JP4497859B2 - 面発光半導体レーザ装置および光伝送モジュールおよび光伝送システム - Google Patents
面発光半導体レーザ装置および光伝送モジュールおよび光伝送システム Download PDFInfo
- Publication number
- JP4497859B2 JP4497859B2 JP2003204807A JP2003204807A JP4497859B2 JP 4497859 B2 JP4497859 B2 JP 4497859B2 JP 2003204807 A JP2003204807 A JP 2003204807A JP 2003204807 A JP2003204807 A JP 2003204807A JP 4497859 B2 JP4497859 B2 JP 4497859B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- semiconductor laser
- emitting semiconductor
- resonator
- laser device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Semiconductor Lasers (AREA)
Description
【発明の属する技術分野】
本発明は、面発光半導体レーザ装置および光伝送モジュールおよび光伝送システムに関する。
【0002】
【従来の技術】
特開平11−354881には、p側電極を共振器上に形成し、電流がp−DBRミラーを流れないようにすることで、素子の直列抵抗を低減する面発光半導体レーザが示されている。しかしながら、この面発光半導体レーザでは、活性領域に対して電流を横側から注入しているため、活性領域に均一に電流を注入することが難しく、閾電流が高くなってしまうという問題がある。
【0003】
これに対し、特開2000−196189には、透明電極を共振器とDBRミラーの間に設ける面発光半導体レーザが示されており、この構造により、活性領域に対する電流注入を均一化している。しかしながら、光吸収係数が小さく、接触抵抗が小さい透明電極を実際に作製することは困難である。
【0004】
一方、U.S.P.08/997,712には、共振器内で定在波の節の位置に、高ドープ層を設けることにより直列抵抗を低減する面発光半導体レーザが示されている。ドーピング濃度を高くすると、素子の抵抗を下げることができるが、自由キャリア吸収が増加して、高出力動作が得られなくなる。そこで、この面発光半導体レーザでは、高ドープ層を、光強度が低い節の位置に設けている。
【0005】
しかしながら、高ドープ層は、ある厚さを有しているため、定在波の節からずれた部分では光吸収が生じてしまう。一方、高ドープ層を薄くしすぎると、直列抵抗を低減する効果が小さくなってしまう。
【0006】
【発明が解決しようとする課題】
本発明は、素子抵抗が低く、かつ活性領域に均一に電流を注入でき、光吸収損失の小さい面発光半導体レーザ装置および光伝送モジュールおよび光伝送システムを提供することを目的としている。
【0007】
【課題を解決するための手段】
上記目的を達成するために、請求項1記載の発明は、基板に垂直な共振器を形成する下部多層膜反射鏡および上部多層膜反射鏡と、共振器内に配置された活性層と該活性層に隣接したスペーサ層とを有し、共振器上に第1の電極が形成され、基板の裏面に第2の電極が形成されており、共振器内であって前記スペーサ層に挟まれてキャリア拡散層が設けられており、該キャリア拡散層は、活性層のバンドギャップよりも大きく、かつ前記スペーサ層のバンドギャップよりも小さいバンドギャップを有することを特徴としている。
【0008】
また、請求項2記載の発明は、基板に垂直な共振器を形成する下部多層膜反射鏡および上部多層膜反射鏡と、共振器内に配置された活性層と該活性層に隣接したスペーサ層とを有し、活性層に電流を注入する第1の電極と第2の電極が共振器に形成され、共振器内であって前記スペーサ層に挟まれてキャリア拡散層が設けられており、該キャリア拡散層は、活性層のバンドギャップよりも大きく、かつ前記スペーサ層のバンドギャップよりも小さいバンドギャップを有することを特徴としている。
【0009】
また、請求項3記載の発明は、基板に垂直な共振器を形成する下部多層膜反射鏡および上部多層膜反射鏡と、共振器内に配置された活性層と該活性層に隣接したスペーサ層とを有し、第1の電極と第2の電極のうちの少なくとも一方の電極は、多層膜反射鏡の途中に形成されており、共振器内であって前記スペーサ層に挟まれてキャリア拡散層が設けられており、該キャリア拡散層は、活性層のバンドギャップよりも大きく、かつ前記スペーサ層のバンドギャップよりも小さいバンドギャップを有することを特徴としている。
【0010】
また、請求項4記載の発明は、請求項1乃至請求項3のいずれか一項に記載の面発光半導体レーザ装置において、前記キャリア拡散層は、圧縮歪を有していることを特徴としている。
【0011】
また、請求項5記載の発明は、請求項1乃至請求項4のいずれか一項に記載の面発光半導体レーザ装置において、前記キャリア拡散層は、共振器のp型領域に設けられていることを特徴としている。
【0012】
また、請求項6記載の発明は、請求項1乃至請求項5のいずれか一項に記載の面発光半導体レーザ装置において、前記キャリア拡散層が複数設けられていることを特徴としている。
【0013】
また、請求項7記載の発明は、請求項1乃至請求項6のいずれか一項に記載の面発光半導体レーザ装置において、前記キャリア拡散層は、圧縮歪を有する層と引張歪を有する層が交互に複数積層されて構成されていることを特徴としている。
【0014】
また、請求項8記載の発明は、請求項1乃至請求項7のいずれか一項に記載の面発光半導体レーザ装置において、共振器のp型領域の層厚がn型領域の層厚よりも厚く形成されていることを特徴としている。
【0015】
また、請求項9記載の発明は、請求項1乃至請求項8のいずれか一項に記載の面発光半導体レーザ装置において、共振器内の活性層とキャリア拡散層の間に、イオン注入による高抵抗領域から成る電流狭窄構造が設けられていることを特徴としている。
【0016】
また、請求項10記載の発明は、請求項1乃至請求項8のいずれか一項に記載の面発光半導体レーザ装置において、共振器内の活性層とキャリア拡散層との間に、選択的に酸化された絶縁領域と非酸化領域である導電領域とからなる電流狭窄構造が設けられていることを特徴としている。
【0017】
また、請求項11記載の発明は、請求項1乃至請求項8のいずれか一項に記載の面発光半導体レーザ装置において、共振器内の活性層とキャリア拡散層の間に、選択的にエッチングされたエアギャップ領域と、非エッチング領域である導電領域とから成る電流狭窄構造が設けられていることを特徴としている。
【0019】
また、請求項12記載の発明は、請求項9乃至請求項11のいずれか一項に記載の面発光半導体レーザ装置において、共振器内に設けられた電流狭窄領域と第1の電極との間に、高濃度ドーピング領域を設けたことを特徴としている。
【0020】
また、請求項13記載の発明は、請求項1乃至請求項12のいずれか一項に記載の面発光半導体レーザ装置において、活性層が窒素と他のV族元素とを含む混晶半導体からなることを特徴としている。
【0021】
また、請求項14記載の発明は、請求項1乃至請求項13のいずれか一項に記載の面発光半導体レーザ装置を備えていることを特徴とする光伝送モジュールである。
【0022】
また、請求項15記載の発明は、請求項14記載の光伝送モジュールを備えていることを特徴とする光伝送システムである。
【0023】
【発明の実施の形態】
以下、本発明の実施形態を説明する。
【0024】
(第1の実施形態)
本発明の第1の実施形態の面発光半導体レーザ装置は、基板に垂直な共振器を形成する下部多層膜反射鏡および上部多層膜反射鏡と、共振器内に配置された活性層とを有し、共振器上に第1の電極が形成され、基板の裏面に第2の電極が形成されており、共振器内に、活性層のバンドギャップよりも大きく、かつ共振器を構成する材料のバンドギャップよりも小さいバンドギャップを有するキャリア拡散層が設けられていることを特徴としている。
【0025】
多層膜反射鏡(DBR)は、媒質内の波長の1/4厚さで高屈折率層と低屈折率層とを交互に積層して形成される。多層膜反射鏡を半導体で形成する場合、屈折率の異なる層を交互に20周期以上積層する。高屈折率半導体層と低屈折率半導体層との界面にはヘテロ障壁が形成されるため、半導体多層膜反射鏡は高抵抗となる。特に、p型の半導体多層膜反射鏡では抵抗増加が問題となる。
【0026】
半導体多層膜反射鏡の抵抗を下げるためには、半導体層のキャリア濃度を高濃度にする方法が有効である。しかしながら、高濃度にドーピングした半導体層では、自由キャリアによる光吸収が増加してしまうため、反射鏡内の吸収損失が増加してしまうという問題が起こる。
【0027】
本発明の第1の実施形態においては、第1の電極は共振器上に形成されており、電流は上部多層膜反射鏡を流れないで活性層に注入される構造となっている。従って、上部多層膜反射鏡を電流が通ることによる直列抵抗の増加は回避される。
【0028】
一方、共振器上に第1の電極を形成した場合、電流は活性層の発振領域に対して横側から注入されることになる。そのため、活性層に対して電流を均一に注入することが難しいという問題が生じる。
【0029】
そこで、本発明の第1の実施形態においては、共振器内にキャリア拡散層を設けている。キャリア拡散層のバンドギャップは共振器を構成するスペーサ層のバンドギャップよりも小さくなっている。そのため、キャリア拡散層内では、キャリアはスペーサ層とのヘテロ障壁に閉じ込められるため、横方向(面内方向)へのキャリア拡散が促進される。これにより、第1の電極から活性層に流れ込む電流の均一性を改善することができる。
【0030】
なお、キャリア拡散層のバンドギャップは共振器を構成するスペーサ層のバンドギャップよりも小さくなっていることから、キャリア拡散層とスペーサ層とのヘテロ障壁によって直列抵抗が増加する影響は小さくなっている。
【0031】
また、キャリア拡散層のバンドギャップは活性層のバンドギャップよりも大きくなっているため、キャリア拡散層内でバンド間光吸収は生じない。また、従来例である。U.S.P.08/997,712と異なり、キャリア拡散層を高ドープする必要がない。従って、キャリア拡散層において自由キャリアによる光吸収を抑制することができる。
【0032】
また、電流は上部多層膜反射鏡を通さないため、上部多層膜反射鏡の抵抗を下げる必要がない。従って上部多層膜反射鏡として、低キャリア濃度またはアンドープの半導体多層膜反射鏡を用いることができる。あるいは、吸収係数が非常に小さい誘電体材料で上部多層膜反射鏡を構成することもできる。よって、上部多層膜反射鏡の光吸収損失を低減することができる。
【0033】
以上のことから、本発明の第1の実施形態では、素子抵抗を低減し、活性層に対する電流注入均一性を改善し、かつ光吸収損失の小さい面発光半導体レーザを実現できる。
【0034】
(第2の実施形態)
本発明の第2の実施形態の面発光半導体レーザ装置は、基板に垂直な共振器を形成する下部多層膜反射鏡および上部多層膜反射鏡と、共振器内に配置された活性層とを有し、活性層に電流を注入する第1の電極と第2の電極が共振器に形成され、共振器内に、活性層のバンドギャップよりも大きく、かつ共振器を構成する材料のバンドギャップよりも小さいバンドギャップを有するキャリア拡散層が設けられていることを特徴としている。
【0035】
本発明の第2の実施形態では、第1の電極と第2の電極の両方が共振器に形成されている。従って、電流を上部多層膜反射鏡と下部多層膜反射鏡を通さないで活性層に注入することができる。従って、第1の実施形態に比べてさらに直列抵抗を低減することができる。
【0036】
また、共振器内にキャリア拡散層を設けることにより、横方向へのキャリア拡散を促進して、電流を活性層の発振領域に対して均一に注入できるようにしている。
【0037】
なお、下部多層膜反射鏡は、半導体材料で構成される。例えば、高屈折率材料としてAlaGa1−aAs(0≦a<b)が用いられ、低屈折率材料としてAlbGa1−bAs(a<b≦1)が用いられる。本発明の第2の実施形態では、下部多層膜反射鏡に電流を流す必要がないため、下部多層膜反射鏡の抵抗を下げる必要がない。従って、ヘテロ障壁は大きくなるが、最も屈折率差が大きくとれるGaAs高屈折率層とAlAs低屈折率層で構成することができる。従って、99.9%以上の高反射率を得るのに、より少ない層数で形成できる。また、2元化合物半導体材料の組み合わせであることから、熱抵抗が低くなる。よって、素子の放熱性を向上させることができる。
【0038】
また、下部多層膜反射鏡を低濃度またはノンドープで形成できるため、下部多層膜反射鏡内での自由キャリア光吸収も抑制できる。
【0039】
(第3の実施形態)
本発明の第3の実施形態の面発光半導体レーザ装置は、基板に垂直な共振器を形成する下部多層膜反射鏡および上部多層膜反射鏡と、共振器内に配置された活性層とを有し、第1の電極と第2の電極のうちの少なくとも一方の電極は、多層膜反射鏡の途中に形成されており、共振器内に、活性層のバンドギャップよりも大きく、かつ共振器を構成する材料のバンドギャップよりも小さいバンドギャップを有するキャリア拡散層が設けられていることを特徴としている。
【0040】
本発明の第3の実施形態では、第1の電極または第2の電極は、共振器ではなく多層膜反射鏡の途中に設けられている。この構造では、電流は多層膜反射鏡の1部を通って活性層に注入されることになる。そのため、第1または第2の実施形態と比較すると、直列抵抗は増加してしまう。しかし、電流が通過する反射鏡の周期を、数周期と薄くすることによって、直列抵抗の増加を比較的抑制することができる。
【0041】
電流が通過する反射鏡のキャリア濃度は、自由キャリア吸収が小さくなるように、例えば1×1018cm−3以下に下げる必要がある。なおかつ、反射鏡の直列抵抗を下げるために、高屈折率層と低屈折率層との間に組成傾斜層を設けたり、高屈折率層と低屈折率層とのバンドギャップ差を小さくしたり、光の定在波分布の節でドーピング濃度を高くする等の手段が用いられる。
【0042】
また、共振器内にはキャリア拡散層が設けられており、横方向へのキャリア拡散を促進して、電流を活性層の発振領域に対して均一に注入できるようにしている。
【0043】
さらに、本発明の第3の実施形態では、第1の電極または第2の電極が多層膜反射鏡の途中に設けられていることにより、電極と活性層までの距離を長くできる。また、ヘテロ界面を通って電流が流れるため、電流がより横方向に拡散して均一に注入されやすくなっている。
【0044】
一般に、電極は、接触抵抗を下げるために、1×1018cm−3以上の高濃度にドーピングされたコンタクト層上に形成される。高濃度にドーピングされたコンタクト層による光吸収を抑制するため、コンタクト層は光の定在波の節に設けられる。しかしながら、コンタクト層はある厚さを有しているため、定在波の節からずれた部分では光吸収が生じてしまう。
【0045】
本発明の第3の実施形態では、電極が多層膜反射鏡の途中に設けられているため、コンタクト層と共振器との間の多層膜反射鏡によって反射が生じ、光強度分布の包絡線はコンタクト層に達するまでに減少する。従って、コンタクト層を共振器に設けた場合に比べて、コンタクト層を多層膜反射鏡の途中に設けた方が、コンタクト層近傍の光強度分布は腹の位置においても低下する。従って、定在波の節からずれた部分のコンタクト層で生じる光吸収を低減することができる。
【0046】
(第4の実施形態)
本発明の第4の実施形態は、第1乃至第3のいずれかの実施形態の面発光半導体レーザ装置において、キャリア拡散層は圧縮歪を有していることを特徴としている。
【0047】
圧縮歪を有することにより、価電子帯のバンド構造が変形して正孔の有効質量が小さくなる。従って、キャリア拡散層における正孔の移動度が高くなるため、正孔の横方向拡散が更に促進される。
【0048】
また、GaAs基板やInP基板に対して格子定数が大きいInAsは特に移動度が大きい材料であることが知られている。従って、GaAs基板やInP基板に対して圧縮歪を有するInGaAsやInAsPをキャリア拡散層に用いることによって、電子についてもキャリアの拡散を促進することができる。
【0049】
(第5の実施形態)
本発明の第5の実施形態は、第1乃至第4のいずれかの実施形態の面発光型半導体レーザ装置において、キャリア拡散層は共振器のp型領域に設けられていることを特徴としている。
【0050】
半導体層の正孔の有効質量は、電子の有効質量よりも大きくなっている。そのため、p型半導体多層膜反射鏡の抵抗の方が、n型半導体多層膜反射鏡の抵抗よりも高くなる。従って、直列抵抗を低減する上でp型半導体多層膜反射鏡を通さずに電流を注入することがより必要である。
【0051】
また、半導体層の正孔の移動度は電子の移動度に比べて小さいため、正孔の方が拡散しにくくなっている。そこで、本発明の第5の実施形態においては、キャリア拡散層を特に共振器のp型領域に設けることで、正孔の拡散を促進して、活性層に対する電流注入を均一化している。
【0052】
このとき、第4の実施形態に示したようにキャリア拡散層として圧縮歪を有する材料を用いると、正孔の移動度が更に大きくなるため効果が高い。
【0053】
(第6の実施形態)
本発明の第6の実施形態は、第1乃至第5のいずれかの実施形態の面発光型半導体レーザ装置において、キャリア拡散層が複数設けられていることを特徴としている。
【0054】
キャリア拡散層を複数重ねることにより、1層のみを設けた場合に比べて、よりキャリアの拡散を促進することができる。
【0055】
共振器を構成するスペーサ層よりもバンドギャップが小さい半導体層を井戸層とし、スペーサ層の材料を障壁層とする多重量子井戸構造でキャリア拡散層を構成することができる。
【0056】
特に、圧縮歪を有するキャリア拡散層は、転位が入らないようにするため、層厚を臨界膜厚よりも薄くする必要がある。そこで、層厚の薄い圧縮歪を有するキャリア拡散層を、無歪の障壁層ではさんで積層した多重量子井戸構造にすることにより、よりキャリアを拡散させることができる。
【0057】
また、共振器内の別々の場所にキャリア拡散層を複数設けることもできる。
【0058】
また、共振器のp側スペーサ層とn側スペーサ層の両方に設けることもできる。この場合は、電子と正孔の両方について、活性層への注入を均一化することができる。
【0059】
キャリア拡散層は高濃度ドープする必要がないため、自由キャリアによる光吸収を抑制することができる。従って、必ずしもキャリア拡散層を光の定在波の節に設ける必要はない。そのため、高ドープ層を設ける場合に比べて、キャリア拡散層を配置する位置の設計自由度が高くなっている。従って、キャリア拡散層を容易に複数設けることが可能である。
【0060】
(第7の実施形態)
圧縮歪を有する層は、歪による価電子帯バンド構造の変形により、正孔の有効質量が小さくなる。そのため、キャリア拡散層における正孔の移動度が高くなり、横方向のキャリア拡散が促進される。
【0061】
この圧縮歪を有する層を複数重ねることにより、1層のみ設けた場合に比べてさらにキャリアの拡散を促進することができる。しかしながら、圧縮歪を有する層を多層に積層していくと、内部の歪エネルギーが蓄積されていき、限界値を超えたところで転位が発生してしまう。
【0062】
そこで、第7の実施形態では、キャリア拡散層が圧縮歪を有する層と引張歪を有する層とを交互に複数積層して構成している。これにより、圧縮歪層を引張歪層で補償して、正味の歪量をゼロ近傍にすることで、圧縮歪を有するキャリア拡散層の積層数を転位が入ることなく増加させることができる。これにより、横方向のキャリア拡散を促進させることができる。
【0063】
(第8の実施形態)
本発明の第8の実施形態は、第1乃至第7のいずれかの実施形態の面発光型半導体レーザ装置において、共振器のp型領域の層厚がn型領域の層厚よりも厚いことを特徴としている。
【0064】
半導体層の正孔の移動度は、電子の移動度よりも小さくなっているため、p型層ではn型層に比べて電流が広がりにくくなっている。そこで、第7の実施形態では、活性層の位置を共振器の中心からずらしてp型領域の層厚をn型領域よりも厚くすることにより、p側の電極と活性層との距離を長くして、横方向の電流拡散をさらに促進している。
【0065】
また、共振器のp側領域を厚くすることにより、共振器のp側にキャリア拡散層を複数設けることが容易となる。
【0066】
活性層は共振器内で、光の定在波の腹に設ける必要がある。そして、活性層位置を共振器の中心からずらすために、共振器長は、媒質内の光の波長(λ)に対して、0.5λ×m(m=3,4,5,…)となるようにしている。
【0067】
(第9の実施形態)
本発明の第9の実施形態は、第1乃至第8のいずれかの実施形態の面発光半導体レーザ装置において、共振器内の活性層とキャリア拡散層の間に、イオン注入による高抵抗領域から成る電流狭窄構造が設けられていることを特徴としている。
【0068】
高抵抗領域を形成するために注入するイオンとしては、例えば、プロトンイオンや酸素イオンを用いることができる。
【0069】
共振器内の活性層とキャリア拡散層の間に、高抵抗領域からなる電流狭窄構造を設けることにより、電流を上部多層膜反射鏡の下に位置する活性層領域に集中して流すことができる。これにより、発振領域の活性層に対する電流注入均一性をさらに改善することができる。
【0070】
(第10の実施形態)
本発明の第10の実施形態は、第1乃至第8のいずれかの実施形態の面発光型半導体レーザ装置において、共振器内の活性層とキャリア拡散層との間に、選択的に酸化された絶縁領域と非酸化領域である導電領域とからなる電流狭窄構造が設けられていることを特徴としている。
【0071】
活性層の電流狭窄構造としては、イオン注入による高抵抗化も用いられる。しかし、共振器内で高抵抗領域が増加すると、横方向に電流を流す場合に抵抗が高くなるという問題がある。
【0072】
一方、選択的に酸化された絶縁領域を用いて電流狭窄構造を形成する場合には、酸化層厚を50nm以下と薄く設けるだけで、十分な絶縁領域を形成できる。従って、酸化層を共振器内に設けても、横方向に電流が流れる経路を大きくとれるため、抵抗の増加を抑制することができる。
【0073】
また、キャリア拡散層を選択的に酸化した絶縁領域と電極との間に設けることで、さらに横方向のキャリア拡散を促進して電流注入をより均一化できる。
【0074】
(第11の実施形態)
本発明の第11の実施形態は、第1乃至第8のいずれかの実施形態の面発光半導体レーザ装置において、共振器内の活性層とキャリア拡散層の間に、選択的にエッチングされたエアギャップ領域と、非エッチング領域である導電領域とから成る電流狭窄構造が設けられていることを特徴としている。
【0075】
選択的にエッチングされたエアギャップ領域を用いて電流狭窄構造を形成する場合には、エッチング層厚を50nm以下と薄く設けるだけで、十分な絶縁領域を形成できる。従って、エアギャップ領域を共振器内に設けても、横方向に電流が流れる経路を大きくとれるため、抵抗の増加を抑制することができる。
【0076】
また、選択的に酸化された絶縁領域では酸化による体積収縮によって素子に応力が加わってしまうが、本実施例のように絶縁領域をエアギャップ領域で形成する場合には、応力が発生することがない。従って、素子の信頼性低下を抑制することができる。
【0077】
(第12の実施形態)
本発明の第12の実施形態は、第9乃至第11のいずれかの実施形態の面発光半導体レーザ装置において、絶縁領域上部のキャリア拡散層のバンドギャップが、導電領域上部のキャリア拡散層のバンドギャップよりも小さいことを特徴としている。
【0078】
キャリア拡散層において、絶縁領域上部のバンドギャップが導電領域上部のバンドギャップよりも小さいことにより、キャリア拡散層内で、キャリアはバンドギャップのより小さい導電領域側に集中しやすくなる。これにより、導電領域に対する電流注入をさらに均一化することができる。
【0079】
キャリア拡散層のバンドギャップを変化させる方法としては、例えばキャリア拡散層を(多重)量子井戸構造で形成しておき、絶縁領域上部の(多重)量子井戸構造を混晶化することによって実現できる。混晶化した部分では、混晶化していない(多重)量子井戸構造よりもバンドギャップが大きくなる。
【0080】
(多重)量子井戸構造を混晶化する手段としては、Zn, Si等のドーパントを拡散させる方法や、Ga, Al, As, Zn, Si等の元素をイオン注入した後で熱処理する方法や、空孔を拡散させる方法などを用いることができる。
【0081】
(第13の実施形態)
本発明の第9乃至第11のいずれかの実施形態の面発光半導体レーザ装置において、共振器内に設けられた電流狭窄領域と第1の電極との間に、高濃度ドーピング領域を設けたことを特徴としている。
【0082】
共振器内に設けられた電流狭窄領域と第1の電極との間に、高濃度ドーピング領域を設けることにより、第1の電極から電流狭窄構造の導電領域にいたるまでの電気抵抗を大幅に低下することができる。
【0083】
また、電流狭窄領域の下に位置する活性層には電流が注入されないため、発光再結合が生じない。さらに、選択酸化や選択エッチングによる電流狭窄構造では、横方向に屈折率差が生じるため、光を導電領域に閉じ込める作用がある。そのため共振器内で、導電領域の外側では光強度が急激に減衰する。そのため、高濃度ドーピング領域における光の自由キャリア吸収損失を十分低減することができる。
【0084】
すなわち、レーザ発振領域ではドーピング濃度を低減して自由キャリア吸収を抑制し、レーザ発振領域の外側では高濃度にドーピングすることで、電気抵抗を低減している。
【0085】
高濃度ドーピング領域のドーピング濃度としては、例えば1×1018cm− 3以上が望ましい。また、発振領域から外側にいくほどドーピング濃度を高くすることも可能である。
【0086】
高濃度ドーピング領域は、Zn、Be、Mg、C、Si、Se等のドーパントを拡散したり、イオン注入してからアニールすることによって形成することができる。
【0087】
(第14の実施形態)
本発明の第14の実施形態は、第1乃至第13のいずれかの実施形態の面発光半導体レーザ装置において、活性層が窒素と他のV族元素とを含む混晶半導体からなることを特徴としている。
【0088】
窒素と他のV族元素とを含む混晶半導体としては、例えばGaNAs,GaInNAs,GaNAsSb,GaInNAsSb,GaNAsP,GaInNAsP,GaInNAsPSb等がある。窒素と他のV族元素を含む混晶半導体は、窒素を添加していくと、ある範囲まではバンドギャップが小さくなるという特性を有している。この特性により、GaAs基板上に、石英光ファイバの伝送に適した1.3〜1.6μmの長波長帯の活性層を形成することが可能となった。
【0089】
また、GaAs基板を用いることで、屈折率差が大きくとれて、熱抵抗が低いAlGaAs材料系で多層膜反射鏡を形成することができるというメリットも有している。また、AlAsを選択的に酸化した電流狭窄構造を用いることもできる。
【0090】
第14の実施形態は、1.3〜1.6μmの長波長帯の面発光半導体レーザにおいて、第1乃至第9の実施形態で示した特徴を有しているため、素子抵抗を低減し、活性層に対する電流注入均一性を改善し、かつ光吸収損失の小さくすることができる。従って、動作電圧が低く、高出力の長波長帯面発光半導体レーザを形成することができる。
【0091】
(第15の実施形態)
本発明の第15の実施形態は、第1乃至第14のいずれかの実施形態の面発光半導体レーザ装置を備えていることを特徴とする光伝送モジュールである。
【0092】
第1乃至第14の実施形態に示した面発光半導体レーザ装置は、素子抵抗を低減し、活性層に対する電流注入を均一化できるため、動作電圧を低減できる。また、光吸収損失を減少させることにより、高効率でレーザ光が得られる。従って、これを光伝送モジュールに適用するとき、光伝送モジュールの消費電力を低減することができる。
【0093】
(第16の実施形態)
本発明の第16の実施形態は、第15の実施形態の光伝送モジュールを備えていることを特徴とする光伝送システムである。
【0094】
第15の実施形態の光伝送モジュールでは、光源である面発光半導体レーザの消費電力を低減しているため、低消費電力の光伝送システムを構築できる。
【0095】
【実施例】
以下、本発明の実施例を説明する。
【0096】
[実施例1]
図1は本発明の実施例1の面発光半導体レーザを示す図である。図1を参照すると、n型GaAs基板101上には、n型GaAs/AlGaAs DBR102が積層されている。ここで、n型GaAs/AlGaAs DBR102は、n型GaAs高屈折率層とn型Al0.8Ga0.2As低屈折率層とが、媒質内波長の1/4の層厚で交互に積層されて形成されている。
【0097】
そして、n型GaAs/AlGaAs DBR102上には、Al0.3Ga0.7As下部スペーサ層103、InGaAs/GaAs多重量子井戸活性層104、Al0.3Ga0.7As上部スペーサ層106が積層されている。そして、Al0.3Ga0.7As上部スペーサ層106の途中にGaAsキャリア拡散層105が設けられている。
【0098】
なお、Al0.3Ga0.7As下部スペーサ層103はn型となっており、Al0.3Ga0.7As上部スペーサ層106はp型となっている。
【0099】
また、図1において、上記積層構造の表面からn型GaAs/AlGaAs DBR102に達するまで円筒状にエッチングされて、メサ構造が形成されている。そして、メサ構造の表面には、光取り出し領域を除いてリング状のp側電極108が形成されている。なお、p側電極108はp型キャリア濃度を1×1018cm−3以上にしたコンタクト層(図示せず)上に形成されている。
【0100】
そして、メサ頂上部のAl0.3Ga0.7As上部スペーサ層106には、誘電体多層膜反射鏡107が積層されている。誘電体多層膜反射鏡107は、屈折率の異なる誘電体材料を、媒質内波長の1/4の層厚で交互に積層して形成されている。ここで、高屈折率層としては、TiO2,ZrO2,MgO,Al2O3,ZnSe等を用いることができ、低屈折率層としては、SiO2,MgF2,CaF2等を用いることができる。
【0101】
また、図1において、n型GaAs基板101の裏面には、n側電極109が形成されている。
【0102】
図1の面発光半導体レーザにおいては、p側電極108とn側電極109に順方向バイアスを印加することにより、InGaAs/GaAs多重量子井戸活性層104に電流が注入されて、波長0.98μm帯で発光する。この際、誘電体多層膜反射鏡107とn型GaAs/AlGaAs DBR102とではさまれた領域が共振器構造となっており、基板101に対して垂直上方にレーザ光が取り出される構造となっている。
【0103】
図1の面発光半導体レーザにおいては、p側電極108は共振器上に形成されており、電流は上部多層膜反射鏡を流れないで活性層に注入される構造となっている。従って、上部多層膜反射鏡を電流が通ることによる直列抵抗の増加は回避される。
【0104】
特に、半導体層の正孔の有効質量は、電子の有効質量よりも大きくなっているため、p型半導体多層膜反射鏡の抵抗の方が、n型半導体多層膜反射鏡の抵抗よりも高くなる。図1の構造では、p側の多層膜反射鏡を通さずに電流を注入しているため、直列抵抗低減の効果が大きい。
【0105】
一方、比較的抵抗の低いn型GaAs/AlGaAs DBR102については電流が通過する構造となっている。
【0106】
また、図1の面発光半導体レーザにおいては、p型Al0.3Ga0.7As上部スペーサ層106内に、GaAsキャリア拡散層105が設けられている。GaAsキャリア拡散層105のバンドギャップはAl0.3Ga0.7As上部スペーサ層106のバンドギャップよりも小さくなっており、GaAsキャリア拡散層105内では、キャリア(正孔)はAl0.3Ga0.7As上部スペーサ層106とのヘテロ障壁に閉じ込められるため、横方向(面内方向)へのキャリア拡散が促進される。これにより、メサ構造内でp側電極108から活性層104に流れ込む電流の均一性を改善している。
【0107】
なお、GaAsキャリア拡散層105は高濃度にドーピングする必要がないため、必ずしも共振器内の光の定在波分布において、節の位置に設けなくてもよい。
【0108】
また、上部多層膜反射鏡107は吸収係数が非常に小さい誘電体材料で構成されている。よって、上部多層膜反射鏡107の光吸収損失を低減することができる。また、Al0.3Ga0.7As下部スペーサ層103及びAl0.3Ga0.7As上部スペーサ層106のキャリア濃度を1×1018cm−3以下と低くすることにより、共振器内の自由キャリア吸収を抑制している。
【0109】
以上のことから、図1の面発光半導体レーザでは、素子抵抗を低減し、活性層に対する電流注入均一性を改善し、かつ光吸収損失の小さくすることができる。
【0110】
[実施例2]
図2は本発明の実施例2の面発光半導体レーザを示す図である。図2を参照すると、n型GaAs基板101上には、n型GaAs/AlGaAs DBR102が積層されている。ここで、n型GaAs/AlGaAs DBR102は、n型GaAs高屈折率層とn型Al0.8Ga0.2As低屈折率層とが、媒質内波長の1/4の層厚で交互に積層されて形成されている。
【0111】
そして、n型GaAs/AlGaAs DBR102上には、GaAs下部スペーサ層201、GaInNAs/GaAs多重量子井戸活性層202、GaAs上部スペーサ層204が積層されている。そして、GaAs上部スペーサ層204の途中には、AlAs層203が設けられており、また、GaAs上部スペーサ層204内で、AlAs層203よりも上部には、InGaAsキャリア拡散層205が2層設けられている。ここで、GaAs下部スペーサ層201はn型となっており、GaAs上部スペーサ層204はp型となっている。
【0112】
そして、GaAs上部スペーサ層204上には、GaAs/AlGaAs DBR206が積層されている。GaAs/AlGaAs DBR206は、ノンドープGaAs高屈折率層とノンドープAl0.9Ga0.1As低屈折率層とが、媒質内波長の1/4の層厚で交互に積層されて形成されている。
【0113】
図2の面発光半導体レーザでは、上記積層構造の表面からGaAs上部スペーサ層204の最表面まで円筒状にエッチングされて、1段目のメサ構造が形成されている。さらに、上記のサイズよりも大きいサイズで、n型GaAs/AlGaAs DBR102に達するまで円筒状にエッチングされて、2段目のメサ構造が形成されている。
【0114】
また、AlAs層203は、メサ側面から選択的に酸化されて絶縁領域207が形成されている。
【0115】
また、1段目のメサ構造のエッチング底面(2段目のメサ構造頂上部)には、リング状のp側電極108が形成されている。なお、p側電極108はp型キャリア濃度を1×1018cm−3以上にしたコンタクト層(図示せず)上に形成されている。
【0116】
また、n型GaAs基板101の裏面には、n側電極109が形成されている。
【0117】
図2の面発光半導体レーザにおいては、p側電極108とn側電極109に順方向バイアスを印加することにより、GaInNAs/GaAs多重量子井戸活性層202に電流が注入されて、波長1.3μm帯で発光する。このとき、電流はGaInNAs/GaAs多重量子井戸活性層202上に形成されたAlAs層203において、酸化されていない導電領域を通って流れ込む。これにより、電流を第2のメササイズよりも狭い領域に集中させて閾電流を低減している。また、酸化された絶縁領域207は、酸化されていないAlAs層203よりも屈折率が大きく低下するため、光を集光するレンズの役割を果たして、回折損失を低減している。
【0118】
図2の面発光半導体レーザでは、GaAs/AlGaAs DBR206とn型GaAs/AlGaAs DBR102とではさまれた領域が共振器構造となっており、基板101に対して垂直上方にレーザ光が取り出される。
【0119】
図2の面発光半導体レーザにおいては、図1の構造と同様に、p側電極108は共振器上に形成されており、電流は上部多層膜反射鏡206を流れないで活性層202に注入される構造となっている。従って、抵抗の高いp型半導体多層膜反射鏡を電流が通ることによる直列抵抗の増加は回避される。
【0120】
一方、共振器上にp側電極108を形成した場合、電流は活性層の発振領域に対して横側から注入されることになる。そのため、活性層に対して電流を均一に注入することが難しいという問題が生じる。
【0121】
そこで、図2の面発光半導体レーザにおいては、AlAs層203とp側電極108との間にInGaAsキャリア拡散層205を2層設けている。上部GaAsスペーサ層204よりもバンドギャップが小さいInGaAsキャリア拡散層205内では、キャリア(正孔)はスペーサ層とのヘテロ障壁に閉じ込められるため、横方向(面内方向)へのキャリア拡散が促進される。これにより、p側電極108から活性層202に流れ込む電流の均一性を改善することができる。
【0122】
また、InGaAsは移動度が大きい材料であることが知られている。そして、GaAs基板よりも格子定数が大きいため、圧縮歪を有している。圧縮歪を有することにより、価電子帯のバンド構造が変形して正孔の有効質量が小さくなる。従って、InGaAsキャリア拡散層205では正孔の移動度が高くなっており、正孔が拡散しやすくなっている。
【0123】
さらに、InGaAsキャリア拡散層205を2層設けることにより、1層のみを設けた場合に比べてよりキャリアの拡散を促進することができる。
【0124】
InGaAsキャリア拡散層205は高濃度ドープする必要がないため、自由キャリアによる光吸収を抑制することができる。従って、必ずしもInGaAsキャリア拡散層205を光の定在波の節に設ける必要はない。よって、InGaAsキャリア拡散層205を上部GaAsスペーサ層204内で、AlAs層203とp側電極108との間の任意の位置に配置することが可能である。
【0125】
なお、AlAs酸化層203の層厚は20〜50nmと薄く設けるだけで、選択酸化により有効な絶縁領域207を形成できる。従って、上部GaAsスペーサ層204内で、横方向に電流が流れる経路を制限することがない。
【0126】
また、電流は上部のGaAs/AlGaAs DBR206を通らないため、GaAs/AlGaAs DBR206の抵抗を下げる必要がない。従って、GaAs/AlGaAs DBR206を、低キャリア濃度のノンドープ層で構成することができ、これにより、GaAs/AlGaAs DBR206の光吸収損失を大きく低減することができる。
【0127】
[実施例3]
図3は本発明の実施例3の面発光半導体レーザを示す図である。図3を参照すると、n型GaAs基板101上には、GaAs/AlAs DBR301が積層されている。ここで、GaAs/AlAs DBR301は、ノンドープGaAs高屈折率層とノンドープAlAs低屈折率層とが、媒質内波長の1/4の層厚で交互に積層されて形成されている。
【0128】
そして、GaAs/AlAs DBR301上には、GaAs下部スペーサ層302、GaInNAs/GaAs多重量子井戸活性層202、GaAs上部スペーサ層303が積層されている。そして、GaAs上部スペーサ層303の途中にはAlAs層203が設けられており、また、GaAs上部スペーサ層303内で、AlAs層203よりも上部に、InGaAsキャリア拡散層205が2層設けられている。ここで、GaAs下部スペーサ層302はn型となっており、GaAs上部スペーサ層303はp型となっている。
【0129】
そして、GaAs上部スペーサ層303上には、GaAs/AlGaAs DBR206が積層されている。ここで、GaAs/AlGaAs DBR206は、ノンドープGaAs高屈折率層とノンドープAl0.9Ga0.1As低屈折率層とが、媒質内波長の1/4の層厚で交互に積層されて形成されている。
【0130】
図3の面発光半導体レーザでは、上記積層構造の表面から、GaAs上部スペーサ層303の最表面まで円筒状にエッチングされて1段目のメサ構造が形成されている。さらに、上記のサイズよりも大きいサイズで、GaAs下部スペーサ層302の途中まで円筒状にエッチングされて、2段目のメサ構造が形成されている。
【0131】
また、AlAs層203は、メサ側面から選択的に酸化されて、絶縁領域207が形成されている。
【0132】
また、1段目のメサ構造のエッチング底面(2段目のメサ構造頂上部)には、リング状のp側電極108が形成されている。また、2段目のメサ構造のエッチング底面には、n側電極109が形成されている。なお、p側電極108及びn側電極109は、キャリア濃度を1×1018cm−3以上にしたコンタクト層(図示せず)上に形成されている。そして、上記コンタクト層は、光の定在波分布における節に位置するように配置されている。
【0133】
図3の面発光半導体レーザにおいては、p側電極108とn側電極109に順方向バイアスを印加することにより、GaInNAs/GaAs多重量子井戸活性層202に電流が注入されて、波長1.3μm帯で発光する。このとき、電流はGaInNAs/GaAs多重量子井戸活性層202上に形成されたAlAs層203において、酸化されていない導電領域を通って流れ込む。これにより、電流を第2のメササイズよりも狭い領域に集中させて閾電流を低減することができる。また、酸化された絶縁領域207は、酸化されていないAlAs層203よりも屈折率が大きく低下するため、光を集光するレンズの役割を果たして、回折損失を低減することができる。
【0134】
図3の面発光半導体レーザでは、GaAs/AlAs DBR301とGaAs/AlGaAs DBR206とではさまれた領域が共振器構造となっており、基板101に対して垂直上方にレーザ光が取り出される。
【0135】
図3の面発光半導体レーザでは、p側電極108とn側電極109の両方が共振器に形成されている。従って、電流を上部多層膜反射鏡と下部多層膜反射鏡を通さないで活性層202に注入することができる。従って、図1,図2の構造に比べてさらに直列抵抗を低減することができる。
【0136】
図3の構造においては、GaAs/AlAs DBR301とGaAs/AlGaAs DBR206とではさまれた共振器構造の共振器長を、媒質内の光の波長(λ)に対して、0.5λ×m (m=3,4,5,…)となるようにしている。例えば、m=6とした場合、共振器長は3λとなる。
【0137】
そして、活性層202は、共振器内で光の定在波の腹に設けられているが、活性層位置を共振器の中心からずらして、p型GaAsスペーサ層303の層厚をn型GaAsスペーサ層302の層厚よりも厚くすることができる。共振器長が3λの場合、活性層位置を下から0.5λまたは1λの位置に設けることで、p側領域を厚くできる。
【0138】
これにより、p側電極108と活性層202との距離を長くすることができ、メサ構造内で抵抗の高いp側領域における横方向への電流拡散を促進することができる。
【0139】
さらに、図3の面発光半導体レーザでは、p型GaAsスペーサ層303中において、AlAs層203とp側電極108との間にInGaAsキャリア拡散層205が2層設けられている。第3の実施例でも、第2の実施例と同様に、移動度の高いInGaAs層を設けることにより、横方向への電流拡散を促進して、p側電極108から活性層202に流れ込む電流の均一性をさらに改善することができる。
【0140】
図3の面発光半導体レーザでは、下部多層膜反射鏡301には電流を流す必要がないため、下部多層膜反射鏡301の抵抗を下げる必要がない。従って、ヘテロ障壁は大きくなるが、下部多層膜反射鏡301を最も屈折率差が大きくとれるGaAs高屈折率層とAlAs低屈折率層で構成することができる。これによって、99.9%以上の高反射率を得るのに、下部多層膜反射鏡301をより少ない層数で形成できる。また、GaAsとAlAsは、AlGaAs混晶に比べて熱抵抗が低い材料であるため、素子の放熱性を向上させることができる。
【0141】
また、下部多層膜反射鏡301と上部多層膜反射鏡206は、ともに低キャリア濃度のノンドープ層で形成されており、これにより、多層膜反射鏡内での自由キャリア光吸収を大幅に低減することができる。
【0142】
[実施例4]
図4は本発明の実施例4の面発光半導体レーザを示す図である。図4を参照すると、n型GaAs基板101上には、GaAs/AlAs DBR401が積層されている。ここで、GaAs/AlAs DBR401は、ノンドープGaAs高屈折率層とノンドープAlAs低屈折率層とが、媒質内波長の1/4の層厚で交互に積層されて形成されている。
【0143】
そして、GaAs/AlAs DBR401上には、n型GaAs/AlGaAs DBR402が積層されている。ここで、n型GaAs/AlGaAs DBR402は、n型GaAs高屈折率層とn型Al0.8Ga0.2As低屈折率層とが、媒質内波長の1/4の層厚で交互に2周期積層されて形成されている。
【0144】
そして、n型GaAs/AlGaAs DBR402上には、GaAs下部スペーサ層302、GaInNAs/GaAs多重量子井戸活性層202、GaAs上部スペーサ層303が積層されている。そして、GaAs上部スペーサ層303の途中にはAlAs層203が設けられており、またGaAs上部スペーサ層303内で、AlAs層203よりも上部にInGaAsキャリア拡散層205が設けられている。ここで、GaAs下部スペーサ層302はn型となっており、GaAs上部スペーサ層303はp型となっている。
【0145】
また、GaAs上部スペーサ層303上には、p型GaAs/AlGaAs DBR403が積層されている。ここで、p型GaAs/AlGaAs DBR403は、p型GaAs高屈折率層とp型Al0.7Ga0.3As低屈折率層とが、媒質内波長の1/4の層厚で交互に2周期積層されて形成されている。
【0146】
そして、図4の面発光半導体レーザでは、上記積層構造の表面からGaAs/AlAs DBR401の最表面まで円筒状にエッチングされてメサ構造が形成され、AlAs層203は、メサ側面から選択的に酸化されて絶縁領域207が形成されている。そして、メサ構造の頂上には、光取り出し領域を除いてリング状のp側電極108が形成されている。
【0147】
そして、メサ頂上部のp型GaAs/AlGaAs DBR403上には、誘電体多層膜反射鏡107が積層されている。
【0148】
また、メサ構造のエッチング底面には、n側電極109が形成されている。なお、p側電極108及びn側電極109は、キャリア濃度を1×1018cm−3以上にしたコンタクト層(図示せず)上に形成されている。
【0149】
図4の面発光半導体レーザにおいては、p側電極108及びn側電極109は、共振器ではなく多層膜反射鏡の途中に設けられている。すなわち、p側電極108は、p型GaAs/AlGaAs DBR403と誘電体多層膜反射鏡107の途中に設けられており、n側電極109は、GaAs/AlAs DBR401とn型GaAs/AlGaAs DBR402の間に設けられている。
【0150】
この構造では、電流は、多層膜反射鏡403と402を通って活性層に注入されることになる。そのため、図3の構造と比較すると、直列抵抗は増加してしまう。ただし、電流が通過する多層膜反射鏡の周期を、2周期と薄くすることによって、直列抵抗の増加を比較的抑制している。
【0151】
反射鏡の大部分である誘電体多層膜反射鏡107とGaAs/AlAs DBR401については、光吸収損失を低減している。
【0152】
図4の構造では、p側電極108及びn側電極109と共振器との間に多層膜反射鏡403,402を設けることで、電流が横方向に広がりやすくしている。
【0153】
さらに、GaAs上部スペーサ層303内にInGaAsキャリア拡散層205を設けることで、横方向へキャリア(正孔)拡散を促進して、電流を活性層の発振領域に対して均一に注入できるようにしている。
【0154】
また、p側電極108とn側電極109が形成されているコンタクト層は、高濃度にドーピングされているため自由キャリア吸収が生じてしまう。これを抑制するために、コンタクト層は光の定在波分布において節の位置に設けられている。しかしながら、コンタクト層はある厚さを有しているため、定在波の節からずれた部分では光吸収が生じてしまう。
【0155】
図4の構造では、p側電極108とn側電極109と共振器との間に多層膜反射鏡が設けられることにより、光強度分布の包絡線はコンタクト層に達するまでに減少する。従って、コンタクト層を共振器に設けた場合に比べて、コンタクト層近傍の光強度分布は腹の位置においても低下する。従って、定在波の節からずれた部分のコンタクト層で生じる光吸収についても、より低減することができる。
【0156】
[実施例5]
図5は本発明の実施例5の面発光半導体レーザを示す図である。図5を参照すると、n型GaAs基板101上には、GaAs/AlAs DBR301が積層されている。ここで、GaAs/AlAs DBR301は、ノンドープGaAs高屈折率層とノンドープAlAs低屈折率層とが、媒質内波長の1/4の層厚で交互に積層されて形成されている。
【0157】
そして、GaAs/AlAs DBR301上には、Al0.3Ga0.7As下部スペーサ層103、GaInNAs/GaAs多重量子井戸活性層202、Al0.3Ga0.7As上部スペーサ層106が積層されている。
【0158】
そして、Al0.3Ga0.7As上部スペーサ層106の途中には、AlAs層203が設けられている。また、Al0.3Ga0.7As下部スペーサ層103内には、InGaAsキャリア拡散層501が設けられており、また、Al0.3Ga0.7As上部スペーサ層106内でAlAs層203よりも上には、GaAs/Al0.3Ga0.7As多重量子井戸キャリア拡散層502が設けられている。
【0159】
また、Al0.3Ga0.7As下部スペーサ層103はn型となっており、Al0.3Ga0.7As上部スペーサ層106はp型となっている。
【0160】
また、Al0.3Ga0.7As上部スペーサ層106には、GaAs/AlGaAs DBR206が積層されている。ここで、GaAs/AlGaAs DBR206は、ノンドープGaAs高屈折率層とノンドープAl0.9Ga0.1As低屈折率層とが、媒質内波長の1/4の層厚で交互に積層されて形成されている。
【0161】
図5の面発光半導体レーザでは、上記積層構造の表面から上部スペーサ層106の最表面まで円筒状にエッチングされて1段目のメサ構造が形成されている。さらに、上記のサイズよりも大きいサイズで、Al0.3Ga0.7As下部スペーサ層103の途中まで円筒状にエッチングされて、2段目のメサ構造が形成されている。
【0162】
そして、AlAs層203は、メサ側面から選択的に酸化されて絶縁領域207が形成されている。
【0163】
また、1段目のメサ構造のエッチング底面(2段目のメサ構造の頂上部)には、リング状のp側電極108が形成されている。また、2段目のメサ構造のエッチング底面には、n側電極109が形成されている。なお、p側電極108及びn側電極109は、キャリア濃度を1×1018cm−3以上にしたGaAsコンタクト層(図示せず)上に形成されている。そして、上記コンタクト層は、光の定在波分布における節に位置するように配置されている。
【0164】
図5の構造が、図3の構造と異なっている点は、キャリア拡散層が共振器のAl0.3Ga0.7As下部スペーサ層103とAl0.3Ga0.7As上部スペーサ層106の両方に設けられている点である。これにより、電子と正孔の両方について横方向の拡散を促進している。
【0165】
また、GaAs/Al0.3Ga0.7As多重量子井戸キャリア拡散層502において、AlAs層203が選択的に酸化された絶縁領域207の上部にある領域では、GaAs/Al0.3Ga0.7As多重量子井戸構造が混晶化されている。混晶化領域503は、1段目のメサ構造のエッチング底面からGa,Al,As,Zn等の元素をイオン注入した後で熱処理することにより形成される。混晶化されたAlGaAs層503のバンドギャップは、Al0.3Ga0.7As下部スペーサ層103よりも小さくなっており、キャリア拡散層として機能する。
【0166】
さらに、混晶化した領域503のバンドギャップは、混晶化していない多重量子井戸構造502のバンドギャップよりも大きくなっている。従って、キャリア拡散層において、絶縁領域207上部のバンドギャップが導電領域203上部のバンドギャップよりも小さくなっている。これにより、キャリア拡散層内でキャリアは、バンドギャップのより小さい導電領域側の多重量子井戸構造502に集中しやすくなる。これにより、導電領域203に対する電流注入をさらに均一化することができる。
【0167】
1段目のメサ構造のエッチング底面からZnイオン注入した領域は、熱処理後にZnが活性化して高濃度p型ドーピング領域504となる。絶縁領域207とp側電極108との間に、高濃度ドーピング領域504を設けることにより、p側電極108からAlAs層203の導電領域にいたるまでの電気抵抗を大幅に低下することができる。
【0168】
一方、キャリアと光は選択的に酸化された絶縁領域207によって閉じ込められるため、AlAs層203の導電領域外側では光強度が急激に減衰する。また、図5の構造において、Znイオン注入されていない領域の径は、AlAsが選択的に酸化されていない領域203の径とほぼ同じか、または大きくなっている。そのため、高濃度ドーピング領域504によって、光が自由キャリア吸収損失を受ける影響を低減することができる。
【0169】
[実施例6]
図6は本発明の実施例6の光伝送システムを示す図である。図6の光伝送システムは、光送信部601で発生した光信号が石英光ファイバ604を通って光受信部602に伝送される。図6では、光送信部601、光ファイバ604、光受信部602が2系列備わっており、双方向に通信できるようになっている。ここで、光送信部601と光受信部602は、1つのパッケージに集積されており、光送受信モジュール603を構成している。
【0170】
この実施例6では、光送信部601の光源に、実施例1乃至実施例5のいずれかの面発光半導体レーザ装置を用いることを特徴としている。実施例1乃至実施例5の面発光半導体レーザは、素子抵抗を低減し、活性層に対する電流注入を均一化できるため、動作電圧を低減できる。また、光吸収損失を減少させることにより、高効率でレーザ光が得られる。従って、光送信部601の光源に、実施例1乃至実施例5のいずれかの面発光半導体レーザ装置を用いることによって、光伝送部601の消費電力を低減することができ、低消費電力の光伝送システムを構築できる。
【0171】
なお、以上の例では、面発光半導体レーザ素子は、1素子の場合のみについて示したが、1次元または2次元のアレイ光源として用いることもできる。本発明の面発光半導体レーザ素子は、素子抵抗を低減することで発熱を抑制できるため、アレイ光源として用いた場合に熱的クロストークを抑制することができる。
【0172】
[実施例7]
図7は、本発明の実施例7の面発光半導体レーザの断面図である。n型GaAs基板101上に、n型GaAs/AlGaAs DBR102が積層されている。n型GaAs/AlGaAs DBR102は、n型GaAs高屈折率層とn型Al0.9Ga0.1As低屈折率層とが、媒質内波長の1/4の層厚で交互に積層されて形成されている。n型GaAs/AlGaAs DBR102上には、GaAs下部スペーサ層201、GaInNAs/GaAs多重量子井戸活性層202、GaAs上部スペーサ層204が積層されている。そして、GaAs上部スペーサ層204の途中にはInGaAsキャリア拡散層205が設けられている。GaAs下部スペーサ層103はn型となっており、GaAs上部スペーサ層106はp型となっている。
【0173】
GaAs上部スペーサ層204上には、GaAs/AlGaAs DBR206が積層されている。GaAs/AlGaAs DBR206は、ノンドープGaAs高屈折率層とノンドープAl0.9Ga0.1As低屈折率層とが、媒質内波長の1/4の層厚で交互に積層されて形成されている。
【0174】
上記積層構造の表面から、GaAs上部スペーサ層204の最表面まで円筒状にエッチングされて1段目のメサ構造が形成されている。さらに、上記のサイズよりも大きいサイズで、n型GaAs/AlGaAs DBR102に達するまで円筒状にエッチングされて、2段目のメサ構造が形成されている。
【0175】
2段目のメサ構造表面からプロトンイオンを注入し、GaAs/AlGaAsDBR206の下に位置する活性層を除いて、活性層の近傍に高抵抗領域701が形成されている。
【0176】
1段目のメサ構造のエッチング底面(2段目のメサ構造頂上部)には、リング状のp側電極108が形成されている。なお、p側電極108はp型キャリア濃度を1×1018cm−3以上にしたコンタクト層上に形成されている。(図示されていない)
【0177】
また、n型GaAs基板101裏面には、n側電極109が形成されている。
【0178】
図7の面発光半導体レーザにおいては、p側電極108とn側電極109に順方向バイアスをかけることにより、GaInNAs/GaAs多重量子井戸活性層202に電流が注入されて、波長1.3μm帯で発光する。このとき、電流は高抵抗領域701で狭窄されて、プロトンイオン注入されていないGaInNAs/GaAs多重量子井戸活性層202に流れ込む。これにより、電流を第2のメササイズよりも狭い領域に集中させて閾電流を低減している。
【0179】
GaAs/AlGaAs DBR206とn型GaAs/AlGaAs DBR102とではさまれた領域が共振器構造となっており、基板に対して垂直上方にレーザ光が取り出される。
【0180】
図7の面発光半導体レーザにおいては、活性層202とp側電極108との間にInGaAsキャリア拡散層205を設けている。上部GaAsスペーサ層204よりもバンドギャップが小さいInGaAsキャリア拡散層205内では、キャリア(正孔)はスペーサ層とのヘテロ障壁に閉じ込められるため、横方向(面内方向)へのキャリア拡散が促進される。これにより、p側電極108から活性層202に流れ込む電流の均一性を改善している。
【0181】
さらに、活性層202近傍に設けられた高抵抗領域701は、電流をGaAs/AlGaAs DBR206の下に位置する活性層領域に集中して流すことができるため、発振領域の活性層に対する電流注入均一性をさらに改善することができる。
【0182】
[実施例8]
図8は、本発明の実施例8の面発光半導体レーザの断面図である。n型GaAs基板101上に、n型GaAs/AlGaAs DBR102が積層されている。n型GaAs/AlGaAs DBR102は、n型GaAs高屈折率層とn型Al0.9Ga0.1As低屈折率層とが、媒質内波長の1/4の層厚で交互に積層されて形成されている。n型GaAs/AlGaAs DBR102上には、GaAs下部スペーサ層201、GaInNAs/GaAs多重量子井戸活性層202、GaAs上部スペーサ層204が積層されている。そして、GaAs上部スペーサ層204の途中にはAlAs層203が設けられており、またGaAs上部スペーサ層204内で、AlAs層203よりも上部に歪補償超格子キャリア拡散層801が設けられている。
【0183】
歪補償超格子キャリア拡散層801は、引張歪0.5%のGaAsP層と圧縮歪1.4%のInGaAs層を交互に5.5周期積層して形成している。GaAsP層の層厚は14nm、InGaAs層の層厚は6nmとした。
【0184】
GaAs上部スペーサ層106上には、GaAs/AlGaAs DBR206が積層されている。GaAs/AlGaAs DBR206は、ノンドープGaAs高屈折率層とノンドープAl0.9Ga0.1As低屈折率層とが、媒質内波長の1/4の層厚で交互に積層されて形成されている。
【0185】
上記積層構造の表面から、GaAs上部スペーサ層204の最表面まで円筒状にエッチングされて1段目のメサ構造が形成されている。さらに、上記のサイズよりも大きいサイズで、n型GaAs/AlGaAs DBR102に達するまで円筒状にエッチングされて、2段目のメサ構造が形成されている。
【0186】
AlAs層203はメサ側面から選択的に酸化されて絶縁領域207が形成されている。
【0187】
1段目のメサ構造のエッチング底面(2段目のメサ構造頂上部)には、リング状のp側電極108が形成されている。また、n型GaAs基板101裏面には、n側電極109が形成されている。
【0188】
図8の面発光半導体レーザの特徴は、AlAs層203とp側電極108との間に歪補償超格子キャリア拡散層801を設けている点である。歪補償超格子キャリア拡散層801中のInGaAs層は、上部GaAsスペーサ層204よりもバンドギャップが小さいため、キャリア(正孔)はスペーサ層とのヘテロ障壁に閉じ込められ、横方向(面内方向)へのキャリア拡散が促進される。さらに、圧縮歪を有するInGaAs層は、価電子帯のバンド構造が変形して正孔の有効質量が小さくなるため、正孔の移動度が高くなる。これにより、p側電極108から活性層202に流れ込む電流の均一性が改善される。
【0189】
また、歪補償超格子キャリア拡散層801において、InGaAs層を多層に積層することによって、1層のみ設けた場合に比べてさらにキャリアの拡散を促進することができる。しかしながら、圧縮歪を有するInGaAs層を多層に積層していくと、内部の歪エネルギーが蓄積されていき、限界値を超えたところで転位が発生してしまう。そこで、本実施例では、圧縮歪を有するInGaAs層と引張歪を有するGaAsP層とを交互に積層して構成している。これにより、圧縮歪層を引張歪層で補償して、正味の歪量をほぼゼロにしており、歪補償超格子キャリア拡散層801に転位が形成されることを抑制している。
【0190】
[実施例9]
図9は、本発明の実施例9の面発光半導体レーザの断面図である。n型GaAs基板101上に、GaAs/AlAs DBR301が積層されている。GaAs/AlAs DBR301は、ノンドープGaAs高屈折率層とノンドープAlAs低屈折率層とが、媒質内波長の1/4の層厚で交互に積層されて形成されている。GaAs/AlAs DBR301上には、GaAs下部スペーサ層302、GaInNAs/GaAs多重量子井戸活性層202、GaAs上部スペーサ層303が積層されている。そして、GaAs上部スペーサ層303の途中にはAlAsエッチング層901が設けられており、またGaAs上部スペーサ層303内で、AlAsエッチング層901よりも上部にInGaAsキャリア拡散層205が2層設けられている。GaAs下部スペーサ層302はn型となっており、GaAs上部スペーサ層303はp型となっている。
【0191】
GaAs上部スペーサ層303上には、GaAs/AlGaAs DBR206が積層されている。GaAs/AlGaAs DBR206は、ノンドープGaAs高屈折率層とノンドープAl0.9Ga0.1As低屈折率層とが、媒質内波長の1/4の層厚で交互に積層されて形成されている。
【0192】
上記積層構造の表面から、GaAs上部スペーサ層303の最表面まで円筒状にエッチングされて1段目のメサ構造が形成されている。さらに、上記のサイズよりも大きいサイズで、GaAs下部スペーサ層302の途中まで円筒状にエッチングされて、2段目のメサ構造が形成されている。
【0193】
AlAsエッチング層901はメサ側面から選択的にサイドエッチングされてエアギャップ領域902が形成されている。
【0194】
1段目のメサ構造のエッチング底面(2段目のメサ構造頂上部)には、リング状のp側電極108が形成されている。また、2段目のメサ構造のエッチング底面にはn側電極109が形成されている。
【0195】
図9の面発光半導体レーザにおいては、p側電極108とn側電極109に順方向バイアスをかけることにより、GaInNAs/GaAs多重量子井戸活性層202に電流が注入されて、波長1.3μm帯で発光する。このとき、電流はGaInNAs/GaAs多重量子井戸活性層202上に形成されたサイドエッチングされていないAlAsエッチング層901を通って流れ込む。これにより、電流を第2のメササイズよりも狭い領域に集中させて閾電流を低減している。また、エアギャップ領域902は、エッチングされていないAlAs層901よりも屈折率が大幅に低下するため、光を集光するレンズの役割を果たして、回折損失を低減している。
【0196】
GaAs/AlAs DBR301とGaAs/AlGaAs DBR206とではさまれた領域が共振器構造となっており、基板に対して垂直上方にレーザ光が取り出される。
【0197】
p型GaAsスペーサ層303中のAlAsエッチング層901とp側電極108との間にInGaAsキャリア拡散層205を2層設けている。実施例2と同様に、移動度の高いInGaAs層を設けることにより、横方向への電流拡散を促進して、p側電極108から活性層202に流れ込む電流の均一性を改善している。
【0198】
選択的にエッチングされたエアギャップ領域902を用いて電流狭窄構造を形成する場合、AlAsエッチング層901の層厚を50nm以下、例えば20nmと薄く設けるだけで、十分に電気的に絶縁することができる。従って、エアギャップ領域902を設けても、共振器内で横方向に電流が流れる経路を大きくとれるため、抵抗の増加を抑制することができる。
【0199】
また、選択的にAlAs層を酸化した絶縁領域では酸化による体積収縮によって素子に応力が加わってしまうが、本実施例のように絶縁領域をエアギャップ領域902で形成する場合には、応力が発生しない。従って、素子の信頼性低下を抑制することができる。
【0200】
【発明の効果】
以上に説明したように、請求項1記載の発明によれば、基板に垂直な共振器を形成する下部多層膜反射鏡および上部多層膜反射鏡と、共振器内に配置された活性層と該活性層に隣接したスペーサ層とを有し、共振器上に第1の電極が形成され、基板の裏面に第2の電極が形成されており、共振器内であって前記スペーサ層に挟まれてキャリア拡散層が設けられており、該キャリア拡散層は、活性層のバンドギャップよりも大きく、かつ前記スペーサ層のバンドギャップよりも小さいバンドギャップを有するので、素子抵抗を低減し、活性層に対する電流注入の均一性を改善し、かつ光吸収損失の小さい面発光半導体レーザ装置を提供できる。
【0201】
また、請求項2記載の発明によれば、基板に垂直な共振器を形成する下部多層膜反射鏡および上部多層膜反射鏡と、共振器内に配置された活性層と該活性層に隣接したスペーサ層とを有し、活性層に電流を注入する第1の電極と第2の電極が共振器に形成され、共振器内であって前記スペーサ層に挟まれてキャリア拡散層が設けられており、該キャリア拡散層は、活性層のバンドギャップよりも大きく、かつ前記スペーサ層のバンドギャップよりも小さいバンドギャップを有するので、請求項1の発明に比べてさらに直列抵抗を低減することができる。また、下部多層膜反射鏡をGaAs高屈折率層とAlAs低屈折率層で構成することができ、この場合には、熱抵抗が低くなり、素子の放熱性を向上させることができる。
【0202】
また、請求項3記載の発明によれば、基板に垂直な共振器を形成する下部多層膜反射鏡および上部多層膜反射鏡と、共振器内に配置された活性層と該活性層に隣接したスペーサ層とを有し、第1の電極と第2の電極のうちの少なくとも一方の電極は、多層膜反射鏡の途中に形成されており、共振器内であって前記スペーサ層に挟まれてキャリア拡散層が設けられており、該キャリア拡散層は、活性層のバンドギャップよりも大きく、かつ前記スペーサ層のバンドギャップよりも小さいバンドギャップを有するので、直列抵抗の増加を比較的抑制して、電流がより均一に注入されやすくすることができる。また、コンタクト層による光吸収の影響を低減することができる。
【0203】
また、請求項4記載の発明によれば、請求項1乃至請求項3のいずれか一項に記載の面発光半導体レーザ装置において、前記キャリア拡散層は、圧縮歪を有しているので、キャリア拡散層内の移動度が高くなって、キャリアの横方向の拡散を更に促進することができる。
【0204】
また、請求項5記載の発明によれば、請求項1乃至請求項4のいずれか一項に記載の面発光半導体レーザ装置において、前記キャリア拡散層は、p型共振器のp型領域に設けられているので、正孔の横方向拡散を促進して、活性層に対する電流注入を均一化することができる。
【0205】
また、請求項6記載の発明によれば、請求項1乃至請求項5のいずれか一項に記載の面発光半導体レーザ装置において、前記キャリア拡散層が複数設けられているので、よりキャリアの拡散を促進することができる。
【0206】
また、請求項7記載の発明によれば、請求項1乃至請求項6のいずれか一項に記載の面発光半導体レーザ装置において、前記キャリア拡散層は、圧縮歪を有する層と引張歪を有する層が交互に複数積層されて構成されているので、圧縮歪を有するキャリア拡散層の積層数を転位が入ることなく増加させることができ、横方向のキャリア拡散を促進させることができる。
【0207】
また、請求項8記載の発明によれば、請求項1乃至請求項7のいずれか一項に記載の面発光半導体レーザ装置において、共振器のp型領域の層厚がn型領域の層厚よりも厚く形成されているので、横方向に正孔を拡散しやすくし、活性層に正孔をより均一に注入することができる。
【0208】
また、請求項9記載の発明によれば、請求項1乃至請求項8のいずれか一項に記載の面発光半導体レーザ装置において、共振器内の活性層とキャリア拡散層の間に、イオン注入による高抵抗領域から成る電流狭窄構造が設けられているので、発振領域の活性層に対する電流注入均一性を改善することができる。
【0209】
また、請求項10記載の発明によれば、請求項1乃至請求項8のいずれか一項に記載の面発光半導体レーザ装置において、共振器内の活性層とキャリア拡散層との間に、選択的に酸化された絶縁領域と非酸化領域である導電領域とからなる電流狭窄構造が設けられているので、活性層の狭い領域に電流を集中して閾電流を低減することができる。そして、絶縁領域を薄く形成できるため、酸化層を共振器内に設けても横方向に電流が流れる経路を大きくとることができ、抵抗の増加を抑制することができる。
【0210】
また、請求項11記載の発明によれば、請求項1乃至請求項8のいずれか一項に記載の面発光半導体レーザ装置において、共振器内の活性層とキャリア拡散層の間に、選択的にエッチングされたエアギャップ領域と、非エッチング領域である導電領域とから成る電流狭窄構造が設けられているため、横方向に電流が流れる経路を大きくとることができ、抵抗の増加を抑制することができる。また、選択的にエッチングして形成したエアギャップ領域では体積変化による応力が発生しないため、素子の信頼性低下を抑制することができる。
【0212】
また、請求項12記載の発明によれば、請求項9乃至請求項11のいずれか一項に記載の面発光半導体レーザ装置において、共振器内に設けられた電流狭窄領域と第1の電極との間に、高濃度ドーピング領域を設けたことにより、自由キャリア吸収を増加させることなく、電気抵抗を低減することができる。
【0213】
また、請求項13記載の発明によれば、請求項1乃至請求項12のいずれか一項に記載の面発光半導体レーザ装置において、活性層が窒素と他のV族元素とを含む混晶半導体からなるので、動作電圧が低く、高出力の長波長帯面発光半導体レーザ装置を提供することができる。
【0214】
また、請求項14記載の発明によれば、請求項1乃至請求項13のいずれか一項に記載の面発光半導体レーザ装置を備えていることを特徴とする光伝送モジュールであるので、光伝送モジュールの消費電力を低減することができる。
【0215】
また、請求項15記載の発明によれば、請求項14記載の光伝送モジュールを備えていることを特徴とする光伝送システムであるので、低消費電力の光伝送システムを構築できる。
【図面の簡単な説明】
【図1】本発明の実施例1の面発光半導体レーザを示す図である。
【図2】本発明の実施例2の面発光半導体レーザを示す図である。
【図3】本発明の実施例3の面発光半導体レーザを示す図である。
【図4】本発明の実施例4の面発光半導体レーザを示す図である。
【図5】本発明の実施例5の面発光半導体レーザを示す図である。
【図6】本発明の実施例6の光伝送システムを示す図である。
【図7】本発明の実施例7の面発光半導体レーザを示す図である。
【図8】本発明の実施例8の面発光半導体レーザを示す図である。
【図9】本発明の実施例9の面発光半導体レーザを示す図である。
【符号の説明】
101 n型GaAs基板
102 n型GaAs/AlGaAs DBR
103 AlGaAs下部スペーサ層
104 InGaAs/GaAs多重量子井戸活性層
105 GaAsキャリア拡散層
106 AlGaAs上部スペーサ層
107 誘電体多層膜反射鏡
108 p側電極
109 n側電極
201 GaAs下部スペーサ層
202 GaInNAs/GaAs多重量子井戸活性層
203 AlAs層
204 GaAs上部スペーサ層
205 InGaAsキャリア拡散層
206 GaAs/AlGaAs DBR
207 選択酸化領域
301 GaAs/AlAs DBR
302 GaAs下部スペーサ層
303 GaAs上部スペーサ層
401 GaAs/AlAs DBR
402 n型GaAs/AlGaAs DBR
403 p型GaAs/AlGaAs DBR
501 InGaAsキャリア拡散層
502 GaAs/AlGaAs多重量子井戸キャリア拡散層
503 混晶化領域
601 光送信部
602 光受信部
603 光送受信モジュール
604 石英光ファイバ
504 高濃度ドーピング領域
701 高抵抗領域
801 歪補償超格子キャリア拡散層
901 AlAsエッチング層
902 エアギャップ領域
Claims (15)
- 基板に垂直な共振器を形成する下部多層膜反射鏡および上部多層膜反射鏡と、共振器内に配置された活性層と該活性層に隣接したスペーサ層とを有し、共振器上に第1の電極が形成され、基板の裏面に第2の電極が形成されており、共振器内であって前記スペーサ層に挟まれてキャリア拡散層が設けられており、該キャリア拡散層は、活性層のバンドギャップよりも大きく、かつ前記スペーサ層のバンドギャップよりも小さいバンドギャップを有することを特徴とする面発光半導体レーザ装置。
- 基板に垂直な共振器を形成する下部多層膜反射鏡および上部多層膜反射鏡と、共振器内に配置された活性層と該活性層に隣接したスペーサ層とを有し、活性層に電流を注入する第1の電極と第2の電極が共振器に形成され、共振器内であって前記スペーサ層に挟まれてキャリア拡散層が設けられており、該キャリア拡散層は、活性層のバンドギャップよりも大きく、かつ前記スペーサ層のバンドギャップよりも小さいバンドギャップを有することを特徴とする面発光半導体レーザ装置。
- 基板に垂直な共振器を形成する下部多層膜反射鏡および上部多層膜反射鏡と、共振器内に配置された活性層と該活性層に隣接したスペーサ層とを有し、第1の電極と第2の電極のうちの少なくとも一方の電極は、多層膜反射鏡の途中に形成されており、共振器内であって前記スペーサ層に挟まれてキャリア拡散層が設けられており、該キャリア拡散層は、活性層のバンドギャップよりも大きく、かつ前記スペーサ層のバンドギャップよりも小さいバンドギャップを有することを特徴とする面発光半導体レーザ装置。
- 請求項1乃至請求項3のいずれか一項に記載の面発光半導体レーザ装置において、前記キャリア拡散層は、圧縮歪を有していることを特徴とする面発光半導体レーザ装置。
- 請求項1乃至請求項4のいずれか一項に記載の面発光半導体レーザ装置において、前記キャリア拡散層は、共振器のp型領域に設けられていることを特徴とする面発光半導体レーザ装置。
- 請求項1乃至請求項5のいずれか一項に記載の面発光半導体レーザ装置において、前記キャリア拡散層が複数設けられていることを特徴とする面発光半導体レーザ装置。
- 請求項1乃至請求項6のいずれか一項に記載の面発光半導体レーザ装置において、前記キャリア拡散層は、圧縮歪を有する層と引張歪を有する層が交互に複数積層されて構成されていることを特徴とする面発光半導体レーザ装置。
- 請求項1乃至請求項7のいずれか一項に記載の面発光半導体レーザ装置において、共振器のp型領域の層厚がn型領域の層厚よりも厚く形成されていることを特徴とする面発光半導体レーザ装置。
- 請求項1乃至請求項8のいずれか一項に記載の面発光半導体レーザ装置において、共振器内の活性層とキャリア拡散層の間に、イオン注入による高抵抗領域から成る電流狭窄構造が設けられていることを特徴とする面発光半導体レーザ装置。
- 請求項1乃至請求項8のいずれか一項に記載の面発光半導体レーザ装置において、共振器内の活性層とキャリア拡散層との間に、選択的に酸化された絶縁領域と非酸化領域である導電領域とからなる電流狭窄構造が設けられていることを特徴とする面発光半導体レーザ装置。
- 請求項1乃至請求項8のいずれか一項に記載の面発光半導体レーザ装置において、共振器内の活性層とキャリア拡散層の間に、選択的にエッチングされたエアギャップ領域と、非エッチング領域である導電領域とから成る電流狭窄構造が設けられていることを特徴とする面発光半導体レーザ装置。
- 請求項9乃至請求項11のいずれか一項に記載の面発光半導体レーザ装置において、共振器内に設けられた電流狭窄領域と第1の電極との間に、高濃度ドーピング領域を設けたことを特徴とする面発光半導体レーザ装置。
- 請求項1乃至請求項12のいずれか一項に記載の面発光半導体レーザ装置において、活性層が窒素と他のV族元素とを含む混晶半導体からなることを特徴とする面発光型半導体レーザ装置。
- 請求項1乃至請求項13のいずれか一項に記載の面発光半導体レーザ装置を備えていることを特徴とする光伝送モジュール。
- 請求項14記載の光伝送モジュールを備えていることを特徴とする光伝送システム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003204807A JP4497859B2 (ja) | 2002-08-06 | 2003-07-31 | 面発光半導体レーザ装置および光伝送モジュールおよび光伝送システム |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002228703 | 2002-08-06 | ||
JP2003204807A JP4497859B2 (ja) | 2002-08-06 | 2003-07-31 | 面発光半導体レーザ装置および光伝送モジュールおよび光伝送システム |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004128482A JP2004128482A (ja) | 2004-04-22 |
JP4497859B2 true JP4497859B2 (ja) | 2010-07-07 |
Family
ID=32300857
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003204807A Expired - Fee Related JP4497859B2 (ja) | 2002-08-06 | 2003-07-31 | 面発光半導体レーザ装置および光伝送モジュールおよび光伝送システム |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4497859B2 (ja) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5429242B2 (ja) * | 2004-06-11 | 2014-02-26 | 株式会社リコー | 面発光型半導体レーザ、面発光型半導体レーザアレイ、画像形成装置、光ピックアップ、光送信モジュール、光送受信モジュール及び光通信システム |
US7684458B2 (en) | 2004-06-11 | 2010-03-23 | Ricoh Company, Ltd. | Surface-emission laser diode and fabrication process thereof |
JP4815772B2 (ja) * | 2004-09-02 | 2011-11-16 | 株式会社デンソー | 面発光型半導体レーザ素子およびその製造方法 |
WO2006033237A1 (ja) * | 2004-09-21 | 2006-03-30 | Nec Corporation | 電流狭窄構造および半導体レーザ |
JP2007103544A (ja) * | 2005-10-03 | 2007-04-19 | Ricoh Co Ltd | 面発光レーザ及び面発光レーザアレイ及び光伝送システム及びレーザプリンタ書き込みシステム |
JP4896540B2 (ja) * | 2006-02-20 | 2012-03-14 | 株式会社リコー | 面発光レーザ素子、それを備えた光伝送モジュール、およびそれを備えた光伝送システム。 |
JP4928927B2 (ja) * | 2006-12-13 | 2012-05-09 | 日本オプネクスト株式会社 | 面発光半導体レーザ素子 |
JP2008235574A (ja) * | 2007-03-20 | 2008-10-02 | Sumitomo Electric Ind Ltd | 面発光半導体レーザ |
JP4479804B2 (ja) | 2008-02-13 | 2010-06-09 | 富士ゼロックス株式会社 | 面発光型半導体レーザ |
JP5590829B2 (ja) * | 2009-07-03 | 2014-09-17 | キヤノン株式会社 | 面発光レーザ、面発光レーザアレイ及び画像形成装置 |
JP5724489B2 (ja) * | 2011-03-16 | 2015-05-27 | 富士通株式会社 | ハイブリッド光デバイス |
JP6210548B2 (ja) * | 2013-11-05 | 2017-10-11 | 古河電気工業株式会社 | 面発光レーザ素子、レーザ素子アレイ、光源および光モジュール |
US9502863B2 (en) | 2014-08-26 | 2016-11-22 | Fuji Xerox Co., Ltd. | Surface-emitting semiconductor laser, surface-emitting semiconductor laser device, optical transmission device, and information processing device |
KR101706301B1 (ko) * | 2015-10-27 | 2017-02-15 | 주식회사 레이칸 | 저손실 고속변조 표면방출 레이저 소자 |
JP6820146B2 (ja) * | 2015-12-25 | 2021-01-27 | スタンレー電気株式会社 | 垂直共振器型発光素子 |
JP7081000B2 (ja) * | 2021-01-04 | 2022-06-06 | スタンレー電気株式会社 | 垂直共振器型発光素子 |
WO2024225458A1 (ja) * | 2023-04-28 | 2024-10-31 | 国立大学法人東京工業大学 | 単一光子源装置 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10505465A (ja) * | 1995-06-26 | 1998-05-26 | オプティカル コンセプツ,インコーポレイティド | 電流アパーチャを備えた垂直キャビティレーザー |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04263482A (ja) * | 1991-02-19 | 1992-09-18 | Nec Corp | 面型半導体レーザおよび面型半導体レーザ型光機能素子 |
JP2871295B2 (ja) * | 1992-04-30 | 1999-03-17 | 日本電気株式会社 | 面型光半導体素子 |
JP3237972B2 (ja) * | 1993-09-10 | 2001-12-10 | 株式会社東芝 | 半導体発光装置 |
JPH0832111A (ja) * | 1994-07-14 | 1996-02-02 | Omron Corp | 半導体発光素子並びに当該半導体発光素子を利用した発光装置、光学検知装置、光学情報処理装置及び光結合装置 |
JP3685541B2 (ja) * | 1996-03-08 | 2005-08-17 | 株式会社リコー | 半導体レーザ装置およびその製造方法 |
JP2891164B2 (ja) * | 1996-03-28 | 1999-05-17 | 日本電気株式会社 | 半導体レーザの製造方法 |
US5835521A (en) * | 1997-02-10 | 1998-11-10 | Motorola, Inc. | Long wavelength light emitting vertical cavity surface emitting laser and method of fabrication |
JPH1146038A (ja) * | 1997-05-29 | 1999-02-16 | Nichia Chem Ind Ltd | 窒化物半導体レーザ素子及びその製造方法 |
JPH11307876A (ja) * | 1998-04-24 | 1999-11-05 | Ricoh Co Ltd | 面発光型半導体レーザ素子、光ディスク記録再生装置及びプラスティック光ファイバ用光送信装置 |
-
2003
- 2003-07-31 JP JP2003204807A patent/JP4497859B2/ja not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10505465A (ja) * | 1995-06-26 | 1998-05-26 | オプティカル コンセプツ,インコーポレイティド | 電流アパーチャを備えた垂直キャビティレーザー |
Also Published As
Publication number | Publication date |
---|---|
JP2004128482A (ja) | 2004-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4497859B2 (ja) | 面発光半導体レーザ装置および光伝送モジュールおよび光伝送システム | |
KR100229051B1 (ko) | 수직적으로 통합된 광학펌프를 갖는 장파장수직 공동표면 방출레이저 | |
JP4919639B2 (ja) | 面発光レーザ素子および面発光レーザアレイおよび面発光レーザ素子の製造方法および面発光レーザモジュールおよび電子写真システムおよび光通信システムおよび光インターコネクションシステム | |
JP4928927B2 (ja) | 面発光半導体レーザ素子 | |
JP5391240B2 (ja) | 面発光レーザ、光源、および光モジュール | |
JP5029254B2 (ja) | 面発光レーザ | |
JP2004063657A (ja) | 面発光レーザおよび面発光レーザアレイおよび光送信モジュールおよび光送受信モジュールおよび光通信システム | |
JPH06196681A (ja) | 受光発光集積素子 | |
CN116031752B (zh) | 一种半导体发光结构及其制备方法 | |
JP2005303113A (ja) | 垂直共振器型面発光半導体レーザ素子および発光装置および光伝送システム | |
US7369595B2 (en) | Distributed Bragg reflector (DBR) structure in vertical cavity surface emitting laser (VCSEL) diode, method of manufacturing the same, and VCSEL diode | |
US7907653B2 (en) | Vertical cavity surface emitting laser device and vertical cavity surface emitting laser array | |
JP5190038B2 (ja) | 面発光レーザ | |
JP5006242B2 (ja) | 面発光半導体レーザ素子 | |
US20140227007A1 (en) | Surface-emitting laser and image forming apparatus using the same | |
JP4728656B2 (ja) | 面発光レーザ素子 | |
US8416824B2 (en) | Surface emitting laser with current constriction layer and multiple active regions | |
JP2000353858A (ja) | 面発光レーザとその作製方法 | |
JP5137658B2 (ja) | 長波長帯域面発光レーザ素子 | |
JP2004063634A (ja) | 半導体分布ブラッグ反射器および面発光レーザ素子および面発光レーザアレイおよび光通信システムおよび光インターコネクションシステム | |
JP2005251860A (ja) | 面発光レーザ装置 | |
JP2004296845A (ja) | 量子井戸構造および半導体発光素子および光送信モジュールおよび光伝送システム | |
JP2007299895A (ja) | 面発光レーザ素子、それを備えた面発光レーザアレイ、面発光レーザ素子または面発光レーザアレイを備えた電子写真システム、面発光レーザ素子または面発光レーザアレイを備えた光インターコネクションシステムおよび面発光レーザ素子または面発光レーザアレイを備えた光通信システム | |
US6770915B2 (en) | Light emitting element with multiple multi-layer reflectors and a barrier layers | |
WO2005074080A1 (ja) | 面発光レーザ及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060419 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091021 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091110 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100108 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100413 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100413 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130423 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140423 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |