkage amount of the yarn at the time of applying tension to the membrane member 2 can be adjusted to a desired value.
  Further, for example, as shown in FIGS. 11A to 11B, the amount of contraction of the membrane member 2 in the longitudinal direction and the transverse direction can also be changed by changing the density of the warp yarn 63 and the weft yarn 64 constituting the membrane member 2, that is, the number of driven yarns. The tension can be varied. Furthermore, a combination of the methods described above may be used. Furthermore, as the film member 2, films having different heat shrinkage amounts in the vertical direction and the horizontal direction may be used. Moreover, you may make it vary the amount of thermal shrinkage of the one part in the membrane member 2, and another part.
  The above-described embodiment is an example of a preferred embodiment of the present invention, but is not limited thereto, and various modifications can be made without departing from the gist of the present invention. For example, the shapes of the membrane member 2 and the membrane support member 3 are not limited to the example of this embodiment. For example, as shown in FIG. 13, the membrane member 2 may be formed into a cylindrical shape or a bag shape and the membrane support member 3 may be included. Further, the membrane support member 3 may be any material as long as the membrane member 2 can form a surface having a desired shape, and is not necessarily limited to one that forms a complete ring shape, but is semicircular, U-shaped, L It may be in the shape of a letter, or may be two bars protruding from a frame (not shown). Further, the membrane support member 3 holds all or part of the periphery of the membrane member 2, and preferably holds at least two opposite sides of the periphery of the membrane member 2. Here, the two opposing sides do not need to be in a parallel relationship, and the film member, such as two sides where polygons such as a triangle intersect or two non-parallel sides, or a part of a circular or oval facing each other. 2 includes any shape and positional relationship that can cause tension. For example, as shown in FIGS. 12 and 13, the membrane support member 3 is a substantially H-shaped member in which a holding member 51 that holds a pair of opposing side edge portions of the membrane member 2 is connected by a connecting member 52. It may be. In the case of the combination of the membrane support member 3 and the membrane member 2 having such a shape, a heating plate or other heating means may be arranged from the side not held by the membrane support member 3. In the case of the bag-shaped membrane member 2 as shown in FIG. 12, a screwing hole may be provided in the membrane member 2 in advance, or the membrane member 2 facing the holding member 51 or the connecting member 52. You may make it penetrate the screw | thread bolt. The cross-sectional shape of the membrane support member 3 is rectangular in the examples shown in Fig. 1 and Fig. 2, but is not limited to this. For example, the membrane support member 3 has a circular shape or a tube shape, or a polygonal shape or an L shape. It can be a shape as required such as a shape. These shapes can be set according to the attachment to the frame of the chair, the design, and the like.
  The membrane member 2 may be a membrane-like material that has heat shrinkability and has the elasticity and strength necessary for the structure 1, and may be, for example, a nylon mesh sheet. Moreover, it is not restricted to a mesh sheet, The thing of other materials, such as a film, vinyl, cloth, and a nonwoven fabric, may be used. As the film, for example, a film made of polyvinylidene chloride can be used.
  In the first embodiment, the membrane support member 3 is molded from a thermoplastic resin. However, the present invention is not limited to this, and a thermosetting resin that cures at a temperature lower than that of the membrane member 2 may be used. In this case, the membrane member 2 and the membrane support member 3 can be integrated by heating to the extent that the membrane support member 3 is cured, and then the membrane member 2 can be heated and contracted. The thermoplastic resin forming the membrane support member 3 is not limited to an olefin resin, and known or novel materials generally used as the membrane support member 3 such as polyester can be used. Further, both the membrane support member 3 and the membrane member 2 may be made of polyester. Also in this case, the structure 1 can be recycled as it is.
  Furthermore, it can also be used as a mesh panel for automobile seat backs. Furthermore, the structure 1 according to the present invention may be a partition. When the structure 1 is a partition or the like, the membrane support member 3 has a configuration in which linear or point-like holding portions shorter than the periphery of the membrane member 2 are dispersed and arranged on the periphery of the membrane member 2; The membrane member 2 may be supported by the plurality of holding portions.
  The present invention can be used not only for general chairs, office chairs, working chairs, nursing chairs, but also bicycles, motorcycles, four-wheeled vehicles, buses and other vehicles. Application to drowning, elbow panel, headrest, etc. is effective.
  By the way, the structure 1 can be used as it is as a seat of a chair, a backrest, etc. as it is. It may be attached. Thereby, while being able to hide the peripheral part of the film | membrane member 2 exposed on the upper surface of the film | membrane support member 3, an external appearance can be made into arbitrary colors and patterns. Further, in this case, a foamed resin such as polyurethane or a fibrous cushion material may be interposed between the skin member and the membrane support member 3. Thereby, it is possible to prevent the hard membrane support member 3 from directly hitting the seated person's body, to prevent the seated person from giving pain and discomfort, and to improve the comfort of use.
  Further, when the structure 1 is attached to the chair, the integrated part of the membrane support member 3 and the membrane member 2 of the structure 1 is obscured, for example, as shown in FIGS. A cover member 13 may be provided. In this case, since the integrated portion can be covered by the cover member 13, the appearance can be improved and the bonding between the membrane member 2 and the membrane support member 3 can be reinforced. The cover member 13 is preferably made of an olefin-based resin or a polyester so that the entire structure 1 can be recycled as it is. Further, by making the cover member 13 made of, for example, an elastomeric resin, the hard member is prevented from directly hitting the seated person's body, the seated person is prevented from giving pain and discomfort, and the comfort is good. Can be. On the other hand, if the cover member 13 is made of a resin having high hardness, for example, the strength of the structure 1 can be increased.
  Here, the attachment of the cover member 13 to the membrane support member 3 is performed, for example, by insert molding according to the procedure shown in FIGS. At this time, as shown in FIG. 14, the cover member 13 is integrally formed with a boss 14 that fits into the through-hole 9 of the structure 1, and the boss 14 is fixed to the frame 4 of the chair or the bracket. It is preferable to screw with a bolt 15 penetrating through. In this case, it is possible to provide a seat where bolts and the like are not exposed to the outside.
  That is, as shown in FIG. 15A, the integral molding product of the membrane support member 3 and the membrane member 2 before the membrane member 2 is contracted by the heat treatment is positioned in the cavity of the mold 16 for injection molding the cover member 13. The core pin 17 is used for mounting. Then, as shown in FIG. 15B, a thermoplastic resin such as PET or PP is injected. When the thermoplastic resin is taken out after solidification, the structure 1 in which the cover member 13 is integrated with the membrane support member 3 can be obtained. Thereafter, the membrane member 2 is subjected to a heat treatment so that the membrane member 2 is contracted to give a necessary tension as the structure 1. Thus, since the cover member 13 is integrated with the portion where the membrane member 2 is fixed to the membrane support member 3, the holding force of the membrane member 2 can be increased. In this example, the cover member 13 is attached before the film member 2 is subjected to the heat treatment. However, the present invention is not limited to this, and the cover member 13 may be covered and integrated after the heat treatment of the film member 2. .
  When the cover member 13 is insert-molded, as shown in FIGS. 16A to 16C, the position of the gate 18 when the membrane support member 3 is injection-molded and the gate 19 when the cover member 13 is injection-molded. It is preferable that the position is different. For example, if two gates 18 are provided at intervals of 180 degrees, and two gates 19 are provided at intervals of 180 degrees so as to be offset by 90 °, the positions 20 and 21 of the weld marks generated at the time of each injection molding are not overlapped. Therefore, the strength of the structure 1 can be increased. Specifically, if the weld marks 20 and 21 are separated from each other by, for example, 10 mm or more, the rigidity as the structure 1 is hardly impaired and there is substantially no problem.
  Further, the cover member 13 only needs to cover at least the fixing portion of the membrane member 2 and the membrane support member 3, but in some cases, for example, as shown in FIG. You may integrate so that it may cover. In this case, since a frame-like object having a rectangular cross section can be formed by both the membrane support member 3 and the cover member 13, the fixing surface between the membrane support member 3 and the membrane member 2 can be hidden to improve the appearance. Since the appearance as if the structure 1 is a single member is exhibited, the appearance can be improved.
  Further, for example, when a fixing surface to the membrane member 2 is exposed on the lower surface or inner side surface of the membrane support member 3, it is possible to provide a cover member 13 that covers the fixing surface portion from the inside. Also in this case, since the integrated part of the membrane support member 3 and the membrane member 2 can be covered by the cover member 13, the appearance can be improved.
  Further, the mold 5 for injection molding the membrane support member 3 and the mold 16 for injection molding the cover member 13 may share a part of the mold. For example, when the lower mold 8 is shared as shown in FIGS. 18A to 19C, first, as shown in FIG. 18A, the membrane member 2 is loosened by using the core pin 10 of the lower mold 8. After the attachment, the upper mold 7 is closed, and a thermoplastic resin is injected from the gate 18 into the cavity to form the membrane support member 3. Then, after the membrane support member 3 is solidified, the upper mold 7 is removed, and the integral product of the membrane support member 3 and the membrane member 2 is left as it is in the lower die 8 (FIG. 18C), and the cover member 13 is formed. For this purpose, the upper mold 16 is closed together (see Fig. 19A). Then, as shown in FIG. 19B, the cover member 13 is formed by injecting a thermoplastic resin from the cover member forming gate 19. After the cover member 13 is solidified, as shown in FIG. 19C, the structure 1 is taken out and the membrane member 2 is subjected to a heat treatment to obtain a necessary tension.
  Further, as shown in FIGS. 20A to 20B, a mold 7 including a slide block 41 that can form a cavity for molding the cover member 13 between the molded article and the injection molded product may be used. In this case, when the membrane support member 3 is injection-molded, as shown in FIG. 20A, the resin is injected into a mold in which the slide block 41 is fixed at the inner closed position to mold the membrane support member 3. Thereafter, the slide block 41 is slid and fixed at the outer open position, and the resin is injected into the space between the membrane support member 3 and the block 41 to form the cover member 13 as shown in FIG. 20B. Further, a thermosetting resin may be employed as the material of the cover member 13 and the cover member 13 may be formed by compression molding or transfer molding. According to this mold 7, by simply sliding the slide block 41, the membrane support member 3 and the integral molded product of the membrane member 2 and the cover member 13 can be molded as the structure 1. Labor can be reduced.
  Further, as shown in FIG. 21, a cover member 13 prepared in advance by injection molding or the like may be fixed so as to cover the fixing surface of the membrane supporting member 3 with the membrane member 2 by welding or adhesion. In this case, it is possible to integrate the cover member 13 at a lower cost compared to the case where the cover member 13 is integrated with the integrally formed product of the membrane support member 3 and the membrane member 2 by injection molding. The adhesive used for bonding the cover member 13 is preferably made of olefin resin or polyester because the entire structure 1 can be recycled as it is.
  Further, the cover member 13 may be made unnecessary by integrating the membrane member 2 so as to be completely embedded in the membrane support member 3. Since the integral part of the film | membrane support member 3 and the film | membrane member 2 can be hidden, an external appearance can be improved. When the membrane member 2 is completely embedded in the membrane support member 3, as shown in FIG. 22, for example, a support member that supports the membrane member 2 from both the front and back mold surfaces by pressing the membrane member 2 from both sides. The core pins 23 and 24 are provided on the molds 7 and 8, respectively. In this case, since the membrane member 2 is supported away from the mold surface of the cavity 6 by the core pins 23 and 24 which are the support members, the membrane member 2 is not exposed on both the front and back surfaces of the membrane support member 3. Here, it is preferable to form the convex part 23a and the recessed part 24a which mutually fit in the front-end | tip of each core pin 23,24. According to this, since the projecting portion 23a can penetrate and be fixed to the core members 23 and 24 with the membrane member 2 sandwiched therebetween, the thermoplastic resin is injected. The displacement of the membrane member 2 can be suppressed.
  Moreover, the membrane member 2 may be exposed and integrated on the lower surface side of the membrane support member 3. In this case, for example, as shown in FIG. 23, the membrane member 2 is fixed on the chair frame 4 by pressing the integrated part of the membrane member 2 and the membrane support member 3. Can be reinforced.
  Furthermore, as shown in FIG. 24 or FIG. 25, the membrane member 2 may be attached so as to be in surface contact with the cavity surface facing the gate 18. Also in this case, since the thermoplastic resin 27 injected from the gate 18 can press the membrane member 2 and press it against the surface opposite to the gate 18, the displacement of the membrane member 2 during insert molding can be prevented. it can. Here, the membrane member 2 and the mold 5 are in surface contact. However, the present invention is not limited to this, and the membrane member 2 is pressed against the mold 5 even in line contact or point contact. Deviation during insert molding can be suppressed.
  Further, as shown in FIGS. 26 to 28, the membrane member 2 is mounted in surface contact with the mold surface provided with the gate 18 in the cavity 6 and is attached to the portion of the membrane member 2 facing the gate 18. You may make it form the escape part 26 which resin can pass. Here, the shape of the relief portion 26 may be a shape cut from the edge of the membrane member 2 as shown in FIG. 26, or may be a hole shape as shown by a two-dot chain line in FIG. In this case, since the thermoplastic resin 27 injected from the gate 18 can easily pass around the back side of the membrane member 2 through the escape portion 26 of the membrane member 2, the membrane member 2 is placed on the back side of the gate 18 side. Can be pressed from. In addition, the thermoplastic resin 27 can be evenly distributed in the cavity 6 without being obstructed by the membrane member 2. 27 shows the case where the gate 18 is arranged on the upper mold 7 and the membrane member 2 is mounted in surface contact with the upper surface of the cavity 6, and FIG. 28 shows the case where the gate 18 is arranged on the lower mold 7. In addition, the membrane member 2 is attached to the lower mold surface of the cavity 6 in surface contact.
  Further, for example, as shown in FIG. 22, for the structure 1 in which the membrane member 2 is completely embedded in the membrane support member 3, the membrane member 2 in which the relief portion 26 is formed at a portion facing the gate of the mold. May be used. In this case, the thermoplastic resin injected from the gate can easily pass around the back side of the membrane member 2 through the escape portion 26 of the membrane member 2, so that the thermoplastic resin can spread evenly in the cavity 6. it can. In this case, as shown in FIG. 29, it is preferable to provide a flow hole 40 in the vicinity of the escape portion 26. According to this, the thermoplastic resin can easily spread over the front and back of the membrane member 2 through the escape portion 26 and the flow hole 40.
  Further, the membrane member 2 is supported in the mold by forming a locking projection on the mold surface of the mold 5, that is, the cavity surface without providing the core pin 10, and hooking the membrane member 2 on the mold surface and attaching it to the mold 5. You may do it. In this case, if the through-hole 9 is necessary in the structure 1, a hole forming process may be performed after the injection molding. Alternatively, the film member 2 may be simply placed on the lower mold 8 without providing the locking projection on the surface of the cavity 6. Also in these cases, since the periphery of the membrane member 2 can be accommodated in the cavity 6, the apparatus for supporting the membrane member 2 outside the mold 5 can be omitted, simplifying the manufacturing apparatus, and eliminating the need for trimming work. Thus, workability and appearance can be improved, and the amount of the film member 2 necessary for manufacturing one structure 1 can be reduced.
  Alternatively, as shown in FIG. 30, a pressing member 28 may be provided on the mold 8 and the membrane member 2 may be pressed against the cavity surface and fixed. Here, the pressing member 28 also serves as a core pin. The pressing member 28 simply presses the membrane member 2 against the mold surface of the cavity 6 without piercing the membrane member 2. In this case, the membrane member 2 can be prevented from moving due to the injection of the thermoplastic resin 27 during the injection molding of the membrane support member 3.
  Furthermore, when forming the membrane support member 3 by injection molding, the membrane support member 3 is not limited to being integrated with the preformed membrane member 2 but formed by other methods such as compression molding or casting. When doing so, the membrane member 2 may be integrated. Further, the membrane member 2 and the membrane support member 3 are not limited to being integrally fixed by insert molding or the like. The membrane member 2 and the membrane support member 3 are separately formed in advance, and then the membrane member 2 is formed. It may be fixed to the membrane support member 3 by adhesion, screwing or the like under no tension or with a tension that is weaker than the tension required for the structure 1.
  Here, as a method of integrating the membrane member 2 and the membrane support member 3 formed separately in advance, various methods can be applied. For example, the membrane support member 3 having a projection on the surface may be formed, and the projection may be integrated by hooking the periphery of the membrane member 2 to the projection. Alternatively, the periphery of the membrane member 2 may be adhered to the surface of the membrane support member 3, or may be integrated by screwing or stapling with a bolt or the like.
  Furthermore, for example, as shown in FIG. 31, the membrane member 2 may be directly sewn, welded or bonded to the surface of the membrane support member 3. Here, the membrane support member 3 has a hook-like cross section, but the present invention is not limited to this, and the membrane member 2 may be directly sewn, welded or bonded to the membrane support member 3 as shown in FIG. In these cases, the membrane support member 3 is made of two kinds of materials, that is, an attachment portion 3e suitable for sewing, welding, or bonding the membrane member 2 and a frame portion 3f having the necessary strength as the structure 1. It is preferable to prepare by two-color molding or the like. As the attachment portion 3e, for example, a soft material that can be easily sewn for sewing is used, a material that is easy to melt for welding, or a material that is easy to bond for bonding. According to this, while being able to strengthen joining with the membrane member 2, it can also have the intensity | strength required as the structure 1. FIG.
  Even when the membrane member 2 is directly sewn, welded or bonded to the membrane support member 3 as described above, it is necessary to give the membrane member 2 a tension required as a finished product when the membrane member 2 is attached to the membrane support member 3. Therefore, the manufacturing operation can be easily performed. It is preferable that the sewing thread material and the adhesive are made of olefin resin or polyester because the entire structure 1 can be recycled as it is.
  Furthermore, as shown in FIG. 32, the membrane support member 3 is wrapped around the periphery of the membrane member 2 and then the membrane members 2 can be fixed to each other at the fixing portion 29 by sewing, welding or adhesion. Here, as the membrane support member 3, for example, four rod-shaped members can be used in combination. In this case, the membrane member 2 is attached to each membrane support member 3 in a rectangular shape and fixed to the frame 4. Thereafter, the membrane member 2 is heated to obtain a tension. According to this attachment, since the membrane member 2 is wound around the membrane support member 3, the membrane member 2 is caught by the membrane support member 3 when a load is applied to the membrane member 2, and the attachment strength can be increased. . Further, by integrating the cover member 13 by bonding, welding, screwing or the like, rigidity as a seat or a backrest can be obtained. In the case where the cover member 13 is integrated before the heat treatment to the membrane member 2, it is possible to give the membrane member 2 the necessary tension after completing a rigid frame that can withstand the tension of the membrane member 2. become. Since the load acting on the membrane member 2 can be received not only by the fixing portion 29 but also by the integrated portion with the cover member 13 or the frame 4, the strength of the fixing portion 29 may be small. In this case, the membrane support member 3 and the membrane member 2 can be integrated at a lower cost than injection molding.
  Further, as shown in FIG. 33 and FIG. 34, the membrane support member 3 is composed of half members 31 and 32 that are divided along the longitudinal direction, and the periphery of the membrane member 2 is sandwiched between them and bonded. Alternatively, they may be integrated by screwing, fitting, sewing, or the like. As the halved members 31 and 32, a molded product or an extruded material can be used. Two flat plates having the same shape as shown in FIG. 33, or one of them is a cross section as shown in FIG. The L-shaped half member 31 may be a flat half member 32 attached to the other side. Further, the contact surface between the half members 31 and 32 is not limited to a flat surface, and may be a surface having fine irregularities. In this case, the adhesion, welding, or sewing force can be increased.
  Further, as shown in FIGS. 35A to 35B, it is also possible to use a membrane support member 3 composed of half members 31, 3 in which convex portions 31a and concave portions 32a are formed on the surfaces facing each other. By holding the membrane member 2 so as to be sandwiched between the convex portion 31a and the concave portion 32a, the holding force of the membrane member 2 can be further increased. Furthermore, it is preferable to form a protrusion 31b at the tip of the convex portion 31a. According to this, welding with the recessed part 32a can be firmly performed by melting the part of the protrusion 31b. Alternatively, the protrusion 31b may be pierced into the film member 2, and in this case, it is possible to prevent the protrusion 31b from coming off.
  Further, a groove or claw for assembling to the frame 4 is formed in the membrane support member 3, and the membrane support member 3 is assembled to the frame 4 with the membrane member 2 sandwiched between the groove or claw. good. At this time, for example, the periphery of the membrane member 2 is wound around the frame 4 in advance, and the membrane support member 3 is fitted from above, or the periphery of the membrane member 2 is put in the groove of the membrane support member 3 in advance. The membrane support member 3 may be fitted to the frame 4 in the state of being placed. In this case, the membrane member 2 is heated after being assembled to the frame 4. In this case, the membrane support member 3 and the frame 4 may be fixed by a fitting tightening force, or the membrane support member 3 and the frame 4 may be fixed by screwing or the like. . When the membrane support member 3 and the frame 4 are fixed by screwing or the like, the holding force of the membrane member 2 can be further increased by passing a screw bolt through the membrane member 2. Furthermore, by forming a convex portion and a concave portion that fit together between the groove of the membrane support member 3 and the frame 4, the membrane member 2 can be sandwiched between the convex portion and the concave portion. The holding force of the member 2 can be further increased.

Claims (10)

膜部材と該膜部材が面を形成するようにその周縁の全部または一部を保持する膜支持部材とを備える椅子の座や背の製造方法において、前記膜部材として熱収縮性を有する弾性素材を用い、前記膜部材を無張力下あるいは構造物として必要な張力より弱い張力で前記膜支持部材に固定し、前記膜部材の少なくとも一方の面に前記膜部材から離して配置され、かつ熱収縮後の前記膜部材と平行な加熱面を有すると共に周縁部に前記膜部材に向かって突出する遮熱部を有する加熱板により、前記膜支持部材における温度を当該膜支持部材の溶融温度よりも低温の状態に維持しながら前記膜部材を加熱し、前記膜部材を熱収縮させて該膜部材に構造物として必要な弾力性を発揮させる張力を与えることを特徴とする椅子の座や背の製造方法。In a method for manufacturing a seat or back of a chair , comprising a membrane member and a membrane support member that holds all or part of the periphery of the membrane member so as to form a surface, the elastic material having heat shrinkability as the membrane member The membrane member is fixed to the membrane support member under no tension or with a tension that is weaker than the tension required for the structure , and is disposed on at least one surface of the membrane member away from the membrane member, and is thermally contracted. A heating plate having a heating surface parallel to the subsequent membrane member and having a heat shield portion projecting toward the membrane member at the peripheral portion causes the temperature of the membrane support member to be lower than the melting temperature of the membrane support member. The chair member or the back is manufactured by heating the membrane member while maintaining the state, and applying heat to the membrane member to cause the membrane member to exhibit a necessary elasticity as a structure. Method. 前記遮熱部と前記膜支持部材との間に空隙を設定するものである請求項1記載の椅子の座や背の製造方法。The method for manufacturing a seat or back of a chair according to claim 1, wherein a gap is set between the heat shield and the membrane support member. 前記膜部材の他方の面には、前記膜支持部材の内輪郭形状よりも小さな相似形状の加熱板を配置し、かつ該加熱板と前記膜支持部材との間に空隙を設けるものである請求項1記載の椅子の座や背の製造方法。A heating plate having a similar shape smaller than the inner contour shape of the membrane support member is disposed on the other surface of the membrane member, and a gap is provided between the heating plate and the membrane support member. Item 1. A method of manufacturing a chair seat or back according to Item 1. 前記加熱は前記膜部材の収縮変形の進行に従って前記加熱板を前記膜部材に向かって移動させるものである請求項1から3のいずれか1つに記載の椅子の座や背の製造方法 The method of manufacturing a chair seat or a back according to any one of claims 1 to 3, wherein the heating is performed by moving the heating plate toward the membrane member as the contraction deformation of the membrane member progresses . 前記膜部材が前記膜支持部材を射出成形する型内に無張力下あるいは構造物として必要な張力より弱い張力で配置されると共に膜部材の縁が前記膜支持部材を成形するキャビティ内に配置された状態で前記キャビティ内に熱可塑性樹脂を射出するインサート成形により、前記膜部材を前記膜支持部材に固定する請求項1から4のいずれか1つに記載の椅子の座や背の製造方法。The membrane member is placed in a mold for injection molding the membrane support member under no tension or with a tension weaker than that required for a structure, and the edge of the membrane member is placed in a cavity for molding the membrane support member. The method for manufacturing a seat or back of a chair according to any one of claims 1 to 4, wherein the membrane member is fixed to the membrane support member by insert molding in which a thermoplastic resin is injected into the cavity in a state of being in a closed state. 前記膜支持部材として前記膜部材の熱収縮温度よりも高い融点の熱可塑性樹脂を用いる請求項1から5のいずれか1つに記載の椅子の座や背の製造方法。The method for manufacturing a seat or back of a chair according to any one of claims 1 to 5, wherein a thermoplastic resin having a melting point higher than a heat shrinkage temperature of the membrane member is used as the membrane support member. 前記膜支持部材はポリエステル、前記膜部材はエラストマ性ポリエステルである請求項6記載の椅子の座や背の製造方法。The method for manufacturing a seat or back of a chair according to claim 6, wherein the membrane support member is polyester, and the membrane member is elastomeric polyester. 膜部材と該膜部材が面を形成するようにその周縁の全部または一部を保持する膜支持部材とを備える椅子の座や背の製造方法において、前記膜部材として同一加熱温度下での熱収縮量が異なる少なくとも2種の弾性素材を縦糸と横糸として組み合わせたものを用い、前記膜部材を無張力下あるいは構造物として必要な張力より弱い張力で前記膜支持部材に固定し、その後に前記膜部材を加熱し、前記膜部材を熱収縮させて該膜部材に構造物として必要な弾力性を発揮させる張力を与えると共に前記膜部材の縦方向と横方向とで収縮量・張力を異ならせ、熱収縮量の差によって三次元的な面を形成することを特徴とする椅子の座や背の製造方法。In a method for manufacturing a seat or back of a chair comprising a membrane member and a membrane support member that retains all or part of its periphery so that the membrane member forms a surface, heat at the same heating temperature as the membrane member Using a combination of at least two kinds of elastic materials having different shrinkage amounts as warp and weft, the membrane member is fixed to the membrane support member under tension or weaker than the tension required as a structure, and then The membrane member is heated, and the membrane member is thermally contracted to give the membrane member tension necessary for the structure, and the contraction amount and tension are made different between the longitudinal direction and the lateral direction of the membrane member. A method for manufacturing a seat or back of a chair, characterized in that a three-dimensional surface is formed by a difference in heat shrinkage. 前記膜部材は曲線を描くべき方向の熱収縮量よりも直線を描くべき方向の熱収縮量が大きくなるものである請求項8記載の椅子の座や背の製造方法。The method for manufacturing a seat or back of a chair according to claim 8, wherein the film member has a heat shrinkage amount in a direction to draw a straight line larger than a heat shrinkage amount in a direction to draw a curve. 請求項1から9のいずれか1つに記載の製造方法により製造されたことを特徴とする椅子の座や背。A seat or back of a chair manufactured by the manufacturing method according to any one of claims 1 to 9.
JP2005508899A 2003-09-09 2003-09-09 Manufacturing method of structure that functions as seat, backrest, partition, etc. and structure manufactured by the method Expired - Lifetime JP4531697B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/011517 WO2005025379A1 (en) 2003-09-09 2003-09-09 Method of producing structural body that functions as seat, backrest, partition, etc., and structural body produced by the method

Publications (2)

Publication Number Publication Date
JPWO2005025379A1 JPWO2005025379A1 (en) 2006-11-16
JP4531697B2 true JP4531697B2 (en) 2010-08-25

Family

ID=34308191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005508899A Expired - Lifetime JP4531697B2 (en) 2003-09-09 2003-09-09 Manufacturing method of structure that functions as seat, backrest, partition, etc. and structure manufactured by the method

Country Status (4)

Country Link
JP (1) JP4531697B2 (en)
CN (1) CN100488408C (en)
AU (1) AU2003262026A1 (en)
WO (1) WO2005025379A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5024778B2 (en) * 2006-03-28 2012-09-12 コクヨ株式会社 Chair
JP5004152B2 (en) * 2006-03-28 2012-08-22 コクヨ株式会社 Chair
JP5537184B2 (en) * 2010-02-23 2014-07-02 三惠工業株式会社 Manufacturing method of chair member having mesh and chair member thereof
JP5636948B2 (en) * 2010-12-21 2014-12-10 トヨタ紡織株式会社 Manufacturing method of resin molded products
US9462891B2 (en) 2013-03-21 2016-10-11 Takano Co., Ltd. Office chair
WO2018055781A1 (en) 2016-09-23 2018-03-29 愛知株式会社 Chair and chair structure
JP6857812B2 (en) * 2018-01-24 2021-04-14 パナソニックIpマネジメント株式会社 Method for manufacturing electrolyte membrane-electrode-frame joint
USD889152S1 (en) 2018-06-05 2020-07-07 Herman Miller, Inc. Chair
JP7229741B2 (en) * 2018-12-06 2023-02-28 三菱重工業株式会社 Composite material structure manufacturing apparatus and composite material structure manufacturing method
EP3927215B1 (en) 2019-02-21 2025-06-11 Steelcase Inc. Body support member
US11134792B2 (en) * 2019-04-09 2021-10-05 Illinois Tool Works Inc. System and method for hiding molding flash
US11357329B2 (en) 2019-12-13 2022-06-14 Steelcase Inc. Body support assembly and methods for the use and assembly thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11147260A (en) * 1997-11-17 1999-06-02 Sumitomo Chem Co Ltd Manufacturing method of thermoplastic resin bathtub
JP2000125978A (en) * 1998-10-28 2000-05-09 Itoki Crebio Corp Cushion body
JP2001008775A (en) * 1999-06-30 2001-01-16 Itoki Crebio Corp Production of seat body of chair or the like
JP2001078852A (en) * 1999-07-15 2001-03-27 Takano Co Ltd Method for manufacturing structure functioning as chair seat or backrest, and structure utilizing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001224461A (en) * 1999-12-07 2001-08-21 Takano Co Ltd Chair

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11147260A (en) * 1997-11-17 1999-06-02 Sumitomo Chem Co Ltd Manufacturing method of thermoplastic resin bathtub
JP2000125978A (en) * 1998-10-28 2000-05-09 Itoki Crebio Corp Cushion body
JP2001008775A (en) * 1999-06-30 2001-01-16 Itoki Crebio Corp Production of seat body of chair or the like
JP2001078852A (en) * 1999-07-15 2001-03-27 Takano Co Ltd Method for manufacturing structure functioning as chair seat or backrest, and structure utilizing the same

Also Published As

Publication number Publication date
CN1826069A (en) 2006-08-30
AU2003262026A1 (en) 2005-04-06
WO2005025379A1 (en) 2005-03-24
JPWO2005025379A1 (en) 2006-11-16
CN100488408C (en) 2009-05-20

Similar Documents

Publication Publication Date Title
JP4932983B2 (en) Manufacturing method of structure that functions as chair seat or backrest and structure using the same
JP4531697B2 (en) Manufacturing method of structure that functions as seat, backrest, partition, etc. and structure manufactured by the method
JP6002315B2 (en) Office chair
US5743979A (en) Method of forming fabric
JP5537184B2 (en) Manufacturing method of chair member having mesh and chair member thereof
CA3193670A1 (en) Panel assembly with molded foam backing
CN102325481B (en) Achieving tension in seating unit by pre-forming frame
KR20160124090A (en) Vehicle seat and method of manufacturing vehicle seat
KR101961718B1 (en) Method for producing an element having a cover, and such an element
KR20100126558A (en) In-vehicle treatment using film adhesive instead of stitching
JP2008001001A (en) Method for manufacturing vehicle interior material
US20060232111A1 (en) External covering material for motor vehicle, motor vehicle seat, and apparatus for producing the seat
KR101163376B1 (en) Seat and/or Backrest with Elastic Fiber Membrane and Manutacturing Method thereof
JP2001224461A (en) Chair
JP3696419B2 (en) Cushion body
JP3852677B2 (en) Body support device such as chair and manufacturing method thereof
JP3654569B2 (en) Manufacturing method of seat body in chair, etc.
JP3666559B2 (en) Seat body in chair and the like and method for manufacturing the same
JP2013081605A (en) Chair supporting structure and method of producing the same
JP4069307B2 (en) Seat having a seating surface portion by a planar elastic body
JP2000004992A (en) Method of manufacturing chair structure such as seat or backrest
KR100636600B1 (en) Foam molded article and its manufacturing method
JP2575502B2 (en) Manufacturing method of seat back
JP2019063228A (en) Support structure and chair, and method of manufacturing support structure
JP2013199134A (en) Seat back of vehicle seat

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100609

R150 Certificate of patent or registration of utility model

Ref document number: 4531697

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term