[go: up one dir, main page]

JP4510982B2 - Surface acoustic wave device - Google Patents

Surface acoustic wave device Download PDF

Info

Publication number
JP4510982B2
JP4510982B2 JP2000054164A JP2000054164A JP4510982B2 JP 4510982 B2 JP4510982 B2 JP 4510982B2 JP 2000054164 A JP2000054164 A JP 2000054164A JP 2000054164 A JP2000054164 A JP 2000054164A JP 4510982 B2 JP4510982 B2 JP 4510982B2
Authority
JP
Japan
Prior art keywords
acoustic wave
surface acoustic
wave device
electrode
conductive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000054164A
Other languages
Japanese (ja)
Other versions
JP2001244785A (en
Inventor
淳雄 旗手
一弘 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000054164A priority Critical patent/JP4510982B2/en
Publication of JP2001244785A publication Critical patent/JP2001244785A/en
Application granted granted Critical
Publication of JP4510982B2 publication Critical patent/JP4510982B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車電話及び携帯電話等の移動体無線機器に内蔵される共振器や周波数帯域フィルタである弾性表面波装置に関する。
【0002】
【従来技術とその課題】
近年、電波を利用し通信を行なう電子機器用の帯域通過フィルタ等の周波数フィルタ(以下、フィルタという)、遅延線、発信器等の電子部品として、多くの弾性表面波共振子や弾性表面波フィルタが用いられている。特に、移動体通信分野において、携帯電話等の携帯端末装置のRF(Radio Frequency:無線周波数あるいは高周波)ブロック及びIF(Intermediate Frequency:中間周波数)ブロックのフィルタとして多用されている。今後、自動車電話及び携帯電話等の移動体無線機器を使用した通信システム上、部品の軽量化や小型化が望まれている。
【0003】
従来の弾性表面波(Surface Acoustic Waveで、以下、SAWともいう)装置の基本構成は、圧電基板の表面に一対の櫛歯状の励振電極(Inter Digital Transducer、IDT電極)を複数配置してある素子を、セラミック製の筐体内に載置した構造となっている。
【0004】
図5に従来の一例を示す。励振電極1は、例えば36°YカットX伝搬タンタル酸リチウム単結晶等からなる圧電基板2上に、蒸着法、スパッタ法等によりAl、Al-Cu合金等の導電膜を成膜した後、フォトリソグラフィ法により微細な電極となるように導電膜をパターニングして形成される。
【0005】
さらに、励振電極1を形成した圧電基板2をダイシングソーで切断することにより、SAW素子3が作製される。また、このSAW素子3をセラミックで作製した筐体4内に載置し接着樹脂5にて固着させ、筐体4の入出力電極6または接地電極7をそれぞれの引き出し電極8、9にワイヤ10で接続する。そして耐候性を持たせるために、筐体4と蓋体11をシーム溶接または半田または樹脂の封止材12により封止する。
【0006】
このように、従来のSAW装置では、軽量化・小型化が要求されているにもかかわらず、素子に比較して筐体が大きく、また、ワイヤボンディングにより筐体内に空間を確保する必要があるため、SAW装置が大型化するという問題があった。
【0007】
これに対し、近年、バンプを用いたフリップチップ接続を行ない、装置全体を軽量化・小型化する提案がなされている(例えば、特開平11−150440号公報を参照)。
【0008】
この方法によれば、電気的接続をフリップチップ接続で行なうことにより、ワイヤボンディングで必要とされる空間が不要となる。このため、従来のワイヤ接続によるSAW装置より小型とすることが出来る。
【0009】
しかし、上記のいずれの方法においても、フリップチップのベース基板あるいはパッケージは表面に電極を形成する必要がある。また、SAW素子との接続部からフリップチップされるベース基板の下面あるいはパッケージの下面まで、電極を引き回す必要があり、ベース基板あるいはパッケージの作製に多大な工数を要していた。
【0010】
そこで、本発明は素子サイズと同等に小型化が可能で、しかも作製の容易なSAW装置を提供することを目的とする。
【0011】
上記目的を達成するため、本発明の弾性表面波装置は、下面に励振電極と該励振電極に電気的に接続される引き出し電極とを有した弾性表面波素子と、前記励振電極との間に存在する封止空間を介して前記弾性表面波素子と対向するように配置され、平面透視して前記封止空間の外側で前記弾性表面波素子に対し接合されたベース基板と、上部が前記引き出し電極と電気的に接続された外部回路接続用の導電材と、を備え、前記外部回路接続用
の導電材は、平面透視して前記封止空間よりも外側に位置し、かつ前記封止空間の内側には存在せず、前記ベース基板は、異方性エッチングが可能な材料から構成され、且つ該ベース基板の前記励振電極と対向する部分には、異方性エッチングにより形成された凹部が設けられていることを特徴とする。
また、本発明の弾性表面波装置は、前記導電材の下部が前記封止空間よりも下側の高さ位置まで導出されていることを特徴とする。
また、本発明の弾性表面波装置は、前記ベース基板は、前記導電材と前記引き出し電極との接続箇所と対応する位置に貫通孔を有しており、前記導電材の下部は、前記貫通孔を介して前記封止空間よりも下側の高さ位置まで導出されていることを特徴とする。
また、本発明の実装構造体は、上述の弾性表面波装置と、前記弾性表面波装置が実装された外部回路基板と、を備えていることを特徴とする。
【0012】
【発明の実施の形態】
本発明に係る弾性表面波装置の実施形態を図面に基づき詳細に説明する。
【0013】
図1に本発明に係る弾性表面波装置S1にける断面図を示す。また、図2に弾性表面波装置S1の上面透視図を示す。ここで、図1は図2のA−A'線断面図である。
【0014】
弾性表面波装置S1は、ベース基板14上に、圧電基板2の下面に励振電極1とこれに接続される引き出し電極8,9(8は信号用電極、9は接地用電極)とを形成した弾性表面波素子3を載置し、ベース基板14に励振電極1に対向させる凹部16と引出し電極8,9に対向させる貫通孔15をそれぞれ形成し、貫通孔15に第1の導電材である金属膜17や第2の導電材18を充填して外部回路接続部となしている。
【0015】
ここで、弾性表面波素子3の機能面上に、例えば絶縁体材料の樹脂から成る枠状の封止材12を塗布形成している。この封止材12により弾性表面波素子3とベース基板14とを接合し気密封止している。
【0016】
貫通孔15に導電材18である例えば半田や金属フィラーを混入させた樹脂を満たしているが、導電材18はベース基板14の下面に対し表面が凸状になるよう印刷充填する。このように、導電材18を凸形状にすることで、弾性表面波装置S1の特に信号用電極から外部回路実装基板の電極への密着がきわめて容易かつ良好になる。
【0017】
貫通孔15の側面には導電材18とベース基板14、および弾性表面波素子3の引き出し電極8、9との密着性をよくするために金属膜17を被着形成している。
【0018】
また、ベース基板14の凹部16や貫通孔15の形成は、異方性エッチングが可能な例えばSi単結晶基板の(100)面や(110面)を主面として利用すれば、(100)面または(110)面と(111)面とのエッチングレートの差異が大きいことを利用した異方性エッチングにより、(111)面の傾斜面を有する凹部16や貫通孔15の作製が容易となる。なお、異方性エッチングに用いるアルカリ性エッチャントとしては、KOH,NaOH,EPW(エチレンジアミン+ピロカテコール+水),ヒドラジン,TMAH(水酸化テトラメチルアンモニウム)等のアルカリ水溶液が好ましい。
【0019】
凹部16に封止材12のたれ込み(加熱や加圧時に変形すること)がある場合、弾性表面波素子3上の励振電極1の妨げになり特性に悪影響を及ぼすおそれがあるが、樹脂のたれ込み部位に微小空間の傾斜面を形成することで、樹脂の表面張力で樹脂のたれ込み量を極力抑えることができるため、上記のような異方性エッチング法を用いることが好ましい。
【0020】
また、ベース基板14の上面で弾性表面波素子3の励振電極1に対向する部位に異方性エッチングにより凹部16を形成しているため、弾性表面波素子3の電極厚さによらず励振電極1の振動空間19を十分に確保できる。
【0021】
さらに、貫通孔15には導電材18等を印刷充填するため、導電体中に気泡が入りにくく充填されやすいため、貫通孔15に傾斜をもたせることが可能な異方性エッチング法を用いることが好ましい。
【0022】
次に、図3に示す他の実施形態について説明する。ここで、枠状の封止材12は絶縁性のため、入出力電極である引き出し電極8および接地電極である引き出し電極9が電気的にショートとなることが無いため、引き出し電極8,9の圧電基板2上の引き回しが自由にできる。これにより、ベース基板14上の入出力電極および接地電極の引き出し電極8,9の配線ピッチに自由度があり、また、圧電基板2上やベース基板14上にインダクタやコンデンサなどの付加回路を作製することも可能である。このようにインダクタを構成するようにミアンダ状(蛇行状)線路20を有する接地電極を設けることも可能である。
【0023】
また、弾性表面波素子3の機能面とベース基板14とを、封止材12により接合し気密封止できるが、弾性表面波装置を外部回路基板に実装する際、チップマウンタのマニュピレータが与える圧力によって、弾性表面波素子3の圧電基板2が破損することがあり得るため、図4に示す弾性表面波装置S3のように、圧電基板2の上面側から保護樹脂22を樹脂ポッティングして作製しても構わない。
【0024】
なお、圧電基板2はタンタル酸リチウム単結晶、ニオブ酸リチウム単結晶、水晶、4ほう酸リチウム単結晶、ランガサイト系単結晶、ニオブ酸カリウム単結晶、ガリウム砒素単結晶が主に適用できる。
【0025】
また、励振電極1や、貫通孔の表面被服する金属膜17の材料には、主にアルミニウム、アルミニウム・銅合金、アルミニウム・チタン合金、アルミニウム・珪素合金、金、銀、または銀・パラジウム合金が主に適用でき、電極の密着度向上や電気抵抗の削減のため下地材が必要な場合には、クロム、チタン、銅等が主に適用できる。
【0026】
また、封止材12や保護樹脂22は、熱硬化性樹脂(エポキシ系、シリコーン系、フェノール系、ポリイミド系、ポリウレタン系等)、熱可塑性樹脂(ポリフェニレンサルファイド等)、紫外線硬化樹脂、または低融点ガラス等が主に適用できる。
【0027】
また、導電材18は、熱硬化性樹脂(エポキシ系、シリコーン系、フェノール系、ポリイミド系、ポリウレタン系等)、熱可塑性樹脂(ポリフェニレンサルファイド等)、紫外線硬化樹脂、または低融点ガラス等に金属フィラーを任意の割合で混入されたものが主に適用できる。
【0028】
また、圧電基板2上の微細な電極である励振電極1を埃等の異物や金属マイグレーションから保護するため、励振電極1上に保護膜21を約0.1μm以内で形成するのが一般的である。
【0029】
また、図1では励振電極を共振器梯子型フィルタの構成図を示したが、共振器格子型フィルタや2重モード共振器型フィルタ、マルチIDT電極型フィルタ、またはこれらの複合された構成で行っても構わない。
【0030】
なお、本発明は上記の実施形態に限定されるものでなく、SAWフィルタだけでなく、SAWレゾネータやSAWデュプレクサにも本発明が適用でき、本発明の要旨を逸脱しない範囲で種々の変更は何等差し支えない。
【0031】
【実施例】
厚さ0.35mm、約80mm径の42°YカットX伝搬タンタル酸リチウム単結晶ウエハに、電極膜としてAl−Cu合金をスパッタ法にて膜厚0.2μmで成膜した。その上に、ポジ型フォトレジストを1μmの厚さでスピンコート法により塗布した。その後、露光、現像を行ないフォトレジストのパターニングを行ない、ドライエッチング法で所望の励振電極1や引き出し電極8,9形状となるようにエッチングし、アッシングでフォトレジストを除去して電極パターニングを完了した。
【0032】
その後、SiO2膜をCVD法により0.025μmの厚さで成膜し、ポジ型フォトレジストを1μmの厚さでスピンコート法により塗布し、露光・現像を行ないフォトレジストのパターニングを行ない、ドライエッチング法により電極をエッチングし、アッシングによりフォトレジストを除去して、励振電極1上に保護膜21をパターニングした。
【0033】
多数のパターニングされた弾性表面波素子3が並んだウエハを、ダイシングソーを用いてダイシングし、1mm角の弾性表面波素子3を多数完成させた。
【0034】
次に、厚さ0.25mm、約80mm径のSi単結晶(主面が(100)面)の基板に、ポジ型フォトレジストを1μmの厚さでスピンコート法により塗布し、露光・現像を行ないフォトレジストのパターニングを行い、水酸化カリウム水溶液に30時間浸漬してベース基板14をエッチングし、Si基板のSAW素子3と対向する面上に0.2mm角、外部回路との接続端子面に0.55mm角の貫通孔を形成した。
【0035】
また、同様に振動空間19の形成のために底面0.5mm角、上面0.64mm角の傾斜のある段差部を異方性エッチングにより作製した。
【0036】
その後、弾性表面波素子3に枠状の封止材のエポキシ樹脂をマスク印刷により、0.1mm厚さ、幅0.15mmに塗布し、前記エポキシ樹脂を150℃、30分の条件で仮硬化させた。この弾性表面波素子3と前記ベース基板14を前記エポキシ樹脂にて微小加圧・加熱(150℃、2時間)し、気密封止を行った。また、次に貫通孔15にマスク蒸着によりTiを0.1μmの厚さで成膜し、貫通孔側面にTi金属膜を形成し、無鉛はんだペーストを貫通孔15にマスク印刷し、塗布した。
【0037】
次にはんだペースト塗布面を上にして、Siウエハをプレヒート150℃、1分間、溶融加熱230℃、5秒の条件ではんだボールを貫通孔に形成した。
【0038】
そして、Siウエハをダイシングソーでダイシングし、1.5mm角の弾性表面波装置を多数完成させた。
【0039】
以上の工程により大きさは幅1.5mm、奥行き1.5mm、高さ0.7mmの超小型な弾性表面波装置を完成させることができた。
【0040】
【発明の効果】
以上詳述したように、本発明の弾性表面波装置によれば、電気的接続をフリップチップ接続で行なうことにより、ワイヤボンディングで必要となる空間を確保しなくともよい。このため、従来のワイヤ接続による弾性表面波装置より小型の弾性表面波装置を提供することができる。
【0041】
また、本発明のベース基板では、フリップチップ接続におけるベース基板あるいはワイヤ接続におけるパッケージで必要となる電極の引き回しをなくすことができ、作製及び構造が非常に簡便な弾性表面波装置を提供できる。
【0042】
さらに、外部回路接続部をベース基板の下面に対し凸状に形成することにより、特に弾性表面波装置と外部回路実装基板との密着がきわめて良好となり、信頼性に優れた弾性表面波装置を提供できる。
【0043】
そして、ベース基板を異方性エッチングが可能な材料から成るものとし、凹部及び貫通孔が異方性エッチングにより形成することによっても、作製が容易で信頼性の優れた弾性表面波装置を提供できる。
【図面の簡単な説明】
【図1】本発明に係る弾性表面波装置の一実施形態を模式的に説明する断面図である。
【図2】本発明に係る弾性表面波装置の一実施形態を模式的に説明する上面透視図である。
【図3】本発明に係る弾性表面波装置の他の実施形態を模式的に説明するの上面透視図である。
【図4】本発明に係る弾性表面波装置の他の実施形態を模式的に説明する断面図である。
【図5】従来の弾性表面波装置を模式的に説明する断面図である。
【符号の説明】
1:励振電極
2:圧電基板
3:弾性表面波素子
4:筐体
5:接着樹脂
6:入出力電極
7:接地電極
8:入出力電極(引き出し電極)
9:接地電極(引き出し電極)
10:ワイヤ
11:蓋体
12:封止材
14:ベース基板
15:貫通孔
16:凹部
17:第1の導電材(金属膜)
18:第2の導電材
19:振動空間
20:信号配線部
21:保護膜
22:保護樹脂
S1〜S3:弾性表面波装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a surface acoustic wave device which is a resonator or a frequency band filter built in a mobile wireless device such as an automobile phone or a cellular phone.
[0002]
[Prior art and its problems]
In recent years, many surface acoustic wave resonators and surface acoustic wave filters have been used as electronic components such as frequency filters (hereinafter referred to as filters), delay lines, transmitters, etc. for electronic devices that communicate using radio waves. Is used. In particular, in the field of mobile communication, it is widely used as a filter for RF (Radio Frequency: radio frequency or high frequency) blocks and IF (Intermediate Frequency) blocks of mobile terminal devices such as mobile phones. In the future, it is desired to reduce the weight and size of parts in a communication system using mobile wireless devices such as automobile phones and mobile phones.
[0003]
The basic structure of a conventional surface acoustic wave (hereinafter also referred to as SAW) device is that a plurality of pairs of comb-like excitation electrodes (Inter Digital Transducers, IDT electrodes) are arranged on the surface of a piezoelectric substrate. The element is placed in a ceramic casing.
[0004]
FIG. 5 shows a conventional example. The excitation electrode 1 is formed by forming a conductive film such as an Al or Al-Cu alloy on a piezoelectric substrate 2 made of, for example, a 36 ° Y-cut X-propagating lithium tantalate single crystal by vapor deposition, sputtering, etc. It is formed by patterning a conductive film so as to be a fine electrode by lithography.
[0005]
Further, the SAW element 3 is manufactured by cutting the piezoelectric substrate 2 on which the excitation electrode 1 is formed with a dicing saw. Further, the SAW element 3 is placed in a case 4 made of ceramic and fixed with an adhesive resin 5, and the input / output electrode 6 or the ground electrode 7 of the case 4 is connected to the lead electrodes 8 and 9 with the wire 10. Connect with. And in order to give weather resistance, the housing | casing 4 and the cover body 11 are sealed with the sealing material 12 of seam welding or solder, or resin.
[0006]
As described above, in the conventional SAW device, although the weight and size are required, the housing is larger than the element, and it is necessary to secure a space in the housing by wire bonding. Therefore, there is a problem that the SAW device is increased in size.
[0007]
On the other hand, in recent years, proposals have been made to reduce the weight and size of the entire apparatus by performing flip chip connection using bumps (see, for example, JP-A-11-150440).
[0008]
According to this method, the space required for wire bonding becomes unnecessary by performing electrical connection by flip-chip connection. For this reason, it can be made smaller than a conventional SAW device by wire connection.
[0009]
However, in any of the above methods, it is necessary to form electrodes on the surface of the flip-chip base substrate or package. In addition, it is necessary to route the electrode from the connection portion with the SAW element to the lower surface of the base substrate to be flip-chip or the lower surface of the package, which requires a lot of man-hours for manufacturing the base substrate or the package.
[0010]
Therefore, an object of the present invention is to provide a SAW device that can be miniaturized to the same size as the element size and that is easy to manufacture.
[0011]
In order to achieve the above object, a surface acoustic wave device according to the present invention includes a surface acoustic wave device having an excitation electrode on a lower surface and a lead electrode electrically connected to the excitation electrode, and the excitation electrode. A base substrate that is disposed so as to face the surface acoustic wave element through an existing sealed space, and is joined to the surface acoustic wave element outside the sealed space in a plan view, and the upper part is the drawer A conductive material for connecting an external circuit electrically connected to the electrode, and for connecting the external circuit
The conductive material is located outside the sealing space in a plan view and does not exist inside the sealing space, and the base substrate is made of a material capable of anisotropic etching, A concave portion formed by anisotropic etching is provided in a portion of the base substrate facing the excitation electrode .
The surface acoustic wave device according to the present invention is characterized in that a lower portion of the conductive material is led out to a height position below the sealing space.
Further, in the surface acoustic wave device according to the present invention, the base substrate has a through hole at a position corresponding to a connection portion between the conductive material and the extraction electrode, and a lower portion of the conductive material is the through hole. It is derived | led-out to the height position below the said sealing space through this.
A mounting structure according to the present invention includes the surface acoustic wave device described above and an external circuit board on which the surface acoustic wave device is mounted.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of a surface acoustic wave device according to the present invention will be described in detail with reference to the drawings.
[0013]
FIG. 1 shows a cross-sectional view of a surface acoustic wave device S1 according to the present invention. FIG. 2 shows a top perspective view of the surface acoustic wave device S1. Here, FIG. 1 is a cross-sectional view taken along line AA ′ of FIG.
[0014]
In the surface acoustic wave device S1, the excitation electrode 1 and lead electrodes 8 and 9 (8 is a signal electrode and 9 is a ground electrode) connected to the excitation electrode 1 are formed on the lower surface of the piezoelectric substrate 2 on the base substrate 14. The surface acoustic wave element 3 is placed, and a recess 16 that faces the excitation electrode 1 and a through hole 15 that faces the extraction electrodes 8 and 9 are formed in the base substrate 14, respectively, and the through hole 15 is a first conductive material. The metal film 17 and the second conductive material 18 are filled to form an external circuit connection portion.
[0015]
Here, on the functional surface of the surface acoustic wave element 3, for example, a frame-shaped sealing material 12 made of an insulating material resin is applied and formed. The surface acoustic wave element 3 and the base substrate 14 are joined and hermetically sealed by the sealing material 12.
[0016]
The through-hole 15 is filled with a conductive material 18, for example, a resin mixed with solder or a metal filler, but the conductive material 18 is printed and filled so that the surface of the lower surface of the base substrate 14 is convex. Thus, by making the conductive material 18 convex, the adhesion of the surface acoustic wave device S1 particularly from the signal electrode to the electrode of the external circuit mounting substrate becomes extremely easy and good.
[0017]
A metal film 17 is deposited on the side surface of the through hole 15 in order to improve the adhesion between the conductive material 18 and the base substrate 14 and the extraction electrodes 8 and 9 of the surface acoustic wave element 3.
[0018]
In addition, the concave portion 16 and the through hole 15 of the base substrate 14 can be formed by using the (100) plane or the (110 plane) of the Si single crystal substrate capable of anisotropic etching as the main plane. Alternatively, the anisotropic etching using the large difference in etching rate between the (110) plane and the (111) plane facilitates the production of the concave portion 16 and the through hole 15 having the inclined surface of the (111) plane. The alkaline etchant used for anisotropic etching is preferably an alkaline aqueous solution such as KOH, NaOH, EPW (ethylenediamine + pyrocatechol + water), hydrazine, TMAH (tetramethylammonium hydroxide).
[0019]
When the sealing material 12 sags in the recess 16 (deforms during heating or pressurization), the excitation electrode 1 on the surface acoustic wave element 3 may be hindered and the characteristics may be adversely affected. By forming the inclined surface of the minute space at the site, the amount of resin sagging can be suppressed as much as possible by the surface tension of the resin. Therefore, it is preferable to use the anisotropic etching method as described above.
[0020]
Further, since the concave portion 16 is formed by anisotropic etching at a portion facing the excitation electrode 1 of the surface acoustic wave element 3 on the upper surface of the base substrate 14, the excitation electrode is independent of the electrode thickness of the surface acoustic wave element 3. A sufficient vibration space 19 can be secured.
[0021]
Further, since the conductive material 18 or the like is printed and filled in the through hole 15, bubbles are not easily contained in the conductor, and therefore, the anisotropic etching method capable of inclining the through hole 15 is used. preferable.
[0022]
Next, another embodiment shown in FIG. 3 will be described. Here, since the frame-shaped sealing material 12 is insulative, the extraction electrode 8 that is an input / output electrode and the extraction electrode 9 that is a ground electrode are not electrically short-circuited. The wiring on the piezoelectric substrate 2 can be freely performed. As a result, the wiring pitch between the input / output electrodes on the base substrate 14 and the lead electrodes 8 and 9 for the ground electrode is flexible, and additional circuits such as inductors and capacitors are formed on the piezoelectric substrate 2 and the base substrate 14. It is also possible to do. In this way, it is possible to provide a ground electrode having meandering (meandering) line 20 so as to constitute an inductor.
[0023]
Further, the functional surface of the surface acoustic wave element 3 and the base substrate 14 can be joined and hermetically sealed by the sealing material 12, but the pressure applied by the manipulator of the chip mounter when the surface acoustic wave device is mounted on the external circuit board. Can cause damage to the piezoelectric substrate 2 of the surface acoustic wave element 3. Therefore, as in the surface acoustic wave device S 3 shown in FIG. 4, the protective resin 22 is produced by resin potting from the upper surface side of the piezoelectric substrate 2. It doesn't matter.
[0024]
The piezoelectric substrate 2 is mainly applicable to lithium tantalate single crystal, lithium niobate single crystal, quartz, lithium tetraborate single crystal, langasite single crystal, potassium niobate single crystal, and gallium arsenide single crystal.
[0025]
The material of the excitation electrode 1 and the metal film 17 to be coated on the surface of the through hole is mainly aluminum, aluminum / copper alloy, aluminum / titanium alloy, aluminum / silicon alloy, gold, silver, or silver / palladium alloy. It can be mainly applied, and chromium, titanium, copper, etc. can be mainly applied when a base material is required for improving the adhesion of electrodes and reducing electric resistance.
[0026]
Further, the sealing material 12 and the protective resin 22 are a thermosetting resin (epoxy, silicone, phenol, polyimide, polyurethane, etc.), a thermoplastic resin (polyphenylene sulfide, etc.), an ultraviolet curable resin, or a low melting point. Glass etc. are mainly applicable.
[0027]
The conductive material 18 is made of a metal filler such as a thermosetting resin (epoxy, silicone, phenol, polyimide, polyurethane, etc.), a thermoplastic resin (polyphenylene sulfide, etc.), an ultraviolet curable resin, or a low-melting glass. Can be mainly applied.
[0028]
Further, in order to protect the excitation electrode 1, which is a fine electrode on the piezoelectric substrate 2, from foreign matters such as dust and metal migration, a protective film 21 is generally formed on the excitation electrode 1 within about 0.1 μm. is there.
[0029]
Although FIG. 1 shows a configuration diagram of a resonator ladder filter as an excitation electrode, it is performed by a resonator lattice filter, a dual mode resonator filter, a multi-IDT electrode filter, or a combination of these. It doesn't matter.
[0030]
The present invention is not limited to the above embodiment, and the present invention can be applied not only to the SAW filter but also to the SAW resonator and the SAW duplexer, and various modifications are possible without departing from the spirit of the present invention. There is no problem.
[0031]
【Example】
An Al—Cu alloy was formed as an electrode film on a 42 ° Y-cut X-propagating lithium tantalate single crystal wafer having a thickness of 0.35 mm and a diameter of about 80 mm to a thickness of 0.2 μm by sputtering. On top of that, a positive photoresist was applied by a spin coating method with a thickness of 1 μm. After that, exposure and development are performed to pattern the photoresist, etching is performed by a dry etching method so that the desired excitation electrode 1 and extraction electrodes 8 and 9 are formed, and the photoresist is removed by ashing to complete the electrode patterning. .
[0032]
After that, a SiO2 film is formed by a CVD method to a thickness of 0.025 μm, a positive photoresist is applied by a spin coating method with a thickness of 1 μm, exposure and development are performed, the photoresist is patterned, and dry etching is performed. The electrode was etched by the method, the photoresist was removed by ashing, and the protective film 21 was patterned on the excitation electrode 1.
[0033]
A wafer on which a large number of patterned surface acoustic wave elements 3 are arranged is diced using a dicing saw, and a large number of 1 mm square surface acoustic wave elements 3 are completed.
[0034]
Next, a positive photoresist is applied with a thickness of 1 μm by spin coating on a substrate of Si single crystal (main surface is (100) plane) having a thickness of about 0.25 mm and a diameter of about 80 mm, and exposure and development are performed. Then, the photoresist is patterned, immersed in an aqueous potassium hydroxide solution for 30 hours to etch the base substrate 14, 0.2 mm square on the surface of the Si substrate facing the SAW element 3, and on the connection terminal surface to the external circuit A 0.55 mm square through hole was formed.
[0035]
Similarly, in order to form the vibration space 19, a stepped portion having an inclination with a bottom surface of 0.5 mm square and an upper surface of 0.64 mm square was fabricated by anisotropic etching.
[0036]
Thereafter, an epoxy resin as a frame-shaped sealing material is applied to the surface acoustic wave element 3 by mask printing to a thickness of 0.1 mm and a width of 0.15 mm, and the epoxy resin is temporarily cured at 150 ° C. for 30 minutes. I let you. The surface acoustic wave element 3 and the base substrate 14 were finely pressurized and heated (150 ° C., 2 hours) with the epoxy resin, and hermetically sealed. Next, Ti was formed into a thickness of 0.1 μm in the through hole 15 by mask vapor deposition, a Ti metal film was formed on the side surface of the through hole, and a lead-free solder paste was mask printed on the through hole 15 and applied.
[0037]
Next, with the solder paste coating surface facing up, solder balls were formed in the through-holes under the conditions of preheating 150 ° C. for 1 minute, melt heating 230 ° C. for 5 seconds.
[0038]
The Si wafer was diced with a dicing saw to complete a number of 1.5 mm square surface acoustic wave devices.
[0039]
Through the above process, an ultra-small surface acoustic wave device having a width of 1.5 mm, a depth of 1.5 mm, and a height of 0.7 mm could be completed.
[0040]
【The invention's effect】
As described above in detail, according to the surface acoustic wave device of the present invention, it is not necessary to secure a space required for wire bonding by performing electrical connection by flip-chip connection. Therefore, it is possible to provide a surface acoustic wave device that is smaller than the conventional surface acoustic wave device using wire connection.
[0041]
Further, the base substrate of the present invention can eliminate the electrode routing required for the base substrate in the flip chip connection or the package in the wire connection, and can provide a surface acoustic wave device that is very simple to manufacture and structure.
[0042]
In addition, by forming the external circuit connection part in a convex shape with respect to the lower surface of the base substrate, the surface acoustic wave device particularly excellent in close contact between the surface acoustic wave device and the external circuit mounting substrate is provided. it can.
[0043]
Further, by forming the base substrate from a material that can be anisotropically etched and forming the recesses and the through holes by anisotropic etching, it is possible to provide a surface acoustic wave device that is easy to manufacture and has excellent reliability. .
[Brief description of the drawings]
FIG. 1 is a cross-sectional view schematically illustrating an embodiment of a surface acoustic wave device according to the present invention.
FIG. 2 is a top perspective view schematically illustrating an embodiment of a surface acoustic wave device according to the present invention.
FIG. 3 is a top perspective view schematically illustrating another embodiment of a surface acoustic wave device according to the present invention.
FIG. 4 is a cross-sectional view schematically illustrating another embodiment of a surface acoustic wave device according to the present invention.
FIG. 5 is a cross-sectional view schematically illustrating a conventional surface acoustic wave device.
[Explanation of symbols]
1: Excitation electrode 2: Piezoelectric substrate 3: Surface acoustic wave element 4: Housing 5: Adhesive resin 6: Input / output electrode 7: Ground electrode 8: Input / output electrode (extraction electrode)
9: Ground electrode (lead electrode)
10: Wire 11: Lid 12: Sealing material 14: Base substrate 15: Through hole 16: Concave portion 17: First conductive material (metal film)
18: second conductive material 19: vibration space 20: signal wiring portion 21: protective film 22: protective resins S1 to S3: surface acoustic wave device

Claims (4)

下面に励振電極と該励振電極に電気的に接続される引き出し電極とを有した弾性表面波素子と、
前記励振電極との間に存在する封止空間を介して前記弾性表面波素子と対向するように配置され、平面透視して前記封止空間の外側で前記弾性表面波素子に対し接合されたベース基板と、
上部が前記引き出し電極と電気的に接続された外部回路接続用の導電材と、を備え、
前記外部回路接続用の導電材は、平面透視して前記封止空間よりも外側に位置し、かつ前記封止空間の内側には存在せず、
前記ベース基板は、異方性エッチングが可能な材料から構成され、且つ該ベース基板の前記励振電極と対向する部分には、異方性エッチングにより形成された凹部が設けられている、弾性表面波装置。
A surface acoustic wave device having an excitation electrode on the lower surface and an extraction electrode electrically connected to the excitation electrode;
A base which is disposed so as to face the surface acoustic wave element through a sealing space existing between the excitation electrode and is joined to the surface acoustic wave element outside the sealing space in a plan view. A substrate,
A conductive material for connecting an external circuit, the upper part of which is electrically connected to the extraction electrode;
The conductive material for connecting the external circuit is located outside the sealing space in a plan view, and does not exist inside the sealing space .
The base substrate is made of a material capable of anisotropic etching, and a concave portion formed by anisotropic etching is provided in a portion of the base substrate facing the excitation electrode. apparatus.
前記導電材の下部が前記封止空間よりも下側の高さ位置まで導出されている、請求項1に記載の弾性表面波装置。  The surface acoustic wave device according to claim 1, wherein a lower portion of the conductive material is led out to a height position below the sealing space. 前記ベース基板は、前記導電材と前記引き出し電極との接続箇所と対応する位置に貫通孔を有しており、
前記導電材の下部は、前記貫通孔を介して前記封止空間よりも下側の高さ位置まで導出されている、請求項1または2に記載の弾性表面波装置。
The base substrate has a through hole at a position corresponding to a connection portion between the conductive material and the lead electrode;
The surface acoustic wave device according to claim 1, wherein a lower portion of the conductive material is led out to a height position below the sealing space through the through hole.
請求項1〜3のいずれか一項に記載の弾性表面波装置と、
前記弾性表面波装置が実装された外部回路基板と、を備えた実装構造体。
A surface acoustic wave device according to any one of claims 1 to 3,
A mounting structure comprising: an external circuit board on which the surface acoustic wave device is mounted.
JP2000054164A 2000-02-29 2000-02-29 Surface acoustic wave device Expired - Fee Related JP4510982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000054164A JP4510982B2 (en) 2000-02-29 2000-02-29 Surface acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000054164A JP4510982B2 (en) 2000-02-29 2000-02-29 Surface acoustic wave device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009147777A Division JP4823336B2 (en) 2009-06-22 2009-06-22 Surface acoustic wave device and mounting structure

Publications (2)

Publication Number Publication Date
JP2001244785A JP2001244785A (en) 2001-09-07
JP4510982B2 true JP4510982B2 (en) 2010-07-28

Family

ID=18575455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000054164A Expired - Fee Related JP4510982B2 (en) 2000-02-29 2000-02-29 Surface acoustic wave device

Country Status (1)

Country Link
JP (1) JP4510982B2 (en)

Families Citing this family (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10216267B4 (en) 2002-04-12 2005-04-14 Infineon Technologies Ag Method for producing a housing for a chip with a micromechanical structure
JP2004129223A (en) 2002-07-31 2004-04-22 Murata Mfg Co Ltd Piezoelectric component and manufacturing method thereof
JP2004129224A (en) 2002-07-31 2004-04-22 Murata Mfg Co Ltd Piezoelectric component and method of manufacturing the same
JP2006245098A (en) 2005-03-01 2006-09-14 Seiko Epson Corp Electronic component, manufacturing method thereof, and electronic device
KR100902685B1 (en) * 2005-11-02 2009-06-15 파나소닉 주식회사 Electronic component package
US7652214B2 (en) 2005-11-02 2010-01-26 Panasonic Corporation Electronic component package
KR102148279B1 (en) 2010-05-20 2020-08-26 히타치가세이가부시끼가이샤 Photosensitive resin composition, photosensitive film, rib pattern formation method, hollow structure and formation method for same, and electronic component
JP6508217B2 (en) * 2015-01-16 2019-05-08 株式会社村田製作所 Substrate, method of manufacturing substrate, and elastic wave device
WO2018216486A1 (en) 2017-05-26 2018-11-29 株式会社村田製作所 Electronic component and module equipped with same
US12040779B2 (en) 2020-04-20 2024-07-16 Murata Manufacturing Co., Ltd. Small transversely-excited film bulk acoustic resonators with enhanced Q-factor
US12088281B2 (en) 2021-02-03 2024-09-10 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with multi-mark interdigital transducer
US10911023B2 (en) 2018-06-15 2021-02-02 Resonant Inc. Transversely-excited film bulk acoustic resonator with etch-stop layer
US11929731B2 (en) 2018-02-18 2024-03-12 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with optimized electrode mark, and pitch
US10637438B2 (en) 2018-06-15 2020-04-28 Resonant Inc. Transversely-excited film bulk acoustic resonators for high power applications
US11323089B2 (en) 2018-06-15 2022-05-03 Resonant Inc. Filter using piezoelectric film bonded to high resistivity silicon substrate with trap-rich layer
US11323090B2 (en) 2018-06-15 2022-05-03 Resonant Inc. Transversely-excited film bulk acoustic resonator using Y-X-cut lithium niobate for high power applications
US11206009B2 (en) 2019-08-28 2021-12-21 Resonant Inc. Transversely-excited film bulk acoustic resonator with interdigital transducer with varied mark and pitch
US12237826B2 (en) 2018-06-15 2025-02-25 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with optimized electrode thickness, mark, and pitch
US11936358B2 (en) 2020-11-11 2024-03-19 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with low thermal impedance
US11509279B2 (en) 2020-07-18 2022-11-22 Resonant Inc. Acoustic resonators and filters with reduced temperature coefficient of frequency
US11323096B2 (en) 2018-06-15 2022-05-03 Resonant Inc. Transversely-excited film bulk acoustic resonator with periodic etched holes
US11146232B2 (en) 2018-06-15 2021-10-12 Resonant Inc. Transversely-excited film bulk acoustic resonator with reduced spurious modes
US10601392B2 (en) 2018-06-15 2020-03-24 Resonant Inc. Solidly-mounted transversely-excited film bulk acoustic resonator
US12119808B2 (en) 2018-06-15 2024-10-15 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator package
US11949402B2 (en) 2020-08-31 2024-04-02 Murata Manufacturing Co., Ltd. Resonators with different membrane thicknesses on the same die
US10917072B2 (en) 2019-06-24 2021-02-09 Resonant Inc. Split ladder acoustic wave filters
US11888463B2 (en) 2018-06-15 2024-01-30 Murata Manufacturing Co., Ltd. Multi-port filter using transversely-excited film bulk acoustic resonators
US11901878B2 (en) 2018-06-15 2024-02-13 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators with two-layer electrodes with a wider top layer
US12191837B2 (en) 2018-06-15 2025-01-07 Murata Manufacturing Co., Ltd. Solidly-mounted transversely-excited film bulk acoustic device
US11909381B2 (en) 2018-06-15 2024-02-20 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators with two-layer electrodes having a narrower top layer
US11146238B2 (en) 2018-06-15 2021-10-12 Resonant Inc. Film bulk acoustic resonator fabrication method
US11996825B2 (en) 2020-06-17 2024-05-28 Murata Manufacturing Co., Ltd. Filter using lithium niobate and rotated lithium tantalate transversely-excited film bulk acoustic resonators
US12095446B2 (en) 2018-06-15 2024-09-17 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with optimized electrode thickness, mark, and pitch
US12155374B2 (en) 2021-04-02 2024-11-26 Murata Manufacturing Co., Ltd. Tiled transversely-excited film bulk acoustic resonator high power filters
US10998882B2 (en) 2018-06-15 2021-05-04 Resonant Inc. XBAR resonators with non-rectangular diaphragms
US12149227B2 (en) 2018-06-15 2024-11-19 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator package
US12244295B2 (en) 2018-06-15 2025-03-04 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators with two-layer electrodes having a narrower top layer
US10985728B2 (en) 2018-06-15 2021-04-20 Resonant Inc. Transversely-excited film bulk acoustic resonator and filter with a uniform-thickness dielectric overlayer
US12155371B2 (en) 2021-03-29 2024-11-26 Murata Manufacturing Co., Ltd. Layout of xbars with multiple sub-resonators in series
US12224732B2 (en) 2018-06-15 2025-02-11 Murata Manufacturing Co., Ltd. Solidly-mounted transversely-excited film bulk acoustic resonators and filters for 27 GHz communications bands
US11876498B2 (en) 2018-06-15 2024-01-16 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with multiple diaphragm thicknesses and fabrication method
US11996822B2 (en) 2018-06-15 2024-05-28 Murata Manufacturing Co., Ltd. Wide bandwidth time division duplex transceiver
US12095441B2 (en) 2018-06-15 2024-09-17 Murata Manufacturing Co., Ltd. Transversely excited film bulk acoustic resonator with recessed interdigital transducer fingers
US12081187B2 (en) 2018-06-15 2024-09-03 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator
US12212306B2 (en) 2018-06-15 2025-01-28 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with multiple diaphragm thicknesses and fabrication method
US10992284B2 (en) 2018-06-15 2021-04-27 Resonant Inc. Filter using transversely-excited film bulk acoustic resonators with multiple frequency setting layers
US11323091B2 (en) 2018-06-15 2022-05-03 Resonant Inc. Transversely-excited film bulk acoustic resonator with diaphragm support pedestals
US11264966B2 (en) 2018-06-15 2022-03-01 Resonant Inc. Solidly-mounted transversely-excited film bulk acoustic resonator with diamond layers in Bragg reflector stack
US11349452B2 (en) 2018-06-15 2022-05-31 Resonant Inc. Transversely-excited film bulk acoustic filters with symmetric layout
US12113512B2 (en) 2021-03-29 2024-10-08 Murata Manufacturing Co., Ltd. Layout of XBARs with multiple sub-resonators in parallel
US12191838B2 (en) 2018-06-15 2025-01-07 Murata Manufacturing Co., Ltd. Solidly-mounted transversely-excited film bulk acoustic device and method
US11870423B2 (en) 2018-06-15 2024-01-09 Murata Manufacturing Co., Ltd. Wide bandwidth temperature-compensated transversely-excited film bulk acoustic resonator
US11967945B2 (en) 2018-06-15 2024-04-23 Murata Manufacturing Co., Ltd. Transversly-excited film bulk acoustic resonators and filters
US12184261B2 (en) 2018-06-15 2024-12-31 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with a cavity having round end zones
US10826462B2 (en) 2018-06-15 2020-11-03 Resonant Inc. Transversely-excited film bulk acoustic resonators with molybdenum conductors
US11916539B2 (en) 2020-02-28 2024-02-27 Murata Manufacturing Co., Ltd. Split-ladder band N77 filter using transversely-excited film bulk acoustic resonators
US12040781B2 (en) 2018-06-15 2024-07-16 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator package
CN109004083B (en) * 2018-08-10 2024-08-09 浙江熔城半导体有限公司 Chip packaging structure with single cofferdam and solder and manufacturing method thereof
CN109004080B (en) * 2018-08-10 2024-08-06 浙江熔城半导体有限公司 Chip packaging structure with extending double cofferdams and soldering tin and manufacturing method thereof
CN113615083B (en) 2019-03-14 2024-10-15 株式会社村田制作所 Laterally excited film bulk acoustic resonator with half-λ dielectric layer
DE112020001765T5 (en) 2019-04-05 2021-12-23 Resonant Inc. Packaging of a transversely excited film bulk acoustic resonator and method
US12255625B2 (en) 2020-02-28 2025-03-18 Murata Manufacturing Co., Ltd. Filter using transversely-excited film bulk acoustic resonators with inductively coupled sub-resonators
US20220116020A1 (en) 2020-04-20 2022-04-14 Resonant Inc. Low loss transversely-excited film bulk acoustic resonators and filters
US11811391B2 (en) 2020-05-04 2023-11-07 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with etched conductor patterns
US10992282B1 (en) 2020-06-18 2021-04-27 Resonant Inc. Transversely-excited film bulk acoustic resonators with electrodes having a second layer of variable width
US12003226B2 (en) 2020-11-11 2024-06-04 Murata Manufacturing Co., Ltd Transversely-excited film bulk acoustic resonator with low thermal impedance
US12166468B2 (en) 2021-01-15 2024-12-10 Murata Manufacturing Co., Ltd. Decoupled transversely-excited film bulk acoustic resonators for high power filters

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0590884A (en) * 1991-09-28 1993-04-09 Murata Mfg Co Ltd Surface acoustic wave device and its mounting method
JPH07111438A (en) * 1993-10-08 1995-04-25 Hitachi Ltd Surface acoustic wave device and manufacturing method thereof
JPH08204497A (en) * 1995-01-26 1996-08-09 Murata Mfg Co Ltd Surface acoustic wave device
JPH08274575A (en) * 1995-04-03 1996-10-18 Kokusai Electric Co Ltd Element composite mounted circuit board
JPH104152A (en) * 1996-06-17 1998-01-06 Matsushita Electric Ind Co Ltd Electronic component
JPH1126628A (en) * 1997-06-30 1999-01-29 Murata Mfg Co Ltd Package structure of electronic component
JP2000124767A (en) * 1998-10-14 2000-04-28 Japan Radio Co Ltd Substrate mounting method of SAW filter chip and SAW filter chip

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09162688A (en) * 1995-12-11 1997-06-20 Matsushita Electric Ind Co Ltd Surface acoustic wave device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0590884A (en) * 1991-09-28 1993-04-09 Murata Mfg Co Ltd Surface acoustic wave device and its mounting method
JPH07111438A (en) * 1993-10-08 1995-04-25 Hitachi Ltd Surface acoustic wave device and manufacturing method thereof
JPH08204497A (en) * 1995-01-26 1996-08-09 Murata Mfg Co Ltd Surface acoustic wave device
JPH08274575A (en) * 1995-04-03 1996-10-18 Kokusai Electric Co Ltd Element composite mounted circuit board
JPH104152A (en) * 1996-06-17 1998-01-06 Matsushita Electric Ind Co Ltd Electronic component
JPH1126628A (en) * 1997-06-30 1999-01-29 Murata Mfg Co Ltd Package structure of electronic component
JP2000124767A (en) * 1998-10-14 2000-04-28 Japan Radio Co Ltd Substrate mounting method of SAW filter chip and SAW filter chip

Also Published As

Publication number Publication date
JP2001244785A (en) 2001-09-07

Similar Documents

Publication Publication Date Title
JP4510982B2 (en) Surface acoustic wave device
JP6290850B2 (en) Elastic wave device and elastic wave module
JP5117083B2 (en) Elastic wave device and manufacturing method thereof
JP5865944B2 (en) Method for manufacturing acoustic wave device
JP3677409B2 (en) Surface acoustic wave device and manufacturing method thereof
US7042056B2 (en) Chip-size package piezoelectric component
JP4377500B2 (en) Surface acoustic wave device and method of manufacturing surface acoustic wave device
JP2004129222A (en) Piezoelectric component and method of manufacturing the same
JP4936953B2 (en) Manufacturing method of surface acoustic wave device
JP2008135971A (en) Elastic wave device
EP1443643A1 (en) Piezoelectric component and method for manufacturing the same
JP4906557B2 (en) Manufacturing method of surface acoustic wave device
JP4823336B2 (en) Surface acoustic wave device and mounting structure
JP4382945B2 (en) Surface acoustic wave device
JP4467154B2 (en) Surface acoustic wave device
JP4762333B2 (en) Surface acoustic wave device
JP2000196400A (en) Mounting structure of surface acoustic wave device
JP2001345673A (en) Surface acoustic wave device
JP2000165192A (en) Surface acoustic wave device
JP2000223989A (en) Surface acoustic wave device
JP2007312201A (en) Substrate mounted surface acoustic wave device, method for manufacturing the same, and communication device
JP2007081555A (en) Surface acoustic wave device
JP5263529B2 (en) Method for manufacturing piezoelectric vibrator
JP4684343B2 (en) Surface acoustic wave device
JP2005217670A (en) Surface acoustic wave device and communication device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090928

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100128

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100506

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4510982

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees