[go: up one dir, main page]

JP4529145B2 - Slow moisture absorption and release cross-linked acrylic fiber - Google Patents

Slow moisture absorption and release cross-linked acrylic fiber Download PDF

Info

Publication number
JP4529145B2
JP4529145B2 JP2006535071A JP2006535071A JP4529145B2 JP 4529145 B2 JP4529145 B2 JP 4529145B2 JP 2006535071 A JP2006535071 A JP 2006535071A JP 2006535071 A JP2006535071 A JP 2006535071A JP 4529145 B2 JP4529145 B2 JP 4529145B2
Authority
JP
Japan
Prior art keywords
moisture absorption
fiber
moisture
carboxyl group
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006535071A
Other languages
Japanese (ja)
Other versions
JPWO2006027910A1 (en
Inventor
正雄 家野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Exlan Co Ltd
Original Assignee
Japan Exlan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Exlan Co Ltd filed Critical Japan Exlan Co Ltd
Publication of JPWO2006027910A1 publication Critical patent/JPWO2006027910A1/en
Application granted granted Critical
Publication of JP4529145B2 publication Critical patent/JP4529145B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/58Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with nitrogen or compounds thereof, e.g. with nitrides
    • D06M11/63Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with nitrogen or compounds thereof, e.g. with nitrides with hydroxylamine or hydrazine
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/58Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with nitrogen or compounds thereof, e.g. with nitrides
    • D06M11/64Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with nitrogen or compounds thereof, e.g. with nitrides with nitrogen oxides; with oxyacids of nitrogen or their salts
    • D06M11/65Salts of oxyacids of nitrogen
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/18Synthetic fibres consisting of macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/26Polymers or copolymers of unsaturated carboxylic acids or derivatives thereof
    • D06M2101/28Acrylonitrile; Methacrylonitrile
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Artificial Filaments (AREA)

Description

【技術分野】
【0001】
本発明は、徐吸放湿性架橋アクリル系繊維に関する。特に、飽和吸湿率が高く、徐々に吸湿することで、持続的に発熱することが可能な繊維に関する。
【背景技術】
【0002】
近年、生活環境の快適性を求める要求の高まる中、衣料や寝装品などでは、湿度調節機能や高い保温機能が求められている。吸放湿性を有する繊維は吸湿時に発熱を伴うため、このような要望に応えうる素材として有望である。吸放湿性を有する繊維としては、綿、羊毛、レーヨン、アセテート、架橋アクリル系繊維などが知られているが、中でも、架橋アクリル系繊維は、調湿性や吸湿性に優れるものとして、盛んに研究が行われている。
【0003】
例えば、特許文献1には、吸・放湿速度が制御された架橋アクリル系繊維が開示されている。該繊維は調温・調湿機能やpH緩衝性、制電性、保水性等の調和機能を合わせ持つことを特徴としているが、20℃×65%RH雰囲気下での飽和吸湿率が15〜35%と低くスポーツ衣料など高い吸湿量が必要とされる用途においては、十分に満足のいくものではない。また、飽和吸湿率が低いため、発熱量が少なく、大きな保温効果を得ることも難しい。
【0004】
この点について、特許文献2には、20℃×65%RH雰囲気下での飽和吸湿率が39〜89%の高い吸湿性を示し、吸湿速度が速いという特徴を有する架橋アクリル系繊維が開示されており、該繊維は乾燥重量1g当たり130〜800calという高い吸湿発熱量を有することが記載されている。しかしながら、該繊維は吸湿速度が速いために、その発熱の大部分は吸湿初期の短時間のうちに発生してしまう。このため、発熱の持続性はあまりなく、長時間にわたって保温効果を得ることは難しい。
【特許文献1】
特開平9−59872号公報
【特許文献2】
特開平9−158040号公報
【発明の開示】
【発明が解決しようとする課題】
[0005] 以上のように、これまでの架橋アクリル系繊維は、調温・調湿機能やpH緩衝性、制電性、保水性等の調和機能、高い吸湿率、高い吸湿速度などの特徴を有するものであったが、発熱の持続性や保温性という点についてはあまり考慮されていなかった。本発明は、かかる現状に基づきなされたものであり、高い飽和吸湿率を有し、かつ、徐々に吸湿し、吸湿発熱の持続性に優れる架橋アクリル系繊維を提供することを目的とする。
【課題を解決するための手段】
[0006] 本発明者は、上述の目的を達成するために鋭意検討を進めた結果、以下に示す本発明に到達した。
【0007】
[1]架橋構造および5.4〜10mmol/gの塩型カルボキシル基を有し、かつ前記塩型カルボキシル基のうち5.4mmol/g以上がMg塩型カルボキシル基である 架橋アクリル系吸放湿性繊維であって、20℃×95%RHにおける飽和吸湿率(a(%))、20℃×50%RHにおける飽和吸湿率(b(%))、及び20℃×95%RH×60分の吸湿率(c(%))が、下記(1)〜(3)式を満足することを特徴とする徐吸放湿性架橋アクリル系繊維。
a(%)≧60 (1)
a−b(%)≧30 (2)
c/a≦0.5 (3)
[2]20℃×95%RH×90分の吸湿率(d(%))及び20℃×95%RH×180分の吸湿率(e(%))の間に下記(4)式の関係が成り立つことを特徴とする[1]に記載の徐吸放湿性架橋アクリル系繊維。
e/d≧1.5 (4)

[3]膨潤度が1.5g/g以下であることを特徴とする[1]または[2]に記載の徐吸放湿性架橋アクリル系繊維。
【発明の効果】
【0008】
本発明の徐吸放湿性架橋アクリル系繊維は、これまでの架橋アクリル系繊維にはなかった特徴、即ち飽和吸湿率が非常に高く、かつ、徐々に吸湿することで持続的に発熱するという特徴を有するものである。かかる特徴を有する本発明の徐吸放湿性架橋アクリル系繊維は、秋冬物衣料や寝装品、あるいはスキーウェア等のスポーツ衣料など湿度調節機能や高い保温機能が求められる用途に好適に利用できる。
【図面の簡単な説明】
【0009】
【図1】図1は実施例1、2および比較例1〜3の繊維の吸湿曲線を示す。
【発明を実施するための最良の形態】
【0010】
以下に本発明を詳細に説明する。まず、本発明においては、「−COO」に対イオンが結合している官能基を「カルボキシル基」、カルボキシル基の対イオンが水素イオンであることを「H型」、それ以外のイオンであることを「塩型」と表現する。たとえば、「−COOH」は「H型カルボキシル基」と表現される。
【0011】
本発明の徐吸放湿性架橋アクリル系繊維は、20℃×95%RHにおける飽和吸湿率(a(%))、20℃×50%RHにおける飽和吸湿率(b(%))、及び20℃×95%RH×60分の吸湿率(c(%))が、下記式(1)〜(3)を満足するものである。
a(%)≧60 (1)
a−b(%)≧30 (2)
c/a≦0.5 (3)
【0012】
ここで、式(1)にあるように、本発明の繊維においてはa(%)が60%以上であり、好ましくは65%以上、より好ましくは70%以上であることが望ましい。本発明の繊維は徐々に吸放湿するものではあるが、最終的な吸湿率としては高いほど吸湿発熱の持続時間が長くなる。すなわち、a(%)が小さければ、持続的な発熱は期待できない。
【0013】
また、式(2)の左辺は95%RHと50%RHでの飽和吸湿率の差を示すものであり、値が大きいほど実際に使用する環境の現実的な湿度範囲での吸湿性能が高いことを表す。本発明の繊維はこの値が30%以上であり、好ましくは35%以上、さらに好ましくは40%以上であることが望ましい。この値が30%以上であれば、衣服などにおいて、発汗によって衣服内湿度が上昇したときに、ムレ感を抑制する効果などが期待される。
【0014】
また、c(%)は、繊維を105℃×16時間乾燥した後、20℃×95%RHに調節した恒温恒湿器に入れて60分経過したときの吸湿率のことであり、105℃×16時間乾燥した後の繊維重量と20℃×95%RHで60分経過したときの繊維重量の差から求められる。従って、式(3)の左辺はその繊維の飽和吸湿率を1としたときに、最初の1時間でどの程度吸湿されるかを示すものであり、値が小さいほどゆっくり吸湿することを意味する。本発明の徐吸放湿性架橋アクリル系繊維はこの値が0.5以下、好ましくは0.4以下、さらに好ましくは0.3以下のものであり、ゆっくり吸湿をしていくため、吸湿に伴う発熱も徐々におこり、持続的なものとなる。なお、c(%)の値が小さい場合には、吸湿発熱を実感しにくくなるため、実効的な発熱を得るという点からc(%)は5%以上、好ましくは7%以上であることが望ましい。
【0015】
また、本発明の徐吸放湿性架橋アクリル系繊維は架橋構造と塩型カルボキシル基を有するものである。塩型カルボキシル基は、本発明の徐吸放湿性架橋アクリル系繊維の吸放湿性能に関わる部分であり、その量を多くするほど飽和吸湿率を高くすることができる。しかし、その一方で繊維の親水性も高めることになるので、水膨潤が激しくなって強度が低下し形状が崩れる、場合によっては水に溶出するなどの現象を引き起こすことがある。逆に塩型カルボキシル基量が少なすぎると充分な飽和吸湿率を得られなくなる。従って、塩型カルボキシル基量としては、以上のような事項考慮した上で、上記式(1)〜(3)を満足するように決定することが望ましい。一般的には1〜10mmol/gが好ましく、より好ましくは3〜10mmol/g、さらに好ましくは3〜8mmol/gである。
【0016】
また、塩型カルボキシル基のほかにH型カルボキシル基を存在させても構わないが、上記した水膨潤や溶出の点から、塩型カルボキシル基との合計量が10mmol/g以下となるようにすることが望ましい。
【0017】
塩型カルボキシル基の塩型としては、Mgが最も適している。特に、Mg塩型カルボキシル基が2mmol/g、好ましくは2.5mmol/g以上含有される場合に良好な性能が得られる。なお、Mg塩型以外の塩型カルボキシル基やH型カルボキシル基が共存していても構わない。Mg塩型以外の塩型カルボキシル基としては、Li、Na、K等のアルカリ金属、Be、Ca、Ba等のアルカリ土類金属、Cu、Zn、Al、Mn、Ag、Fe、Co、Ni等の他の金属、NH、アミン等の有機の陽イオンなどが挙げられる。また、Mgを使用しない場合であっても、上記のMg塩型以外の塩型カルボキシル基やH型カルボキシル基などを複数種併用するなどして上記式(1)〜(3)を満足する限り採用することができる。
【0018】
本発明の徐吸放湿性架橋アクリル系繊維の架橋構造は、繊維の形態の維持を主に担う部分である。上述したように塩型カルボキシル基量を多くして吸放湿特性を高めると「形状が崩れる」、「重合体自体が水に溶出する」といった現象が起こるようになるが、架橋構造を有することでこのような現象を抑制することができる。このような架橋構造は、例えば、繊維を構成する重合体に反応性官能基を有する単量体を共重合させておき、紡糸して繊維とした後、該反応性官能基と反応する官能基を複数有する化合物(以下、架橋性化合物とも言う)を反応させることによって形成することができる。
【0019】
ここで、反応性官能基を有する単量体と架橋性化合物の組み合わせとしては、特に制限はないが、アクリロニトリルやメタクリロニトリルなどのニトリル基含有単量体と水加ヒドラジンや硫酸ヒドラジンなどのヒドラジン系化合物との組み合わせが代表的な例である。
【0020】
また、本発明の徐吸放湿性架橋アクリル系繊維は、20℃×95%RH×90分の吸湿率(d(%))及び20℃×95%RH×180分の吸湿率(e(%))の間に下記式(4)の関係が成り立つことものであることが望ましい。
e/d≧1.5 (4)
【0021】
ここで、d(%)、e(%)は、経過時間をそれぞれ90分または180分として、上述したc(%)と同様にして求められる数値である。すなわち、e/dは180分経過時の吸湿率が、90分経過時の吸湿率の何倍かということを表している。本発明の繊維においては、この数値が1.5以上、好ましくは1.7以上であることが望ましい。この数値が1に近い場合は、d(%)とe(%)の差が小さいということであり、吸湿開始後90分から180分の90分間にはほとんど吸湿されず、吸湿開始後90分の時点で既に飽和に近い状態になっていることを意味する。このような場合には、持続的な発熱はほとんど期待できない。また、e/dが2前後あるいはそれ以上である場合には、吸湿開始後90分までの吸湿速度に対して吸湿開始後90分から180分の間の吸湿速度が同程度あるいはそれ以上であると推測され、持続的に吸湿・発熱する特徴が期待できる。なお、d(%)については、上述したc(%)と同様に、実効的な発熱を得るという点から、7%以上、好ましくは10%以上であることが望ましい。
【0022】
また、本発明の徐吸放湿性架橋アクリル系繊維は後述する方法で測定した膨潤度が1.5g/g以下、好ましくは1.3g/g以下であることが望ましい。膨潤度が1.5g/gを上回る場合には、吸湿によっても繊維の寸法が変化しやすくなり、紡績加工やその後の編物や織物への加工が困難となる場合がある。
【0023】
次に、以上に説明した本発明の徐吸放湿性架橋アクリル系繊維の代表的な製造方法を以下に説明するが、本発明の繊維の製造方法はこれに限られるものではない。
【0024】
まず、出発原料となるアクリル系繊維としてはアクリロニトリル(以下ANという)を40重量%以上、好ましくは50重量%以上、より好ましくは80重量%以上含有するAN系重合体により形成された繊維であればよい。形態としては、短繊維、トウ、糸、編織物、不織布等いずれの形態のものでもよく、また、製造工程中途品、廃繊維などでもかまわない。AN系重合体はAN単独重合体、ANと他の単量体との共重合のいずれでもよいが、AN以外の共重合成分としてはメタリルスルホン酸、p−スチレンスルホン酸等のスルホン酸基含有単量体及びその塩、(メタ)アクリル酸、イタコン酸等のカルボン酸基含有単量体及びその塩、スチレン、酢酸ビニル、(メタ)アクリル酸エステル、(メタ)アクリルアミド等の単量体など、ANと共重合可能な単量体であれば特に限定されない。
【0025】
該アクリル系繊維は、ヒドラジン系化合物により架橋導入処理され、アクリル系繊維の溶剤では最早溶解されないという意味で架橋が形成されて架橋アクリル系繊維となり、同時に結果として窒素含有量の増加が起きる。架橋導入処理の手段としては特に限定されるものではないが、この処理による窒素含有量の増加を好ましくは0.1〜10重量%、より好ましくは1〜10重量%に調整しうる手段が望ましい。なお、窒素含有量を0.1〜10重量%に調整しうる手段としては、ヒドラジン系化合物の濃度5〜60重量%の水溶液中、温度50〜120℃で5時間以内で処理する手段が工業的に好ましい。
【0026】
ここで使用するヒドラジン系化合物としては、特に限定されるものではなく、水加ヒドラジン、硫酸ヒドラジン、塩酸ヒドラジン、臭素酸ヒドラジン、ヒドラジンカーボネ−ト等の他に、エチレンジアミン、硫酸グアニジン、塩酸グアニジン、リン酸グアニジン、メラミン等のアミノ基を複数含有する化合物が例示される。
【0027】
かかるヒドラジン系化合物による架橋導入処理を経た繊維は、該処理で残留したヒドラジン系化合物を十分に除去した後、酸処理を施しても良い。ここに使用する酸としては硝酸、硫酸、塩酸等の鉱酸の水溶液、有機酸等が挙げられるが、特に限定されない。該酸処理の条件としては、特に限定されないが、大概酸濃度5〜20重量%、好ましくは7〜15重量%の水溶液に、温度50〜120℃で0.5〜10時間被処理繊維を浸漬するといった例が挙げられる。
【0028】
ヒドラジン系化合物による架橋導入処理を経た繊維、或いはさらに酸処理を経た繊維は、続いてアルカリ性金属塩水溶液により加水分解処理される。この処理により、アクリル系繊維のヒドラジン系化合物による架橋導入処理に関与せずに残留しているCN基、又は架橋導入処理後酸処理を施した場合には残留しているCN基と一部酸処理で加水分解されて生成しているアミド基の加水分解が進行し、カルボキシル基が形成される。なお、形成されるカルボキシル基は、加水分解処理に使用されるアルカリ性金属塩由来の金属イオンと結合するので、大部分が塩型カルボキシル基である。ここで使用するアルカリ性金属塩としては、アルカリ金属水酸化物、アルカリ土類金属水酸化物、アルカリ金属炭酸塩等が挙げられる。加水分解処理の条件は特に限定されないが、1〜10重量%、さらに好ましくは1〜5重量%の水溶液中、温度50〜120℃で1〜10時間以内で処理する手段が工業的、繊維物性的に好ましい。
【0029】
加水分解を進める程度即ち塩型カルボキシル基の生成量は、上述したように好ましくは1〜10mmol/g、より好ましくは3〜10mmol/g、さらに好ましくは3〜8mmol/gで好結果が得られやすく、これは上述した処理の際の薬剤の濃度や温度、処理時間の組み合わせで容易に制御できる。また、かかる加水分解を経た繊維は、CN基が残留していてもいなくてもよい。CN基が残留していれば、その反応性を利用して、さらなる機能を付与できる可能性がある。
【0030】
以上のようにして得られた繊維は、そのままで本発明の徐吸放湿性架橋アクリル系繊維として利用できる場合もあるが、通常は、さらに、硝酸塩、硫酸塩、塩酸塩などの金属塩によるイオン交換処理、硝酸、硫酸、塩酸、蟻酸などによる酸処理、あるいは、アルカリ性金属塩などによるpH調整処理などを施すことにより所望の塩型カルボキシル基あるいはH型カルボキシル基に変換したり、異種の塩型を混在させたりして特性を調整し、本発明の徐吸放湿性架橋アクリル系繊維を得る。
【0031】
例えば、本発明において推奨するMg塩型カルボキシル基は、加水分解後の繊維を硝酸マグネシウム水溶液などのマグネシウムイオンを有する水溶液に浸漬することで得ることができる。ただし、この方法では、生成するMg塩型カルボキシル基量を制御することが難しく、再現性もあまりよくない。
【0032】
量を制御し、再現よくMg塩型カルボキシル基を得るには、まず、加水分解後の繊維を、硝酸などの酸水溶液に浸漬して繊維中のカルボキシル基を全てH型カルボキシル基とする。次いで得られた繊維を水酸化ナトリウム水溶液などのナトリウムイオンを含有するアルカリ性水溶液に浸漬して、H型カルボキシル基をNa塩型カルボキシル基とする。このとき、pHを調整することでNa塩型に変換されるカルボキシル基量を変化させることができる。続いて、硝酸マグネシウム水溶液などのマグネシウムイオンを有する水溶液に浸漬することにより、Mg塩型カルボキシル基に変換することができる。ここで、Mg塩型カルボキシル基に変換されるのはNa塩型カルボキシル基であって、H型カルボキシル基はMg塩型カルボキシル基にほとんど変換されない。すなわち、pH調整によってNa塩型カルボキシル基量を制御することを通じて、Mg塩型カルボキシル基量を制御することが可能である。
【0033】
なお、本発明の徐吸放湿性架橋アクリル系繊維は、以上に説明した架橋導入処理、酸処理、加水分解処理、加水分解後のイオン交換処理、酸処理、pH調整処理以外の処理を施したものであってもかまわない。
【0034】
以上に説明してきた本発明の徐吸放湿性架橋アクリル系繊維は、高い飽和吸湿率を有し、持続的に吸湿発熱するという特徴を有するものである。このため、本発明の徐吸放湿性架橋アクリル系繊維を繊維構造物の構成繊維として含有せしめた場合、繊維構造物外へ放出される熱量を持続的な発熱で補うことで、その繊維構造物の保温性を高める効果が得られる。従って、本発明の徐吸放湿性架橋アクリル系繊維は保温性が求められる用途などに好適に使用することができる。
【0035】
このような繊維構造物としては、糸、ヤーン、フィラメント、織物、編物、不織布、紙状物、シート状物、積層体、綿状体等が挙げられるが、保温性が求められる用途に利用されるという点から、織物、編物、綿状体が一般的である。具体的な形態としては、スポーツウェア、肌着、腹巻き、サポーター、手袋、靴下、ストッキング、パジャマ、布団綿などを挙げることができる。また、該繊維構造物は本発明の徐吸放湿性架橋アクリル系繊維のみで構成されたものであっても、他素材を併用して構成されたものであってもよい。併用しうる他素材としては特に限定されず、公用されている天然繊維、有機繊維、半合成繊維、合成繊維等が用いられ、さらには無機繊維、ガラス繊維等も用途によっては採用し得る。また、併用される他素材は繊維に限らず、樹脂や粒子等の素材であってもよい。
【実施例】
【0036】
以下実施例により本発明を具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、実施例中の部及び百分率は、断りのない限り重量基準で示す。実施例中の特性の評価方法は以下のとおりである。
【0037】
(1)塩型カルボキシル基量(mmol/g)
十分乾燥した試料約1gを精秤し(X(g))、これに200mlの水を加えた後、50℃に加温しながら1mol/l塩酸水溶液を添加してpH2にし、次いで0.1mol/lの水酸化ナトリウム水溶液で常法に従って滴定曲線を求める。該滴定曲線からカルボキシル基に消費された水酸化ナトリウム水溶液消費量(Y(ml))を求め、次式によってカルボキシル基量(mmol/g)を算出した。
(カルボキシル基量)=0.1Y/X
別途、上述のカルボキシル基量測定操作中の1mol/l塩酸水溶液の添加によるpH2への調整をすることなく同様に滴定曲線を求めH型カルボキシル基量(mmol/g)を求める。これらの結果から次式により塩型カルボキシル基量を算出した。
(塩型カルボキシル基量)=(カルボキシル基量)−(H型カルボキシル基量)
【0038】
(2)飽和吸湿率(%)
試料約5.0gを熱風乾燥機で105℃、16時間乾燥して重量を測定する(W1(g))。次に該試料を20℃×95%RHまたは20℃×50%RHのいずれかの条件に調節した恒温恒湿器に24時間入れておく。このようにして吸湿させた試料の重量を測定する。(W2(g))。以上の測定結果から、次式によって算出した。
飽和吸湿率(%)=(W2−W1)/W1×100
【0039】
(3)20℃×95%RHにおける吸湿曲線
試料約2.5gを熱風乾燥機で105℃、16時間乾燥して重量を測定する(W3(g))。続いて試料を円筒状メッシュカゴ(直径7.5cm、高さ9.8cm)に素早くふんわりとした状態となるように押し付けずに入れ、カゴごとすぐに20℃×95%RHに調節した恒温恒湿器に入れる。恒温恒湿器に入れた時点を吸湿開始時点として、10分毎に吸湿した試料の重量を測定する(W4(g))。以上の測定結果から、次式によって各測定時点での吸湿率を算出し、吸湿曲線を求めた。
吸湿率(%)=(W4−W3)/W3×100
【0040】
(4)膨潤度(g/g)
試料約3gを熱風乾燥機で70℃×3時間乾燥して重量を測定する(W5(g))。次に試料を水が300ml入ったビーカーに30分間浸漬した後、膨潤した試料を卓上遠心脱水機(160G×5分)で脱水し、試料の重量を測定する(W6(g))。以上の測定結果から、次式によって算出した。
(膨潤度)=(W6−W5)/W5
【0041】
[実施例1]
アクリロニトリル(AN)90%、酢酸ビニル10%からなるAN系重合体(30℃ジメチルホルムアミド中での極限粘度[η]=1.2)10部を48%ロダンソーダ水溶液90部に溶解した紡糸原液を、常法に従って紡糸、延伸(全延伸倍率:10倍)した後、乾球/湿球=120℃/60℃の雰囲気下で乾燥後、湿熱処理して単繊維繊度0.9dtexの原料繊維を得た。該原料繊維に、水加ヒドラジンの20%水溶液中で、98℃×5時間架橋導入処理を行い、洗浄した。本処理による窒素含有量の増加は5%であった。なお、窒素増加量は、原料繊維と架橋導入処理後の繊維を元素分析にて窒素含有量を求め、その差から算出した。架橋導入された繊維を、3%硝酸水溶液中に浸漬し、90℃×2時間酸処理を行った。続いて3%水酸化ナトリウム水溶液中で90℃×2時間の加水分解処理を行い、3.5%硝酸水溶液で処理し、水洗した。得られた繊維を水に浸漬し、水酸化ナトリウムを添加してpH11に調整した後、繊維に含まれるカルボキシル基量の2倍に相当する硝酸マグネシウムを溶解させた水溶液に50℃×1時間浸漬することによりイオン交換処理を実施し、水洗、乾燥することにより、Mg塩型カルボキシル基を有する実施例1の繊維を得た。得られた繊維の評価結果を表1および図1に示す。
【0042】
[実施例2]
実施例1において、水酸化ナトリウムによるpHの調整をpH11からpH8に変更したこと以外は同様にして、Mg塩型カルボキシル基を有する実施例2の繊維を得た。得られた繊維の評価結果を表1および図1に示す。
【0043】
[比較例1]
実施例1において、硝酸マグネシウムによるイオン交換処理を実施しないこと以外は同様にして、Na塩型カルボキシル基を有する比較例1の繊維を得た。得られた繊維の評価結果を表1および図1に示す。
【0044】
[比較例2]
実施例1において、硝酸マグネシウム水溶液の代わりに、硝酸カルシウム水溶液を使用すること以外は同様にして、Ca塩型カルボキシル基を有する比較例2の繊維を得た。得られた繊維の評価結果を表1および図1に示す。
【0045】
[比較例3]
実施例1の水酸化ナトリウムを添加して約pH11に調整するまでは同様にした後、繊維を該繊維に含まれるカルボキシル基量の0.6倍に相当する硝酸マグネシウムを溶解させた水溶液に50℃×1時間浸漬し、水洗後、さらにカルボキシル基量の0.5倍に相当する硝酸カルシウムを溶解させた水溶液に50℃×1時間浸漬し、水洗、乾燥することにより、Mg塩型カルボキシル基とCa塩型カルボキシル基が混在する比較例3の繊維を得た。得られた繊維の評価結果を表1および図1に示す。なお、MgとCaの比率については、繊維を湿式分解し、原子吸光法を用いて求めた。
【0046】
【表1】

Figure 0004529145
【0047】
実施例1および2は、式1〜式3を満たしており、図1からも安定に発熱が持続すると考えられる。これに対して、比較例1においては、飽和吸湿率が高いが、初期の短時間で多量に吸湿し、その後吸湿速度が遅くなるため、持続的な発熱という点については劣ると考えられる。また、比較例2および3においては、吸湿速度は遅いものの、飽和吸湿率が小さく、比較的短時間で飽和に近い吸湿率に達してしまっているため、持続的な発熱は期待できないものと考えられる。【Technical field】
[0001]
The present invention relates to a slow-absorbing and releasing moisture-crosslinking acrylic fiber. In particular, the present invention relates to a fiber that has a high saturated moisture absorption rate and can generate heat continuously by absorbing moisture gradually.
[Background]
[0002]
In recent years, with increasing demands for comfort in living environments, clothing and bedding are required to have a humidity control function and a high heat retention function. A fiber having moisture absorption / release properties is promising as a material that can meet such a demand because it generates heat during moisture absorption. Cotton, wool, rayon, acetate, cross-linked acrylic fiber, etc. are known as hygroscopic and hygroscopic fibers. Among them, cross-linked acrylic fiber is actively researched as having excellent moisture control and hygroscopic properties. Has been done.
[0003]
For example, Patent Document 1 discloses a cross-linked acrylic fiber having a controlled absorption / desorption rate. The fiber is characterized by having harmonious functions such as a temperature control / humidity control function, pH buffering property, antistatic property, water retention, etc., and a saturated moisture absorption rate in an atmosphere of 20 ° C. × 65% RH is 15 to 15%. In applications that require a high moisture absorption, such as sports clothing, which is as low as 35%, it is not fully satisfactory. In addition, since the saturated moisture absorption rate is low, the calorific value is small and it is difficult to obtain a large heat retention effect.
[0004]
In this regard, Patent Document 2 discloses a cross-linked acrylic fiber that has a high moisture absorption rate of 39 to 89% in a saturated moisture absorption rate at 20 ° C. and 65% RH, and has a high moisture absorption rate. It is described that the fiber has a high hygroscopic calorific value of 130 to 800 cal per gram of dry weight. However, since the fiber has a high moisture absorption rate, most of the heat generation occurs within a short time in the initial stage of moisture absorption. For this reason, there is not much sustainability of heat generation, and it is difficult to obtain a heat retaining effect for a long time.
[Patent Document 1]
Japanese Patent Laid-Open No. 9-59872 [Patent Document 2]
JP-A-9-158040 [Disclosure of the Invention]
[Problems to be solved by the invention]
[0005] As described above, cross-linked acrylic fibers so far have characteristics such as temperature control / humidity control functions, pH buffering properties, antistatic properties, harmonious functions such as water retention, high moisture absorption rate, and high moisture absorption rate. However, it did not take much consideration into the sustainability of heat generation and heat retention. An object of the present invention is to provide a crosslinked acrylic fiber that has a high saturated moisture absorption rate and that gradually absorbs moisture and is excellent in sustainability of moisture absorption heat generation.
[Means for Solving the Problems]
[0006] As a result of diligent studies to achieve the above-mentioned object, the present inventor has reached the present invention shown below.
[0007]
[1] crosslinked structure and 5.4 ~10mmol / g of a salt-type carboxyl group, and 5.4 mmol / g or more is Mg salt type carboxyl groups crosslinked acrylic absorbing of the salt type carboxyl group Wet fiber, saturated moisture absorption at 20 ° C. × 95% RH (a (%)), saturated moisture absorption at 20 ° C. × 50% RH (b (%)), and 20 ° C. × 95% RH × 60 minutes The moisture absorption rate (c (%)) of the above satisfies the following formulas (1) to (3).
a (%) ≧ 60 (1)
a−b (%) ≧ 30 (2)
c / a ≦ 0.5 (3)
[2] The relationship of the following equation (4) between 20 ° C. × 95% RH × 90 minutes moisture absorption (d (%)) and 20 ° C. × 95% RH × 180 minutes moisture absorption (e (%)) The sustained-absorption / release moisture-crosslinking acrylic fiber according to [1], wherein
e / d ≧ 1.5 (4)

[3] The sustained-absorbing / releasing acrylic fiber according to [1] or [2], wherein the degree of swelling is 1.5 g / g or less.
【The invention's effect】
[0008]
The slow moisture-releasing and cross-linking acrylic fiber of the present invention has characteristics that were not found in conventional cross-linked acrylic fibers, that is, the saturated moisture absorption rate is very high, and it generates heat continuously by gradually absorbing moisture. It is what has. The slow-absorbing and releasing moisture-crosslinking acrylic fiber of the present invention having such characteristics can be suitably used for applications requiring a humidity control function and a high heat retaining function such as autumn / winter clothing, bedding, or sports clothing such as ski wear.
[Brief description of the drawings]
[0009]
FIG. 1 shows moisture absorption curves of fibers of Examples 1 and 2 and Comparative Examples 1 to 3.
BEST MODE FOR CARRYING OUT THE INVENTION
[0010]
The present invention is described in detail below. First, in the present invention, the functional group having the counter ion bonded to “—COO ” is “carboxyl group”, the counter ion of the carboxyl group is hydrogen ion, “H type”, and other ions It is expressed as “salt type”. For example, “—COOH” is expressed as “H-type carboxyl group”.
[0011]
The controlled moisture absorption / release crosslinked acrylic fiber of the present invention has a saturated moisture absorption rate (a (%)) at 20 ° C. × 95% RH, a saturated moisture absorption rate (b (%)) at 20 ° C. × 50% RH, and 20 ° C. The moisture absorption rate (c (%)) of x95% RH x 60 minutes satisfies the following formulas (1) to (3).
a (%) ≧ 60 (1)
a−b (%) ≧ 30 (2)
c / a ≦ 0.5 (3)
[0012]
Here, as shown in the formula (1), in the fiber of the present invention, a (%) is 60% or more, preferably 65% or more, more preferably 70% or more. Although the fiber of the present invention absorbs and releases moisture gradually, the higher the final moisture absorption rate, the longer the duration of moisture absorption heat generation. That is, if a (%) is small, continuous heat generation cannot be expected.
[0013]
Further, the left side of the formula (2) indicates the difference in saturated moisture absorption between 95% RH and 50% RH, and the larger the value, the higher the moisture absorption performance in the realistic humidity range of the environment actually used. Represents that. The fiber of the present invention has this value of 30% or more, preferably 35% or more, more preferably 40% or more. If this value is 30% or more, an effect of suppressing the feeling of stuffiness when the moisture in the clothes increases due to sweating is expected.
[0014]
C (%) is the moisture absorption rate when 60 minutes have passed after the fibers were dried at 105 ° C. × 16 hours and then placed in a constant temperature and humidity chamber adjusted to 20 ° C. × 95% RH. * It is calculated | required from the difference of the fiber weight when 60 minutes passes at 20 degreeC x 95% RH after drying for 16 hours. Therefore, the left side of Equation (3) indicates how much moisture is absorbed in the first hour when the saturated moisture absorption rate of the fiber is 1, and the smaller the value, the slower the moisture absorption. . This value is 0.5 or less, preferably 0.4 or less, more preferably 0.3 or less, and the slow-absorbing / releasing crosslinked acrylic fiber of the present invention absorbs moisture slowly. Fever gradually occurs and becomes persistent. When the value of c (%) is small, it becomes difficult to realize moisture absorption heat generation. Therefore, from the viewpoint of obtaining effective heat generation, c (%) is 5% or more, preferably 7% or more. desirable.
[0015]
Moreover, the sustained moisture-releasing and cross-linking acrylic fiber of the present invention has a cross-linked structure and a salt-type carboxyl group. The salt-type carboxyl group is a part related to the moisture absorption / release performance of the crosslinked moisture-absorbing acrylic fiber of the present invention, and the saturated moisture absorption rate can be increased as the amount thereof is increased. However, on the other hand, the hydrophilicity of the fiber is also increased, so that water swelling becomes intense, the strength is lowered and the shape is lost, and in some cases, the phenomenon such as elution into water may occur. Conversely, if the amount of the salt-type carboxyl group is too small, a sufficient saturated moisture absorption rate cannot be obtained. Accordingly, the amount of the salt-type carboxyl group is preferably determined so as to satisfy the above formulas (1) to (3) in consideration of the above matters. Generally, 1-10 mmol / g is preferable, More preferably, it is 3-10 mmol / g, More preferably, it is 3-8 mmol / g.
[0016]
Further, an H-type carboxyl group may be present in addition to the salt-type carboxyl group, but the total amount with the salt-type carboxyl group is 10 mmol / g or less from the viewpoint of water swelling and elution described above. It is desirable.
[0017]
Mg is most suitable as the salt type of the salt type carboxyl group. In particular, good performance can be obtained when the Mg salt-type carboxyl group is contained at 2 mmol / g, preferably 2.5 mmol / g or more. A salt-type carboxyl group other than the Mg salt type or an H-type carboxyl group may coexist. Examples of the salt type carboxyl group other than the Mg salt type include alkali metals such as Li, Na, and K, alkaline earth metals such as Be, Ca, and Ba, Cu, Zn, Al, Mn, Ag, Fe, Co, Ni, and the like Other metals, organic cations such as NH 4 , amine and the like. Further, even when Mg is not used, as long as the above formulas (1) to (3) are satisfied by using a plurality of salt-type carboxyl groups other than the Mg salt-type and H-type carboxyl groups in combination. Can be adopted.
[0018]
The crosslinked structure of the gradual moisture-releasing and cross-linking acrylic fiber of the present invention is a part mainly responsible for maintaining the form of the fiber. As described above, increasing the amount of salt-type carboxyl groups to enhance moisture absorption / release characteristics causes phenomena such as “disintegration of shape” and “the polymer itself elutes in water”, but it has a crosslinked structure. Thus, such a phenomenon can be suppressed. Such a crosslinked structure is obtained by, for example, copolymerizing a monomer having a reactive functional group with a polymer constituting the fiber, spinning it into a fiber, and then reacting with the reactive functional group. It can form by making the compound (henceforth a crosslinkable compound) react.
[0019]
Here, the combination of the monomer having a reactive functional group and the crosslinkable compound is not particularly limited, but a nitrile group-containing monomer such as acrylonitrile or methacrylonitrile and a hydrazine such as hydrazine hydrate or hydrazine sulfate. A combination with a compound is a typical example.
[0020]
Further, the gradual moisture-releasing and cross-linking acrylic fiber of the present invention has a moisture absorption rate (d (%)) of 20 ° C. × 95% RH × 90 minutes and a moisture absorption rate (e (%) of 20 ° C. × 95% RH × 180 minutes. It is desirable that the relationship of the following formula (4) is established between
e / d ≧ 1.5 (4)
[0021]
Here, d (%) and e (%) are numerical values obtained in the same manner as c (%) described above, with the elapsed time being 90 minutes or 180 minutes, respectively. That is, e / d represents how many times the moisture absorption rate after the lapse of 180 minutes is greater than the moisture absorption rate after the lapse of 90 minutes. In the fiber of the present invention, this numerical value is 1.5 or more, preferably 1.7 or more. When this numerical value is close to 1, it means that the difference between d (%) and e (%) is small. Almost no moisture is absorbed in 90 minutes from 90 minutes after the start of moisture absorption, and 90 minutes after the start of moisture absorption. It means that it is already close to saturation at the time. In such a case, almost no continuous heat generation can be expected. Further, when e / d is about 2 or more, the moisture absorption rate between 90 minutes and 180 minutes after the start of moisture absorption is about the same or more than the moisture absorption rate up to 90 minutes after the start of moisture absorption. It can be expected that it will absorb moisture and generate heat continuously. Note that d (%) is 7% or more, preferably 10% or more, from the viewpoint of obtaining effective heat generation as in the case of c (%) described above.
[0022]
Further, it is desirable that the gradual moisture-releasing and cross-linking acrylic fiber of the present invention has a degree of swelling of 1.5 g / g or less, preferably 1.3 g / g or less as measured by the method described later. If the degree of swelling exceeds 1.5 g / g, the fiber dimensions are likely to change due to moisture absorption, and spinning and subsequent processing into a knitted or woven fabric may be difficult.
[0023]
Next, a typical method for producing the above-described sustained moisture-releasing and releasing crosslinked acrylic fiber of the present invention will be described below, but the method of producing the fiber of the present invention is not limited to this.
[0024]
First, the acrylic fiber used as a starting material may be a fiber formed of an AN polymer containing 40% by weight or more, preferably 50% by weight or more, more preferably 80% by weight or more of acrylonitrile (hereinafter referred to as AN). That's fine. The form may be any form such as short fibers, tows, yarns, knitted fabrics, non-woven fabrics, etc., and may be intermediate products or waste fibers. The AN polymer may be either an AN homopolymer or a copolymer of AN and another monomer, but as a copolymer component other than AN, sulfonic acid groups such as methallyl sulfonic acid and p-styrene sulfonic acid -Containing monomers and salts thereof, carboxylic acid group-containing monomers such as (meth) acrylic acid and itaconic acid and salts thereof, monomers such as styrene, vinyl acetate, (meth) acrylic acid esters and (meth) acrylamides There is no particular limitation as long as it is a monomer copolymerizable with AN.
[0025]
The acrylic fiber is subjected to a cross-linking treatment with a hydrazine compound and is formed into a cross-linked acrylic fiber in the sense that it is no longer dissolved in the solvent of the acrylic fiber, and at the same time, the nitrogen content increases. The means for introducing the crosslinking is not particularly limited, but a means capable of adjusting the increase in nitrogen content by this treatment to preferably 0.1 to 10% by weight, more preferably 1 to 10% by weight is desirable. . In addition, as a means for adjusting the nitrogen content to 0.1 to 10% by weight, a means for treating the hydrazine compound in an aqueous solution having a concentration of 5 to 60% by weight at a temperature of 50 to 120 ° C. within 5 hours is industrial. Is preferable.
[0026]
The hydrazine-based compound used here is not particularly limited, but besides hydrazine hydrate, hydrazine sulfate, hydrazine hydrochloride, hydrazine bromate, hydrazine carbonate, etc., ethylenediamine, guanidine sulfate, guanidine hydrochloride, Examples thereof include compounds containing a plurality of amino groups such as guanidine phosphate and melamine.
[0027]
The fiber that has undergone the cross-linking introduction treatment with the hydrazine compound may be subjected to an acid treatment after sufficiently removing the hydrazine compound remaining in the treatment. Examples of the acid used here include aqueous solutions of mineral acids such as nitric acid, sulfuric acid, and hydrochloric acid, and organic acids, but are not particularly limited. The conditions for the acid treatment are not particularly limited, but the treated fibers are usually immersed in an aqueous solution having an acid concentration of 5 to 20% by weight, preferably 7 to 15% by weight, at a temperature of 50 to 120 ° C. for 0.5 to 10 hours. An example is given.
[0028]
The fiber subjected to the cross-linking introduction treatment with the hydrazine-based compound or the fiber further subjected to the acid treatment is subsequently hydrolyzed with an aqueous alkaline metal salt solution. As a result of this treatment, CN groups remaining without being involved in the cross-linking introduction treatment with the hydrazine compound of the acrylic fiber, or when the acid treatment is carried out after the cross-linking introduction treatment, the remaining CN groups and some acids Hydrolysis of the amide group generated by hydrolysis by treatment proceeds to form a carboxyl group. In addition, since the formed carboxyl group couple | bonds with the metal ion derived from the alkaline metal salt used for a hydrolysis process, most are salt type carboxyl groups. Examples of the alkaline metal salt used here include alkali metal hydroxides, alkaline earth metal hydroxides, and alkali metal carbonates. The conditions for the hydrolysis treatment are not particularly limited, but the means for treating in an aqueous solution of 1 to 10% by weight, more preferably 1 to 5% by weight, at a temperature of 50 to 120 ° C. within 1 to 10 hours is industrial, fiber properties. Is preferable.
[0029]
As described above, the degree of hydrolysis, that is, the amount of salt-type carboxyl groups produced is preferably 1 to 10 mmol / g, more preferably 3 to 10 mmol / g, and even more preferably 3 to 8 mmol / g. This can be easily controlled by a combination of the concentration, temperature and processing time of the drug during the above-described processing. Moreover, the CN group may or may not remain in the fiber that has undergone such hydrolysis. If the CN group remains, there is a possibility that a further function can be imparted using its reactivity.
[0030]
The fibers obtained as described above may be used as they are as the sustained-release moisture-releasing cross-linked acrylic fiber of the present invention, but usually, further, ions by metal salts such as nitrates, sulfates, and hydrochlorides. Conversion to the desired salt-type carboxyl group or H-type carboxyl group by performing an exchange treatment, acid treatment with nitric acid, sulfuric acid, hydrochloric acid, formic acid, etc., or pH adjustment treatment with an alkaline metal salt, etc. The characteristics are adjusted by mixing them to obtain the crosslinked moisture-absorbing crosslinked acrylic fiber of the present invention.
[0031]
For example, the Mg salt-type carboxyl group recommended in the present invention can be obtained by immersing the hydrolyzed fiber in an aqueous solution containing magnesium ions such as an aqueous magnesium nitrate solution. However, in this method, it is difficult to control the amount of the Mg salt-type carboxyl group to be generated, and the reproducibility is not very good.
[0032]
In order to control the amount and obtain the Mg salt-type carboxyl group with good reproducibility, first, the fiber after hydrolysis is immersed in an acid aqueous solution such as nitric acid so that all the carboxyl groups in the fiber become H-type carboxyl groups. Next, the obtained fiber is immersed in an alkaline aqueous solution containing sodium ions such as an aqueous sodium hydroxide solution to convert the H-type carboxyl group into a Na salt-type carboxyl group. At this time, the amount of carboxyl groups converted to Na salt type can be changed by adjusting the pH. Then, it can convert into Mg salt type carboxyl group by immersing in the aqueous solution which has magnesium ions, such as magnesium nitrate aqueous solution. Here, the Na salt type carboxyl group is converted to the Mg salt type carboxyl group, and the H type carboxyl group is hardly converted to the Mg salt type carboxyl group. That is, it is possible to control the amount of Mg salt type carboxyl groups through controlling the amount of Na salt type carboxyl groups by adjusting the pH.
[0033]
In addition, the controlled moisture-releasing and cross-linking acrylic fiber of the present invention was subjected to treatments other than the above-described crosslinking introduction treatment, acid treatment, hydrolysis treatment, ion exchange treatment after hydrolysis, acid treatment, and pH adjustment treatment. It does not matter if it is a thing.
[0034]
The above-described controlled moisture absorption / release cross-linked acrylic fiber of the present invention described above has a characteristic of having a high saturated moisture absorption rate and continuously absorbing moisture. Therefore, when the crosslinked moisture-absorbing / releasing acrylic fiber of the present invention is contained as a constituent fiber of the fiber structure, the amount of heat released to the outside of the fiber structure is supplemented with continuous heat generation, thereby the fiber structure. The effect which improves the heat retention of is obtained. Therefore, the gradual moisture-releasing and cross-linking acrylic fiber of the present invention can be suitably used for applications where heat retention is required.
[0035]
Examples of such fiber structures include yarns, yarns, filaments, woven fabrics, knitted fabrics, non-woven fabrics, paper-like materials, sheet-like materials, laminates, cotton-like materials, etc., but they are used for applications where heat retention is required. In general, woven fabrics, knitted fabrics, and cotton-like bodies are generally used. Specific examples include sportswear, underwear, stomach wrap, supporters, gloves, socks, stockings, pajamas, and futon cotton. Further, the fiber structure may be composed of only the slow-absorbing and releasing cross-linked acrylic fiber of the present invention, or may be composed of other materials in combination. Other materials that can be used in combination are not particularly limited, and publicly used natural fibers, organic fibers, semi-synthetic fibers, synthetic fibers, and the like are used. In addition, inorganic fibers, glass fibers, and the like can be used depending on the application. In addition, other materials used in combination are not limited to fibers, and may be materials such as resins and particles.
【Example】
[0036]
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the following examples. In addition, unless otherwise indicated, the part and percentage in an Example are shown on a weight basis. The evaluation methods of the characteristics in the examples are as follows.
[0037]
(1) Salt-type carboxyl group content (mmol / g)
About 1 g of a well-dried sample was precisely weighed (X (g)), 200 ml of water was added thereto, 1 mol / l hydrochloric acid aqueous solution was added to the solution while being heated to 50 ° C. to pH 2, and then 0.1 mol A titration curve is obtained according to a conventional method with an aqueous sodium hydroxide solution of 1 / l. The consumption amount (Y (ml)) of an aqueous sodium hydroxide solution consumed by carboxyl groups was determined from the titration curve, and the carboxyl group amount (mmol / g) was calculated by the following formula.
(Amount of carboxyl group) = 0.1 Y / X
Separately, a titration curve is obtained in the same manner without adjusting to pH 2 by adding a 1 mol / l aqueous hydrochloric acid solution during the above carboxyl group content measurement operation, and the amount of H-type carboxyl groups (mmol / g) is obtained. From these results, the salt-type carboxyl group amount was calculated by the following formula.
(Amount of salt-type carboxyl group) = (Amount of carboxyl group) − (Amount of H-type carboxyl group)
[0038]
(2) Saturated moisture absorption (%)
About 5.0 g of the sample is dried with a hot air dryer at 105 ° C. for 16 hours and weighed (W1 (g)). Next, the sample is placed in a thermo-hygrostat adjusted to either 20 ° C. × 95% RH or 20 ° C. × 50% RH for 24 hours. The weight of the sample thus absorbed is measured. (W2 (g)). From the above measurement results, calculation was performed according to the following equation.
Saturated moisture absorption (%) = (W2−W1) / W1 × 100
[0039]
(3) About 2.5 g of a moisture absorption curve sample at 20 ° C. × 95% RH is dried with a hot air dryer at 105 ° C. for 16 hours, and the weight is measured (W3 (g)). Subsequently, the sample was put into a cylindrical mesh basket (diameter 7.5 cm, height 9.8 cm) without being pressed quickly so as to be in a soft state, and the entire temperature was immediately adjusted to 20 ° C. × 95% RH. Put in a humidifier. The weight of the sample that has absorbed moisture is measured every 10 minutes (W4 (g)), with the time when the sample is placed in a thermo-hygrostat as the start of moisture absorption. From the above measurement results, the moisture absorption rate at each measurement point was calculated by the following equation to obtain a moisture absorption curve.
Moisture absorption rate (%) = (W4−W3) / W3 × 100
[0040]
(4) Swelling degree (g / g)
About 3 g of the sample is dried with a hot air dryer at 70 ° C. for 3 hours, and the weight is measured (W5 (g)). Next, after immersing the sample in a beaker containing 300 ml of water for 30 minutes, the swollen sample is dehydrated with a desktop centrifugal dehydrator (160 G × 5 minutes), and the weight of the sample is measured (W6 (g)). From the above measurement results, calculation was performed according to the following equation.
(Swelling degree) = (W6-W5) / W5
[0041]
[Example 1]
A spinning stock solution in which 10 parts of an AN polymer (intrinsic viscosity [η] = 1.2 in 30 ° C. dimethylformamide) consisting of 90% acrylonitrile (AN) and 10% vinyl acetate was dissolved in 90 parts of a 48% rhodium soda solution. After spinning and drawing according to a conventional method (total draw ratio: 10 times), after drying in an atmosphere of dry bulb / wet bulb = 120 ° C./60° C., wet heat treatment is performed to obtain a raw fiber having a single fiber fineness of 0.9 dtex. Obtained. The raw fiber was subjected to a crosslinking introduction treatment at 98 ° C. for 5 hours in a 20% aqueous solution of hydrazine hydrate and washed. The increase in nitrogen content by this treatment was 5%. In addition, the nitrogen increase amount calculated | required nitrogen content by calculating | requiring nitrogen content by the elemental analysis about the raw material fiber and the fiber after bridge | crosslinking introduction processing, and was computed from the difference. The cross-linked fiber was immersed in a 3% nitric acid aqueous solution and subjected to acid treatment at 90 ° C. for 2 hours. Then, it hydrolyzed at 90 degreeC x 2 hours in 3% sodium hydroxide aqueous solution, processed with 3.5% nitric acid aqueous solution, and washed with water. The obtained fiber is immersed in water, adjusted to pH 11 by adding sodium hydroxide, and then immersed in an aqueous solution in which magnesium nitrate corresponding to twice the amount of carboxyl groups contained in the fiber is dissolved at 50 ° C. for 1 hour. Thus, an ion exchange treatment was carried out, followed by washing with water and drying to obtain the fiber of Example 1 having an Mg salt type carboxyl group. The evaluation results of the obtained fiber are shown in Table 1 and FIG.
[0042]
[Example 2]
A fiber of Example 2 having an Mg salt type carboxyl group was obtained in the same manner as in Example 1, except that the pH adjustment with sodium hydroxide was changed from pH 11 to pH 8. The evaluation results of the obtained fiber are shown in Table 1 and FIG.
[0043]
[Comparative Example 1]
A fiber of Comparative Example 1 having a Na salt type carboxyl group was obtained in the same manner as in Example 1 except that the ion exchange treatment with magnesium nitrate was not performed. The evaluation results of the obtained fiber are shown in Table 1 and FIG.
[0044]
[Comparative Example 2]
In Example 1, the fiber of the comparative example 2 which has Ca salt type carboxyl group was obtained similarly except using a calcium nitrate aqueous solution instead of a magnesium nitrate aqueous solution. The evaluation results of the obtained fiber are shown in Table 1 and FIG.
[0045]
[Comparative Example 3]
After the sodium hydroxide of Example 1 was added until the pH was adjusted to about 11, the fiber was dissolved in an aqueous solution in which magnesium nitrate corresponding to 0.6 times the amount of carboxyl groups contained in the fiber was dissolved. After immersing at 50 ° C. for 1 hour, washing with water, and further immersing in 50 ° C. for 1 hour in an aqueous solution in which calcium nitrate corresponding to 0.5 times the amount of carboxyl groups is dissolved, washing with water and drying, Mg salt type carboxyl groups And a fiber of Comparative Example 3 in which Ca salt type carboxyl groups are mixed. The evaluation results of the obtained fiber are shown in Table 1 and FIG. In addition, about the ratio of Mg and Ca, the fiber was wet-decomposed and it calculated | required using the atomic absorption method.
[0046]
[Table 1]
Figure 0004529145
[0047]
Examples 1 and 2 satisfy Formulas 1 to 3, and it is considered that heat generation continues stably from FIG. On the other hand, in Comparative Example 1, although the saturated moisture absorption rate is high, it absorbs a large amount in the initial short time, and then the moisture absorption rate becomes slow. In Comparative Examples 2 and 3, although the moisture absorption rate is slow, the saturated moisture absorption rate is small and the moisture absorption rate close to saturation is reached in a relatively short time. Therefore, it is considered that continuous heat generation cannot be expected. It is done.

Claims (3)

架橋構造および5.4〜10mmol/gの塩型カルボキシル基を有し、かつ前記塩型カルボキシル基のうち5.4mmol/g以上がMg塩型カルボキシル基である架橋アクリル系吸放湿性繊維であって、20℃×95%RHにおける飽和吸湿率(a(%))、20℃×50%RHにおける飽和吸湿率(b(%))、及び20℃×95%RH×60分の吸湿率(c(%))が、下記(1)〜(3)式を満足することを特徴とする徐吸放湿性架橋アクリル系繊維。
a(%)≧60 (1)
a−b(%)≧30 (2)
c/a≦0.5 (3)
In cross-linking structure and 5.4 ~10mmol / g of a salt-type carboxyl group, and 5.4 mmol / g or more is Mg salt type carboxyl groups crosslinked acrylic moisture absorptive and desorptive fiber of the salt type carboxyl group The saturated moisture absorption rate at 20 ° C. × 95% RH (a (%)), the saturated moisture absorption rate at 20 ° C. × 50% RH (b (%)), and the moisture absorption rate at 20 ° C. × 95% RH × 60 minutes. (C (%)) satisfies the following formulas (1) to (3): A moisture absorption / release crosslinked acrylic fiber characterized by the following.
a (%) ≧ 60 (1)
a−b (%) ≧ 30 (2)
c / a ≦ 0.5 (3)
20℃×95%RH×90分の吸湿率(d(%))及び20℃×95%RH×180分の吸湿率(e(%))の間に下記(4)式の関係が成り立つことを特徴とする請求項1に記載の徐吸放湿性架橋アクリル系繊維。
e/d≧1.5 (4)
The following equation (4) holds between 20 ° C. × 95% RH × 90 minutes moisture absorption (d (%)) and 20 ° C. × 95% RH × 180 minutes moisture absorption (e (%)). The sustained-release moisture-releasing crosslinked acrylic fiber according to claim 1.
e / d ≧ 1.5 (4)
膨潤度が1.5g/g以下であることを特徴とする請求項1または2に記載の徐吸放湿性架橋アクリル系繊維。  The degree of swelling is 1.5 g / g or less, and the sustained-absorbing and releasing moisture-crosslinking acrylic fiber according to claim 1 or 2.
JP2006535071A 2004-09-07 2005-07-29 Slow moisture absorption and release cross-linked acrylic fiber Active JP4529145B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004259817 2004-09-07
JP2004259817 2004-09-07
PCT/JP2005/013929 WO2006027910A1 (en) 2004-09-07 2005-07-29 Slowly moisture-absorbing and -releasing crosslinked acrylic fiber

Publications (2)

Publication Number Publication Date
JPWO2006027910A1 JPWO2006027910A1 (en) 2008-07-31
JP4529145B2 true JP4529145B2 (en) 2010-08-25

Family

ID=36036203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006535071A Active JP4529145B2 (en) 2004-09-07 2005-07-29 Slow moisture absorption and release cross-linked acrylic fiber

Country Status (4)

Country Link
JP (1) JP4529145B2 (en)
KR (1) KR101161466B1 (en)
CN (1) CN101023212B (en)
WO (1) WO2006027910A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013002367A1 (en) 2011-06-30 2013-01-03 東洋紡株式会社 Batting
JP5700316B1 (en) * 2014-05-29 2015-04-15 東洋紡株式会社 Method for producing hygroscopic exothermic short fiber mixed feather cotton

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5056358B2 (en) * 2007-11-02 2012-10-24 日本エクスラン工業株式会社 Dyeable cross-linked acrylate fiber, method for producing the same, and dyed cross-linked acrylate fiber obtained by dyeing the fiber
KR101593726B1 (en) 2008-09-10 2016-02-18 니혼 엑스란 고교 (주) Crosslinked acrylate-based fibers and the production thereof
CN101845745B (en) * 2009-03-26 2013-06-12 山东理工大学 Manufacturing method of multi-functional modified acrylic fibers with high moisture absorption and flame resistance
TWI645086B (en) * 2013-09-20 2018-12-21 日本Exlan工業股份有限公司 Crosslinking acrylate based fiber and fiber structure comprising the same
JP6228511B2 (en) * 2014-05-29 2017-11-08 日本エクスラン工業株式会社 Cross-linked acrylate fiber with good dispersibility
JP6339861B2 (en) * 2014-05-29 2018-06-06 日本エクスラン工業株式会社 Filling, and futon and garment containing the filling
CN104594026B (en) * 2015-02-02 2017-07-14 中国人民解放军总后勤部军需装备研究所 A kind of fire resistance fibre and preparation method thereof
WO2017179633A1 (en) * 2016-04-14 2017-10-19 日本エクスラン工業株式会社 Fibers capable of sustained release of functional component, fiber structure and underwear containing said fibers, and regeneration processing method therefor
JP6118440B1 (en) * 2016-04-22 2017-04-19 東洋紡株式会社 Sanitary absorbent articles
CN114007743B (en) * 2019-06-20 2023-09-15 日本爱克兰工业株式会社 Ion exchange fiber and ion exchange filter containing the same
CN111809268B (en) * 2020-06-17 2022-09-09 安徽三宝棉纺针织投资有限公司 Processing method of long-acting antibacterial nylon yarn

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07216730A (en) * 1994-02-08 1995-08-15 Japan Exlan Co Ltd Ph buffering fiber and production thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60194173A (en) * 1984-12-13 1985-10-02 日本エクスラン工業株式会社 Production of new water swellable fiber
JP2623771B2 (en) * 1988-09-21 1997-06-25 日本エクスラン工業株式会社 High hygroscopic fiber
JPH04132858A (en) * 1990-09-25 1992-05-07 Mazda Motor Corp Intake structure for engine
JP3196577B2 (en) * 1995-06-05 2001-08-06 日本エクスラン工業株式会社 pH buffering hygroscopic acrylic fiber and method for producing the same
JP2000027064A (en) * 1998-07-01 2000-01-25 Japan Exlan Co Ltd Fiber product comprising nonwoven fabric
DE60134498D1 (en) * 2001-01-26 2008-07-31 Japan Exlan Co Ltd HIGHLY HYGROSCOPIC FIBER AND THEIR MANUFACTURE
JP4674429B2 (en) * 2001-09-18 2011-04-20 日本エクスラン工業株式会社 Black high moisture absorbing / releasing fiber

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07216730A (en) * 1994-02-08 1995-08-15 Japan Exlan Co Ltd Ph buffering fiber and production thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013002367A1 (en) 2011-06-30 2013-01-03 東洋紡株式会社 Batting
JP5242861B1 (en) * 2011-06-30 2013-07-24 東洋紡株式会社 Batting
KR20140033417A (en) * 2011-06-30 2014-03-18 도요보 가부시키가이샤 Batting
US9040631B1 (en) 2011-06-30 2015-05-26 Toyobo Co., Ltd. Padding
JP5700316B1 (en) * 2014-05-29 2015-04-15 東洋紡株式会社 Method for producing hygroscopic exothermic short fiber mixed feather cotton

Also Published As

Publication number Publication date
JPWO2006027910A1 (en) 2008-07-31
CN101023212A (en) 2007-08-22
WO2006027910A1 (en) 2006-03-16
KR101161466B1 (en) 2012-07-02
KR20070050064A (en) 2007-05-14
CN101023212B (en) 2010-08-25

Similar Documents

Publication Publication Date Title
JP4529145B2 (en) Slow moisture absorption and release cross-linked acrylic fiber
CN107237004B (en) Crosslinked acrylate fiber and fiber structure containing the same
CN109689951B (en) Modacrylic fiber, method for producing the fiber, and fiber structure containing the fiber
JPH05132858A (en) Highly moisture absorbing and releasing fiber and its production
JP5962928B2 (en) Hygroscopic deodorant fiber, method for producing the fiber, and fiber structure containing the fiber
CN100579997C (en) Functionalized polyacrylonitrile resin and its preparation and application in fiber
JP2998958B1 (en) Crosslinked acrylic hygroscopic fiber and method for producing the same
JP2009133036A (en) Knitted fabric having excellent heat-retaining property
JP4114057B2 (en) Hygroscopic fiber
JP3271692B2 (en) Acid / basic gas absorbing fiber and its structure
JPH07216730A (en) Ph buffering fiber and production thereof
JP5169241B2 (en) Hygroscopic composite fiber
JP3369508B2 (en) Hygroscopic fiber
JP2019085688A (en) Hygroscopic acrylonitrile-based fiber, method for producing the same and fiber structure containing the same
JP4277193B2 (en) Elastic processed yarn with exothermic properties
JP6877700B2 (en) High-bulk, high-heat-sustaining fibers, and fiber structures, deodorant materials, and batting containing the fibers.
JP3716984B2 (en) Method for producing hygroscopic fiber
JP2001146678A (en) Moisture-absorbing and releasing fiber, its production and mix-spun fiber
TW202135931A (en) Substance removal complex as well as fiber structure, resin molding and filter containing the complex
JP3235092B2 (en) Basic gas absorbing fiber and method for producing the same
JP2019148050A (en) Easily decrimping hygroscopic acrylonitrile-based fiber, manufacturing method of the fiber and fiber structure containing the fiber
JP2019060066A (en) Moisture-absorptive acrylonitrile-based fiber, production method of the fiber, and fiber structure containing the fiber
JP2021127364A (en) Material which improves absorbency of blood-containing liquid, sanitary products containing the material and method for absorbing blood-containing liquid
JP2001303342A (en) Wear used in ultra low humidity clean room

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100514

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100527

R150 Certificate of patent or registration of utility model

Ref document number: 4529145

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250