JP4054563B2 - Catalyst for hydrotreating hydrocarbon oil, method for producing the same, and hydrorefining method using the same - Google Patents
Catalyst for hydrotreating hydrocarbon oil, method for producing the same, and hydrorefining method using the same Download PDFInfo
- Publication number
- JP4054563B2 JP4054563B2 JP2001333800A JP2001333800A JP4054563B2 JP 4054563 B2 JP4054563 B2 JP 4054563B2 JP 2001333800 A JP2001333800 A JP 2001333800A JP 2001333800 A JP2001333800 A JP 2001333800A JP 4054563 B2 JP4054563 B2 JP 4054563B2
- Authority
- JP
- Japan
- Prior art keywords
- component
- catalyst
- atom
- catalyst component
- titanium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000003054 catalyst Substances 0.000 title claims description 174
- 239000004215 Carbon black (E152) Substances 0.000 title claims description 29
- 229930195733 hydrocarbon Natural products 0.000 title claims description 29
- 150000002430 hydrocarbons Chemical class 0.000 title claims description 29
- 238000000034 method Methods 0.000 title claims description 17
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 99
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 80
- 125000004429 atom Chemical group 0.000 claims description 73
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 50
- 229910052719 titanium Inorganic materials 0.000 claims description 47
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical group [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 44
- 238000005342 ion exchange Methods 0.000 claims description 41
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 38
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 35
- 229910052750 molybdenum Inorganic materials 0.000 claims description 35
- 239000011733 molybdenum Substances 0.000 claims description 35
- 239000001257 hydrogen Substances 0.000 claims description 26
- 229910052739 hydrogen Inorganic materials 0.000 claims description 26
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 24
- 239000000203 mixture Substances 0.000 claims description 22
- 229910052759 nickel Inorganic materials 0.000 claims description 22
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 21
- 229910052717 sulfur Inorganic materials 0.000 claims description 21
- 239000011593 sulfur Substances 0.000 claims description 21
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 20
- 229910052757 nitrogen Inorganic materials 0.000 claims description 19
- 238000006243 chemical reaction Methods 0.000 claims description 18
- 229910017052 cobalt Inorganic materials 0.000 claims description 18
- 239000010941 cobalt Substances 0.000 claims description 18
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 18
- 239000010936 titanium Substances 0.000 claims description 18
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 17
- 229910052721 tungsten Inorganic materials 0.000 claims description 17
- 239000010937 tungsten Substances 0.000 claims description 17
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 12
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 12
- 229910052796 boron Inorganic materials 0.000 claims description 12
- 229910052698 phosphorus Inorganic materials 0.000 claims description 12
- 239000011574 phosphorus Substances 0.000 claims description 12
- 239000003426 co-catalyst Substances 0.000 claims description 8
- 230000003301 hydrolyzing effect Effects 0.000 claims description 6
- 230000003472 neutralizing effect Effects 0.000 claims description 6
- -1 oxoacid salts Chemical class 0.000 claims description 6
- 150000003608 titanium Chemical class 0.000 claims description 6
- 238000007654 immersion Methods 0.000 claims description 5
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims 1
- 239000003921 oil Substances 0.000 description 39
- 230000000694 effects Effects 0.000 description 27
- 230000000052 comparative effect Effects 0.000 description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 20
- 238000006477 desulfuration reaction Methods 0.000 description 18
- 230000023556 desulfurization Effects 0.000 description 18
- 239000000243 solution Substances 0.000 description 14
- LLZRNZOLAXHGLL-UHFFFAOYSA-J titanic acid Chemical group O[Ti](O)(O)O LLZRNZOLAXHGLL-UHFFFAOYSA-J 0.000 description 12
- 230000000704 physical effect Effects 0.000 description 11
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 9
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 8
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 8
- 238000001035 drying Methods 0.000 description 8
- 239000007864 aqueous solution Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 description 6
- 229910001981 cobalt nitrate Inorganic materials 0.000 description 6
- 238000005984 hydrogenation reaction Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 238000001914 filtration Methods 0.000 description 5
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 4
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 239000003513 alkali Substances 0.000 description 4
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000004821 distillation Methods 0.000 description 4
- 150000004715 keto acids Chemical class 0.000 description 4
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 229910021529 ammonia Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 239000000017 hydrogel Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- 150000001491 aromatic compounds Chemical class 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- WQOXQRCZOLPYPM-UHFFFAOYSA-N dimethyl disulfide Chemical compound CSSC WQOXQRCZOLPYPM-UHFFFAOYSA-N 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 238000006386 neutralization reaction Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 235000017557 sodium bicarbonate Nutrition 0.000 description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 150000003609 titanium compounds Chemical class 0.000 description 2
- 239000004408 titanium dioxide Substances 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229910021580 Cobalt(II) chloride Inorganic materials 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- MQRWBMAEBQOWAF-UHFFFAOYSA-N acetic acid;nickel Chemical compound [Ni].CC(O)=O.CC(O)=O MQRWBMAEBQOWAF-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000011609 ammonium molybdate Substances 0.000 description 1
- APUPEJJSWDHEBO-UHFFFAOYSA-P ammonium molybdate Chemical compound [NH4+].[NH4+].[O-][Mo]([O-])(=O)=O APUPEJJSWDHEBO-UHFFFAOYSA-P 0.000 description 1
- 235000018660 ammonium molybdate Nutrition 0.000 description 1
- 229940010552 ammonium molybdate Drugs 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 229940011182 cobalt acetate Drugs 0.000 description 1
- GVPFVAHMJGGAJG-UHFFFAOYSA-L cobalt dichloride Chemical compound [Cl-].[Cl-].[Co+2] GVPFVAHMJGGAJG-UHFFFAOYSA-L 0.000 description 1
- 229910000361 cobalt sulfate Inorganic materials 0.000 description 1
- 229940044175 cobalt sulfate Drugs 0.000 description 1
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 description 1
- QAHREYKOYSIQPH-UHFFFAOYSA-L cobalt(II) acetate Chemical compound [Co+2].CC([O-])=O.CC([O-])=O QAHREYKOYSIQPH-UHFFFAOYSA-L 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000002283 diesel fuel Substances 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000011964 heteropoly acid Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- GICWIDZXWJGTCI-UHFFFAOYSA-I molybdenum pentachloride Chemical compound Cl[Mo](Cl)(Cl)(Cl)Cl GICWIDZXWJGTCI-UHFFFAOYSA-I 0.000 description 1
- VLAPMBHFAWRUQP-UHFFFAOYSA-L molybdic acid Chemical compound O[Mo](O)(=O)=O VLAPMBHFAWRUQP-UHFFFAOYSA-L 0.000 description 1
- 229940078494 nickel acetate Drugs 0.000 description 1
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 1
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 1
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 1
- DCKVFVYPWDKYDN-UHFFFAOYSA-L oxygen(2-);titanium(4+);sulfate Chemical compound [O-2].[Ti+4].[O-]S([O-])(=O)=O DCKVFVYPWDKYDN-UHFFFAOYSA-L 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000011085 pressure filtration Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000011684 sodium molybdate Substances 0.000 description 1
- 235000015393 sodium molybdate Nutrition 0.000 description 1
- TVXXNOYZHKPKGW-UHFFFAOYSA-N sodium molybdate (anhydrous) Chemical compound [Na+].[Na+].[O-][Mo]([O-])(=O)=O TVXXNOYZHKPKGW-UHFFFAOYSA-N 0.000 description 1
- XMVONEAAOPAGAO-UHFFFAOYSA-N sodium tungstate Chemical compound [Na+].[Na+].[O-][W]([O-])(=O)=O XMVONEAAOPAGAO-UHFFFAOYSA-N 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000005486 sulfidation Methods 0.000 description 1
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 1
- 229910052815 sulfur oxide Inorganic materials 0.000 description 1
- 229910000349 titanium oxysulfate Inorganic materials 0.000 description 1
- 229910000348 titanium sulfate Inorganic materials 0.000 description 1
- YONPGGFAJWQGJC-UHFFFAOYSA-K titanium(iii) chloride Chemical compound Cl[Ti](Cl)Cl YONPGGFAJWQGJC-UHFFFAOYSA-K 0.000 description 1
- CMPGARWFYBADJI-UHFFFAOYSA-L tungstic acid Chemical compound O[W](O)(=O)=O CMPGARWFYBADJI-UHFFFAOYSA-L 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Landscapes
- Catalysts (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Description
【0001】
【発明の属する技術分野】
この発明は、石油留分、石炭液化油等の炭化水素油の水素化処理触媒とその製造方法並びにこれを用いた水素化精製方法に関する。
詳しくは、高比表面積を有するチタニア(二酸化チタン)を触媒担体として用い、このチタニアに触媒成分(主触媒成分及び助触媒成分、これら両者を含めて単に「触媒成分」ということがある)を高濃度でかつ均一に高分散せしめた水素化処理触媒とその製造方法、並びに、この水素化処理触媒を用いて硫黄成分及び窒素成分を含む炭化水素油中から硫黄成分に対する窒素成分の除去選択性を高めて、これら硫黄成分及び窒素成分を共に高い除去率で除去できると同時に、水素の消費量を著しく低減させた炭化水素油の水素化精製方法に関する。
【0002】
【従来の技術】
石油や石炭液化油等の炭化水素油中に含まれる硫黄や窒素成分は、この炭化水素油を燃料として燃焼させた際に硫黄酸化物や窒素酸化物を生成せしめ、大気中に排出されて大気汚染の原因になるほか、炭化水素油の分解反応や転化反応の触媒毒になり、これらの反応の反応効率を低下させる原因にもなる。
【0003】
従来においても、炭化水素油の硫黄や窒素成分を除去するための水素化精製が行われており、この水素化精製に用いる水素化処理触媒についても、例えばアルミナ、ゼオライト−アルミナ、アルミナ−チタニア、リン−シリカ−アルミナ等のアルミナを主体とする担体にモリブデン(Mo)、タングステン(W)、コバルト(Co)、ニッケル(Ni)等の触媒成分を担持させた多くの水素化処理触媒が提案されている(例えば、特開平6-106,061号、特開平9-155,197号、特開平9-164,334号、特開2000-79,343号、特開2000-93,804号、特開2000-117,111号、特開2000-135,437号、特開2001-62,304号の各公報等)。
【0004】
一般に、炭化水素油中の硫黄成分の除去(脱硫)を主目的とする場合にはモリブデン又はタングステンとコバルトとを担持した触媒が主として用いられ、また、脱硫に加えて窒素成分の除去(脱窒素)をも目的とする場合にはモリブデン又はタングステンとニッケルとを担持した触媒が主として用いられるが、これは、ニッケルが芳香族化合物に対する水素化能力が高いためである。
【0005】
炭化水素油中の窒素成分はそのほとんどが芳香族化合物として存在し、この含窒素芳香族化合物を水素化精製により除去する際には、先ず芳香環の水素化が起こり、続いてC−N結合の開裂とアンモニアの脱離が起こって脱窒素反応が進行する。このため、水素化能力の大きなニッケルを含む水素化処理触媒で脱窒素に主眼を置いた炭化水素油の水素化精製を行うと水素消費量が多くなり、処理コストの増大を伴う等の問題がある。
【0006】
平成12年11月の環境庁・中央環境審議会の第四次答申「今後の自動車排出ガス低減対策のあり方について」によれば、ディーゼル自動車の燃料である軽油の硫黄成分を、平成16年度までに、現行の500ppmから50ppmにまで低減させることが適当であり、更に、将来的にはそれ以上の低硫黄化が望まれるとされている。
また、軽油等の炭化水素油中の窒素成分についても、製品の着色による品質低下の原因になるほか、水素化精製時には水素化処理触媒の触媒被毒・劣化の原因物質になることから、可及的に除去することが望ましい。
【0007】
しかしながら、上述した従来の水素化処理触媒の脱硫活性や脱窒素活性は必ずしも充分であるとは言えず、例えば、軽油中の硫黄成分を50ppm以下にまで低減するためには、水素化精製の処理条件を厳しくする必要がある。例えば、通油量を約1/3にし反応時間を3倍にするか、あるいは触媒量を約3倍程度に増量する。通油量を下げるケースでは製油所の生産計画を大幅に見直す必要があり、触媒量を増やすケースでは反応器を2塔ほど増設する必要がある。また、通油量と触媒量を変えないケースでは反応温度を20℃以上上げる必要があり、反応温度を上げて対応しようとすれば、触媒寿命を大きく犠牲にすることになる。このように従来の水素化処理触媒を用いた場合には多大な経済的負担を強いられるという問題がある。また、窒素成分についても、硫黄成分と同程度の除去率で水素化精製することは困難であり、この窒素成分を高い除去率で水素化精製しようとすると水素消費量が過大になり、余剰水素が少ない製油所では新たに水素製造装置の増強が必要となるなどの問題があった。
【0008】
これは、アルミナを主体とする担体上に例えば主触媒成分のモリブデンと助触媒成分のコバルトを担持させた水素化処理触媒においては、そのモリブデンの担持量が酸化物基準で通常25重量%以下であり、それ以上担持させようとすると、担体上でモリブデンの凝集体が生成して高分散されず有効に触媒性能を発揮しなくなり、しかも、細孔の閉塞や表面積、細孔容積が減少する等の悪影響をも生じるため所要の活性が得られなくなるためである。
【0009】
【発明が解決しようとする課題】
本発明者らは、単に脱硫活性に優れているだけでなく脱窒素活性にも優れており、また、水素化精製の際に水素消費量が過大になることがなく、工業的に有利に炭化水素油の低硫黄化及び低窒素化を達成できる炭化水素油の水素化処理触媒について鋭意検討した結果、所定の組成式 HxTiOy・fH2Oで表される含水酸化チタンに、主触媒成分と助触媒成分とを接触させてイオン交換せしめ、次いで乾燥、焼成することにより、高脱硫活性を有しながら硫黄成分に対する窒素成分の除去選択性をも高め、更に、水素消費量を少なくすることができ、これによって上記の課題を達成できることを見出し、本発明を完成した。
【0010】
本発明の目的は、単に脱硫活性に優れているだけでなく脱窒素活性にも優れており、また、水素化精製の際に水素消費量が過大になることがなく、工業的に有利に炭化水素油の低硫黄化及び低窒素化を達成できる炭化水素油の水素化処理触媒を提供することにある。
【0011】
また、本発明の他の目的は、このように脱硫活性及び脱窒素活性が共に優れており、しかも、水素化精製の際に水素消費量が過大になることもない水素化処理触媒の製造方法を提供することにある。
【0012】
更に、本発明の他の目的は、このように脱硫活性及び脱窒素活性が共に優れており、しかも、水素化精製の際に水素消費量が過大になることもない炭化水素油の水素化処理触媒を用い、硫黄成分と窒素成分とを共に含む炭化水素油からこれら硫黄成分と窒素成分を高い除去率で除去することができる水素化精製方法を提供することにある。
【0013】
【課題を解決するための手段】
本発明は、チタンの塩類及び/又はオキソ酸塩類を中和又は加水分解して得られた組成式 HxTiOy・fH2O(x=0.46〜1.99、y=2.23〜2.99、f=0.04〜17.8)で表される含水酸化チタンに、モリブデン及び/又はタングステンからなる主触媒成分とコバルト、ニッケル、リン及びホウ素の中から選ばれた助触媒成分とを接触させ、上記含水酸化チタンの水酸基と上記主触媒成分及び助触媒成分とを、主触媒成分のイオン交換量がチタン 1 原子当り0.06〜0.46原子であって、助触媒成分のイオン交換量がチタン 1 原子当り0.02〜0.26原子であり、かつ、これら主触媒成分及び助触媒成分の合計のイオン交換量がチタン1原子当り0.08〜0.82原子となるようにイオン交換せしめ、次いで乾燥、焼成して得られた結晶性の水素化処理触媒であることを特徴とする炭化水素油の水素化処理触媒である。
【0014】
また、本発明は、チタンの塩類及び/又はオキソ酸塩類を中和又は加水分解して得られた組成式 HxTiOy・fH2O(x=0.46〜1.99、y=2.23〜2.99、f=0.04〜17.8)で表される含水酸化チタンに、モリブデン及び/又はタングステンからなる主触媒成分とコバルト、ニッケル、リン及びホウ素の中から選ばれた助触媒成分とを一緒に若しくは別々に接触させ、上記含水酸化チタンの水酸基と上記主触媒成分及び助触媒成分とを、主触媒成分のイオン交換量がチタン 1 原子当り0.06〜0.46原子であって、助触媒成分のイオン交換量がチタン 1 原子当り0.02〜0.26原子であり、かつ、これら主触媒成分及び助触媒成分の合計のイオン交換量がチタン1原子当り0.08〜0.82原子となるようにイオン交換せしめ、この際に最終的にpHを3〜9の範囲にし、次いで成形し、得られた成形物を100〜300℃で乾燥したのち、300〜700℃で焼成して結晶性の水素化処理触媒を得ることを特徴とする炭化水素油の水素化処理触媒の製造方法である。
【0015】
更に、本発明は、チタンの塩類及び/又はオキソ酸塩類を中和又は加水分解して得られた組成式 HxTiOy・fH2O(x=0.46〜1.99、y=2.23〜2.99、f=0.04〜17.8)で表される含水酸化チタンを、モリブデン及び/又はタングステンからなる主触媒成分とコバルト、ニッケル、リン及びホウ素の中から選ばれた助触媒成分を含む浸漬溶液中に添加し、pH1〜7あるいはpH9〜11で接触させ、上記含水酸化チタンの水酸基と上記主触媒成分及び助触媒成分とを、主触媒成分のイオン交換量がチタン 1 原子当り0.06〜0.46原子であって、助触媒成分のイオン交換量がチタン 1 原子当り0.02〜0.26原子であり、かつ、これら主触媒成分及び助触媒成分の合計のイオン交換量がチタン1原子当り0.08〜0.82原子となるようにイオン交換せしめ、次いでろ過したのち成形し、得られた成形物を100〜300℃で乾燥したのち、300〜700℃で焼成して結晶性の水素化処理触媒を得ることを特徴とする炭化水素油の水素化処理触媒の製造方法。
【0016】
更にまた、本発明は、上記水素化処理触媒と炭化水素油とを、水素の存在下、反応温度280〜400℃、反応圧力2〜15MPa、LHSV0.3〜10hr-1及び水素/油比50〜500Nl/lの水素化条件で接触させ、炭化水素油中の硫黄と窒素成分とを除去する、炭化水素油の水素化精製方法である。
【0017】
本発明において、上記主触媒成分及び助触媒成分(以下、これら両者を含めて単に「触媒成分」ということがある)を触媒担体のチタニアに担持せしめるために用いる含水酸化チタンは、組成式 HxTiOy・fH2O(x=0.46〜1.99、y=2.23〜2.99、f=0.04〜17.8)で表される。
【0018】
ここで、上記組成式 HxTiOy・fH2Oで表される含水酸化チタンは、HxTiOyで表記されたチタン水酸化物の部分と、fH2Oで表記されチタン水酸化物に物理的に共存している自由水の部分とに分けることができる。ここで、HxTiOyで表記されたチタン水酸化物は、TiO(OH)aあるいはTiO2・(H2O)bの化学式の形でも表すことができ、基本的には、水素は、水酸基の形あるいは、水の形で構造水として化学的に酸化チタンと結合している。本発明において、この構造水の量は、含水酸化チタンを120℃、3時間の乾燥条件で乾燥した後の乾燥酸化チタンの重量とこの乾燥酸化チタンを500℃、3時間の条件で焼成した後の酸化チタンの重量との重量変化量として規定される。また、fH2Oで表記された自由水の量は、未乾燥の含水酸化チタンの重量と乾燥酸化チタンの重量との重量変化量として規定される。
【0019】
本発明で用いる含水酸化チタンにおいて、組成式 HxTiOy・fH2Oで表されたxの値はx=0.46〜1.99、好ましくはx=0.67〜1.56の範囲である。xの値が0.46より小さい場合にはチタン水酸化物の表面に供給される触媒成分とイオン交換する水酸基が少なくなり、本発明の目的とする触媒成分を高濃度で均一に高分散せしめることが困難になる。反対に、xの値が1.99より大きい場合には触媒成分含有イオンとイオン交換する水酸基が多く触媒成分を担持せしめるという観点からは好ましいことではあるが、チタン水酸化物の結晶粒子が小さく、X線的に無定形を示し、乾燥し焼成して得られる触媒の細孔構造が不適当になり水素化処理触媒としては性能の低いなものになってしまう。
【0020】
また、組成式 HxTiOy・fH2Oで表されたyの値は、水素が水酸基の形で結合しているか、水の形で結合しているかによって異なる値であるが、本発明においては水の形として求めており、yの値はy=2.23〜2.99、好ましくはy=2.33〜2.78の範囲である。
【0021】
更に、組成式 HxTiOy・fH2Oで表されたfの値はf=0.04〜17.8、好ましくは、f=0.23〜10.4の範囲である。fの値が0.04より小さい場合には、含水酸化チタンはほぼ乾燥した状態であり、このような状態では触媒成分を添加しても均一に高分散せしめることが難しく、また、触媒成分を含む溶液を添加して攪拌してもチタン水酸化物の粒子が凝集しており均一に分散せしめることが難しいので、この場合にも均一に高分散せしめることが難しい。その結果、触媒成分を高濃度で酸化チタンに担持させる場合に、均一に高分散させることができず、触媒成分の凝集体や塊ができてしまい、触媒活性は低いものとなってしまう。反対に、fの値が17.8より大きい場合には、自由水が多くなりすぎて含水酸化チタンが成形できないか、あるいは成形してもその形状を保持させることが困難となる。また、触媒成分を含む溶液に加える際にもこの溶液が希釈され、触媒成分の多くがイオン交換されず、無駄になるという問題が生じる。
【0022】
本発明において、最終的に触媒担体の酸化チタンに担持せしめる触媒成分の量は、好ましくは、主触媒成分のモリブデン及び/又はタングステンがチタン1原子当り0.06〜0.46原子であり、助触媒成分のコバルト、ニッケル、リン及びホウ素がチタン1原子当り0.02〜0.26原子であって、これら主触媒成分及び助触媒成分の合計量がチタン1原子当り0.08〜0.82原子の範囲であるのがよい。これら主触媒成分及び助触媒成分のチタン1原子当りの担持量が、上記の値より小さいと、触媒成分の担持量が不足し、本発明の目的とする炭化水素油中の硫黄成分を50ppm以下に低減させる水素化処理触媒としてはその触媒活性が低くなる。反対に、上記の値より大きいと、チタン水酸化物の表面に存在する水酸基とイオン交換する量よりも過大に多くなり無駄になる。
【0023】
本発明において、含水酸化チタンへの触媒成分のイオン交換は、含水酸化チタンを、主触媒成分と助触媒成分とを同時に、若しくは、それぞれ別々に、混練等の手段により、最終的にpH3以上pH9以下、好ましくはpH4以上pH8以下の範囲で接触させることにより行うことができる(第一の方法)。また、含水酸化チタンを、主触媒成分と助触媒成分を含む浸漬溶液中に添加し、攪拌下に通常pH1以上pH7以下好ましくはpH2以上pH6以下、あるいはpH9以上pH11以下、好ましくはpH9以上pH10以下の範囲で均一に分散させ、次いで濾過することにより行うことができる(第二の方法)。
【0024】
上記第一の方法による含水酸化チタンへの触媒成分のイオン交換は、含水酸化チタンの自由水の含有量がf=0.04〜17.8、好ましくはf=0.23〜10.4の範囲であり、かつ、最終的にpH3〜9、好ましくはpH4〜8の範囲で行うことにより、触媒成分を含む化合物をそのまま使用でき、かつ、高濃度で均一に高分散することができる。このときの混練等による接触条件は、好ましくは、温度が常温〜100℃で接触時間が10分〜10時間である。
また、上記第二の方法による含水酸化チタンへの触媒成分のイオン交換は、主触媒成分と助触媒成分とを共に含む浸漬溶液のpHをpH1〜7、好ましくはpH2〜6あるいはpH9〜11、好ましくはpH9〜10の範囲にすることによって、この浸漬溶液中で主触媒成分及び/又は助触媒成分が沈殿を生成せずに均一な溶液となり、これによってこれらの触媒成分を酸化チタン表面に高濃度でかつ均一に高分散せしめることができ、高活性な触媒を調製することができる。このときの接触条件は、好ましくは、温度が常温〜100℃で接触時間が0.5〜24時間である。
【0025】
含水酸化チタンのヒドロゲルの水酸基と交換する触媒成分は、モリブデン及び/又はタングステンからなる主触媒成分と、コバルト、ニッケル、リン及びホウ素から選ばれた助触媒成分とであり、これら主触媒成分と助触媒成分の具体的な組合せとしては、例えば、モリブデン・コバルト、モリブデン・ニッケル、モリブデン・コバルト・ニッケル、モリブデン・コバルト・リン、モリブデン・ニッケル・リン、モリブデン・コバルト・ホウ素、モリブデン・ニッケル・ホウ素、モリブデン・コバルト・ニッケル・リン、モリブデン・コバルト・ニッケル・ホウ素、タングステン・ニッケル、タングステン・ニッケル・リン、タングステン・ニッケル・ホウ素等を挙げることができる。
【0026】
そして、この含水酸化チタンの水酸基と交換させる触媒成分のイオン交換量は、好ましくは、主触媒成分のイオン交換量がチタン1原子当り0.06原子以上0.46原子以下、より好ましくは0.07原子以上0.40原子以下であって、助触媒成分のイオン交換量がチタン1原子当り0.02原子以上0.26原子以下、より好ましくは0.03原子以上0.20原子以下であり、これら主触媒成分及び助触媒成分の合計のイオン交換量がチタン1原子当り0.08原子以上0.82原子以下、より好ましくは0.11原子以上0.75原子以下であるのがよい。
【0027】
ここで、含水酸化チタンのヒドロゲルを製造するための原料としては、チタンの塩化物、硝酸塩、硫酸塩等の塩類や、オキソ酸塩類等のチタン化合物を使用することができ、好ましくは、四塩化チタン、硫酸チタン、硫酸チタニル、三塩化チタン等を挙げることができる。
【0028】
また、含水酸化チタンの水酸基とイオン交換する触媒成分のイオン種としては、具体的には、PO4 3-、MoO4 2-、WO4 2-、BO3 3-等のイオンの形を有するオキシアニオンや、金属カルボニルアニオンや、Ni2+、Co2+等の金属カチオンである。これらは、その1種づつを数回繰り返して使用できるほか、2種以上の混合物として使用することもできる。
【0029】
特に好適なオキシアニオンを提供する化合物としては、例えば、モリブデン酸アンモニウム[(NH4)6Mo7O24・4H2O、(NH4)2MoO4、(NH4)Mo2O7]、モリブデン酸ソーダ(Na2MoO4・2H2O)、モリブデン酸(H2MoO4、H2MoO3・H2O)、五塩化モリブデン(MoCl5)、ケイモリブデン酸(H2SiMo12O40・nH2O)、タングステン酸(H2WO4)、タングステン酸アンモニウム[(NH4)2・WO4、5(NH4)2O・12WO3・4H2O、3(NH4)2O・12WO3・nH2O]、タングステン酸ナトリウム(Na2WO4・2H2O)等のほか、H3PO4、HPO3、H4P2O7、P2O5、NH4H2PO4、(NH4)2HPO4、(NH4)3PO4・H2O、H3BO3、HBO2更に、(PO4W12O36)・5H2Oやモリブデン、タングステンをポリ酸とするヘテロポリ酸塩等を挙げることができる。
【0030】
また、金属カルボニルアニオンを供給する多価金属塩の好適な化合物としては、例えば、(NEt4)[Mo(CO)5(OOCCH3)]、Mo(CO)6-NEt3-EtSH、W(CO)6-NEt3-EtSH、W(CO)6、(η-C5H4Me)2Mo2Co2S3(CO)4等を挙げることができる。
また、多価金属カチオンを供給する多価金属塩の好適な化合物としては、二価以上の金属塩をいい、例えば、硝酸ニッケル[Ni(NO3)2・6H2O]、硫酸ニッケル(NiSO4・6H2O)、塩化ニッケル(NiCl2)、酢酸ニッケル[Ni(CH3CO2)2・4H2O]、酢酸コバルト[Co(CH3CO2)2・4H2O]、硝酸コバルト[Co(NO3)2・6H2O]、硫酸コバルト(CoSO4・7H2O)、塩化コバルト(CoCl2・6H2O)等を例示することができる。
【0031】
次に、本発明の水素化処理触媒の製造方法について説明する。
先ず、含水酸化チタンは、上述したチタン化合物の加水分解、アルカリ中和等の方法で調製することができる。ここで、アルカリ中和剤としては、アンモニア(NH3)、水酸化ナトリウム(NaOH)、水酸化カリウム(KOH)、炭酸ナトリウム(Na2CO3)、炭酸カリウム(K2CO3)、炭酸水素ナトリウム(NaHCO3)等のアルカリを用いることができる。
【0032】
この含水酸化チタンを製造する条件は、含水酸化チタンの濃度が二酸化チタン(TiO2)として0.5重量%以上10重量%以下、好ましくは1重量%以上10重量%以下であり、反応温度が常温〜300℃、好ましくは常温〜100℃であり、反応圧力が常圧〜3.0MPa、好ましくは常圧〜0.1MPaであり、また、pHが0.5以上11以下、好ましくは1以上10以下の範囲であるのがよく、このアルカリによる中和反応あるいは加水分解反応によって含水酸化チタンを得ることができる。
また、本発明に好ましい含水酸化チタンを製造するためには、水酸化チタンを沈殿領域のpHと溶解領域のpHとの間を複数回以上スウィングされるのが良く、沈殿領域のpHは1.0〜10、溶解領域のpHは0〜2が好適である。
【0033】
このチタン化合物のアルカリによる中和反応あるいは加水分解反応によって得られた含水酸化チタンは、組成式HxTiOy・fH2Oにおいてx=0.46〜1.99、好ましくは、x=0.67〜1.56、y=2.23〜2.99、好ましくはy=2.33〜2.78、f=0.04〜17.8、好ましくはf=0.23〜10.4の範囲にろ過され、または、脱水される。含水酸化チタンの構造水の調整は含水酸化チタンの合成条件を変えることにより、また、自由水の調整はろ過条件の変更、比較的低温での加熱乾燥、減圧脱水等の手段で、容易に行うことができる。
【0034】
次に、このようにして得られた含水酸化チタンは、混和機等を用いて十分に触媒成分と接触させる上記第一の方法、あるいは、浸漬溶液を用意して浸漬溶液中に分散させて行う上記第二の方法により、その水酸基を触媒成分でイオン交換せしめる。含水酸化チタンのヒドロゲルの水酸基と交換させる触媒成分のイオン交換量は、好ましくは、主触媒成分のイオン交換量がチタン1原子当り0.06原子以上0.46原子以下、より好ましくは0.07原子以上0.40原子以下であって、助触媒成分のイオン交換量がチタン1原子当り0.02原子以上0.26原子以下、より好ましくは0.03原子以上0.20原子以下であり、これら主触媒成分及び助触媒成分の合計のイオン交換量がチタン1原子当り0.08原子以上0.82原子以下、より好ましくは0.11原子以上0.75原子以下である。
【0035】
このようにして触媒成分とイオン交換された含水酸化チタンは、次に所要の形状に成形され、得られた成形物は温度80℃以上300℃以下、好ましくは100℃以上200℃以下及び乾燥時間0.5時間以上24時間以下、好ましくは1時間以上15時間以下の条件で乾燥し、更に、300℃以上1200℃以下、好ましくは400℃以上700℃以下の条件で焼成され、水素化処理触媒とされる。
【0036】
本発明の水素化処理触媒の特徴は、主触媒成分であるモリブデン及び/又はタングステンが、従来のアルミナ担体モリブデン・コバルト担持触媒等におけるモリブデン担持量(通常、酸化物基準で6〜25重量%)に比べて、触媒担体のチタニアに酸化物基準で15〜45重量%(チタン1原子当り0.06〜0.46に相当する)という高い担持量で担持されており、しかも、このように高い主触媒成分担持量にも拘わらず、均一に無駄なく高分散状態で担持されている点にある。これは、乾燥焼成前に予め含水酸化チタンの水酸基を触媒成分を含むイオンとイオン交換させるため、酸化チタンの表面上に触媒成分が高濃度でかつ均一に高分散されるものと考えられる。
【0037】
【発明の実施の形態】
以下、実施例及び比較例に基づいて、本発明の好適な実施の形態を具体的に説明する。
【0038】
実施例1
(四塩化チタン水溶液の調製)
氷を加えた水に、冷却した四塩化チタン(TiCl4)1kgを除々に添加し、酸化チタン換算濃度210g/lの四塩化チタン水溶液を調製した。
(アンモニア水溶液の調製)
28wt%-アンモニア水溶液(NH4OH水溶液)を2倍に希釈し、14wt%-アンモニア水溶液を調製した。
【0039】
(含水酸化チタン合成工程)
次に、30リットルの攪拌機付きベッセルに水10リットルを入れ、温度60℃で攪拌しながら上記四塩化チタン水溶液1.5リットルを添加し、pHを0.5まで低下させた。
この溶液に上記14wt%-アンモニア水溶液2.3リットルを添加し、pHを7.0まで上昇させ、約5分間撹拌した。この操作を繰り返し、水酸化チタン溶解pH領域(pH=0.5)と析出pH領域(pH=7.0)との間を合計3回スイングさせ含水酸化チタンを得た。
【0040】
(ろ過、洗浄、脱水)
その後、含水酸化チタンをろ過し、純水で洗浄し、硝酸銀滴定によってろ液中に塩素イオン(Cl-)が確認されなくなるまでこの洗浄操作を繰り返し、その後加圧ろ過にて脱水した含水酸化チタンを得た。ここで得られた含水酸化チタンの組成はH1.33TiO2.66・5.75H2Oであった。
【0041】
(触媒成分とのイオン交換)
上で得られた含水酸化チタンに、チタン1原子当り0.26原子に相当するパラモリブデン酸アンモニウム((NH4)6Mo7O24・4H2O)と、チタン1原子当り0.05原子に相当する燐酸(H3PO4)と、チタン1原子当り0.06原子に相当する硝酸コバルト((Co(NO3)2・6H2O)とを添加し、混和機により常温で2時間混練した。この時のpHは6.5であった。
【0042】
(成形、乾燥、焼成)
次に、穴径2.4mmのダイスを用い、触媒成分とイオン交換させた含水酸化チタンを円柱状に成形し、得られた成形物を120℃、3時間の条件で乾燥したのち、500℃、3時間の条件で焼成し、実施例1の水素化処理触媒を得た。この水素化処理触媒の物性を表1に示す。
【0043】
実施例2
実施例1で得られた含水酸化チタンを、チタン1原子当り0.47原子に相当するパラモリブデン酸アンモニウム((NH4)6Mo7O24・4H2O)と、チタン1原子当り0.06原子に相当する燐酸(H3PO4)と、チタン1原子当り0.10原子に相当する硝酸コバルト((Co(NO3)2・6H2O)とを多く溶解したpH9の溶液中に投入し、3時間撹拌して分散せしめることによりイオン交換した。
【0044】
その後、イオン交換した含水酸化チタンをろ過し、脱水した後、実施例1と同様にして実施例2の水素化処理触媒を得た。得られた触媒の物性を表1に示す。
【0045】
実施例3
含水酸化チタンを合成する過程において、水酸化チタンの溶解pH領域(pH=0.5)と析出pH領域(pH=7.0)との間を交互にスウィングさせる回数を7回とした以外は、上記実施例1と同様にして含水酸化チタンを合成した。得られた含水酸化チタンの組成は、H0.99TiO2.49・0.39H2Oであった。
【0046】
この含水酸化チタンに、チタン1原子当り0・16原子に相当するパラモリブデン酸アンモニウム((NH4)6Mo7O24・4H2O)と、チタン1原子当り0・11原子に相当する燐酸(H3PO4)と、チタン1原子当り0・06原子に相当する硝酸コバルト((Co(NO3)2・6H2O)とを添加し、実施例1と同様にして実施例3の水素化処理触媒を得た。 この触媒の物性を表1に示す。
【0047】
実施例4
実施例1と同様にして含水酸化チタンを合成し、洗浄後のろ過、脱水を真空ろ過器にて行った。得られた含水酸化チタンの組成は、H1.95TiO2.97・17.74H2Oであった。
この含水酸化チタンに、チタン1原子当り0.16原子に相当するパラモリブデン酸アンモニウム((NH4)6Mo7O24・4H2O)と、チタン1原子当り0.12原子に相当する燐酸(H3PO4)と、チタン1原子当り0.05原子に相当する硝酸ニッケル(Ni(NO3)2・6H2O)とを添加し、実施例1と同様にして水素化処理触媒を得た。この触媒の物性を表1に示す。
【0048】
実施例5
含水酸化チタンにチタン1原子当り0.12原子に相当するタングステン酸アンモニウム(NH4)2WO4及びチタン1原子当り0.08原子に相当する硝酸ニッケル(Ni(NO3)2・6H2O)を添加した以外は、上記実施例1と同様にして、水素化処理触媒を調製した。この触媒の物性を表1に示す。
【0049】
実施例6
含水酸化チタンにチタン1原子当り0.38原子に相当するパラモリブデン酸アンモニウム((NH4)6Mo7O24・4H2O)と、チタン1原子当り0.16原子に相当するホウ酸(H3BO3)と、チタン1原子当り0.06原子に相当する硝酸コバルト((Co(NO3)2・6H2O)を添加した以外は、上記実施例1と同様にして、水素化処理触媒を調製した。この触媒の物性を表1に示す。
【0050】
また、この実施例6で得られた水素化処理触媒について、日本電子社製JXA-8900型X線マイクロアナライザー(EPMA)を用いてX線分析を行った。結果は、図1に示す通りであり、モリブデンの担持量がチタン1原子当り0.38原子と多いにも拘らず、細孔内に均一に担持されていることが判明した。更に、この実施例6で得られた水素化処理触媒と酸化モリブデン(MoO3)とについて、フィリップ社製PW3710型X線回折装置を用い、X線回折パターンを測定した。結果は、実施例6の水素化処理触媒が図2の通りであって、酸化モリブデン(MoO3)が図3の通りである。この実施例6の水素化処理触媒において、担体上にモリブデンが酸化モリブデン(MoO3)として担持されているのであれば、MoO3の回折パターンが現れるはずであるが、図2に示す実施例6の触媒では観察されない。これは、酸化チタンの結晶にモリブデンが配位しているためであり、単に、表面上に層を成して担持されたものではないことを示している。
【0051】
比較例1
含水酸化チタンを合成する過程において、合成温度95℃、水酸化チタン溶解pH領域(pH=0.5)と析出pH領域(pH=7.0)を交互にスウィングさせる回数を9回とした以外は、実施例1と同様に含水酸化チタンを合成した。得られた含水酸化チタンを洗浄し、ろ過した後、120℃で10時間乾燥した。
【0052】
得られた乾燥後の含水酸化チタンの組成はH0.27TiO2.14・0.02H2Oであった。また、このようにして得られた含水酸化チタンを使用し、実施例1と同様にして水素化処理触媒を調製した。この触媒の物性を表2に示す。
【0053】
比較例2
30リットルの攪拌機付きベッセルに水10リットルを入れ常温で攪拌しながら実施例1で調整した四塩化チタン水溶液1.5リットルを添加し、pHを0.5まで低下させた。この溶液に14wt%-アンモニア水溶液2.3リットルを添加し、pHを7.0まで上昇させ、約5分間撹拌した。これによって析出した含水酸化チタンを洗浄し、ろ過して含水酸化チタンを得た。
このヒドロゾルは無定形であり、その組成はH2.22TiO3.11・27.1H2Oであった。
また、このヒドロゾルを成形しようとしたところ水分量が多すぎて成形することができなかった。
【0054】
比較例3
含水酸化チタンに、チタン1原子当り0.05原子に相当するタングステン酸アンモニウム(NH4)2WO4と、チタン1原子当り0.019原子に相当する硝酸ニッケル(Ni(NO3)2・6H2O)とを添加した以外は、上記実施例1と同様にして水素化処理触媒を調製した。得られた触媒の物性を表2に示す。
【0055】
比較例4
含水酸化チタンに、チタン1原子当り0.62原子に相当するパラモリブデン酸アンモニウム((NH4)6Mo7O24・4H2O)と、チタン1原子当り0.27原子に相当する硝酸コバルト((Co(NO3)2・6H2O)とを添加した以外は、上記実施例1と同様にして水素化処理触媒を調製した。得られた触媒の物性を表2に示す。
【0056】
比較例5
軽油の深度脱硫用として工業的に使用されているモリブデン・コバルト担持アルミナ触媒を比較例5とした。その物性を表2に示す。
【0057】
比較例6
軽油の深度脱硫用として工業的に使用されていて脱窒素活性がモリブデン・コバルト担持触媒よりも高いモリブデン・ニッケル担持アルミナ触媒を比較例6とした。その物性を表2に示す。
【0058】
試験例1:軽油の水素化精製
上記各実施例1〜6及び比較例1と比較例3〜6の水素化処理触媒を用い、比重(15/4℃):0.850、硫黄成分:1.37重量%、窒素成分:101ppm、及び、蒸留性状:初留232℃、50%留出295℃及び90%留出348℃の性状を有する中東系直留軽油の水素化精製を行い、水素化処理触媒の性能を調べた。
【0059】
軽油の水素化精製は、流通式反応装置を用い、反応圧力:5.0MPa、反応温度:350℃、液空間速度2.01/h、及び、水素/原料比:250N1/1の条件で実施した。なお、この水素化精製試験を行うに当り、ジメチルジスルフィドを添加して硫黄成分の濃度を2.5重量%に調整した軽油を用い、常法に従って予備硫化を実施した。
【0060】
水素化精製の反応結果は、脱硫反応を1.2次反応とし、脱窒素反応を1次反応として反応定数を求め、比較例1の結果を「1」として相対値で表し、その結果を表1及び表2に示す。
【0061】
【表1】
【0062】
【表2】
【0063】
試験例2:脱窒素率と水素消費量との関係
次に、上記実施例1及び2の水素化処理触媒(チタニア触媒)と比較例5及び6の工業用触媒(アルミナ触媒)とを使用し、液空間速度を1〜31/hの範囲で変化させた試験を行い、脱窒素率と水素消費量との関係を調べた。
結果は図4に示す通りであり、実施例1及び2のチタニア触媒は水素消費量を大幅に抑制できることが判明した。
【0064】
(実施例及び比較例の説明)
上記試験例1の表1及び表2に示す結果から明らかなように、実施例1〜6の水素化処理触媒は、比較例5の工業用触媒に比べて、脱硫活性が約2倍、あるいはそれ以上の向上を示しているほか、脱窒素活性は3倍以上の向上を示している。この実施例1〜6の水素化処理触媒を比較例6の工業用触媒と比較しても、脱硫活性が約1.8倍、あるいはそれ以上の向上を示しているほか、脱窒素活性も約1.5倍、あるいはそれ以上の向上を示しており、しかも、水素消費量は、試験例2の図4から比較例5及び6に比べ少ないことが分かる。
【0065】
また、比較例1〜4の結果をみると、含水酸化チタンの構造水及び自由水が少ない場合(比較例1)には、触媒成分との間のイオン交換が充分に行われず、脱硫活性及び脱窒素活性が共に比較例6と同程度で充分ではなく、また、含水酸化チタンの構造水及び自由水が多すぎる場合(比較例2)には、触媒調製時に成形できず、更に、主触媒成分のタングステン担持量と助触媒成分のニッケル担持量が不足する場合(比較例3)には、脱硫活性の向上が認められず、更にまた、主触媒成分のモリブデン担持量が多すぎる場合(比較例4)にも、脱硫活性及び脱窒素活性の向上には有効でないことが判明した。
【0066】
【発明の効果】
本発明の水素化処理触媒は、特に脱窒素活性の選択性が高く、単に脱硫活性に優れているだけでなく脱窒素活性にも優れており、しかも、水素の消費量をも抑制できるものであり、今後も品質改善が求められる軽油の深度脱硫・深度脱窒素ばかりでなく、他の炭化水素油の低硫黄化及び低窒素化のための水素化精製処理にも工業的に有利に使用できるものである。
【図面の簡単な説明】
【図1】 図1は、実施例6で得られた水素化処理触媒のX線マイクロアナライザー(EPMA)による線分析の結果を示すグラフ図である。
【図2】 図2は、実施例6で得られた水素化処理触媒のX線回折パターンを示すグラフ図である。
【図3】 図3は、酸化モリブデン(MoO3)のX線回折パターンを示すグラフ図である。
【図4】 図4は、実施例1及び2のチタニア触媒と比較例5及び6のアルミナ触媒とを用いて液空間速度を1〜3.01/hの範囲で変化させた試験を行い、脱窒素率と水素消費量との関係を調べた結果を示すグラフ図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydrotreating catalyst for hydrocarbon oils such as petroleum fractions and coal liquefied oil, a method for producing the same, and a hydrorefining method using the same.
Specifically, titania (titanium dioxide) having a high specific surface area is used as a catalyst carrier, and the catalyst component (main catalyst component and co-catalyst component, both of which are simply referred to as “catalyst component”) is included in this titania. A hydrotreating catalyst uniformly and highly dispersed, a method for producing the hydrotreating catalyst, and the hydrotreating catalyst, and using this hydrotreating catalyst, the removal selectivity of the nitrogen component to the sulfur component from the hydrocarbon oil containing the sulfur component and the nitrogen component. The present invention relates to a hydrorefining method for hydrocarbon oil that can remove both the sulfur component and the nitrogen component at a high removal rate and at the same time significantly reduce the consumption of hydrogen.
[0002]
[Prior art]
Sulfur and nitrogen components contained in hydrocarbon oils such as petroleum and coal liquefied oil produce sulfur oxides and nitrogen oxides when they are burned as fuel, and are discharged into the atmosphere. In addition to causing pollution, it becomes a catalyst poison for hydrocarbon oil cracking and conversion reactions, and also reduces the reaction efficiency of these reactions.
[0003]
Conventionally, hydrorefining to remove sulfur and nitrogen components of hydrocarbon oil has been performed, and hydrotreating catalyst used for this hydrorefining is also, for example, alumina, zeolite-alumina, alumina-titania, Many hydrotreating catalysts have been proposed in which catalyst components such as molybdenum (Mo), tungsten (W), cobalt (Co), nickel (Ni) are supported on a carrier mainly composed of alumina such as phosphorus-silica-alumina. (For example, JP-A-6-106,061, JP-A-9-155,197, JP-A-9-164,334, JP-A-2000-79,343, JP-A-2000-93,804, JP-A-2000-117,111, JP-A-2000 -135,437, JP-A-2001-62,304, etc.).
[0004]
In general, when the main purpose is removal (desulfurization) of sulfur components in hydrocarbon oils, a catalyst supporting molybdenum or tungsten and cobalt is mainly used. In addition to desulfurization, removal of nitrogen components (denitrogenation) ) Is also mainly used a catalyst supporting molybdenum or tungsten and nickel, because nickel has a high hydrogenation ability for aromatic compounds.
[0005]
Most of the nitrogen components in hydrocarbon oil exist as aromatic compounds. When this nitrogen-containing aromatic compound is removed by hydrorefining, hydrogenation of the aromatic ring occurs first, followed by CN bond. The denitrification proceeds by the cleavage of ammonia and elimination of ammonia. For this reason, hydrotreating hydrocarbon oils with a focus on denitrification using a hydrotreating catalyst containing nickel with a large hydrotreating capacity increases the amount of hydrogen consumed, resulting in increased processing costs. is there.
[0006]
According to the Fourth Report of the Environmental Agency / Central Environmental Council in November 2000, “Future of vehicle emission reduction measures”, the sulfur component of diesel oil, which is the fuel for diesel vehicles, is In addition, it is appropriate to reduce it from the current 500 ppm to 50 ppm, and further, further reduction in sulfur is desired in the future.
In addition, nitrogen components in hydrocarbon oils such as light oil cause deterioration in quality due to product coloration, and are also a cause of catalyst poisoning and deterioration of hydroprocessing catalysts during hydrorefining. It is desirable to remove as much as possible.
[0007]
However, the desulfurization activity and denitrogenation activity of the conventional hydrotreating catalyst described above are not necessarily sufficient. For example, in order to reduce the sulfur component in light oil to 50 ppm or less, hydrotreating treatment Conditions need to be strict. For example, the oil passage amount is about 1/3 and the reaction time is tripled, or the catalyst amount is increased about three times. In cases where the oil flow rate is reduced, it is necessary to reexamine the production plan of the refinery. In cases where the catalyst amount is increased, it is necessary to add two reactors. In the case where the amount of oil flow and the amount of catalyst are not changed, it is necessary to raise the reaction temperature by 20 ° C. or more. If an attempt is made to increase the reaction temperature, the life of the catalyst is greatly sacrificed. As described above, when a conventional hydrotreating catalyst is used, there is a problem that a great economic burden is imposed. In addition, it is difficult to hydrorefine the nitrogen component with a removal rate comparable to that of the sulfur component. If the nitrogen component is to be hydrorefined with a high removal rate, the amount of hydrogen consumed becomes excessive and surplus hydrogen is removed. However, there were problems such as the need to reinforce hydrogen production equipment at refineries with few.
[0008]
This is because, for example, in a hydrotreatment catalyst in which molybdenum as a main catalyst component and cobalt as a promoter component are supported on a support mainly composed of alumina, the supported amount of molybdenum is usually 25% by weight or less based on oxides. Yes, if it is supported further, aggregates of molybdenum are formed on the support and are not highly dispersed, so that the catalytic performance is not effectively exhibited, and pore clogging, surface area, pore volume is reduced, etc. This is because the necessary activity cannot be obtained because of the adverse effect of the above.
[0009]
[Problems to be solved by the invention]
The present inventors not only have excellent desulfurization activity but also excellent denitrification activity, and the hydrogen consumption does not become excessive at the time of hydrorefining. As a result of intensive investigations on hydrocarbon oil hydrotreating catalysts that can achieve low sulfur and low nitrogen content in hydrogen oil, the prescribed composition formula HxTiOy · fH2Oxygenated titanium represented by O is contacted with the main catalyst component and the cocatalyst component for ion exchange, and then dried and calcined, so that it has high desulfurization activity and nitrogen component removal selectivity with respect to the sulfur component. Further, the present inventors have found that the above-mentioned problems can be achieved by reducing the amount of hydrogen consumption and thereby achieving the present invention.
[0010]
The object of the present invention is not only excellent in desulfurization activity but also excellent in denitrification activity, and does not cause excessive hydrogen consumption during hydrorefining, so that carbonization is advantageous industrially. It is an object of the present invention to provide a hydrocarbon oil hydrotreating catalyst that can achieve low sulfur and low nitrogen of hydrogen oil.
[0011]
Another object of the present invention is a method for producing a hydrotreating catalyst that is excellent in both desulfurization activity and denitrogenation activity and that does not cause excessive hydrogen consumption during hydrorefining. Is to provide.
[0012]
Furthermore, another object of the present invention is to hydrotreat hydrocarbon oils that are excellent in both desulfurization activity and denitrogenation activity and that do not cause excessive hydrogen consumption during hydrorefining. An object of the present invention is to provide a hydrorefining method capable of removing a sulfur component and a nitrogen component at a high removal rate from a hydrocarbon oil containing both a sulfur component and a nitrogen component using a catalyst.
[0013]
[Means for Solving the Problems]
The present inventionObtained by neutralizing or hydrolyzing titanium salts and / or oxoacid saltsComposition formula HxTiOy · fH2The hydrous titanium oxide represented by O (x = 0.46 to 1.99, y = 2.23 to 2.99, f = 0.04 to 17.8), the main catalyst component consisting of molybdenum and / or tungsten, and cobalt, nickel, phosphorus and boron. Contact with the selected promoter componentThe hydroxyl group of the hydrous titanium oxide is mixed with the main catalyst component and the promoter component, and the ion exchange amount of the main catalyst component is titanium. 1 0.06-0.46 atoms per atom, and the ion exchange amount of the promoter component is titanium 1 0.02 to 0.26 atom per atom, and the total ion exchange amount of these main catalyst component and promoter component is 0.08 to 0.82 atom per titanium atomIon exchange, then dry and fireThe resulting crystalline hydrotreating catalyst.This is a hydrotreating catalyst for hydrocarbon oils.
[0014]
The present invention also provides:Obtained by neutralizing or hydrolyzing titanium salts and / or oxoacid saltsComposition formula HxTiOy · fH2The hydrous titanium oxide represented by O (x = 0.46 to 1.99, y = 2.23 to 2.99, f = 0.04 to 17.8), the main catalyst component consisting of molybdenum and / or tungsten, and cobalt, nickel, phosphorus and boron. Together with selected promoter components orThe hydroxyl group of the hydrous titanium oxide, the main catalyst component and the promoter component are brought into contact with each other separately, and the ion exchange amount of the main catalyst component is titanium. 1 0.06-0.46 atoms per atom, and the ion exchange amount of the promoter component is titanium 1 0.02 to 0.26 atom per atom, and the total ion exchange amount of these main catalyst component and promoter component is 0.08 to 0.82 atom per titanium atomIon exchangeOn this occasionFinally, the pH is set in the range of 3 to 9, then molded, and the obtained molded product is dried at 100 to 300 ° C. and then fired at 300 to 700 ° C.To obtain a crystalline hydrotreating catalystThis is a method for producing a hydrotreating catalyst for hydrocarbon oil.
[0015]
Furthermore, the present invention providesObtained by neutralizing or hydrolyzing titanium salts and / or oxoacid saltsComposition formula HxTiOy · fH2A hydrous titanium oxide represented by O (x = 0.46 to 1.99, y = 2.23 to 2.99, f = 0.04 to 17.8) is selected from the main catalyst component consisting of molybdenum and / or tungsten and cobalt, nickel, phosphorus and boron. Add to the dipping solution containing the selected promoter component and contact at pH 1-7 or pH 9-11The hydroxyl group of the hydrous titanium oxide is mixed with the main catalyst component and the promoter component, and the ion exchange amount of the main catalyst component is titanium. 1 0.06-0.46 atoms per atom, and the ion exchange amount of the promoter component is titanium 1 0.02 to 0.26 atom per atom, and the total ion exchange amount of these main catalyst component and promoter component is 0.08 to 0.82 atom per titanium atomAfter ion-exchange and then filtering and molding, the resulting molding is dried at 100 to 300 ° C. and then fired at 300 to 700 ° C.To obtain a crystalline hydrotreating catalystA method for producing a hydrotreating catalyst for hydrocarbon oils.
[0016]
Furthermore, the present invention provides the above hydrotreating catalyst and hydrocarbon oil in the presence of hydrogen, reaction temperature 280 to 400 ° C., reaction pressure 2 to 15 MPa, LHSV 0.3 to 10 hr.-1And a hydrorefining method of hydrocarbon oil, which is brought into contact under hydrogenation conditions of a hydrogen / oil ratio of 50 to 500 Nl / l to remove sulfur and nitrogen components in the hydrocarbon oil.
[0017]
In the present invention, the hydrous titanium oxide used for supporting the main catalyst component and the cocatalyst component (hereinafter sometimes referred to simply as “catalyst component”) on the titania of the catalyst carrier has a composition formula HxTiOy · fH2O (x = 0.46 to 1.99, y = 2.23 to 2.99, f = 0.04 to 17.8).
[0018]
Where the above composition formula HxTiOy · fH2The hydrous titanium oxide represented by O is composed of a titanium hydroxide part represented by HxTiOy and fH2It can be divided into a portion of free water which is represented by O and physically coexists with titanium hydroxide. Here, titanium hydroxide represented by HxTiOy is TiO (OH) a or TiO2・ (H2O) b can also be expressed in the form of a chemical formula. Basically, hydrogen is chemically bonded to titanium oxide as structural water in the form of a hydroxyl group or in the form of water. In the present invention, the amount of this structural water is determined by the weight of the dry titanium oxide after drying the hydrous titanium oxide under the drying conditions at 120 ° C. for 3 hours and the calcined titanium oxide under the conditions at 500 ° C. for 3 hours. The amount of weight change with respect to the weight of titanium oxide. FH2The amount of free water represented by O is defined as the amount of change in weight between the weight of undried hydrous titanium oxide and the weight of dry titanium oxide.
[0019]
In the hydrous titanium oxide used in the present invention, the composition formula HxTiOy · fH2The value of x represented by O is in the range of x = 0.46 to 1.99, preferably x = 0.67 to 1.56. When the value of x is smaller than 0.46, the number of hydroxyl groups ion-exchanged with the catalyst component supplied to the surface of the titanium hydroxide is reduced, and the target catalyst component of the present invention is uniformly and highly dispersed at a high concentration. It becomes difficult. On the other hand, when the value of x is larger than 1.99, it is preferable from the viewpoint that a large amount of hydroxyl groups are ion-exchanged with the catalyst component-containing ions to support the catalyst component, but the titanium hydroxide crystal particles are small. The pore structure of the catalyst which is amorphous in X-ray, dried and calcined becomes inappropriate, and the performance as a hydrotreating catalyst becomes low.
[0020]
Also, the composition formula HxTiOy · fH2The value of y represented by O is different depending on whether hydrogen is bonded in the form of a hydroxyl group or in the form of water. In the present invention, the value of y is determined as the form of water. The value ranges from y = 2.23 to 2.99, preferably y = 2.33 to 2.78.
[0021]
Furthermore, the composition formula HxTiOy · fH2The value of f represented by O is f = 0.04 to 17.8, and preferably f = 0.23 to 10.4. When the value of f is smaller than 0.04, the hydrous titanium oxide is almost in a dry state. In such a state, it is difficult to uniformly disperse even if the catalyst component is added. Even if the solution containing the mixture is added and stirred, the titanium hydroxide particles are agglomerated and difficult to disperse uniformly. In this case as well, it is difficult to disperse uniformly and highly. As a result, when the catalyst component is supported on titanium oxide at a high concentration, the catalyst component cannot be uniformly and highly dispersed, and aggregates and lumps of the catalyst component are formed, resulting in low catalytic activity. On the other hand, when the value of f is larger than 17.8, the amount of free water increases so that the hydrous titanium oxide cannot be molded, or it is difficult to maintain the shape even if it is molded. Moreover, when adding to the solution containing a catalyst component, this solution is diluted, and a problem arises that most of the catalyst component is not ion-exchanged and is wasted.
[0022]
In the present invention, the amount of the catalyst component finally supported on the titanium oxide of the catalyst support is preferably 0.06 to 0.46 atom per titanium atom of molybdenum and / or tungsten as the main catalyst component. The catalyst components cobalt, nickel, phosphorus and boron are 0.02 to 0.26 atoms per titanium atom, and the total amount of these main catalyst components and promoter components is 0.08 to 0.82 per titanium atom. It should be in the atomic range. If the loading amount of these main catalyst component and co-catalyst component per titanium atom is smaller than the above value, the loading amount of the catalyst component is insufficient, and the sulfur component in the hydrocarbon oil targeted by the present invention is 50 ppm or less. The catalytic activity of the hydrotreating catalyst to be reduced is low. On the other hand, if the value is larger than the above value, the amount is excessively larger than the amount of ion exchange with the hydroxyl group present on the surface of the titanium hydroxide, and is wasted.
[0023]
In the present invention, the ion exchange of the catalyst component to the hydrous titanium oxide is carried out by mixing the hydrous titanium oxide with the main catalyst component and the co-catalyst component at the same time or separately, respectively, by means such as kneading. Hereinafter, it can be carried out preferably by contacting in the range of pH 4 to pH 8 (first method). Further, hydrous titanium oxide is added to the immersion solution containing the main catalyst component and the promoter component, and is usually pH 1 or more and pH 7 or less, preferably pH 2 or more, pH 6 or less, or pH 9 or more, pH 11 or less, preferably pH 9 or more,
[0024]
The ion exchange of the catalyst component to the hydrous titanium oxide by the first method described above is performed when the free water content of the hydrous titanium oxide is f = 0.04 to 17.8, preferably f = 0.23 to 10.4. By carrying out in the range and finally in the range of pH 3-9, preferably pH 4-8, the compound containing the catalyst component can be used as it is, and can be uniformly highly dispersed at a high concentration. The contact conditions by kneading or the like at this time are preferably a temperature of room temperature to 100 ° C. and a contact time of 10 minutes to 10 hours.
Further, the ion exchange of the catalyst component to the hydrous titanium oxide by the second method is performed by adjusting the pH of the immersion solution containing both the main catalyst component and the promoter component to pH 1 to 7, preferably pH 2 to 6, or pH 9 to 11, Preferably, by setting the pH within the range of 9 to 10, the main catalyst component and / or the promoter component in the soaking solution become a uniform solution without forming a precipitate, thereby increasing the catalyst component on the titanium oxide surface. A highly active catalyst can be prepared that can be highly dispersed uniformly in a concentration. The contact conditions at this time are preferably a temperature of room temperature to 100 ° C. and a contact time of 0.5 to 24 hours.
[0025]
The catalyst component exchanged with the hydroxyl group of the hydrogel of hydrous titanium oxide is a main catalyst component composed of molybdenum and / or tungsten and a promoter component selected from cobalt, nickel, phosphorus and boron. Specific combinations of catalyst components include, for example, molybdenum / cobalt, molybdenum / nickel, molybdenum / cobalt / nickel, molybdenum / cobalt / phosphorus, molybdenum / nickel / phosphorus, molybdenum / cobalt / boron, molybdenum / nickel / boron, Molybdenum / cobalt / nickel / phosphorus, molybdenum / cobalt / nickel / boron, tungsten / nickel, tungsten / nickel / phosphorus, tungsten / nickel / boron, and the like.
[0026]
The ion exchange amount of the catalyst component to be exchanged with the hydroxyl group of the hydrous titanium oxide is preferably such that the ion exchange amount of the main catalyst component is 0.06 atom or more and 0.46 atom or less, more preferably 0.8 or less, per 1 atom of titanium. The ion exchange amount of the promoter component is 0.02 atom or more and 0.26 atom or less, more preferably 0.03 atom or more and 0.20 atom or less per titanium atom. The total ion exchange amount of these main catalyst component and promoter component is 0.08 atom or more and 0.82 atom or less, more preferably 0.11 atom or more and 0.75 atom or less per titanium atom.
[0027]
Here, as a raw material for producing hydrogel of hydrous titanium oxide, salts such as titanium chloride, nitrate, sulfate,Oxo acid saltsSuch as titanium tetrachloride, titanium sulfate, titanyl sulfate,Titanium trichloride etc.Can be mentioned.
[0028]
Further, as an ionic species of the catalyst component that ion-exchanges with the hydroxyl group of hydrous titanium oxide, specifically, POFour 3-, MoOFour 2-, WOFour 2-, BOThree 3-Such as oxyanion, metal carbonyl anion, Ni2+, Co2+A metal cation. These can be used by repeating each one of them several times, and can also be used as a mixture of two or more.
[0029]
As a compound that provides a particularly suitable oxyanion, for example, ammonium molybdate [(NHFour)6Mo7Otwenty four・ 4H2O, (NHFour)2MoOFour, (NHFour) Mo2O7], Sodium molybdate (Na2MoOFour・ 2H2O), molybdic acid (H2MoOFour, H2MoOThree・ H2O), molybdenum pentachloride (MoClFive), Silicomolybdic acid (H2SiMo12O40・ NH2O), tungstic acid (H2WOFour), Ammonium tungstate [(NHFour)2・ WOFour, 5 (NHFour)2O ・ 12WOThree・ 4H2O, 3 (NHFour)2O ・ 12WOThree・ NH2O], sodium tungstate (Na2WOFour・ 2H2O) etc., HThreePOFour, HPOThree, HFourP2O7, P2OFive, NHFourH2POFour, (NHFour)2HPOFour, (NHFour)ThreePOFour・ H2O, HThreeBOThree, HBO2In addition, (POFourW12O36) ・ 5H2Examples include heteropoly acid salts containing O, molybdenum, and tungsten as polyacids.
[0030]
Further, as a suitable compound of a polyvalent metal salt for supplying a metal carbonyl anion, for example, (NEtFour) [Mo (CO)Five(OOCCHThree)], Mo (CO)6-NEtThree-EtSH, W (CO)6-NEtThree-EtSH, W (CO)6, (Η-CFiveHFourMe)2Mo2Co2SThree(CO)FourEtc.
Further, as a suitable compound of a polyvalent metal salt for supplying a polyvalent metal cation, a metal salt having a valence of 2 or more is used. For example, nickel nitrate [Ni (NOThree)2・ 6H2O], nickel sulfate (NiSOFour・ 6H2O), nickel chloride (NiCl2), Nickel acetate [Ni (CHThreeCO2)2・ 4H2O], cobalt acetate [Co (CHThreeCO2)2・ 4H2O], cobalt nitrate [Co (NOThree)2・ 6H2O], cobalt sulfate (CoSOFour・ 7H2O), cobalt chloride (CoCl2・ 6H2O) etc. can be illustrated.
[0031]
Next, the manufacturing method of the hydroprocessing catalyst of this invention is demonstrated.
First, hydrous titanium oxide can be prepared by methods such as hydrolysis of the titanium compound and alkali neutralization described above. Here, as the alkali neutralizer, ammonia (NHThree), Sodium hydroxide (NaOH), potassium hydroxide (KOH), sodium carbonate (Na2COThree), Potassium carbonate (K2COThree), Sodium bicarbonate (NaHCO3)Three) Or the like can be used.
[0032]
The condition for producing this hydrous titanium oxide is that the concentration of hydrous titanium oxide is titanium dioxide (TiO 22) 0.5 to 10% by weight, preferably 1 to 10% by weight, the reaction temperature is from room temperature to 300 ° C., preferably from room temperature to 100 ° C., and the reaction pressure is from normal to 3%. 0.0 MPa, preferably normal pressure to 0.1 MPa, and the pH should be in the range of 0.5 to 11, preferably 1 to 10, and can be neutralized or hydrolyzed by this alkali. Hydrous titanium oxide can be obtained.
In addition, in order to produce a hydrous titanium oxide preferable for the present invention, the titanium hydroxide is preferably swung more than once between the pH of the precipitation region and the pH of the dissolution region, and the pH of the precipitation region is 1. 0 to 2 and 0 to 2 are preferable for the pH of the dissolution region.
[0033]
Hydrous titanium oxide obtained by neutralization reaction or hydrolysis reaction of this titanium compound with alkali has the composition formula HxTiOy · fH2In O, x = 0.46 to 1.99, preferably x = 0.67 to 1.56, y = 2.23 to 2.99, preferably y = 2.33 to 2.78, f = 0. 0.04 to 17.8, preferably f = 0.23 to 10.4, or dehydrated. The structural water of the hydrous titanium oxide can be easily adjusted by changing the synthesis conditions of the hydrous titanium oxide, and the free water can be easily adjusted by changing the filtration conditions, heat drying at a relatively low temperature, dehydrating under reduced pressure, etc. be able to.
[0034]
Next, the hydrous titanium oxide obtained in this manner is used in the first method in which the titanium oxide is sufficiently brought into contact with the catalyst component using an admixer or the like, or an immersion solution is prepared and dispersed in the immersion solution. By the second method, the hydroxyl group is ion-exchanged with the catalyst component. The ion exchange amount of the catalyst component exchanged with the hydroxyl group of the hydrogel of hydrous titanium oxide is preferably such that the ion exchange amount of the main catalyst component is 0.06 atom or more and 0.46 atom or less, more preferably 0.07 atom per titanium atom. The ion exchange amount of the promoter component is 0.02 atom or more and 0.26 atom or less, more preferably 0.03 atom or more and 0.20 atom or less per titanium atom. The total ion exchange amount of the main catalyst component and the promoter component is 0.08 atom or more and 0.82 atom or less, more preferably 0.11 atom or more and 0.75 atom or less per titanium atom.
[0035]
The hydrous titanium oxide ion-exchanged with the catalyst component in this manner is then molded into a required shape, and the resulting molded product has a temperature of 80 ° C. or higher and 300 ° C. or lower, preferably 100 ° C. or higher and 200 ° C. or lower, and a drying time. Drying is performed for 0.5 hours to 24 hours, preferably 1 hour to 15 hours, and further calcined under conditions of 300 ° C. to 1200 ° C., preferably 400 ° C. to 700 ° C. It is said.
[0036]
The hydrotreating catalyst of the present invention is characterized in that the molybdenum and / or tungsten as the main catalyst component is a supported amount of molybdenum in a conventional alumina-supported molybdenum / cobalt-supported catalyst or the like (usually 6 to 25% by weight on the oxide basis). In comparison with the above, the titania of the catalyst support is supported at a high supported amount of 15 to 45% by weight (corresponding to 0.06 to 0.46 per 1 atom of titanium) on the oxide basis, and this is high. Regardless of the amount of main catalyst component supported, the catalyst is uniformly supported in a highly dispersed state without waste. This is presumably because the hydroxyl group of hydrous titanium oxide is ion-exchanged with ions containing the catalyst component in advance before drying and firing, so that the catalyst component is uniformly and highly dispersed on the surface of the titanium oxide.
[0037]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail based on examples and comparative examples.
[0038]
Example 1
(Preparation of titanium tetrachloride aqueous solution)
Ice-added water and cooled titanium tetrachloride (TiClFour) 1 kg was gradually added to prepare an aqueous titanium tetrachloride solution having a titanium oxide equivalent concentration of 210 g / l.
(Preparation of aqueous ammonia solution)
28wt% -ammonia aqueous solution (NHFourOH aqueous solution) was diluted 2-fold to prepare a 14 wt% ammonia aqueous solution.
[0039]
(Hydrogen-containing titanium synthesis process)
Next, 10 liters of water was placed in a 30 liter vessel equipped with a stirrer, and 1.5 liters of the above-mentioned titanium tetrachloride aqueous solution was added while stirring at a temperature of 60 ° C. to lower the pH to 0.5.
To this solution was added 2.3 liters of the above 14 wt% ammonia aqueous solution, the pH was raised to 7.0, and the mixture was stirred for about 5 minutes. This operation was repeated, and the titanium hydroxide-containing titanium oxide was obtained by swinging a total of three times between the titanium hydroxide dissolution pH region (pH = 0.5) and the precipitation pH region (pH = 7.0).
[0040]
(Filtration, washing, dehydration)
Thereafter, the hydrous titanium oxide is filtered, washed with pure water, and chloride ions (Cl-This washing operation was repeated until no) was confirmed, and then hydrous titanium oxide dehydrated by pressure filtration was obtained. The composition of the hydrous titanium oxide obtained here is H1.33TiO2.66・ 5.75H2O.
[0041]
(Ion exchange with catalyst components)
To the hydrous titanium oxide obtained above, ammonium paramolybdate ((NHFour)6Mo7Otwenty four・ 4H2O) and phosphoric acid equivalent to 0.05 atoms per titanium atom (HThreePOFour), And cobalt nitrate ((Co (NOThree)2・ 6H2O) was added and kneaded for 2 hours at room temperature with a blender. The pH at this time was 6.5.
[0042]
(Molding, drying, firing)
Next, using a die having a hole diameter of 2.4 mm, hydrous titanium oxide ion-exchanged with the catalyst component was molded into a cylindrical shape, and the resulting molded product was dried at 120 ° C. for 3 hours, and then 500 ° C. Calcination was carried out for 3 hours to obtain the hydrotreating catalyst of Example 1. Table 1 shows the physical properties of this hydrotreating catalyst.
[0043]
Example 2
The hydrous titanium oxide obtained in Example 1 was added to ammonium paramolybdate ((NHFour)6Mo7Otwenty four・ 4H2O) and phosphoric acid equivalent to 0.06 atoms per titanium atom (HThreePOFour) And cobalt nitrate corresponding to 0.10 atoms per titanium atom ((Co (NOThree)2・ 6H2Ion exchange was carried out by pouring into a pH 9 solution in which a large amount of O) was dissolved and stirring for 3 hours to disperse.
[0044]
Then, after ion-exchanged hydrous titanium oxide was filtered and dehydrated, the hydrotreating catalyst of Example 2 was obtained in the same manner as in Example 1. The physical properties of the obtained catalyst are shown in Table 1.
[0045]
Example 3
In the process of synthesizing the hydrous titanium oxide, the above example was performed except that the number of times of alternately swinging between the dissolved pH region (pH = 0.5) and the precipitated pH region (pH = 7.0) of the titanium hydroxide was 7 times. In the same manner as in Example 1, hydrous titanium oxide was synthesized. The composition of the resulting hydrous titanium oxide is H0.99TiO2.49・ 0.39H2O.
[0046]
To this hydrous titanium oxide, ammonium paramolybdate ((NHFour)6Mo7Otwenty four・ 4H2O) and phosphoric acid corresponding to 0.11 atoms per titanium atom (HThreePOFour) And cobalt nitrate equivalent to 0.06 atoms per titanium atom ((Co (NOThree)2・ 6H2O) was added and the hydrotreating catalyst of Example 3 was obtained in the same manner as in Example 1. The physical properties of this catalyst are shown in Table 1.
[0047]
Example 4
Hydrous titanium oxide was synthesized in the same manner as in Example 1, and filtration and dehydration after washing were performed with a vacuum filter. The composition of the resulting hydrous titanium oxide is H1.95TiO2.97・ 17.74H2O.
To this hydrous titanium oxide, ammonium paramolybdate ((NHFour)6Mo7Otwenty four・ 4H2O) and phosphoric acid equivalent to 0.12 atoms per titanium atom (HThreePOFour) And nickel nitrate equivalent to 0.05 atoms per titanium atom (Ni (NOThree)2・ 6H2O) was added and a hydrotreating catalyst was obtained in the same manner as in Example 1. The physical properties of this catalyst are shown in Table 1.
[0048]
Example 5
Ammonium tungstate equivalent to 0.12 atom per titanium atom (NHFour)2WOFourAnd nickel nitrate equivalent to 0.08 atoms per titanium atom (Ni (NOThree)2・ 6H2A hydrotreating catalyst was prepared in the same manner as in Example 1 except that O) was added. The physical properties of this catalyst are shown in Table 1.
[0049]
Example 6
Ammonium paramolybdate equivalent to 0.38 atom per titanium atom ((NHFour)6Mo7Otwenty four・ 4H2O) and boric acid corresponding to 0.16 atom per titanium atom (HThreeBOThree) And cobalt nitrate equivalent to 0.06 atoms per titanium atom ((Co (NOThree)2・ 6H2A hydrotreating catalyst was prepared in the same manner as in Example 1 except that O) was added. The physical properties of this catalyst are shown in Table 1.
[0050]
In addition, the hydrogenation treatment obtained in Example 6catalystUsing JXA-8900 X-ray microanalyzer (EPMA) manufactured by JEOL Ltd.X-ray analysisWent. The result is as shown in FIG. 1, and it was found that the molybdenum was uniformly supported in the pores despite the large amount of molybdenum supported at 0.38 atoms per titanium atom. Further, the hydrotreatment obtained in this Example 6catalystAnd molybdenum oxide (MoOThree), The X-ray diffraction pattern was measured using a PW3710 type X-ray diffractometer manufactured by Philippe. The result is the hydrogenation treatment of Example 6.catalystIs as shown in FIG.Three) Is as shown in FIG. Hydrogenation treatment of Example 6catalystIn the case of molybdenum on the support molybdenum oxide (MoO)Three) If it is supported as MoOThreeShould appear, but is not observed with the catalyst of Example 6 shown in FIG. This is because molybdenum is coordinated to the crystal of titanium oxide, and it simply indicates that it is not supported by forming a layer on the surface.
[0051]
Comparative Example 1
In the process of synthesizing the hydrous titanium oxide, the embodiment was carried out except that the synthesis temperature was 95 ° C., and the number of times of alternately swinging the titanium hydroxide dissolving pH region (pH = 0.5) and the precipitation pH region (pH = 7.0) was nine. In the same manner as in Example 1, hydrous titanium oxide was synthesized. The obtained hydrous titanium oxide was washed and filtered, and then dried at 120 ° C. for 10 hours.
[0052]
The composition of the hydrous titanium oxide obtained after drying is H0.27TiO2.14・ 0.02H2O. In addition, a hydrotreating catalyst was prepared in the same manner as in Example 1 using the hydrous titanium oxide thus obtained. Table 2 shows the physical properties of this catalyst.
[0053]
Comparative Example 2
To a 30 liter vessel equipped with a stirrer, 10 liters of water was added and 1.5 liters of the titanium tetrachloride aqueous solution prepared in Example 1 was added while stirring at room temperature to lower the pH to 0.5. To this solution was added 2.3 liters of a 14 wt% aqueous ammonia solution, the pH was raised to 7.0, and the mixture was stirred for about 5 minutes. The precipitated hydrous titanium oxide was washed and filtered to obtain hydrous titanium oxide.
This hydrosol is amorphous and its composition is H2.22TiO3.11・ 27.1H2O.
Further, when trying to mold this hydrosol, the amount of water was too large to be molded.
[0054]
Comparative Example 3
Ammonium tungstate equivalent to 0.05 atoms per titanium atom (NHFour)2WOFourAnd nickel nitrate equivalent to 0.019 atom per titanium atom (Ni (NOThree)2・ 6H2A hydrotreating catalyst was prepared in the same manner as in Example 1 except that O) was added. Table 2 shows the physical properties of the obtained catalyst.
[0055]
Comparative Example 4
To hydrous titanium oxide, ammonium paramolybdate ((NHFour)6Mo7Otwenty four・ 4H2O) and cobalt nitrate equivalent to 0.27 atoms per titanium atom ((Co (NOThree)2・ 6H2A hydrotreating catalyst was prepared in the same manner as in Example 1 except that O) was added. Table 2 shows the physical properties of the obtained catalyst.
[0056]
Comparative Example 5
A molybdenum / cobalt supported alumina catalyst used industrially for deep desulfurization of light oil was used as Comparative Example 5. The physical properties are shown in Table 2.
[0057]
Comparative Example 6
Comparative Example 6 is a molybdenum / nickel-supported alumina catalyst that is industrially used for deep desulfurization of light oil and has a higher denitrification activity than a molybdenum / cobalt-supported catalyst. The physical properties are shown in Table 2.
[0058]
Test example 1: hydrorefining of light oil
Using the hydrotreating catalysts of Examples 1 to 6 and Comparative Examples 1 and 3 to 6, specific gravity (15/4 ° C.): 0.850, sulfur component: 1.37% by weight, nitrogen component: 101 ppm Distillation properties: hydrorefining of Middle East straight-run gas oil having properties of initial distillation 232 ° C., 50% distillation 295 ° C. and 90% distillation 348 ° C., and the performance of the hydrotreating catalyst was investigated.
[0059]
Gas oil hydrorefining is carried out using a flow reactor, under the conditions of reaction pressure: 5.0 MPa, reaction temperature: 350 ° C., liquid space velocity 2.01 / h, and hydrogen / raw material ratio: 250 N1 / 1. did. In this hydrorefining test, preliminary sulfidation was carried out according to a conventional method using light oil to which dimethyl disulfide was added to adjust the concentration of the sulfur component to 2.5% by weight.
[0060]
The hydrorefining reaction results are as follows: desulfurization reaction is 1.2-order reaction, denitrogenation reaction is primary reaction, the reaction constant is obtained, and the result of Comparative Example 1 is expressed as a relative value as “1”. 1 and Table 2.
[0061]
[Table 1]
[0062]
[Table 2]
[0063]
Test Example 2: Relationship between denitrification rate and hydrogen consumption
Next, the hydrotreating catalyst (titania catalyst) of Examples 1 and 2 and the industrial catalyst (alumina catalyst) of Comparative Examples 5 and 6 were used, and the liquid space velocity was changed within a range of 1 to 31 / h. The relationship between the denitrification rate and the hydrogen consumption was examined.
The results are as shown in FIG. 4, and it was found that the titania catalysts of Examples 1 and 2 can greatly suppress the hydrogen consumption.
[0064]
(Description of Examples and Comparative Examples)
As is clear from the results shown in Table 1 and Table 2 of Test Example 1, the hydrotreating catalysts of Examples 1 to 6 have a desulfurization activity approximately twice that of the industrial catalyst of Comparative Example 5, or In addition to the further improvement, the denitrification activity shows an improvement of 3 times or more. Even when the hydrotreating catalysts of Examples 1 to 6 were compared with the industrial catalyst of Comparative Example 6, the desulfurization activity was improved by about 1.8 times or more, and the denitrification activity was also about It shows 1.5 times or more improvement, and it can be seen from FIG. 4 of Test Example 2 that hydrogen consumption is smaller than that of Comparative Examples 5 and 6.
[0065]
Moreover, when the result of Comparative Examples 1-4 is seen, when there is little structural water and free water of hydrous titanium oxide (Comparative Example 1), ion exchange between catalyst components is not sufficiently performed, and desulfurization activity and In both cases, the denitrification activity is not as good as that of Comparative Example 6, and when the structure water and free water of the hydrous titanium oxide is too much (Comparative Example 2), the catalyst cannot be formed at the time of catalyst preparation. When the amount of tungsten supported on the component and the amount of nickel supported on the promoter component are insufficient (Comparative Example 3), no improvement in desulfurization activity is observed, and furthermore, the amount of molybdenum supported on the main catalyst component is too large (comparison). Example 4) also proved ineffective to improve desulfurization activity and denitrification activity.
[0066]
【The invention's effect】
The hydrotreating catalyst of the present invention has particularly high denitrification activity selectivity, not only excellent desulfurization activity but also excellent denitrification activity, and can also suppress hydrogen consumption. Yes, it can be used industrially advantageously not only for deep desulfurization and deep denitrogenation of light oil, where quality improvement is required in the future, but also for hydrorefining treatment for lowering sulfur and lowering nitrogen of other hydrocarbon oils Is.
[Brief description of the drawings]
FIG. 1 is a graph showing the results of line analysis of the hydrotreating catalyst obtained in Example 6 using an X-ray microanalyzer (EPMA).
FIG. 2 is a graph showing the X-ray diffraction pattern of the hydrotreating catalyst obtained in Example 6.
FIG. 3 shows molybdenum oxide (MoO)ThreeIt is a graph which shows the X-ray-diffraction pattern of).
FIG. 4 shows a test in which the liquid space velocity was changed in the range of 1 to 3.01 / h using the titania catalysts of Examples 1 and 2 and the alumina catalysts of Comparative Examples 5 and 6. It is a graph which shows the result of having investigated the relationship between a denitrification rate and hydrogen consumption.
Claims (4)
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001333800A JP4054563B2 (en) | 2001-10-31 | 2001-10-31 | Catalyst for hydrotreating hydrocarbon oil, method for producing the same, and hydrorefining method using the same |
EP07007481A EP1820779A3 (en) | 2001-07-27 | 2002-01-15 | Porous group 4 metal oxide and method for preparation thereof |
EP02791524A EP1422198A4 (en) | 2001-07-27 | 2002-01-15 | OXIDE OF A POROUS GROUP 4 METAL AND PROCESS FOR PREPARING THE SAME |
CN 200510124813 CN1781605B (en) | 2001-07-27 | 2002-01-15 | Method for manufacturing catalyst for hydrogenation of hydrocarbon oil and method for hydrogenation refining |
CN02814660.3A CN1272252C (en) | 2001-07-27 | 2002-01-15 | Porous 4 group metal oxide and method for preparation thereof |
PCT/JP2002/000200 WO2003011762A1 (en) | 2001-07-27 | 2002-01-15 | Porous 4 group metal oxide and method for preparation thereof |
US10/484,846 US7943115B2 (en) | 2001-07-27 | 2002-01-15 | Porous 4 group metal oxide and method for preparation thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001333800A JP4054563B2 (en) | 2001-10-31 | 2001-10-31 | Catalyst for hydrotreating hydrocarbon oil, method for producing the same, and hydrorefining method using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003135969A JP2003135969A (en) | 2003-05-13 |
JP4054563B2 true JP4054563B2 (en) | 2008-02-27 |
Family
ID=19149014
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001333800A Expired - Fee Related JP4054563B2 (en) | 2001-07-27 | 2001-10-31 | Catalyst for hydrotreating hydrocarbon oil, method for producing the same, and hydrorefining method using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4054563B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009139053A1 (en) * | 2008-05-14 | 2009-11-19 | 千代田化工建設株式会社 | Process for producing metal-bearing catalyst |
-
2001
- 2001-10-31 JP JP2001333800A patent/JP4054563B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003135969A (en) | 2003-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100855411B1 (en) | Alumina having a new pore structure, a method for preparing the same, and a catalyst prepared therefrom | |
CA1148923A (en) | Process for hydrotreating heavy hydrocarbon oils, catalysts therefor, and a method of preparing such catalysts | |
US7943115B2 (en) | Porous 4 group metal oxide and method for preparation thereof | |
US4367165A (en) | Catalyst for hydrotreating heavy hydrocarbon oils and method of preparing same | |
JP4156859B2 (en) | Gas oil hydrotreating catalyst, method for producing the same, and gas oil hydrotreating method | |
JP3606590B2 (en) | Hydrogenation catalyst, its preparation and its use | |
CA2360121C (en) | Hydroprocessing catalyst and use thereof | |
SK9902003A3 (en) | Hydroprocessing catalyst and use thereof | |
EP2412438A1 (en) | Hydrorefining catalyst, method for producing same, and process for hydrorefining hydrocarbon oil | |
CN100444956C (en) | Heavy feed HPC process using a mixture of catalysts | |
SK14982003A3 (en) | Two-stage heavy feed HPC process | |
SK14962003A3 (en) | High-macropore hydroprocessing catalyst and its use | |
SK286655B6 (en) | Two-stage hydroprocessing process and catalyst | |
JP4054563B2 (en) | Catalyst for hydrotreating hydrocarbon oil, method for producing the same, and hydrorefining method using the same | |
JPH10296091A (en) | Hydrotreating catalyst and method for hydrotreating hydrocarbon oil using the same | |
JP2000135438A (en) | Hydrotreating catalyst and method for producing the same | |
JP4054562B2 (en) | Hydrocarbon oil hydrotreating catalyst and method for producing the same | |
JP3342504B2 (en) | Method for producing improved metal-supported crystalline aluminosilicate and method for reforming hydrocarbons using the same | |
JP4954095B2 (en) | Gas oil hydrotreating catalyst, method for producing the same, and gas oil hydrotreating method | |
JP2000135437A (en) | Hydrotreating catalyst and method for producing the same | |
US20240278221A1 (en) | Catalyst for Hydrotreating Heavy Hydrocarbon Oil, Method for Producing Same, and Method for Hydrotreating Heavy Hydrocarbon Oil | |
JPH07232077A (en) | Catalyst for hydrodesulfurization hydrodenitrification and its preparation | |
JPH05200285A (en) | Hydrodemetallizing catalyst carrier and catalyst | |
JP3303533B2 (en) | Catalyst for hydrotreating hydrocarbon oil and method for producing the same | |
JP2001300325A (en) | Catalyst for hydrogenative desulfurization denitration of hydrocarbon oil and manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070911 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071112 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071204 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071210 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101214 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4054563 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111214 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121214 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131214 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |