[go: up one dir, main page]

JP4515337B2 - Porous titania for hydrotreating and hydrotreating method - Google Patents

Porous titania for hydrotreating and hydrotreating method Download PDF

Info

Publication number
JP4515337B2
JP4515337B2 JP2005177207A JP2005177207A JP4515337B2 JP 4515337 B2 JP4515337 B2 JP 4515337B2 JP 2005177207 A JP2005177207 A JP 2005177207A JP 2005177207 A JP2005177207 A JP 2005177207A JP 4515337 B2 JP4515337 B2 JP 4515337B2
Authority
JP
Japan
Prior art keywords
titanium oxide
catalyst
hydrosol
titania
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005177207A
Other languages
Japanese (ja)
Other versions
JP2005324195A (en
Inventor
英彦 工藤
慎一 井上
透 高塚
昭博 武藤
健雄 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Original Assignee
Chiyoda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp filed Critical Chiyoda Corp
Priority to JP2005177207A priority Critical patent/JP4515337B2/en
Publication of JP2005324195A publication Critical patent/JP2005324195A/en
Application granted granted Critical
Publication of JP4515337B2 publication Critical patent/JP4515337B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

(発明の属する技術分野)
本発明は、触媒担体、触媒、乾燥剤、吸着剤、充填剤等の用途に有用な多孔質チタニアとその用途に係るもので、特に、高比表面積でかつ熱安定性にも優れた水素化処理用多孔質チタニア及びこれを用いた水素化処理方法に関する。
(Technical field to which the invention belongs)
The present invention relates to a porous titania useful for uses such as a catalyst carrier, a catalyst, a desiccant, an adsorbent, and a filler, and to the use thereof. Particularly, hydrogenation having a high specific surface area and excellent thermal stability. The present invention relates to a porous titania for treatment and a hydrotreating method using the same.

(従来の技術)
従来、多孔質チタニアは、例えば、液相における水酸化チタンの一般的な合成方法である硫酸チタン(硫酸チタニル)溶液を加水分解する方法、四塩化チタンあるいは硫酸チタン(硫酸チタニル)等の水溶液をアルカリで中和する方法、チタンアルコキシドを加水分解するゾルゲル化方法等で生成させた含水酸化チタンを乾燥・焼成して製造されている。
(Conventional technology)
Conventionally, porous titania is, for example, a method of hydrolyzing a titanium sulfate (titanyl sulfate) solution, which is a general method for synthesizing titanium hydroxide in a liquid phase, and an aqueous solution such as titanium tetrachloride or titanium sulfate (titanyl sulfate). It is manufactured by drying and baking hydrous titanium oxide produced by a method of neutralizing with an alkali, a sol-gelation method of hydrolyzing titanium alkoxide, or the like.

しかしながら、このような従来法で製造されるチタニアについては、熱安定性が悪く、比表面積と焼成温度との関係についてみると、焼成温度が高くなるにつれて、その比表面積が急激に低下し、高比表面積を維持することが困難であった。これは、この高温焼成の過程で、いわゆるシンタリングや脱水縮合により粒子の成長が起こるためである。例えば、含水酸化チタンの場合は、シンタリングや脱水縮合により無定形からアナタース、ルチル等への結晶化や結晶転移が起こり、比表面積が激減してしまう。   However, with regard to titania produced by such a conventional method, the thermal stability is poor, and when the relationship between the specific surface area and the firing temperature is seen, the specific surface area rapidly decreases as the firing temperature increases, and the high It was difficult to maintain the specific surface area. This is because particle growth occurs by so-called sintering or dehydration condensation during the high-temperature firing. For example, in the case of hydrous titanium oxide, crystallization or crystal transition from amorphous to anatase or rutile occurs due to sintering or dehydration condensation, and the specific surface area is drastically reduced.

このため、例えば、従来技術によって製造されるチタニア担体あるいはチタニア触媒は、炭化水素の水素化処理用触媒として単位比表面積当たりの水素化処理活性が非常に優れているにも拘わらず、アルミナやシリカ系の触媒担体或いは触媒のようには工業的に利用されることがなかった。また、例えば、アルキレーション用触媒として用いる場合には、超強酸としての酸性質を発現させるために高温処理する必要があるが、従来の担体では熱安定性が悪く低比表面積になるため、その酸の絶対量が少なくなり触媒としての必要性能を確保することができなかった。また、排煙脱硝用触媒として用いる場合にも、単位比表面積当たりの脱硝活性が非常に優れているにも拘わらず、熱安定性の問題から通常40〜50m2/gの低比表面積でしか使用できないため、多量の触媒を必要としているのが現状である。更に、この熱安定性の問題のため適用の温度範囲が狭いという問題もあった。また、チタニアについては、その摩耗強度が高いにもかかわらず、フィシャー・トロプシュ(FT)反応用触媒として用いる場合は、低比表面積のものしか得られないため性能的に満足の行く触媒が得られていないのが現状である。そのため、従来技術によって製造されるチタニア担体及び触媒は、その使用目的や使用条件等によって要求される性能を十分満足させることができない。すなわち、熱安定性が悪いために高温において高比表面積が維持できず性能が悪いものとなっているという問題があった。   For this reason, for example, a titania support or a titania catalyst produced by a conventional technique is excellent in hydrotreating activity per unit specific surface area as a hydrocarbon hydrotreating catalyst, but is not limited to alumina or silica. It was not used industrially like the catalyst support or catalyst of the system. In addition, for example, when used as an alkylation catalyst, it is necessary to perform a high temperature treatment in order to develop the acidity as a super strong acid, but the conventional support has poor thermal stability and a low specific surface area. The absolute amount of the acid was reduced, and the required performance as a catalyst could not be ensured. In addition, when used as a catalyst for flue gas denitration, it is usually used only at a low specific surface area of 40 to 50 m @ 2 / g due to the problem of thermal stability, despite its excellent denitration activity per unit specific surface area. Since it is not possible, a large amount of catalyst is required at present. Further, there is a problem that the temperature range of application is narrow due to the problem of thermal stability. In addition, titania has a high wear strength, but when used as a Fischer-Tropsch (FT) reaction catalyst, only a low specific surface area can be obtained. The current situation is not. For this reason, the titania carrier and catalyst produced by the prior art cannot sufficiently satisfy the performance required depending on the purpose of use and conditions of use. That is, since the thermal stability is poor, a high specific surface area cannot be maintained at high temperatures, resulting in poor performance.

また、上述した従来法ではシャープな細孔径分布を有するチタニアを製造することは困難であった。一般的に、高性能を有する触媒の細孔径の範囲は、対象とする反応物質に適した細孔径に制御することが必要である。すなわち反応物質の拡散抵抗がなく、かつ反応に有効でない小さなあるいは大きすぎる無駄な細孔を持たないことが重要である。このため、反応の目的に合わせて細孔径が制御された触媒であることが理想的である。例えば、反応に有効な触媒細孔径は、軽油の脱硫を目的とした場合には6〜10nmであり、重質油の脱硫を目的とした場合には8〜15nmであり、脱メタルを目的とした場合には15〜30nmであり、脱アスファルテンを目的とした場合には20〜40nmの範囲にある。しかし、従来法によって製造されるチタニア触媒については、反応に最適な触媒細孔径が少ないために、反応の選択性や活性及び触媒寿命の点で十分な性能が得られないという問題等もあった。   In addition, it has been difficult to produce titania having a sharp pore size distribution by the conventional method described above. In general, it is necessary to control the pore diameter range of a catalyst having high performance to a pore diameter suitable for the target reactant. That is, it is important that there is no diffusion resistance of the reactants and that there are no small or too large useless pores that are not effective for the reaction. Therefore, it is ideal that the catalyst has a pore diameter controlled according to the purpose of the reaction. For example, the effective catalyst pore diameter for the reaction is 6 to 10 nm for the purpose of desulfurization of light oil, and 8 to 15 nm for the purpose of desulfurization of heavy oil. In the case of the purpose of deasphaltening, it is in the range of 20 to 40 nm. However, the titania catalyst produced by the conventional method has a problem that sufficient performance cannot be obtained in terms of reaction selectivity, activity, and catalyst life because the catalyst pore diameter optimum for the reaction is small. .

そこで、このような問題を解決し、細孔径分布をシャープにし細孔径の範囲を制御するための方法として、例えば特公昭60-50,721号公報において、種子となるヒドロゾルを得る工程と、このヒドロゾルのpHを、ヒドロゾル溶解領域とヒドロゾル沈殿領域との間で交互に変動させ、これによって結晶を成長させて疎凝集体を形成したヒドロゾルを得る工程と、この疎凝集体を形成したヒドロゾルを乾燥し、焼成して金属酸化物を得る工程とを有する多孔質無機酸化物の製造方法が提案されている。   Therefore, as a method for solving such problems and sharpening the pore size distribution and controlling the range of the pore size, for example, in Japanese Patent Publication No. 60-50,721, a step of obtaining a seed hydrosol, alternately changing the pH between the hydrosol dissolution region and the hydrosol precipitation region, thereby growing a crystal to obtain a hydrosol in which loose aggregates are formed, and drying the hydrosol having formed the loose aggregates; There has been proposed a method for producing a porous inorganic oxide having a step of firing to obtain a metal oxide.

しかしながら、単にこの方法のみでは、例えば、チタニアについて制御されたシャープな細孔径分布を有することはできるが、触媒の焼成や反応系での反応熱等による熱履歴に対しても活性低下を起こさないようなチタニア触媒を製造することは困難であった。   However, this method alone can, for example, have a sharp pore size distribution controlled for titania, but does not cause a decrease in activity even with respect to thermal history due to catalyst firing or reaction heat in the reaction system. It has been difficult to produce such a titania catalyst.

そこで、本発明者らは、熱安定性にも優れ比表面積が大きい、多孔質チタニアとそれを製造する方法について鋭意検討した結果、一般式TiO2・nH2O(但し、nは0.02以上である)で表される含水酸化チタンのヒドロゾル又はヒドロゲル若しくはそれらの乾燥物に、粒子成長抑制剤として1種又は2種以上のアニオン、又はカチオン、若しくはこれらアニオン及びカチオンを添加したのち、乾燥、焼成することにより、熱安定性に優れ、80m2/g以上の高い比表面積を有し、かつ触媒金属が高分散している多孔質チタニアが得られることを見出し、本発明を完成した。 Therefore, as a result of intensive investigations on porous titania having excellent thermal stability and a large specific surface area and a method for producing the same, it was found that the general formula TiO 2 · nH 2 O (where n is 0.02). After adding one kind or two or more kinds of anions, or cations, or these anions and cations as a particle growth inhibitor to the hydrous titanium oxide hydrosol or hydrogel represented by The present inventors have found that a porous titania having excellent thermal stability, a high specific surface area of 80 m 2 / g or more and having a highly dispersed catalyst metal can be obtained by firing.

従って、本発明の目的は、熱安定性に優れ比表面積が大きく、触媒金属が高分散されている水素化処理用多孔質チタニア及びその用途を提供することにある。   Therefore, an object of the present invention is to provide a porous titania for hydroprocessing in which thermal stability is excellent, a specific surface area is large, and a catalytic metal is highly dispersed, and its use.

また、本発明の他の目的は、特に、熱安定性に優れ比表面積が大きく、かつ触媒金属の高分散に加え、制御されたシャープな細孔径分布を持ち優れた反応選択性を有する水素化処理用多孔質チタニア及びこれを用いた水素化処理方法を提供することにある。   Another object of the present invention is, in particular, hydrogenation that has excellent thermal stability and a large specific surface area, and also has a high sharp dispersion of catalyst metal and excellent reaction selectivity in addition to high dispersion of catalyst metal. It is an object to provide a porous titania for treatment and a hydrotreatment method using the same.

すなわち、本発明は、一般式TiO2・nH2O(但し、nは0.02以上である)で表される含水酸化チタンのヒドロゾル又はヒドロゲル若しくはそれらの乾燥物に、焼成時の粒子成長を抑制する粒子成長抑制剤として、P及びMoを含むオキシアニオン及び/又は金属カルボニルアニオンと、Ni及び/又はCoの金属カチオンとを、酸化チタン100g当り0.06〜6g当量の割合で添加してイオン交換させたのち、乾燥し焼成して得られる比表面積80m2/g以上の水素化処理用多孔質チタニアである。また、本発明は、この水素化処理用チタニアを触媒あるいは触媒担体として用いる水素化処理方法である。 That is, in the present invention, particle growth during firing is applied to hydrous or hydrogels of hydrous titanium oxide represented by the general formula TiO 2 .nH 2 O (where n is 0.02 or more) or dried products thereof. As a particle growth inhibitor to be suppressed, an oxyanion and / or metal carbonyl anion containing P and Mo and a metal cation of Ni and / or Co are added at a rate of 0.06 to 6 g equivalent per 100 g of titanium oxide. It is a porous titania for hydrotreatment having a specific surface area of 80 m 2 / g or more obtained by ion-exchange, drying and firing. The present invention is also a hydroprocessing method using the titania for hydroprocessing as a catalyst or a catalyst carrier.

本発明において、アニオンの添加は酸化チタンの等電点未満のpHで、カチオンの添加は酸化チタンの等電点以上のpHで、アニオン及びカチオンを同時に添加する場合は酸化チタンの等電点未満のpHで行われることが好ましく、含水酸化チタンのヒドロゾル又はヒドロゲルは、含水酸化チタンの沈殿領域pHと溶解領域pHとの間を交互に複数回以上スイングすることにより製造されることが好ましい。   In the present invention, the anion is added at a pH lower than the isoelectric point of titanium oxide, the cation is added at a pH higher than the isoelectric point of titanium oxide, and when an anion and a cation are added at the same time, lower than the isoelectric point of titanium oxide. The hydrous titanium hydrosol or hydrogel is preferably produced by swinging alternately between the precipitation region pH and the dissolution region pH of the hydrous titanium oxide more than once.

本発明方法において、含水酸化チタンのヒドロゾル又はヒドロゲル又はその乾燥物は、MO2・nH2Oとして表される当該含水酸化チタンのnが0.02以上のものであればよい。ここで規定するnが0.02以上である意味は、含水酸化チタンのヒドロゾル又はヒドロゲル又はその乾燥物がもつOH基の下限値を規定するものである。含水酸化チタンのヒドロゾル又はヒドロゲル又はその乾燥物が有するOH基が熱履歴ではずれていくことでシンタリングや脱水縮合による粒子成長が起こる。この際、置換可能なOH基を他の官能基等と置換することによって、熱安定性を増し、高比表面積を得ることができる。従って、従来より汎用されている加水分解法、中和反応法、ゾルゲル法等の方法で製造したものを用いることができる。また、制御されたシャープな細孔径分布を持ち、優れた反応活性・選択性を有する触媒を製造するのに好適な多孔質チタニアを得るために、含水酸化チタンのヒドロゾルあるいはヒドロゲル又はその乾燥物の製造を、ヒドロゾルのpHをその沈殿領域と溶解領域に交互に複数回以上スイングすることによって行うことができる。 In the present invention method, hydrosol or hydrogel or its dried product of hydrous titanium oxide, n of those the hydrated titanium hydroxide, expressed as MO 2 · nH 2 O, may be those of 0.02 or more. The meaning that n defined here is 0.02 or more defines the lower limit of the OH group possessed by hydrosol or hydrogel of hydrous titanium oxide or its dried product. The OH groups of hydrous titanium oxide hydrosol or hydrogel or dried product thereof are shifted by thermal history, and particle growth occurs due to sintering or dehydration condensation. At this time, by substituting the substitutable OH group with another functional group or the like, the thermal stability can be increased and a high specific surface area can be obtained. Therefore, what was manufactured by methods, such as a conventionally used hydrolysis method, neutralization reaction method, sol gel method, can be used. In addition, in order to obtain a porous titania suitable for producing a catalyst having a controlled sharp pore size distribution and having excellent reaction activity and selectivity, hydrous titanium oxide hydrosol or hydrogel or dried product thereof is used. Manufacture can be performed by swinging the pH of the hydrosol more than once alternately between its precipitation and dissolution regions.

ここで、含水酸化チタンのヒドロゾル又はヒドロゲル又はその乾燥物を製造するために用いるチタン化合物としては、具体的には、チタン(Ti)の塩化物、硝酸塩、硫酸塩、炭酸塩、酢酸塩、燐酸塩、ホウ酸塩、蓚酸塩、フッ酸塩、珪酸塩、ヨウ素酸塩等の4族金属塩や、チタン酸等のチタンオキソ酸塩等及びチタンのアルコキシド類であり、これらの1種のみを単独で使用できるほか、2種以上の混合物として使用することもできる。これらのチタン化合物のうち、チタンの場合に特に好ましいものとしては、例えば、四塩化チタン、硫酸チタン、硫酸チタニル、三塩化チタン、チタンメトキシド、チタンエトキシド、チタンプロポキシド、チタンイソプロポキシド、チタンブトキシド等を挙げることができる。   Here, as the titanium compound used to produce hydrous titanium oxide hydrosol or hydrogel or dried product thereof, specifically, titanium (Ti) chloride, nitrate, sulfate, carbonate, acetate, phosphoric acid Group 4 metal salts such as salts, borates, oxalates, fluorides, silicates, iodates, etc., titanium oxoacid salts such as titanic acid, etc., and titanium alkoxides. In addition, it can be used as a mixture of two or more. Among these titanium compounds, particularly preferable in the case of titanium, for example, titanium tetrachloride, titanium sulfate, titanyl sulfate, titanium trichloride, titanium methoxide, titanium ethoxide, titanium propoxide, titanium isopropoxide, Examples include titanium butoxide.

また、本発明に用いる粒子成長抑制剤は、P及びMoのオキシアニオン及び/又は金属カルボニルアニオンと、Ni及び/又はCoの金属カチオンとを用いることができる。更に詳しくは、PO4 3-、MoO4 2-等のイオンの形を有するオキシアニオン及び/又は金属カルボニルアニオンと、Ni2+及び/又はCo2+等の金属カチオンである。 In addition, the particle growth inhibitor used in the present invention may include P and Mo oxyanions and / or metal carbonyl anions and Ni and / or Co metal cations. More specifically, an oxy anion and / or a metal carbonyl anion having an ion form such as PO 4 3− , MoO 4 2− , and a metal cation such as Ni 2+ and / or Co 2+ .

特に好適なオキシアニオンを提供する化合物としては、モリブデン酸アンモニウム{(NH4)6Mo7O24・4H2O、(NH4)2MoO4、(NH4)Mo2O7}、モリブデン酸ソーダ(Na2MoO4・2H2O)、モリブデン酸(H2MoO4、H2MoO3・H2O)、五塩化モリブデン(MoCl5)、ケイモリブデン酸(H4SiMo12O40・nH2O)、H3PO4、HPO3、H4P2O7、P2O5、NH4H2PO4、(NH4)2HPO4、(NH4)3PO4・H2O、更にH3[PO4W12O36]・5H2OやMoをポリ酸とするヘテロポリ酸塩等を挙げることができる。これらは、その1種のみを単独で使用できるほか、2種以上の混合物として使用することもできる。 Compounds that provide particularly suitable oxyanions include ammonium molybdate {(NH 4 ) 6Mo 7 O 24 · 4H 2 O, (NH 4 ) 2MoO 4 , (NH 4 ) Mo 2 O 7 }, sodium molybdate ( Na 2 MoO 4 · 2H 2 O), molybdic acid (H 2 MoO 4 , H 2 MoO 3 · H 2 O), molybdenum pentachloride (MoCl 5 ), silicomolybdic acid (H 4 SiMo 12 O 40 · nH 2 O ), H 3 PO 4, HPO 3, H 4 P 2 O 7, P 2 O 5, NH 4 H 2 PO 4, (NH 4) 2 HPO 4, (NH 4) 3 PO 4 · H 2 O, further H 3 [PO 4 W 12 O 36 ] · Heteropolyacid salt containing 5H 2 O or Mo as a polyacid can be used. These can be used alone or in a mixture of two or more.

また、金属カルボニルアニオンを供給する多価金属塩化合物としては、例えば、(NEt4)[Mo(CO)5(OOCCH3)]、Mo(CO)6-NEt3-EtSH、(η-C5H4Me)2Mo2Co2S3(CO)4等である。 Examples of the polyvalent metal salt compound that supplies the metal carbonyl anion include (NEt 4 ) [Mo (CO) 5 (OOCCH 3 )], Mo (CO) 6 -NEt 3 -EtSH, (η-C 5 H 4 Me) 2 Mo 2 Co 2 S 3 (CO) 4 etc.

また、多価金属カチオンを供給する多価金属塩化合物としては、二価以上の金属の塩をいい、例えば、硝酸ニッケル{Ni(NO3)2・6H2O}、硫酸ニッケル(NiSO4・6H2O)、塩化ニッケル(NiCl2)、酢酸ニッケル{Ni(CH3CO2)2・4H2O}、酢酸コバルト{Co(CH3CO2)2・4H2O}、硝酸コバルト{Co(NO3)2・6H2O}、硫酸コバルト(CoSO4・7 H2O)、塩化コバルト(CoCl2・6 H2O)、燐酸マンガン(MnPO4)等である。 The polyvalent metal salt compound for supplying the polyvalent metal cation is a salt of a metal having a valence of 2 or more. For example, nickel nitrate {Ni (NO 3 ) 2 · 6H 2 O}, nickel sulfate (NiSO 4 · 6H 2 O), nickel chloride (NiCl 2 ), nickel acetate {Ni (CH 3 CO 2 ) 2 · 4H 2 O}, cobalt acetate {Co (CH 3 CO 2 ) 2 · 4H 2 O}, cobalt nitrate {Co (NO 3 ) 2 · 6H 2 O}, cobalt sulfate (CoSO 4 · 7 H 2 O), cobalt chloride (CoCl 2 · 6 H 2 O), manganese phosphate (MnPO 4 ) and the like.

本発明に用いる前記粒子成長抑制剤はその1種のみを単独で使用できるほか、2種以上の混合物として使用することもできる。また、これら粒子成長抑制剤として用いるイオンを構成する金属のMo、Ni、Co、及びPは、そのいずれも水素化処理触媒活性を有するものである。   The particle growth inhibitor used in the present invention can be used alone or in a mixture of two or more. Further, the metals Mo, Ni, Co, and P constituting the ions used as the particle growth inhibitor all have hydrotreating catalyst activity.

また、ヒドロゾルのpHを沈殿領域と溶解領域の間を交互に複数回変動させるpH調整剤として好適な化合物は、原料となる四塩化チタン、硫酸チタン、硫酸チタニル、四塩化チタン、三塩化チタン、硫酸第1鉄、硫酸第2鉄、塩化第1鉄、塩化第2鉄、硝酸第1鉄、硝酸第2鉄、硝酸ニッケル、硫酸ニッケル、塩化ニッケル、硝酸コバルト、硫酸コバルト、塩化コバルト、硝酸マンガン、硫酸マンガン、塩化マンガン、硝酸イットリウム、硫酸イットリウム、塩化イットリウムのほか硝酸(HNO3)、塩酸(HCl)、硫酸(H2SO4)、炭酸(H2CO3)、蟻酸(HCOOH)、酢酸(CH3COOH)等の酸と、アンモニア(NH3)、水酸化ナトリウム(NaOH)、水酸化カリウム(KOH)、炭酸ナトリウム(Na2CO3)、炭酸カリウム(K2CO3)、炭酸水素ナトリウム(NaHCO3)、炭酸水素カリウム(KHCO3)、炭酸水素ナトリウムカリウム(KNaCO3)等のアルカリを挙げることができる。また、これらはその1種のみを単独で使用できるほか、2種以上の混合物として使用することもできる。 In addition, a compound suitable as a pH adjuster that alternately changes the pH of the hydrosol between the precipitation region and the dissolution region multiple times is titanium tetrachloride, titanium sulfate, titanyl sulfate, titanium tetrachloride, titanium trichloride as raw materials. Ferrous sulfate, ferric sulfate, ferrous chloride, ferric chloride, ferrous nitrate, ferric nitrate, nickel nitrate, nickel sulfate, nickel chloride, cobalt nitrate, cobalt sulfate, cobalt chloride, manganese nitrate , Manganese sulfate, manganese chloride, yttrium nitrate, yttrium sulfate, yttrium chloride, nitric acid (HNO 3 ), hydrochloric acid (HCl), sulfuric acid (H 2 SO 4 ), carbonic acid (H 2 CO 3 ), formic acid (HCOOH), acetic acid (CH 3 COOH) with an acid such as ammonia (NH 3), sodium hydroxide (NaOH), potassium hydroxide (KOH), sodium carbonate (Na 2 CO 3), potassium carbonate (K 2 CO 3), bicarbonate sodium NaHCO 3), potassium bicarbonate (KHCO 3), and alkali such as sodium bicarbonate potassium (KNaCO 3). In addition, these can be used alone or in a mixture of two or more.

[多孔質4族金属酸化物の製造方法]
(4族金属含水酸化物の製造)
含水酸化チタンのヒドロゾル、ヒドロゲル又はそれらの乾燥物で、TiO2・nH2Oとして表される含水酸化チタンのnが0.02以上のものを製造する条件は、該多孔質チタニア(TiO2)濃度は1〜20重量%、好ましくは3〜15重量%、反応温度は常温から300℃、好ましくは常温から180℃、更に好ましくは常温から100℃、反応圧力は常圧から3.0MPaで、好ましくは常圧から0.9MPaで、更に好ましくは常圧から0.1MPa、pHは0.5〜11、好ましくは1.0〜10の範囲でアルカリによる中和反応あるいは加水分解反応によって含水酸化チタンを生成する。
[Method for Producing Porous Group 4 Metal Oxide]
(Production of Group 4 metal hydrated oxide)
The conditions for producing hydrous titanium oxide hydrosols, hydrogels, or dried products thereof with hydrous titanium oxide expressed as TiO 2 · nH 2 O of 0.02 or more are the porous titania (TiO 2 ). The concentration is 1 to 20% by weight, preferably 3 to 15% by weight, the reaction temperature is from room temperature to 300 ° C., preferably from room temperature to 180 ° C., more preferably from room temperature to 100 ° C., the reaction pressure is from normal pressure to 3.0 MPa, Preferably, the pressure is from normal pressure to 0.9 MPa, more preferably from normal pressure to 0.1 MPa, and the pH is in the range of 0.5 to 11, preferably 1.0 to 10. Hydroxylation by alkali neutralization or hydrolysis. Titanium is produced.

(粒子成長抑制剤の添加)
上記一般式TiO2・nH2O(但し、nは0.02以上である)で表される含水酸化チタンのヒドロゾル又はヒドロゲル若しくはそれらの乾燥物に、粒子成長抑制剤として1種又は2種以上のアニオン、又はカチオン、若しくはこれらアニオン及びカチオンを添加するが、この際に、粒子成長抑制剤がアニオンの場合には好ましくは酸化チタンの等電点未満のpHで添加するのがよく、また、粒子成長抑制剤がカチオンの場合には好ましくは酸化チタンの等電点以上のpHで添加するのがよく、更に、粒子成長抑制剤がアニオン及びカチオンの場合には好ましくは酸化チタンの等電点未満のpHで同時に添加するのがよい。これは、イオン交換等による置換がより効果的に進むことによる。そして、これら粒子成長抑制剤の添加量については、酸化チタン100g当たり0.06〜6g当量、好ましくは0.1〜5g当量添加し、温度常温から100℃で、熟成時間0.1〜5時間、好ましくは0.2〜3時間保持する。
なお、上記ヒドロゾルはその生成段階のもの、ヒドロゲルはその生成後のものに粒子成長抑制剤を添加するのが効果的である。
(Addition of particle growth inhibitor)
In the hydrosol or hydrogel of hydrous titanium oxide represented by the above general formula TiO 2 · nH 2 O (where n is 0.02 or more) or one or more of them as a particle growth inhibitor In this case, when the particle growth inhibitor is an anion, it is preferably added at a pH lower than the isoelectric point of titanium oxide. When the particle growth inhibitor is a cation, it is preferably added at a pH equal to or higher than the isoelectric point of the titanium oxide. Further, when the particle growth inhibitor is an anion or a cation, the isoelectric point of the titanium oxide is preferably added. It is better to add at a pH below. This is because substitution by ion exchange or the like proceeds more effectively. And about the addition amount of these particle growth inhibitors, 0.06-6g equivalent with respect to 100g of titanium oxides, Preferably 0.1-5g equivalent is added, A temperature is normal temperature to 100 degreeC, Aging time 0.1-5 hours , Preferably 0.2 to 3 hours.
In addition, it is effective to add a particle growth inhibitor to the hydrosol in the production stage and the hydrogel in the production stage.

例えば、含水酸化チタンを洗浄し、粒子成長抑制剤として酸化チタンのアナターゼの等電点である6.1未満でのpHで一種類以上のアニオンを添加あるいは等電点以上のpHで一種類以上のカチオンを添加、アニオンとカチオンを同時に添加する場合は等電点未満のpHで、酸化チタン100g当たり0.06〜6g当量、好ましくは0.1〜5g当量添加し、常温から100℃で、熟成時間0.1〜5時間、好ましくは0.2〜3時間保持する。   For example, the hydrous titanium oxide is washed and one or more anions are added at a pH below 6.1 which is the isoelectric point of anatase of titanium oxide as a particle growth inhibitor, or one or more at a pH above the isoelectric point When an anion and a cation are added simultaneously, 0.06 to 6 g equivalent, preferably 0.1 to 5 g equivalent per 100 g of titanium oxide is added at a pH lower than the isoelectric point. Aging time is 0.1 to 5 hours, preferably 0.2 to 3 hours.

また、粒子成長抑制剤の添加法としては、直接混練法も使用することができる。この方法においては、粒子成長抑制剤をゲルあるいは乾燥物に酸化チタン100g当たり0.05〜5g当量、好ましくは0.1〜4g当量粒子成長抑制剤を直接添加し、常温から100℃の温度範囲で、熟成時間0.1〜5時間、好ましくは0.2〜3時間混練する。   As a method for adding the particle growth inhibitor, a direct kneading method can also be used. In this method, a particle growth inhibitor is directly added to a gel or a dried product in an amount of 0.05 to 5 g equivalent, preferably 0.1 to 4 g equivalent, per 100 g of titanium oxide, and a temperature range from room temperature to 100 ° C. And kneading for 0.1 to 5 hours, preferably 0.2 to 3 hours.

(乾燥・焼成条件)
酸化チタン基準での含水量を30〜900重量%、好ましくは50〜700重量%にろ過・脱水し、所要の形状に成型し、乾燥温度40〜350℃、好ましくは80〜200℃で、乾燥時間0.5〜24時間、好ましくは80〜200℃で乾燥し、温度350〜1200℃、好ましくは400〜700℃で焼成する。
(Drying and firing conditions)
Filtered and dehydrated to a water content of 30 to 900% by weight, preferably 50 to 700% by weight, based on titanium oxide, molded into the required shape, dried at a drying temperature of 40 to 350 ° C, preferably 80 to 200 ° C. It is dried for 0.5 to 24 hours, preferably at 80 to 200 ° C, and calcined at a temperature of 350 to 1200 ° C, preferably 400 to 700 ° C.

また、種子生成工程とヒドロゾル合成工程とを有する含水酸化チタンのヒドロゾルの製造方法については、具体的には特公昭60-50,721号公報に記載された方法を例示することができる。
すなわち、種子生成工程については、不均一沈殿法、均一沈殿法、共沈法、イオン交換法、加水分解法、及び金属溶解法等の慣用の方法を採用することができる。また、ヒドロゾル合成工程については、上記種子生成工程で得られた含水酸化チタンのヒドロゾルにチタン化合物の水溶液、及び/又はpH調整剤とを交互に添加し、ヒドロゾル溶解pH領域とヒドロゾル析出pH領域との間を交互に複数回変動させるものであり、ヒドロゾル溶解pH領域とは微細粒子のヒドロゾルを可溶化し得るpH領域をいい、また、ヒドロゾル析出pH領域とはヒドロゾル粒子の成長及び凝集を生起させるpH領域をいう。更に、このヒドロゾル合成工程においては、必要により、熟成、洗浄、固形分含量調節等の処理が行われ、所望の性状を有する含水酸化チタンのヒドロゾルあるいはヒドロゲルとされる。
As a method for producing a hydrous titanium oxide hydrosol having a seed production step and a hydrosol synthesis step, a method described in JP-B-60-50,721 can be specifically exemplified.
That is, for the seed production step, conventional methods such as a heterogeneous precipitation method, a uniform precipitation method, a coprecipitation method, an ion exchange method, a hydrolysis method, and a metal dissolution method can be employed. As for the hydrosol synthesis step, an aqueous solution of a titanium compound and / or a pH adjuster are alternately added to the hydrous titanium oxide hydrosol obtained in the seed production step, and a hydrosol dissolution pH region and a hydrosol precipitation pH region are obtained. The hydrosol dissolution pH region refers to the pH region where the fine particle hydrosol can be solubilized, and the hydrosol precipitation pH region causes the growth and aggregation of the hydrosol particles. It refers to the pH range. Further, in this hydrosol synthesis step, treatments such as aging, washing, and solid content adjustment are performed as necessary to obtain hydrous titanium oxide hydrosol or hydrogel having desired properties.

上記酸化チタンの製造において、該含水酸化チタンの製造条件は、pHをスイングする各段階の沈殿領域のpHを0.5〜11、濃度を0.1〜20重量%、温度を常温から300℃、保持時間を0.01〜0.5時間、好ましくは0.02〜0.3時間とする。また、含水酸化チタンの溶解領域のpHは0〜3、濃度は0.1〜20重量%、温度は常温から300℃、保持時間は0.02〜5時間の範囲が好適である。また、沈殿領域と溶解領域に交互に保持する回数は2回から20回の範囲が好適である。   In the production of the titanium oxide, the conditions for producing the hydrous titanium oxide include: the pH of the precipitation region at each stage of swinging the pH is 0.5 to 11, the concentration is 0.1 to 20% by weight, and the temperature is from room temperature to 300 ° C. The holding time is 0.01 to 0.5 hours, preferably 0.02 to 0.3 hours. The pH of the hydrous titanium oxide dissolution region is preferably 0 to 3, the concentration is 0.1 to 20% by weight, the temperature is from room temperature to 300 ° C., and the holding time is 0.02 to 5 hours. In addition, the number of times of holding alternately in the precipitation region and the dissolution region is preferably in the range of 2 to 20 times.

例えば、該含水酸化チタンのpHをスイングする各段階の製造条件は、沈殿領域のpHを1.0〜10、濃度を0.1〜15重量%、温度を常温から180℃、保持時間を0.01〜0.5時間、好ましくは0.02〜0.3時間、溶解領域のpHを0〜2、濃度を0.1〜15重量%、温度を常温から180℃、保持時間を0.02〜5時間の範囲が好適である。また、沈殿領域と溶解領域に交互に保持する回数は2回から10回の範囲が好適である。   For example, the production conditions of each stage for swinging the pH of the hydrous titanium oxide are as follows: the pH of the precipitation region is 1.0 to 10, the concentration is 0.1 to 15% by weight, the temperature is from room temperature to 180 ° C., and the holding time is 0. 0.01 to 0.5 hours, preferably 0.02 to 0.3 hours, the pH of the dissolution region is 0 to 2, the concentration is 0.1 to 15% by weight, the temperature is from room temperature to 180 ° C., and the holding time is 0.00. A range of 02-5 hours is preferred. In addition, the number of times of alternately holding in the precipitation region and the dissolution region is preferably in the range of 2 to 10 times.

本発明方法により得られた多孔質チタニアは、触媒担体、触媒、乾燥剤、吸着剤、充填剤等の用途に有用であるが、特に、本発明方法により得られた多孔質チタニアは、80m2/g以上の高比表面積を持ち、細孔シャープネス度(定義を後述)が30%以上等の特徴を持つため水素化処理(脱硫、脱窒素、脱メタル、アスファルテン分解、芳香族の水素化)、水素化分解、アルキレーション、フィッシャートロプシュ、排煙脱硝、光反応等の高性能触媒担体又は触媒として使用することができる。なお、80m2/g以下の比表面積では、所望の反応活性を発揮し難くなる。また、細孔シャープネス度が30%以下であると反応の選択性が低下することになる。 The porous titania obtained by the method of the present invention is useful for uses such as a catalyst carrier, a catalyst, a desiccant, an adsorbent, and a filler. In particular, the porous titania obtained by the method of the present invention is 80 m 2. Hydroprocessing (desulfurization, denitrogenation, demetallization, asphaltene decomposition, aromatic hydrogenation) due to the characteristics such as high specific surface area of over / g and pore sharpness degree (definition is described later) 30% or more. , Hydrocracking, alkylation, Fischer-Tropsch, flue gas denitration, photoreaction and the like can be used as a high-performance catalyst carrier or catalyst. In the following a specific surface area of 80 m 2 / g, it becomes difficult to exhibit the desired reaction activity. Further, when the degree of pore sharpness is 30% or less, the selectivity of the reaction is lowered.

[物理性状の測定について]
(細孔シャープネス度)
水銀ポロシメータにより測定された累積細孔分布曲線に関し、先ず累積細孔容積を示す縦軸と細孔直径(Å)を表す横軸において、全細孔容積(PVT)の(1/2)PVにおける細孔径(メデアン直径)を求める。次に、メディアン直径の対数値における±5%の細孔径範囲内に有する細孔容積(PVM)を求め、その細孔容積(PVM)と全細孔容積(PVT)から以下の式により、細孔分布のシャープ度を表わす細孔シャープネス度を求める。
細孔シャープネス度={細孔容積(PVM)/全細孔容積(PVT)}*100
ここで定義する細孔シャープネス度は、全細孔容積に対する反応に最適な細孔の度合いを評価するための因子であり、細孔シャープネス度が大きい程、シャープな細孔分布を有することになり、好ましいものとなる。
[Measurement of physical properties]
(Pore sharpness)
Regarding the cumulative pore distribution curve measured by the mercury porosimeter, first, the vertical axis indicating the cumulative pore volume and the horizontal axis indicating the pore diameter (Å), at (1/2) PV of the total pore volume (PVT) The pore diameter (median diameter) is determined. Next, the pore volume (PVM) within a pore diameter range of ± 5% in the logarithmic value of the median diameter is obtained, and the fine volume is calculated from the pore volume (PVM) and total pore volume (PVT) by the following formula. The degree of pore sharpness representing the degree of sharpness of the pore distribution is obtained.
Pore sharpness = {pore volume (PVM) / total pore volume (PVT)} * 100
The pore sharpness degree defined here is a factor for evaluating the optimum degree of pores for the reaction with respect to the total pore volume. The larger the pore sharpness degree, the sharper the pore distribution. This is preferable.

(比表面積の測定法)
触媒及び担体の比表面積は、BETの三点法により測定し、測定機器にはマウンテック社製Macsorb Model-1201を使用した。
(Measurement method of specific surface area)
The specific surface areas of the catalyst and the carrier were measured by the BET three-point method, and Macsorb Model-1201 manufactured by Mountec Co., Ltd. was used.

(細孔分布の測定法)
触媒及び担体の細孔容積と細孔分布は、測定圧力414MPaで水銀圧入法により測定し、測定機器には島津製作所製オートポア9200形を使用した。
(Measurement method of pore distribution)
The pore volume and pore distribution of the catalyst and the carrier were measured by a mercury intrusion method at a measurement pressure of 414 MPa, and Autopore 9200 model manufactured by Shimadzu Corporation was used as the measurement instrument.

(結晶構造の測定法)
触媒及び担体の結晶構造はX線回折法により測定し、測定機器にはPHILIPS社製PW3710を使用した。
(Measurement method of crystal structure)
The crystal structure of the catalyst and the carrier was measured by X-ray diffraction, and PW3710 manufactured by PHILIPS was used as a measuring instrument.

本発明の水素化処理用多孔質チタニアは、単に比表面積が大きいだけでなく、同時に熱安定性にも優れ、しかも、制御されたシャープな細孔径分布を有するものであり、優れた反応選択性を有し、しかも、比表面積が大きくて触媒活性に優れているだけでなく、同時に熱安定性にも優れており、特に水素化処理の目的に有用な触媒又は触媒担体として用いることができる。   The porous titania for hydrotreatment of the present invention not only has a large specific surface area, but also has excellent thermal stability, and has a controlled sharp pore size distribution, and has excellent reaction selectivity. In addition to having a large specific surface area and excellent catalytic activity, it also has excellent thermal stability, and can be used as a catalyst or catalyst support particularly useful for the purpose of hydrotreatment.

以下、実施例及び比較例に基づいて、本発明の好適な実施の形態を具体的に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail based on examples and comparative examples.

[参考例1]
[ヒドロゾルの調製]
(四塩化チタン水溶液の調製)
氷を加えた純水に冷却した四塩化チタン(TiCl4)1kgを徐々に添加し酸化チタン換算濃度210g/リットルの四塩化チタン水溶液を調製した。
(14wt%NH4OH水溶液の調製)
28wt%NH4OHを2倍に希釈し、14wt%NH4OH水溶液を調製した。
[Reference Example 1]
[Preparation of hydrosol]
(Preparation of titanium tetrachloride aqueous solution)
Ice pure water to the cooled titanium tetrachloride (TiCl 4) 1 kg was gradually added to prepare an aqueous titanium tetrachloride solution of the titanium oxide concentration in terms 210g / l was added.
(Preparation of 14wt% NH 4 OH aqueous solution)
28 wt% NH 4 OH was diluted 2 times to prepare a 14 wt% NH 4 OH aqueous solution.

(ヒドロゾル合成工程)
次に、30リットルの撹拌機付きベッセルに純水10リットルを入れ、攪拌しながら前記四塩化チタン水溶液1.5リットルを添加し、pHを0.5以下まで低下させた。
この溶液に上記14wt%NH4OH水溶液2.3リットルを添加し、pHを7まで上昇させ、約5分間放置した。
(Hydrosol synthesis process)
Next, 10 liters of pure water was placed in a 30 liter vessel equipped with a stirrer, and 1.5 liters of the titanium tetrachloride aqueous solution was added while stirring to lower the pH to 0.5 or lower.
To this solution, 2.3 liters of the above 14 wt% NH 4 OH aqueous solution was added, the pH was raised to 7, and left for about 5 minutes.

(濾過、洗浄)
上記ヒドロゾル合成工程終了後、濾過し、得られたケーキを純水にて洗浄し、硝酸銀滴定により濾液中に塩素(Cl-)が確認されなくなるまで洗浄操作を繰り返し、チタニアヒドロゾルを得た。
(Filtering and washing)
After completion of the hydrosol synthesis step, filtration was performed, and the resulting cake was washed with pure water, and the washing operation was repeated until chlorine (Cl ) was not confirmed in the filtrate by silver nitrate titration to obtain a titania hydrosol.

(乾燥物の調製)
以上のようにして得られたチタニアヒドロゾルを吸引濾過し、含水量約50重量%になるまで脱水し、次いで穴径1.5mmφのダイスを用いて成形し、得られた成形物を120℃にて3時間乾燥し、チタニア乾燥成形物を得た。
(Preparation of dried product)
The titania hydrosol obtained as described above was subjected to suction filtration, dehydrated to a water content of about 50% by weight, and then molded using a die having a hole diameter of 1.5 mmφ. And dried for 3 hours to obtain a titania dry molded product.

(粒子成長抑制剤添加工程)
上記で得られたチタニア乾燥成型物を、酸化チタン当たり酸化物基準で16.3重量%のパラモリブデン酸アンモニウムを含有する水溶液に浸漬し、室温下に2時間放置したのち、5Cの濾紙で濾過し、モリブデン担持物を得た。
(Particle growth inhibitor addition process)
The titania dry molding obtained above was immersed in an aqueous solution containing 16.3% by weight of ammonium paramolybdate on an oxide basis per titanium oxide, allowed to stand at room temperature for 2 hours, and then filtered with 5C filter paper. As a result, a molybdenum support was obtained.

(乾燥焼成工程)
得られたモリブデン担持物を120℃で3時間乾燥した後、500℃で3時間焼成し、モリブデン担持チタニア触媒を得た。
得られたモリブデン担持チタニア触媒の物性を表1に示す。
(Dry firing process)
The obtained molybdenum-supported product was dried at 120 ° C. for 3 hours and then calcined at 500 ° C. for 3 hours to obtain a molybdenum-supported titania catalyst.
Table 1 shows the physical properties of the obtained molybdenum-supporting titania catalyst.

[参考例2]
参考例1と同じ方法でヒドロゾルを合成し、更に撹拌しながら前記四塩化チタン水溶液1.5リットルを添加してpHを再び0.5まで低下させ、次いで5分間放置した後、14wt%NH4OH水溶液2.8リットルを添加して再びpHを7まで上昇させ、更に5分間放置した。
これらの操作を更に3回繰り返し、ヒドロゾル溶解pH領域(pH0.5)とヒドロゾル析出pH領域(pH7)との間を交互に合計5回変動させた。
これ以降の洗浄・濾過・成形・乾燥・粒子成長抑制剤添加工程・乾燥焼成工程は参考例1と同様とした。
得られたモリブデン担持チタニア触媒の物性を表1に示す。
[Reference Example 2]
Hydrosol was synthesized by the same method as in Reference Example 1, 1.5 liter of titanium tetrachloride aqueous solution was added with further stirring to lower the pH to 0.5 again, and then allowed to stand for 5 minutes, then 14 wt% NH 4 2.8 liters of OH aqueous solution was added to raise the pH to 7 again and left for another 5 minutes.
These operations were repeated three more times, and the hydrosol dissolution pH range (pH 0.5) and the hydrosol deposition pH range (pH 7) were alternately changed 5 times in total.
The subsequent washing, filtration, molding, drying, particle growth inhibitor addition step, and drying and firing step were the same as in Reference Example 1.
Table 1 shows the physical properties of the obtained molybdenum-supporting titania catalyst.

[参考例3]
粒子成長抑制剤として、酸化チタン当たり酸化物基準で8重量%の燐酸を用いた以外は、参考例2と同様にしてリン担持チタニア触媒を得た。
得られた触媒の物性を表1に示す。
[Reference Example 3]
A phosphorus-supported titania catalyst was obtained in the same manner as in Reference Example 2 except that 8% by weight of phosphoric acid on an oxide basis per titanium oxide was used as the particle growth inhibitor.
The physical properties of the obtained catalyst are shown in Table 1.

Figure 0004515337
Figure 0004515337

[参考例4]
参考例2の洗浄後のヒドロゾルを、酸化チタン当たり酸化物基準で16.3重量%のパラモリブデン酸アンモニウムを含有する水溶液に浸漬し、室温下に2時間放置した後、吸引濾過し、含水量50重量%になるまで脱水した。次いで、穴径1.5mmφのダイスを用いて成形し、得られた成形物を120℃で3時間乾燥した後、500℃で3時間焼成してモリブデン担持チタニア触媒を得た。
得られた触媒の物性を表2に示す。
[Reference Example 4]
The washed hydrosol of Reference Example 2 was immersed in an aqueous solution containing 16.3% by weight of ammonium paramolybdate based on oxide per titanium oxide, allowed to stand at room temperature for 2 hours, suction filtered, and water content Dehydrated to 50 wt%. Subsequently, it was molded using a die having a hole diameter of 1.5 mmφ, and the obtained molded product was dried at 120 ° C. for 3 hours and then calcined at 500 ° C. for 3 hours to obtain a molybdenum-supporting titania catalyst.
Table 2 shows the physical properties of the obtained catalyst.

[参考例5]
参考例2の濾過後のヒドロゲルを、酸化チタン当たり酸化物基準で8重量%の燐酸を含有する水溶液に浸漬し、室温下に2時間放置した後、吸引濾過し、含水量50重量%になるまで脱水した。次いで、穴径1.5mmφのダイスを用いて成形し、得られた成形物を120℃で3時間乾燥した後、500℃で3時間焼成してリン担持チタニア触媒を得た。
得られた触媒の物性を表2に示す。
[Reference Example 5]
The filtered hydrogel of Reference Example 2 was immersed in an aqueous solution containing 8% by weight of phosphoric acid on an oxide basis per titanium oxide, left at room temperature for 2 hours, and then suction filtered to a water content of 50% by weight. Until dehydrated. Subsequently, it shape | molded using the die | dye of hole diameter 1.5mm (phi), and after drying the obtained molded object at 120 degreeC for 3 hours, it baked at 500 degreeC for 3 hours, and obtained the phosphorus carrying | support titania catalyst.
Table 2 shows the physical properties of the obtained catalyst.

[参考例6]
粒子成長抑制剤として、酸化チタン当たり酸化物基準で20.6重量%のメタタングステン酸アンモニウムを用いた以外は、実施例4と同様にしてタングステン担持チタニア触媒を得た。
得られた触媒の物性を表2に示す。
[Reference Example 6]
A tungsten-supported titania catalyst was obtained in the same manner as in Example 4 except that 20.6 wt% ammonium metatungstate based on oxide per titanium oxide was used as the particle growth inhibitor.
Table 2 shows the physical properties of the obtained catalyst.

Figure 0004515337
Figure 0004515337

粒子成長抑制剤として、酸化チタン当たり酸化物基準で2.0重量%の燐酸と8.0重量%のパラモリブデン酸アンモニウムと2.0重量%の硝酸コバルトを同時に用いた以外は、参考例5と同様にしてリン・モリブデン・コバルト担持チタニア触媒を得た。
得られた触媒の物性を表3に示す。
Reference Example 5 except that 2.0% by weight phosphoric acid, 8.0% by weight ammonium paramolybdate and 2.0% by weight cobalt nitrate were simultaneously used as grain growth inhibitors on an oxide basis per titanium oxide. In the same manner as above, a phosphorus / molybdenum / cobalt-supported titania catalyst was obtained.
Table 3 shows the physical properties of the obtained catalyst.

粒子成長抑制剤として、酸化チタン当たり酸化物基準で2.0重量%の燐酸と8.0重量%のパラモリブデン酸アンモニウムと2.0重量%の硝酸ニッケルとを同時に用いた以外は、参考例5と同様にしてリン・モリブデン・ニッケル担持チタニア触媒を得た。
得られた触媒の物性を表3に示す。
Reference Example, except that 2.0% by weight phosphoric acid, 8.0% by weight ammonium paramolybdate and 2.0% by weight nickel nitrate were simultaneously used as grain growth inhibitors on an oxide basis per titanium oxide. In the same manner as in Example 5, a phosphorus / molybdenum / nickel-supported titania catalyst was obtained.
Table 3 shows the physical properties of the obtained catalyst.

Figure 0004515337
Figure 0004515337

小型の流通式反応装置を用いて、減圧軽油(窒素濃度0.2重量%)を原料とし、反応温度370℃、反応圧力(水素分圧)8.0MPa、LHSV2-1、H2/oil比500Nm3/Klの反応条件で、触媒として実施例2のリン・モリブデン・ニッケル担持チタニア触媒(BET比表面積は167m2/g)を用いて水素化処理を行った。得られた生成油の窒素濃度は0.022重量%であった。 Using a small flow reactor, starting from vacuum gas oil (nitrogen concentration 0.2 wt%), reaction temperature 370 ° C, reaction pressure (hydrogen partial pressure) 8.0 MPa, LHSV2 -1 , H 2 / oil ratio Hydrogenation was carried out using the phosphorus / molybdenum / nickel-supported titania catalyst of Example 2 (BET specific surface area of 167 m 2 / g) under the reaction conditions of 500 Nm 3 / Kl. The resulting product oil had a nitrogen concentration of 0.022% by weight.

(比較例1)
触媒として市販のチタニアを触媒化し、BET比表面積42m2/gのNi/Mo担持チタニア触媒(Ni:2.4wt%/Mo:16.7wt%)を用いた以外は、上記実施例3と同様にして水素化処理を行った。この水素化処理の結果、生成油の窒素濃度は0.10重量%となった。
脱窒素反応を1次反応として脱窒素反応速度を求めると、実施例2の触媒は、比較例1の触媒と比較して、約3.5倍の脱窒素活性を示した。
(Comparative Example 1)
Except that a commercially available titania was catalyzed as a catalyst and a Ni / Mo supported titania catalyst having a BET specific surface area of 42 m 2 / g (Ni: 2.4 wt% / Mo: 16.7 wt%) was used, the same as in Example 3 above. Hydrogenation treatment was performed. As a result of this hydrogenation treatment, the nitrogen concentration of the product oil was 0.10% by weight.
When the denitrification reaction rate was determined using the denitrification reaction as the primary reaction, the catalyst of Example 2 showed about 3.5 times the denitrification activity as compared with the catalyst of Comparative Example 1.

小型の流通式反応装置を用いて、常圧軽油(硫黄濃度1.3重量%)を原料とし、反応温度350℃、反応圧力(水素分圧)5.0MPa、LHSV2-1、H2/oil比200Nm3/Klの反応条件で、触媒として実施例1のリン・モリブデン・コバルト担持チタニア触媒(BET比表面積は149m2/g)を用いて水素化処理を行った。得られた生成油の硫黄濃度は80ppmであった。 Using a small-sized flow-type reactor, normal pressure light oil (sulfur concentration 1.3% by weight) as a raw material, reaction temperature 350 ° C., reaction pressure (hydrogen partial pressure) 5.0 MPa, LHSV2 −1 , H 2 / oil in the reaction conditions the ratio 200 Nm 3 / Kl, phosphorus, molybdenum, cobalt supported titania catalyst of example 1 as a catalyst (BET specific surface area 149m 2 / g) was subjected to hydrotreating using. The resulting product oil had a sulfur concentration of 80 ppm.

(比較例2)
触媒として、市販のチタニアを触媒化し、BET比表面積40m2/gのCo・Mo担持チタニア触媒(Co:3.9wt%/Mo:13.3wt%)を用いた以外は、上記実施例4と同様にして水素化処理を行った。この水素化処理の結果、生成油の硫黄濃度は450ppmとなった。脱硫反応を1.5次反応として脱硫反応速度を求めると、実施例1の触媒は、比較例2の触媒と比較して、約3.8倍の脱硫活性を示した。
(Comparative Example 2)
As in Example 4, except that commercially available titania was catalyzed and a Co / Mo-supported titania catalyst having a BET specific surface area of 40 m 2 / g (Co: 3.9 wt% / Mo: 13.3 wt%) was used. The hydrogenation treatment was performed. As a result of this hydrogenation treatment, the sulfur concentration of the product oil was 450 ppm. When the desulfurization reaction rate was determined using the desulfurization reaction as the 1.5th order reaction, the catalyst of Example 1 showed about 3.8 times the desulfurization activity as compared with the catalyst of Comparative Example 2.

Claims (4)

一般式TiO2・nH2O(但し、nは0.02以上である)で表される含水酸化チタンのヒドロゾル又はヒドロゲル若しくはそれらの乾燥物に、焼成時の粒子成長を抑制する粒子成長抑制剤として、P及びMoを含むオキシアニオン及び/又は金属カルボニルアニオンと、Ni及び/又はCoの金属カチオンとを、酸化チタン100g当り0.06〜6g当量の割合で添加してイオン交換させたのち、乾燥し焼成して得られる比表面積80m2/g以上の水素化処理用多孔質チタニア。 Particle growth inhibitor that suppresses particle growth during firing in hydrosol or hydrogel of hydrous titanium oxide represented by general formula TiO 2 · nH 2 O (where n is 0.02 or more) as, after the oxyanion and / or metal carbonyl anions containing P and Mo, and a metal cation of Ni and / or Co, it was added by ion exchange in a ratio of titanium oxide per 100g 0.06~6g equivalents, Porous titania for hydrogenation treatment having a specific surface area of 80 m 2 / g or more obtained by drying and firing. アニオンの添加は酸化チタンの等電点未満のpHで、カチオンの添加は酸化チタンの等電点以上のpHで、アニオン及びカチオンを同時に添加する場合は酸化チタンの等電点未満のpHで行われる請求項1に記載の水素化処理用多孔質チタニアAnion is added at a pH lower than the isoelectric point of titanium oxide , cation is added at a pH higher than the isoelectric point of titanium oxide , and an anion and a cation are added at a pH lower than the isoelectric point of titanium oxide. The porous titania for hydroprocessing according to claim 1 . 酸化チタンのヒドロゾル又はヒドロゲルは、含水酸化チタンの沈殿領域pHと溶解領域pHとの間を交互に複数回以上スイングすることにより製造される請求項1又は2に記載の水素化処理用多孔質チタニア。 Hydrosol or hydrogel of the titanium oxide, hydrotreating porous titanium dioxide according to claim 1 or 2 are prepared by swinging over a plurality of times alternately between the sedimentation zone pH and dissolution zone pH of hydrous titanium oxide . 請求項1〜3のいずれかに記載の水素化処理用多孔質チタニアを触媒あるいは触媒担体として用いることを特徴とする水素化処理方法。 A hydrotreating method using the porous titania for hydrotreating according to any one of claims 1 to 3 as a catalyst or a catalyst carrier.
JP2005177207A 2005-06-17 2005-06-17 Porous titania for hydrotreating and hydrotreating method Expired - Fee Related JP4515337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005177207A JP4515337B2 (en) 2005-06-17 2005-06-17 Porous titania for hydrotreating and hydrotreating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005177207A JP4515337B2 (en) 2005-06-17 2005-06-17 Porous titania for hydrotreating and hydrotreating method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000213535A Division JP3755732B2 (en) 2000-07-13 2000-07-13 Method for producing porous group 4 metal oxide

Publications (2)

Publication Number Publication Date
JP2005324195A JP2005324195A (en) 2005-11-24
JP4515337B2 true JP4515337B2 (en) 2010-07-28

Family

ID=35470957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005177207A Expired - Fee Related JP4515337B2 (en) 2005-06-17 2005-06-17 Porous titania for hydrotreating and hydrotreating method

Country Status (1)

Country Link
JP (1) JP4515337B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104549281A (en) * 2015-02-04 2015-04-29 中国科学技术大学 Active graphene-metal oxide composite photocatalyst and preparation method and application thereof
CN105363456A (en) * 2015-11-05 2016-03-02 华东理工大学 Copper-based catalyst and preparation method and application thereof
CN108772066A (en) * 2018-05-16 2018-11-09 福州华博立乐新材料科技有限公司 A kind of catalyst and its application for synthesizing 3- aminopropyl -2- hydroxyethyl thioethers

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009139053A1 (en) * 2008-05-14 2009-11-19 千代田化工建設株式会社 Process for producing metal-bearing catalyst
JP2010029786A (en) * 2008-07-29 2010-02-12 Sumitomo Chemical Co Ltd Oxide and method for producing the same, and method for producing chlorine
CN101890353B (en) * 2010-07-01 2012-12-05 神华集团有限责任公司 High-temperature methanation catalyst, preparation method and application thereof
CN102909026B (en) * 2011-08-04 2016-04-27 中国石油化工股份有限公司 Take titanium dioxide-aluminum oxide as Hydrogenation active protective agent and the Synthesis and applications thereof of carrier
CN103274482A (en) * 2013-06-17 2013-09-04 中国科学院上海硅酸盐研究所 Mesoporous Co3O4 material with high specific surface area and crystallized pore walls and its preparation method and application
CN104248974B (en) * 2013-06-28 2016-04-27 中国石油化工股份有限公司 The preparation method of a kind of carried phospho-tungstic acid Catalysts and its preparation method and application and cyclohexanone glycerol ketal
CN108927184A (en) * 2018-07-16 2018-12-04 山东艾泰克环保科技股份有限公司 A kind of porous composite oxide and preparation method thereof
CN116943721B (en) * 2022-04-18 2025-02-07 中国石油化工股份有限公司 A method for preparing a core-shell structured hydrocracking catalyst

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4511455A (en) * 1983-07-21 1985-04-16 The United States Of America As Represented By The United States Department Of Energy Catalysis using hydrous metal oxide ion exchanges
JPS6050721B2 (en) * 1980-02-19 1985-11-09 千代田化工建設株式会社 Method for producing porous inorganic oxide
JPS6229095B2 (en) * 1979-09-13 1987-06-24 Chiyoda Chem Eng Construct Co
US5021392A (en) * 1987-09-18 1991-06-04 American Cyanamid Company High porosity titania-zirconia catalyst support prepared by a process
JPH0822378B2 (en) * 1989-07-07 1996-03-06 財団法人石油産業活性化センター Hydrocarbon steam reforming catalyst

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6229095B2 (en) * 1979-09-13 1987-06-24 Chiyoda Chem Eng Construct Co
JPS6050721B2 (en) * 1980-02-19 1985-11-09 千代田化工建設株式会社 Method for producing porous inorganic oxide
US4511455A (en) * 1983-07-21 1985-04-16 The United States Of America As Represented By The United States Department Of Energy Catalysis using hydrous metal oxide ion exchanges
US5021392A (en) * 1987-09-18 1991-06-04 American Cyanamid Company High porosity titania-zirconia catalyst support prepared by a process
JPH0822378B2 (en) * 1989-07-07 1996-03-06 財団法人石油産業活性化センター Hydrocarbon steam reforming catalyst

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104549281A (en) * 2015-02-04 2015-04-29 中国科学技术大学 Active graphene-metal oxide composite photocatalyst and preparation method and application thereof
CN105363456A (en) * 2015-11-05 2016-03-02 华东理工大学 Copper-based catalyst and preparation method and application thereof
CN108772066A (en) * 2018-05-16 2018-11-09 福州华博立乐新材料科技有限公司 A kind of catalyst and its application for synthesizing 3- aminopropyl -2- hydroxyethyl thioethers

Also Published As

Publication number Publication date
JP2005324195A (en) 2005-11-24

Similar Documents

Publication Publication Date Title
US7943115B2 (en) Porous 4 group metal oxide and method for preparation thereof
US5021392A (en) High porosity titania-zirconia catalyst support prepared by a process
KR101127384B1 (en) Nano-Structured Particles with High Thermal Stability
CA2985154C (en) Powdered titanium oxide, processes for preparing the same and the use thereof
JP4515337B2 (en) Porous titania for hydrotreating and hydrotreating method
JP5722804B2 (en) Activated zirconium oxide catalyst support
CN110248730A (en) It is used to prepare the novel synthesis of catalyst of ammoxidation for propylene
JP5517541B2 (en) Hydrodesulfurization catalyst for hydrocarbon oil and method for producing the same
JP3755732B2 (en) Method for producing porous group 4 metal oxide
DK1712520T3 (en) LAYERED POROSTE TITANIUM OXIDE, METHOD OF PRODUCING THEREOF, AND CATALYSTS INCLUDING THIS
JP2012005976A (en) Hydrodesulfurization catalyst for hydrocarbon oil and method of producing the same
JP4220495B2 (en) Titanium oxide dried product
JP3781417B2 (en) Porous titanium oxide carrier, catalyst using the same, and method for producing porous titanium oxide carrier
JP4916157B2 (en) Alumina support for hydrodemetallation catalyst, production method thereof, and hydrodemetallation catalyst using the same
US5021385A (en) Catalyst comprising a titania-zirconia support and supported catalyst prepared by a process
CN115605290A (en) Four-metal bulk hydroprocessing catalyst
CN1781605B (en) Method for manufacturing catalyst for hydrogenation of hydrocarbon oil and method for hydrogenation refining
JP4119144B2 (en) Method for producing porous inorganic oxide
JP4054562B2 (en) Hydrocarbon oil hydrotreating catalyst and method for producing the same
JP7395374B2 (en) Hydrotreating catalyst for hydrocarbon oil, its production method, and hydrotreating method
JP2000135437A (en) Hydrotreating catalyst and method for producing the same
JP5062988B2 (en) Novel titanium oxide and method for synthesizing novel titanium oxide
JP4054563B2 (en) Catalyst for hydrotreating hydrocarbon oil, method for producing the same, and hydrorefining method using the same
CN114425378B (en) Hydrogenation protection catalyst and application thereof
CN113562750B (en) Pseudo-boehmite containing phosphorus and boron, preparation method thereof, alumina containing phosphorus and boron and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100512

R150 Certificate of patent or registration of utility model

Ref document number: 4515337

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees