[go: up one dir, main page]

JP4471449B2 - High strength Cr-Mo steel MIG or TIG welding wire - Google Patents

High strength Cr-Mo steel MIG or TIG welding wire Download PDF

Info

Publication number
JP4471449B2
JP4471449B2 JP2000140384A JP2000140384A JP4471449B2 JP 4471449 B2 JP4471449 B2 JP 4471449B2 JP 2000140384 A JP2000140384 A JP 2000140384A JP 2000140384 A JP2000140384 A JP 2000140384A JP 4471449 B2 JP4471449 B2 JP 4471449B2
Authority
JP
Japan
Prior art keywords
mass
present
welding
strength
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000140384A
Other languages
Japanese (ja)
Other versions
JP2001321986A (en
Inventor
明信 後藤
賢 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2000140384A priority Critical patent/JP4471449B2/en
Publication of JP2001321986A publication Critical patent/JP2001321986A/en
Application granted granted Critical
Publication of JP4471449B2 publication Critical patent/JP4471449B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、火力技術基準:火STBA24J1(火:発電用火力設備に関する技術基準を定める省令(通商産業省)で定められた規格)等に示される高強度Cr−Mo鋼のMIG(metal inert gas)溶接又はTIG(tungsten inert gas)溶接用ワイヤに関し、特に、SR(stress relief)後の室温及び高温強度、靱性、クリープ強度に優れ、更に耐SR割れ性が優れた高強度Cr−Mo鋼のMIG溶接又はTIG溶接用ワイヤに関する。
【0002】
【従来の技術】
2.25乃至3質量%Cr−1質量%Mo鋼は高温特性が優れているため、ボイラー及び化学反応容器等の高温高圧環境下において使用される材料として、従来から広く適用されている。近年、設備の高効率操業を図るために、これらの構造物の使用環境はより一層高温高圧化される傾向にあり、溶接構造物を大型厚肉化したり、又は更に鋼材として、V又はNb等を添加した高強度Cr−Mo鋼を使用したりする等、種々高強度化の対応が進められている。溶接材料についても、V又は、Vに加えて更にNb及びW等を含有させた高強度Cr−Mo鋼用溶接ワイヤが開示されている(特許第2622516号公報、特許第2742201号公報、特開平10−128576号公報及び特開平10−272592号公報等)。なお、溶接方法としては、被覆アーク溶接、サブマージアーク溶接、MIG溶接、TIG溶接がある。能率面からサブマージアーク溶接(submerged arc welding)が多用されるが、その初層溶接又は配管等の溶接にはTIG溶接の適用が不可欠である。また、MIG溶接も、被覆アーク溶接と比較して能率が良いので有効な溶接方法である。一方、これらの溶接部には溶接のままの状態において、引張成分の残留応力が存在しており、これを解放するためのSR(応力除去焼鈍)処理を施すことが必要とされる。従って、溶接材料には、長時間、高温高圧に曝される被溶接構造物の使用環境を考慮した諸性質、即ちクリープ強度又は焼き戻し脆化特性は勿論のこと、更にSR処理に対する抵抗性が要求される。
【0003】
【発明が解決しようとする課題】
しかしながら、従来から提案されている高強度Cr−Mo鋼ワイヤは、SR処理によって析出時効による粒界割れである所謂SR割れが発生することが指摘されている。また、特開平10−128576号公報には、ワイヤのCとN、更にVの各含有量を調整することにより、SR割れを抑制する技術が開示されているがその効果が不十分であった。本願発明者等の種々の調査の結果、SR割れは、溶接時に生じる高温割れ又は水素に起因した低温割れとは異なるものであり、溶着金属の原質部、特に、長大且つ直線的に形成された旧オーステナイト粒界が開口する型で発生することが判明している。このための対策として、グラインダー等によるドレッシングで溶着金属の原質部を除去してしまうか、又はテンパービートによって溶着金属の原質部を再加熱し組織の微細化(旧オーステナイト粒の粒界面積の増加)を図る等の技術が提案されているが、いずれも作業工数を増加させ、生産性を著しく阻害するものである。このような背景から、SR割れに対する溶接ワイヤそのものの解決が強く望まれている。
【0004】
本発明は、かかる問題点に鑑みてなされたものであって、SR処理後の室温及び高温強度、靱性、並びにクリープ強度が優れていると共に耐SR割れ性が良好な高強度Cr−Mo鋼のMIG溶接又はTIG溶接用ワイヤを提供することを目的とする。
【0005】
【課題を解決するための手段】
本願第1発明に係る高強度Cr−Mo鋼のMIG溶接又はTIG溶接用ワイヤは、Si:0.05乃至0.70質量%、Cr:2.00乃至3.25質量%、Mo:0.01乃至0.90質量%、V:0.010乃至0.800質量%、Nb:0.010乃至0.080質量%、C:0.020乃至0.090質量%、及びMn:0.01乃至0.40質量%を含有し、且つ20×C+Mnが2.1質量%以下であり、Ni:0.20質量%以下に制限し、残部がFe及び不可避的不純物からなる組成を有することを特徴とする。
【0006】
本願第2発明に係る高強度Cr−Mo鋼のMIG溶接又はTIG溶接用ワイヤは、Si:0.05乃至0.70質量%、Cr:2.00乃至3.25質量%、Mo:0.01乃至0.90質量%、V:0.010乃至0.800質量%、Nb:0.010乃至0.080質量%、C:0.020乃至0.090質量%、Mn:0.01乃至0.40質量%、W:0.005乃至2.50質量%、及びS:0.002乃至0.015質量%を含有し、且つ20×C+Mnが2.1質量%以下であり、Ni:0.20質量%以下に制限し、残部がFe及び不可避的不純物からなる組成を有することを特徴とする。
【0007】
また、更に、B:0.0002乃至0.0050質量%含有することが好ましい。
【0008】
【発明の実施の形態】
以下、本発明について更に詳細に説明する。従来技術において、長時間、高温に曝された際の焼戻し脆化特性を改善する目的から、不可避的不純物の含有量を制限するものは数多くある。本願発明者等が、種々実験研究を行った結果、不可避的不純物は、SR割れに対しても制限すべきものであることが判明した。しかし、不可避的不純物の制限はコスト的に多大なデメリットとなる上に、それのみでSR割れの抑制は困難であった。これに対し、本願発明者らが鋭意実験研究した結果、SR割れには粒界析出物の量が影響し、更に、この粒界析出物は、C及びMoの含有量が多いものほど粒界析出物量が多くなり、SR割れが発生することを知見した。また、不可避的不純物について含有量だけではなく、特に偏析挙動に着目した結果、Mn及びNiが不可避的不純物の粒界偏析を助長し、SR割れを引き起こしていることを知見した。更に、Cは、粒界析出物の量に対して、Mnは、不可避的不純物の偏析挙動に対して極めて影響が大きく、SR割れの発生を引き起こしていることを知見した。本発明はこれらの3つの知見からなされたものである。
【0009】
即ち、本願第1発明は、ワイヤに含まれるC、Si、Cr、Mo、V、及びNbの各含有量の調整と、これらの成分のうち、C及びMo含有量の最適化、Ni及びMn含有量の最適化、更にC及びMn含有量の制限をすることにより、高強度Cr−Mo鋼の溶接材料として、必要な特性(各種強度、靱性等)を具備すると共にSR割れを抑制したものである。しかし、以上の各要件のいずれか1つが欠けると、SR処理後の室温及び高温強度、靱性並びにクリープ強度が優れると共に耐SR割れ性が良好な高強度Cr−Mo鋼用溶接ワイヤを得ることができない。
【0010】
また、本願第2発明は、更にW及びSの含有量を規定することにより、クリープ強度及び溶接作業性を更に向上させたものである。更に、Bの含有量を規定することにより、更に一層クリープ強度及び靱性を向上させることができる。
【0011】
以下、本願第1及び第2発明の化学組成の数値限定理由について説明する。
【0012】
Si:0.05乃至0.70質量%
Siは、溶融金属の粘性を高めて、ビード形状を整える効果を有する。Siが0.05未満では、この効果が得られず、溶融金属の粘性が不足して例えば初層の裏波ビードが凸となる等ビード形状が著しく低下する。一方、Siが0.70質量%を超えると、スラグの発生が生じてスラグ巻込みを引き起こす上、SR処理によって溶接金属が脆化して靱性の低下を招く。従って、Si含有量は0.05乃至0.70質量%とする。
【0013】
Cr:2.00乃至3.25質量%
Crは耐食性並びに室温及び高温強度を確保するために添加するものであり、本発明では必須成分である。しかし、Crが2.00質量%未満では、十分な耐食性、室温及び高温強度が得られない。一方、Crが3.25質量%を超えると、靱性が低下する。従って、Crの含有量は2.00乃至3.25質量%とする。
【0014】
Mo:0.01乃至0.90質量%
Moは、Crと同様に耐食性並びに室温及び高温強度を確保するために添加するものであり、本発明の必須成分である。更にMoは、C、Mn、Ni、及び20×C+Mnと共に、本発明の重要な構成用件の一つである。Moの含有量が0.90質量%超えると、靱性低下を引き起こすうえ、粒界析出物量が過剰となって、C、Mn、Ni、及び20×C+Mnを本発明範囲としても耐SR割れ性を著しく損なってしまう。一方、0.1質量%未満では、十分な耐食性並びに室温及び高温強度が得られない。従って、Moの含有量は0.01乃至0.90質量%とする。
【0015】
V:0.010乃至0.800質量%、好ましくは0.010乃至0.60質量%
Nb:0.010乃至0.080質量%、好ましくは0.010乃至0.060質量%
V及びNbは、共に析出硬化元素であり、室温及び高温強度を確保するために添加する。しかし、Vが0.010質量%未満、Nbが0.010質量%未満では、十分な室温及び高温強度を得ることができない。一方、Vが0.800質量%、Nbが0.080質量%を超えると、いずれも強度が過度に高くなり、靱性低下を引き起こす。従って、Vの含有量は0.010乃至0.800質量%、より好ましくは0.010乃至0.60質量%、また、Nb含有量は0.010乃至0.080質量%、より好ましくは0.010乃至0.060質量%とする。
【0016】
C:0.020乃至0.090質量%
Cは、Mn、Ni、Mo、及び20×C+Mnと共に本発明の重要な構成要件の1つである。Cは焼き入れ硬化性に大きな影響を及ぼし、室温及び高温強度、クリープ強度並びに靱性を確保する上で重要な元素である。Cが0.020質量%未満では、焼き入れ性が不十分で室温強度が不足するうえ、炭化物の析出が不十分となって高温強度及びクリープ強度が不足する。一方、Cが0.090質量%を超えると、室温強度が過度に高くなって靱性が低下するうえ、粒界析出物量が増大してしまい、Mn、Ni、Mo、及び20×C+Mnを本発明範囲としても耐SR性が劣化する。従って、Cの含有量は0.020乃至0.090質量%とする。
【0017】
Mn:0.01乃至0.40質量%
Mnは、C、Ni、Mo、及び20×C+Mnと共に本発明の重要な構成要件の1つである。従来、焼戻し脆化特性を改善する目的から、溶接ワイヤの不可避的不純物含有量を制限する技術が開示されているが、コストの面から限界があるうえに、SR割れの抑制は不十分であった。本発明は、このような従来技術とは異なり、粒界析出物量の調整と共に偏析を助長する元素を調整すればSR割れが抑制できることを知見したためになされたものである。不可避的不純物の以外の成分についてSR割れとの関連を調査した結果、Mn及びNiが不可避的不純物の粒界偏析を助長して耐SR割れ性を損なわせる成分であるという知見をえた。このため、Mnが0.4質量%を超えると、C、Ni、Mo、及び20×C+Mnを本発明範囲内に調整してもSR割れの抑制が困難である。一方、Mnは靱性を向上させる効果を有しているが、0.01質量%未満であると、この効果を得ることができない。従って、Mn含有量は0.01乃至0.40質量%とする。
【0018】
20×C+Mn:2.1質量%以下
本発明目的である耐SR割れ性の向上において、粒界析出物量の低減及び不可避的不純物の粒界偏析抑制が極めて重要である。本願発明者等の研究結果から、粒界析出物量にはCが、また、不可避的不純物の粒界偏析にはMnが特に、大きな影響を及ぼしていることがわかった。そして、C、Mn、Ni及びMoを本発明範囲としても、20×C+Mnが2.1質量%を超えると耐SR割れが劣化することが知見した。従って、20×C+Mnは2.1質量%以下とする。
【0019】
Ni:0.20質量%以下
Niは、Mnと共に不可避的不純物の粒界偏析を助長して、耐SR割れ性を損なわせる欠点を有しているため、C、Mn、Mo、及び20×C+Mnと共に本発明の重要な構成要件の1つである。Niが0.20質量%を超えると、C、Mn、Mo、及び20×C+Mを本発明範囲としてもSR割れの抑制が困難となる。従って、Niの含有量が0.20質量%以下とする。
【0020】
以上が本発明の根幹をなす主要構成要件であり、これらの要件を全て満たすことにより、室温強度、高温強度、クリープ強度、靱性、更に優れた耐SR割れを有する高強度Cr−Mo鋼用のMIG溶接又はTIG溶接用ワイヤを得ることができる。また、これらの構成要件に加え、以下に示す成分を規定することにより、更に優れた上述の諸性質を得ることができる。
【0021】
W:0.005乃至2.50質量%
Wは、マトリックスを固溶強化すると共に、微細炭化物として析出して析出強化を図り、クリープ強度の向上に寄与する。また、耐SR割れ性の向上にも寄与している。しかし、Wが0.005質量%未満であると、この効果が得られない。一方2.50質量%を超えても特段のクリープ強度改善効果は認められない。従って、Wを含有する本願第2発明の場合は、その含有量は0.005乃至2.50質量%とする。
【0022】
S:0.002乃至0.015質量%
SはSR割れを助長する成分であるため、本願第1発明においては、積極的に添加しない不可避的不純物である。しかし、Sは溶融金属の流動性を向上させる元素であり、母材開先面又は前層、前パスの溶接金属とのなじみ性を良好にして、融合不良等の溶接欠陥の発生を抑制する効果を有する。このため、本願第2発明においては、Sを0.002質量%以上含有する。しかし、Sが0.002質量%未満では、この効果が得られない、一方、Sが0.015質量%を超えても特段の融合不良改善効果は認められず、SR割れを引き起こす。従って、Sを含有する本願第2発明の場合は、その含有量を0.002乃至0.015質量%とする。
【0023】
B:0.0002乃至0.0050質量%
Bは炭化物を分散して析出させることから靱性を向上する効果を有する。更に、その炭化物は高温下での安定性が優れており、クリープ強度の一層の向上に有効である。しかし、Bの含有量が0.0002質量%未満では、この効果が得られない。一方、Bの含有量が0.0050質量%を超えると、耐SR割れが劣化する。従って、Bを含有させる場合、その含有量は0.0002乃至0.005質量%とする。
【0024】
なお、本発明における不可避的不純物とは、P、S、Cu、Sn、As、Sb、Ta、Al、Ti、N、及びO等を示す。P及びSの最大許容含有量は夫々0.015質量%、Sn、As、Sbの最大許容含有量は、夫々0.005質量%である。また、ワイヤ表面処理として、Cuメッキを施しても、施さなくてもよい。なお、Cuメッキを行う場合は、Cuメッキ量がワイヤの全質量当たり最大0.30質量%とする。また、Al、Ti、O、及びNの最大許容量は0.04質量%である。また、Taの最大許容含有量は0.03質量%である。
【0025】
本発明はMIG溶接又はTIG溶接溶接用ワイヤであり、いずれの溶接方法にも適用できることはいうまでもない。なお、TIG溶接には、TIG切断線を使用した手動による施工法と、自動機による施工法があるが、本発明のワイヤは、いずれの施工法においても使用可能である。また、シールドガスについても特に制約はなく、TIG溶接の場合、Ar又はAr+He、MIG溶接の場合、Ar+CO2、Ar+O2、又はAr+CO2+O2等種々の組成のシールドガスを使用することができる。ワイヤ径についても特に制約はなく、例えば直径が0.8乃至2.4mm等のいずれの径においても使用可能である。
【0026】
【実施例】
以下、本発明の高強度Cr−Mo鋼のMIG溶接又はTIG溶接用ワイヤを実際に製造し、本発明範囲から外れる比較例と比較してその効果について説明する。
【0027】
第1実施例
下記表1及び表2に示す化学成分のソリッドワイヤ(ワイヤ径1.6mm )を作製し、TIG溶接を行って各種評価及び試験材を作製した。なお、ソリッドワイヤには、下記表1及び表2に示す化学成分の他、Snを0.005質量%未満、Sbを0.005質量%未満、Asを0.005質量%未満、Taを0.03質量%未満含有している。評価は、裏波ビードの形状、ビードのなじみ性、及びSR割れの評価、並びに引張試験、シャルピー衝撃試験、及びクリープ破断試験による評価を行った。図1及び図2は、本実施例において使用する溶接母材の開先形状を示す断面図である。下記表3、4にTIG溶接条件を示す。本実施例で使用するノズルは2重構造となっており、内側及び外側に形成されたノズルから流量の異なるシールドガスを供給する。また、下記表5に各種試験要領(評価基準、試験片形状・採取位置)を示す。なお、表5中のACは空冷、FCは炉冷を示す。図3及び図4は、夫々SR割れ試験片の形状及び採取位置を示す。図5及び図6は、夫々SR割れ試験片の調整要領を示す断面図及びSR割れの観察位置を示す模式的斜視図である。また、下記表6に母材として使用した鋼板の化学成分を示す。
【0028】
図1に示すように、溶接母材1はV形状の開先を有し、このV形状の開先部の裏面には、溶接母材1と同一の化学組成を有する裏当金2が配置されている。本実施例においては、このV形状の開先角度を45°として、裏当金が配置されている部分のルート間隔を6mmとした。また、溶接母材1の板厚を12mmとした。また、図2に示すように、溶接母材3はU形状の開先を有し、ルート間隔を2.0mm、U形状の開先角度を10゜、溶接母材3の板厚を12mmとした。図1に示す開先形状の母材を使用して、ビードのなじみ性の評価を行った。また、図2に示す開先形状の母材を使用して、裏波ビードの評価を行った。
【0029】
図3及び図4は夫々SR割れ試験片の形状及び採取位置を示す図であって、図3(a)は側面図、図3(b)は試験片長手方向に対する直行断面図、図3(c)は図3(b)のノッチ部分を拡大して示す断面図、また、図4は、採取位置の模式的断面図である。図1に示す母材1の開先に供試材のソリッドワイヤを使用し、下記表3に示す条件でTIG溶接を行って形成された溶接金属4において、図4に示すように、この溶接金属4の最終ビート4aを含むようにノッチ12及びスリット11を有する円筒形の試験材10を採取した。採取した円筒形の試験材10は、図3(a)に示すように、内径5mm、外形10mm、長さは15mmとした。また、試験材10のスリット11は、円筒の空洞部に至る幅0.5mmのスリットであって、このスリット11の反対側の外周面には試験材10の長手方向にノッチ12を有している。ノッチ12は、図3(c)に示すように、深さが0.5mm、幅が0.4mm、底部の曲率半径が0.2mmであるU字型の溝となっている。図4に示すように、試験材10は、溶接金属4の表面から深さが0.5mm位置である原質部上方にUノッチ12が位置し、スリット11が下方に位置するようにして、一部母材の開先部分に重なるように採取した。SR割れの試験材10は溶接ままの状態の溶接金属4から採取した。そして、図5に示すように、矢印で示す方向に試験片10に曲げ応力を印加してUノッチ12の反対側の位置に設けた0.5mm幅の間隙を有するスリット11を0.05mmまで狭め、この狭めたスリット11をTIG電極で走査した(ノンフィラーのなめ付け溶接)。この調整により、溶接金属原質部であったUノッチ底部には引張残留応力13が加わることになる。その後、試験材10に715℃で、10時間のSRを施し、冷却した。そして、図6に示すように、試験材10の長手方向(TIG溶接方向)に対して直交する方向に、長さ5mmずつ、3つに切断し、試験材10の円筒の一方の端面、及び2つの切断面の3断面A乃至Cを観察することでSR割れの有無を評価した。また、なお、SR割れが発生した供試材のソリッドワイヤは使用不可と判断して、クリープ試験を実施しなかった。また、引張試験、シャルピー衝撃試験、クリープ破断試験の試験材は、試験片の中心が全て母材1の板厚中央にくるようにし、溶接金属4の中央位置から採取した。なお、引張試験片及びクリープ破断試験片は、各溶接母材につき1つ採取し試験した。また、シャルピー衝撃試験用の試験片は、各溶接母材につき3つ採取し試験し、その平均値を求めた。以上の各種試験結果を下記表7及び表8に示す。
【0030】
【表1】

Figure 0004471449
【0031】
【表2】
Figure 0004471449
【0032】
【表3】
Figure 0004471449
【0033】
【表4】
Figure 0004471449
【0034】
【表5】
Figure 0004471449
【0035】
【表6】
Figure 0004471449
Bal.は残部を示す。
【0036】
【表7】
Figure 0004471449
【0037】
【表8】
Figure 0004471449
【0038】
実施例1乃至9は、C、Si、Mn、Cr、Mo、Nb、V及びNiの含有量がいずれも本発明範囲内であり、且つ20×C+Mnが2.1質量%未満であるため、裏波ビートの形状、耐SR割れ性、室温及び高温強度、靱性、クリープ破断強度がいずれも所定の性能を満足した。また、実施例2乃至9は、Sの含有量が本発明の好ましい範囲内であり、実施例3乃至9は、Sに加えて更にW及びBの含有量も本発明の好ましい範囲内であり、靱性及びクリープ破断強度が更に優れていた。
【0039】
比較例1は、Cの含有量が本発明範囲の下限(0.020質量%)未満であったため、室温及び高温での引張試験強度が不足した。また、Ni含有量が本発明の上限(0.20質量%)を超えたため、SR割れが発生した。
【0040】
比較例2は、Cの含有量が本発明範囲の上限(0.0090質量%)を超えたため、室温強度が過大となり、靱性も劣化した。また、C、Mn、及びNiの含有量が夫々本発明範囲の上限(夫々、0.090質量%、0.50質量%、及び0.20質量%)を超え、更に、20×C+Mnが本発明範囲の上限(2.1質量%)を超えたため、SR割れが発生した。
【0041】
比較例3は、Siの含有量が本発明範囲の下限(0.05質量%)未満であったため、裏波ビートの形状が不良となった。また、Mn及びNiの含有量が夫々本発明範囲の上限(0.50質量%及び0.20質量%)を超えたため、SR割れが発生した。
【0042】
比較例4は、Siの含有量が本発明範囲の上限(0.70質量%)を超えたため、SRによって溶接金属が脆化して靱性が劣化した。また、Mn及びNiの含有量が夫々本発明範囲の上限(0.50質量%及び0.20質量%)を超え、20×C+Mnが2.1質量%を超えたため、SR割れが発生した。
【0043】
比較例5は、Niの含有量が本発明範囲の上限(0.20質量%)を超えたため、SR割れが発生した。また、Vの含有量が本発明範囲の上限(0.800質量%)を超えたため、室温強度が過大となり、靱性も劣化した。また、この靱性の劣化は、Mnの含有量が本発明範囲の下限(0.01)未満であったことにもよる。
【0044】
比較例6は、Mnの含有量が本発明範囲の上限(0.50質量%)を超え、Niの含有量が本発明範囲の上限(0.20質量%)を超えたため、SR割れが発生した。また、Vの含有量が本発明範囲の下限(0.010質量%)未満であったため、室温及び高温強度が低下した。
【0045】
比較例7は、Mn及びNiの含有量が夫々本発明範囲の上限(0.50質量%及び0.20質量%)を超えたため、SR割れが発生した。また、Nbが本発明範囲の下限(0.10質量%)未満であったため、室温及び高温強度が不足した。
【0046】
比較例8は、Mnの含有量が本発明範囲の上限(0.50質量%)を超えたため、SR割れが発生した。また、Nbの含有量が本発明範囲の上限(0.080質量%)を超えたため、室温強度が過大となり靱性も劣化した。
【0047】
比較例9は、Moの含有量が本発明範囲の上限(0.90質量%)を超えたため、SR割れが発生し、靱性も劣化した。
【0048】
比較例10は、20×C+Mnが本発明の上限(2.1質量%)を超えたため、SR割れが発生した。
【0049】
比較例11は、Mnが本発明範囲の上限(0.40質量%)を超えたため、SR割れが発生した。
【0050】
第2実施例
表2に示すソリッドワイヤのうち、No.14のワイヤを直径1.2mmに調節して、MIG溶接を行い、各評価用試験材を作製した。下記表9にMIG溶接条件を示す。なお。開先形状は図1とし、各種試験要領及び使用鋼板等は第1実施例と同様とした。下記表10にその結果を示す。
【0051】
【表9】
Figure 0004471449
【0052】
【表10】
Figure 0004471449
【0053】
本発明の溶接ワイヤは、C、Si、Mn、Cr、Mo、Nb、V及びNiの含有量がいずれも本発明範囲内であり、且つ20×C+Mnが2.1質量%未満であるため、耐SR割れ性、室温及び高温強度、靱性、クリープ破断強度がいずれも所定の性能を満足した。また、Sの含有量が本発明範囲内であるため、ビードのなじみ性が良好であった。
【0054】
【発明の効果】
以上詳述したように、本発明によれば、C、Si、Mn、Cr、Mo、Nb、V及びNiの含有量及び20×C+Mn値を適切な値に規制することにより、高強度Cr−Mo鋼のMIG溶接又はTIG溶接用ワイヤとして必要な特性を具備しつつ耐SR割れ性が優れた溶接ワイヤを得ることができる。
【図面の簡単な説明】
【図1】溶接母材の形状を示す断面図である。
【図2】溶接母材の形状を示す断面図である。
【図3】SR割れ試験片の形状を示す図であって、(a)は側面図、(b)は試験片長手方向に対する直行断面図、(c)は(b)のノッチ部分を拡大して示す断面図である。
【図4】採取位置の模式的断面図である。
【図5】試験片の調整要領を示す断面図である。
【図6】SR割れの観察位置を示す模式的斜視図である。
【符号の説明】
1、3;溶接母材
2;裏当金
3;溶接母材
4;溶接金属
4a;最終ビート
10;試験材
11;スリット
12;ノッチ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to MIG (metal inert gas) of high-strength Cr-Mo steel shown in thermal power technical standards: fire STBA24J1 (fire: standard defined by a ministerial ordinance (Ministry of International Trade and Industry) defining technical standards related to power generation thermal power equipment). ) For welding or TIG (tungsten inert gas) welding wire, especially high strength Cr-Mo steel with excellent room temperature and high temperature strength after SR (stress relief), high temperature strength, toughness, creep strength and excellent SR cracking resistance. The present invention relates to a wire for MIG welding or TIG welding.
[0002]
[Prior art]
Since 2.25 to 3 mass% Cr-1 mass% Mo steel is excellent in high temperature characteristics, it has been widely applied as a material used in high temperature and high pressure environments such as boilers and chemical reaction vessels. In recent years, in order to achieve high-efficiency operation of facilities, the use environment of these structures tends to be further increased in temperature and pressure, and the welded structures are increased in thickness and thickness, or as steel materials, such as V or Nb Various measures for increasing the strength are being promoted, such as using high-strength Cr-Mo steel to which is added. As for the welding material, high-strength Cr-Mo steel welding wires containing N or V in addition to V or V are disclosed (Japanese Patent No. 2622516, Japanese Patent No. 2742201, and Japanese Patent Laid-Open No. Hei. 10-128576 and JP-A-10-272592). In addition, as a welding method, there exist covering arc welding, submerged arc welding, MIG welding, and TIG welding. Submerged arc welding is frequently used from the viewpoint of efficiency, but application of TIG welding is indispensable for welding of the first layer or piping. MIG welding is also an effective welding method because it has a higher efficiency than coated arc welding. On the other hand, residual stresses of tensile components exist in these welds as they are, and it is necessary to perform SR (stress relief annealing) treatment to release them. Therefore, the welding material has various properties in consideration of the use environment of the welded structure exposed to high temperature and high pressure for a long time, that is, not only creep strength or temper embrittlement property but also resistance to SR treatment. Required.
[0003]
[Problems to be solved by the invention]
However, it has been pointed out that high strength Cr—Mo steel wires that have been proposed conventionally cause so-called SR cracks, which are grain boundary cracks due to precipitation aging, by SR treatment. Japanese Patent Application Laid-Open No. 10-128576 discloses a technique for suppressing SR cracking by adjusting the contents of C, N, and V of the wire, but its effect is insufficient. . As a result of various investigations by the inventors of the present application, the SR crack is different from the hot crack generated at the time of welding or the cold crack caused by hydrogen, and is formed in the original part of the deposited metal, in particular, long and linear. It has been found that the former austenite grain boundary occurs in an open mold. As countermeasures for this, the original part of the weld metal is removed by dressing with a grinder or the like, or the original part of the weld metal is reheated by a temper beat and the structure is refined (grain interfacial area of old austenite grains). However, all of these techniques increase the number of work steps and significantly impair productivity. From such a background, a solution of the welding wire itself against the SR crack is strongly desired.
[0004]
The present invention has been made in view of such problems, and is a high-strength Cr—Mo steel having excellent room temperature and high-temperature strength, toughness, and creep strength after SR treatment and excellent SR cracking resistance. It aims at providing the wire for MIG welding or TIG welding.
[0005]
[Means for Solving the Problems]
The wire for MIG welding or TIG welding of high-strength Cr—Mo steel according to the first invention of the present application is Si: 0.05 to 0.70 mass%, Cr: 2.00 to 3.25 mass%, Mo: 0.00. 01 to 0.90 mass%, V: 0.010 to 0.800 mass%, Nb: 0.010 to 0.080 mass%, C: 0.020 to 0.090 mass%, and Mn: 0.01 To 0.40% by mass, 20 × C + Mn is 2.1% by mass or less, Ni is limited to 0.20% by mass or less, and the balance is composed of Fe and inevitable impurities. Features.
[0006]
The wire for MIG welding or TIG welding of high-strength Cr—Mo steel according to the second invention of the present application is Si: 0.05 to 0.70 mass%, Cr: 2.00 to 3.25 mass%, Mo: 0.00. 01 to 0.90 mass%, V: 0.010 to 0.800 mass%, Nb: 0.010 to 0.080 mass%, C: 0.020 to 0.090 mass%, Mn: 0.01 to 0.40% by mass, W: 0.005 to 2.50% by mass, and S: 0.002 to 0.015% by mass, and 20 × C + Mn is 2.1% by mass or less, Ni: It is limited to 0.20% by mass or less, and the remainder has a composition composed of Fe and inevitable impurities.
[0007]
Furthermore, it is preferable to contain B: 0.0002 to 0.0050 mass%.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail. In the prior art, for the purpose of improving the temper embrittlement characteristics when exposed to a high temperature for a long time, there are many that limit the content of inevitable impurities. As a result of various experimental studies conducted by the inventors of the present application, it has been found that unavoidable impurities should be restricted even for SR cracking. However, restriction of inevitable impurities is a great disadvantage in terms of cost, and it is difficult to suppress SR cracking alone. On the other hand, as a result of intensive experiment research conducted by the inventors of the present application, the amount of grain boundary precipitates has an effect on SR cracking. Further, the grain boundary precipitates have a higher C and Mo content. It was found that the amount of precipitates increased and SR cracking occurred. Moreover, as a result of paying attention not only to the content of inevitable impurities but also to segregation behavior, it has been found that Mn and Ni promote grain boundary segregation of inevitable impurities and cause SR cracking. Furthermore, it has been found that C has an extremely large influence on the segregation behavior of inevitable impurities and causes the occurrence of SR cracks with respect to the amount of grain boundary precipitates. The present invention has been made based on these three findings.
[0009]
That is, the first invention of the present application adjusts the contents of C, Si, Cr, Mo, V, and Nb contained in the wire, and optimizes the contents of C and Mo, Ni and Mn among these components. By optimizing the content and further restricting the C and Mn content, it has the necessary properties (various strength, toughness, etc.) as a welding material for high-strength Cr-Mo steel and suppresses SR cracking It is. However, if any one of the above requirements is missing, it is possible to obtain a high strength Cr-Mo steel welding wire having excellent room temperature and high temperature strength, toughness and creep strength after SR treatment and good SR cracking resistance. Can not.
[0010]
The second invention of the present application further improves the creep strength and welding workability by further defining the contents of W and S. Furthermore, by specifying the B content, the creep strength and toughness can be further improved.
[0011]
Hereinafter, the reasons for limiting the numerical values of the chemical compositions of the first and second inventions of the present application will be described.
[0012]
Si: 0.05 to 0.70 mass%
Si has the effect of increasing the viscosity of the molten metal and adjusting the bead shape. If Si is less than 0.05, this effect cannot be obtained, and the viscosity of the molten metal is insufficient, and the bead shape is significantly lowered, for example, the back layer bead of the first layer becomes convex. On the other hand, when Si exceeds 0.70 mass%, slag is generated to cause slag entrainment, and the weld metal is embrittled by SR treatment, resulting in a decrease in toughness. Therefore, the Si content is 0.05 to 0.70 mass%.
[0013]
Cr: 2.00 to 3.25% by mass
Cr is added to ensure corrosion resistance and room temperature and high temperature strength, and is an essential component in the present invention. However, if Cr is less than 2.00% by mass, sufficient corrosion resistance, room temperature and high temperature strength cannot be obtained. On the other hand, when Cr exceeds 3.25 mass%, toughness will fall. Therefore, the Cr content is 2.00 to 3.25% by mass.
[0014]
Mo: 0.01 to 0.90 mass%
Mo is added to ensure corrosion resistance, room temperature, and high-temperature strength in the same manner as Cr, and is an essential component of the present invention. Furthermore, Mo is one of the important constituent requirements of the present invention together with C, Mn, Ni, and 20 × C + Mn. If the Mo content exceeds 0.90% by mass, the toughness is reduced, and the amount of grain boundary precipitates becomes excessive, so that SR crack resistance can be achieved even if C, Mn, Ni, and 20 × C + Mn are within the scope of the present invention. It will be seriously damaged. On the other hand, if it is less than 0.1% by mass, sufficient corrosion resistance and room temperature and high temperature strength cannot be obtained. Therefore, the Mo content is set to 0.01 to 0.90 mass%.
[0015]
V: 0.010 to 0.800 mass%, preferably 0.010 to 0.60 mass%
Nb: 0.010 to 0.080 mass%, preferably 0.010 to 0.060 mass%
V and Nb are both precipitation hardening elements and are added to ensure room temperature and high temperature strength. However, when V is less than 0.010 mass% and Nb is less than 0.010 mass%, sufficient room temperature and high temperature strength cannot be obtained. On the other hand, when V exceeds 0.800 mass% and Nb exceeds 0.080 mass%, the strength becomes excessively high and causes a decrease in toughness. Accordingly, the V content is 0.010 to 0.800 mass%, more preferably 0.010 to 0.60 mass%, and the Nb content is 0.010 to 0.080 mass%, more preferably 0. .010 to 0.060 mass%.
[0016]
C: 0.020 to 0.090 mass%
C is one of the important constituents of the present invention together with Mn, Ni, Mo, and 20 × C + Mn. C has a great influence on quench hardenability, and is an important element for securing room temperature and high temperature strength, creep strength and toughness. When C is less than 0.020% by mass, the hardenability is insufficient and the room temperature strength is insufficient, and the precipitation of carbide is insufficient, resulting in insufficient high-temperature strength and creep strength. On the other hand, if C exceeds 0.090 mass%, the room temperature strength becomes excessively high and the toughness is lowered, and the amount of grain boundary precipitates is increased, so that Mn, Ni, Mo, and 20 × C + Mn are present in the present invention. The SR resistance also deteriorates as a range. Therefore, the C content is 0.020 to 0.090 mass%.
[0017]
Mn: 0.01 to 0.40 mass%
Mn, together with C, Ni, Mo, and 20 × C + Mn, is one of the important constituents of the present invention. Conventionally, for the purpose of improving the temper embrittlement characteristics, a technique for limiting the inevitable impurity content of the welding wire has been disclosed. However, there is a limit in terms of cost, and the suppression of SR cracking is insufficient. It was. The present invention has been made because it has been found that, unlike such a conventional technique, SR cracking can be suppressed by adjusting the amount of grain boundary precipitates and adjusting elements that promote segregation. As a result of investigating the relationship with SR cracking for components other than unavoidable impurities, it was found that Mn and Ni are components that promote grain boundary segregation of unavoidable impurities and impair SR cracking resistance. For this reason, when Mn exceeds 0.4 mass%, it is difficult to suppress SR cracking even if C, Ni, Mo, and 20 × C + Mn are adjusted within the scope of the present invention. On the other hand, Mn has an effect of improving toughness, but if it is less than 0.01% by mass, this effect cannot be obtained. Therefore, the Mn content is 0.01 to 0.40 mass%.
[0018]
20 × C + Mn: 2.1% by mass or less In order to improve the SR cracking resistance, which is the object of the present invention, it is extremely important to reduce the amount of grain boundary precipitates and to suppress grain boundary segregation of inevitable impurities. From the research results of the inventors of the present application, it has been found that C has a great influence on the amount of grain boundary precipitates, and Mn has a great influence on the grain boundary segregation of inevitable impurities. And even if C, Mn, Ni, and Mo were made into this invention range, when 20 * C + Mn exceeded 2.1 mass%, it turned out that SR cracking resistance deteriorates. Accordingly, 20 × C + Mn is 2.1% by mass or less.
[0019]
Ni: 0.20% by mass or less Ni has a defect that promotes grain boundary segregation of inevitable impurities together with Mn and impairs SR cracking resistance, so C, Mn, Mo, and 20 × C + Mn At the same time, it is one of the important constituent elements of the present invention. When Ni exceeds 0.20 mass%, it becomes difficult to suppress SR cracking even if C, Mn, Mo, and 20 × C + M are within the scope of the present invention. Therefore, the Ni content is 0.20 mass% or less.
[0020]
The above are the main constituent requirements that form the basis of the present invention. By satisfying all of these requirements, high strength Cr-Mo steel having room temperature strength, high temperature strength, creep strength, toughness, and excellent SR crack resistance is used. A wire for MIG welding or TIG welding can be obtained. In addition to these constituent requirements, the above-described various properties can be obtained by defining the following components.
[0021]
W: 0.005 to 2.50 mass%
W strengthens the matrix by solid solution and precipitates as fine carbides to strengthen precipitation, thereby contributing to the improvement of creep strength. It also contributes to the improvement of SR cracking resistance. However, when W is less than 0.005% by mass, this effect cannot be obtained. On the other hand, even if it exceeds 2.50% by mass, no particular creep strength improving effect is observed. Therefore, in the case of the second invention of the present invention containing W, the content is set to 0.005 to 2.50 mass%.
[0022]
S: 0.002 to 0.015 mass%
Since S is a component that promotes SR cracking, it is an unavoidable impurity that is not actively added in the first invention of the present application. However, S is an element that improves the fluidity of the molten metal, and improves the compatibility with the weld metal of the base metal groove surface or the front layer and the front pass, thereby suppressing the occurrence of welding defects such as poor fusion. Has an effect. For this reason, in 2nd invention of this application, S is contained 0.002 mass% or more. However, if S is less than 0.002% by mass, this effect cannot be obtained. On the other hand, if S exceeds 0.015% by mass, no special fusion defect improving effect is observed, and SR cracking is caused. Therefore, in the case of the second invention of the present application containing S, the content is made 0.002 to 0.015 mass%.
[0023]
B: 0.0002 to 0.0050 mass%
B has an effect of improving toughness since carbides are dispersed and precipitated. Furthermore, the carbide is excellent in stability at high temperatures, and is effective in further improving the creep strength. However, this effect cannot be obtained when the B content is less than 0.0002 mass%. On the other hand, when the content of B exceeds 0.0050 mass%, the SR cracking resistance deteriorates. Therefore, when B is contained, the content is set to 0.0002 to 0.005 mass%.
[0024]
Inevitable impurities in the present invention include P, S, Cu, Sn, As, Sb, Ta, Al, Ti, N, O, and the like. The maximum allowable contents of P and S are each 0.015% by mass, and the maximum allowable contents of Sn, As, and Sb are 0.005% by mass, respectively. Moreover, it is not necessary to give Cu plating as a wire surface treatment. In addition, when performing Cu plating, Cu plating amount shall be 0.30 mass% at the maximum with respect to the total mass of a wire. The maximum allowable amount of Al, Ti, O, and N is 0.04% by mass. The maximum allowable content of Ta is 0.03% by mass.
[0025]
Needless to say, the present invention is a wire for MIG welding or TIG welding, and can be applied to any welding method. TIG welding includes a manual construction method using a TIG cutting line and an automatic construction method, but the wire of the present invention can be used in any construction method. The shielding gas is not particularly limited. In the case of TIG welding, Ar or Ar + He, and in the case of MIG welding, shielding gases having various compositions such as Ar + CO 2 , Ar + O 2 , or Ar + CO 2 + O 2 can be used. There is no particular restriction on the wire diameter, and any diameter such as 0.8 to 2.4 mm can be used.
[0026]
【Example】
Hereinafter, the effect of the MIG welding or TIG welding wire of the high-strength Cr—Mo steel of the present invention will be described in comparison with a comparative example that is out of the scope of the present invention.
[0027]
First Example Solid wires (wire diameter 1.6 mm) having chemical components shown in Tables 1 and 2 below were prepared, and TIG welding was performed to prepare various evaluations and test materials. In addition to the chemical components shown in Tables 1 and 2 below, the solid wire includes Sn of less than 0.005 mass%, Sb of less than 0.005 mass%, As of less than 0.005 mass%, and Ta of 0. Contained less than 0.03 mass%. The evaluation was performed by evaluating the shape of the back bead, the conformability of the bead, and the SR crack, and the tensile test, the Charpy impact test, and the creep rupture test. FIG.1 and FIG.2 is sectional drawing which shows the groove shape of the welding base material used in a present Example. Tables 3 and 4 below show the TIG welding conditions. The nozzle used in the present embodiment has a double structure, and shield gases having different flow rates are supplied from nozzles formed inside and outside. Table 5 below shows various test procedures (evaluation criteria, test piece shape and sampling position). In Table 5, AC indicates air cooling, and FC indicates furnace cooling. 3 and 4 show the shape and sampling position of the SR crack specimen, respectively. FIG. 5 and FIG. 6 are a cross-sectional view showing a procedure for adjusting the SR crack specimen and a schematic perspective view showing the observation position of the SR crack, respectively. Table 6 below shows the chemical components of the steel sheet used as the base material.
[0028]
As shown in FIG. 1, the weld base material 1 has a V-shaped groove, and a backing metal 2 having the same chemical composition as the weld base material 1 is disposed on the back surface of the V-shaped groove portion. Has been. In this example, the groove angle of the V shape was 45 °, and the root interval of the portion where the backing metal was disposed was 6 mm. The plate thickness of the weld base material 1 was 12 mm. Further, as shown in FIG. 2, the weld base material 3 has a U-shaped groove, the root interval is 2.0 mm, the U-shaped groove angle is 10 °, and the plate thickness of the weld base material 3 is 12 mm. did. The bead conformability was evaluated using the groove-shaped base material shown in FIG. In addition, the back bead was evaluated using a groove-shaped base material shown in FIG.
[0029]
3 and 4 are views showing the shape and sampling position of the SR crack specimen, respectively, FIG. 3 (a) is a side view, FIG. 3 (b) is an orthogonal cross-sectional view with respect to the longitudinal direction of the specimen, and FIG. c) is an enlarged cross-sectional view of the notch portion of FIG. 3 (b), and FIG. 4 is a schematic cross-sectional view of the sampling position. In the weld metal 4 formed by performing TIG welding under the conditions shown in Table 3 below using a solid wire of the test material for the groove of the base material 1 shown in FIG. 1, this welding is performed as shown in FIG. A cylindrical test material 10 having a notch 12 and a slit 11 so as to include the final beat 4a of the metal 4 was collected. As shown in FIG. 3A, the collected cylindrical test material 10 had an inner diameter of 5 mm, an outer diameter of 10 mm, and a length of 15 mm. Moreover, the slit 11 of the test material 10 is a slit having a width of 0.5 mm reaching the hollow portion of the cylinder, and the outer peripheral surface on the opposite side of the slit 11 has a notch 12 in the longitudinal direction of the test material 10. Yes. As shown in FIG. 3C, the notch 12 is a U-shaped groove having a depth of 0.5 mm, a width of 0.4 mm, and a curvature radius of 0.2 mm at the bottom. As shown in FIG. 4, the test material 10 has a U notch 12 located above the original part having a depth of 0.5 mm from the surface of the weld metal 4 and a slit 11 located below, A portion of the base material was collected so as to overlap the groove portion. The SR crack test material 10 was taken from the weld metal 4 in a welded state. Then, as shown in FIG. 5, bending stress is applied to the test piece 10 in the direction indicated by the arrow, and the slit 11 having a gap of 0.5 mm provided at a position opposite to the U notch 12 is increased to 0.05 mm. The narrowed slit 11 was scanned with a TIG electrode (non-filler tanning welding). By this adjustment, the tensile residual stress 13 is applied to the bottom portion of the U notch that was the weld metal base portion. Then, SR for 10 hours was given to the test material 10 at 715 degreeC, and it cooled. And as shown in FIG. 6, in the direction orthogonal to the longitudinal direction (TIG welding direction) of the test material 10, it cut | disconnects into three by 5 mm in length, one end surface of the cylinder of the test material 10, and The presence or absence of SR cracks was evaluated by observing the three cross sections A to C of the two cut surfaces. In addition, it was judged that the solid wire of the test material in which the SR crack occurred was not usable, and the creep test was not performed. The test materials for the tensile test, Charpy impact test, and creep rupture test were collected from the center position of the weld metal 4 so that the center of the test piece was all in the center of the thickness of the base material 1. In addition, one tensile test piece and creep rupture test piece were sampled for each weld base material and tested. Further, three test pieces for Charpy impact test were sampled for each weld base material and tested, and the average value was obtained. The above various test results are shown in Table 7 and Table 8 below.
[0030]
[Table 1]
Figure 0004471449
[0031]
[Table 2]
Figure 0004471449
[0032]
[Table 3]
Figure 0004471449
[0033]
[Table 4]
Figure 0004471449
[0034]
[Table 5]
Figure 0004471449
[0035]
[Table 6]
Figure 0004471449
Bal. Indicates the remainder.
[0036]
[Table 7]
Figure 0004471449
[0037]
[Table 8]
Figure 0004471449
[0038]
In Examples 1 to 9, since the contents of C, Si, Mn, Cr, Mo, Nb, V, and Ni are all within the scope of the present invention, and 20 × C + Mn is less than 2.1% by mass, The back beat shape, SR cracking resistance, room temperature and high temperature strength, toughness, and creep rupture strength all satisfied predetermined performance. In Examples 2 to 9, the S content is within the preferable range of the present invention, and in Examples 3 to 9, the W and B contents are also within the preferable range of the present invention in addition to S. Further, the toughness and the creep rupture strength were further excellent.
[0039]
In Comparative Example 1, since the C content was less than the lower limit (0.020% by mass) of the present invention range, the tensile test strength at room temperature and high temperature was insufficient. Moreover, since Ni content exceeded the upper limit (0.20 mass%) of this invention, SR crack generate | occur | produced.
[0040]
In Comparative Example 2, the C content exceeded the upper limit (0.0090% by mass) of the range of the present invention, so the room temperature strength was excessive and the toughness was also deteriorated. In addition, the contents of C, Mn, and Ni exceed the upper limits of the present invention range (0.090% by mass, 0.50% by mass, and 0.20% by mass, respectively), and further 20 × C + Mn is present. Since the upper limit (2.1% by mass) of the invention range was exceeded, SR cracking occurred.
[0041]
In Comparative Example 3, since the Si content was less than the lower limit (0.05% by mass) of the range of the present invention, the shape of the back beat became poor. Moreover, since the contents of Mn and Ni exceeded the upper limits (0.50 mass% and 0.20 mass%) of the present invention range, SR cracking occurred.
[0042]
In Comparative Example 4, since the Si content exceeded the upper limit (0.70% by mass) of the range of the present invention, the weld metal was embrittled by SR and the toughness deteriorated. Moreover, since content of Mn and Ni exceeded the upper limit (0.50 mass% and 0.20 mass%) of this invention, respectively, and 20 * C + Mn exceeded 2.1 mass%, SR crack generate | occur | produced.
[0043]
In Comparative Example 5, since the Ni content exceeded the upper limit (0.20 mass%) of the present invention range, SR cracking occurred. Moreover, since the V content exceeded the upper limit (0.800% by mass) of the range of the present invention, the room temperature strength was excessive and the toughness was also deteriorated. The deterioration of toughness is also due to the fact that the Mn content was less than the lower limit (0.01) of the present invention range.
[0044]
In Comparative Example 6, since the Mn content exceeded the upper limit (0.50% by mass) of the present invention range and the Ni content exceeded the upper limit (0.20% by mass) of the present invention range, SR cracking occurred. did. Moreover, since content of V was less than the minimum (0.010 mass%) of the range of this invention, room temperature and high temperature strength fell.
[0045]
In Comparative Example 7, since the contents of Mn and Ni exceeded the upper limits (0.50% by mass and 0.20% by mass) of the present invention range, SR cracking occurred. Moreover, since Nb was less than the lower limit (0.10 mass%) of the range of the present invention, room temperature and high temperature strength were insufficient.
[0046]
In Comparative Example 8, since the Mn content exceeded the upper limit (0.50% by mass) of the present invention range, SR cracking occurred. Moreover, since the content of Nb exceeded the upper limit (0.080% by mass) of the range of the present invention, the room temperature strength became excessive and the toughness deteriorated.
[0047]
In Comparative Example 9, since the Mo content exceeded the upper limit (0.90% by mass) of the present invention range, SR cracking occurred and toughness deteriorated.
[0048]
In Comparative Example 10, SR cracking occurred because 20 × C + Mn exceeded the upper limit (2.1% by mass) of the present invention.
[0049]
In Comparative Example 11, SR cracking occurred because Mn exceeded the upper limit (0.40% by mass) of the present invention range.
[0050]
Second Embodiment Of the solid wires shown in Table 2, No. 2 was used. The 14 wires were adjusted to a diameter of 1.2 mm, MIG welding was performed, and each test material for evaluation was produced. Table 9 below shows the MIG welding conditions. Note that. The groove shape was as shown in FIG. 1, and various test procedures and steel plates used were the same as in the first example. The results are shown in Table 10 below.
[0051]
[Table 9]
Figure 0004471449
[0052]
[Table 10]
Figure 0004471449
[0053]
In the welding wire of the present invention, the contents of C, Si, Mn, Cr, Mo, Nb, V and Ni are all within the scope of the present invention, and 20 × C + Mn is less than 2.1% by mass. SR cracking resistance, room temperature and high temperature strength, toughness, and creep rupture strength all satisfied predetermined performance. Moreover, since the content of S is within the range of the present invention, the conformability of the beads was good.
[0054]
【The invention's effect】
As described in detail above, according to the present invention, by controlling the content of C, Si, Mn, Cr, Mo, Nb, V and Ni and the 20 × C + Mn value to appropriate values, high strength Cr− It is possible to obtain a welding wire having excellent SR cracking resistance while having characteristics necessary for a MIG welding or TIG welding wire of Mo steel.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing the shape of a weld base material.
FIG. 2 is a cross-sectional view showing the shape of a weld base material.
FIGS. 3A and 3B are diagrams showing the shape of an SR crack specimen, wherein FIG. 3A is a side view, FIG. 3B is a cross-sectional view orthogonal to the longitudinal direction of the specimen, and FIG. FIG.
FIG. 4 is a schematic cross-sectional view of a sampling position.
FIG. 5 is a cross-sectional view showing a procedure for adjusting a test piece.
FIG. 6 is a schematic perspective view showing an observation position of an SR crack.
[Explanation of symbols]
1, 3; Welding base material 2; Back metal 3; Welding base material 4; Weld metal 4a; Final beat 10; Test material 11; Slit 12;

Claims (3)

Si:0.05乃至0.70質量%、Cr:2.00乃至3.25質量%、Mo:0.01乃至0.90質量%、V:0.010乃至0.800質量%、Nb:0.010乃至0.080質量%、C:0.020乃至0.090質量%、及びMn:0.01乃至0.40質量%を含有し、且つ20×C+Mnが2.1質量%以下であり、Ni:0.20質量%以下に制限し、残部がFe及び不可避的不純物からなる組成を有することを特徴とする高強度Cr−Mo鋼のMIG溶接又はTIG溶接用ワイヤ。Si: 0.05 to 0.70 mass%, Cr: 2.00 to 3.25 mass%, Mo: 0.01 to 0.90 mass%, V: 0.010 to 0.800 mass%, Nb: 0.010 to 0.080 mass%, C: 0.020 to 0.090 mass%, and Mn: 0.01 to 0.40 mass%, and 20 × C + Mn is 2.1 mass% or less Yes: Ni: Wire for MIG welding or TIG welding of high-strength Cr-Mo steel, which is limited to 0.20% by mass or less, and the balance is composed of Fe and inevitable impurities Si:0.05乃至0.70質量%、Cr:2.00乃至3.25質量%、Mo:0.01乃至0.90質量%、V:0.010乃至0.800質量%、Nb:0.010乃至0.080質量%、C:0.020乃至0.090質量%、Mn:0.01乃至0.40質量%、W:0.005乃至2.50質量%、及びS:0.002乃至0.015質量%を含有し、且つ20×C+Mnが2.1質量%以下であり、Ni:0.20質量%以下に制限し、残部がFe及び不可避的不純物からなる組成を有することを特徴とする高強度Cr−Mo鋼のMIG溶接又はTIG溶接用ワイヤ。Si: 0.05 to 0.70 mass%, Cr: 2.00 to 3.25 mass%, Mo: 0.01 to 0.90 mass%, V: 0.010 to 0.800 mass%, Nb: 0.010 to 0.080 mass%, C: 0.020 to 0.090 mass%, Mn: 0.01 to 0.40 mass%, W: 0.005 to 2.50 mass%, and S: 0 0.002 to 0.015% by mass, 20 × C + Mn is 2.1% by mass or less, Ni is limited to 0.20% by mass or less, and the balance is composed of Fe and inevitable impurities. A wire for MIG welding or TIG welding of high-strength Cr-Mo steel characterized by the above. 更に、B:0.0002乃至0.0050質量%を含有することを特徴とする請求項1又は2に記載の高強度Cr−Mo鋼のMIG溶接又はTIG溶接用ワイヤ。Furthermore, B: 0.0002 thru | or 0.0050 mass% is contained, The wire for MIG welding or TIG welding of the high strength Cr-Mo steel of Claim 1 or 2 characterized by the above-mentioned.
JP2000140384A 2000-05-12 2000-05-12 High strength Cr-Mo steel MIG or TIG welding wire Expired - Lifetime JP4471449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000140384A JP4471449B2 (en) 2000-05-12 2000-05-12 High strength Cr-Mo steel MIG or TIG welding wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000140384A JP4471449B2 (en) 2000-05-12 2000-05-12 High strength Cr-Mo steel MIG or TIG welding wire

Publications (2)

Publication Number Publication Date
JP2001321986A JP2001321986A (en) 2001-11-20
JP4471449B2 true JP4471449B2 (en) 2010-06-02

Family

ID=18647688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000140384A Expired - Lifetime JP4471449B2 (en) 2000-05-12 2000-05-12 High strength Cr-Mo steel MIG or TIG welding wire

Country Status (1)

Country Link
JP (1) JP4471449B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5011931B2 (en) * 2006-10-06 2012-08-29 株式会社日立製作所 Steam turbine welding rotor
CN111055043A (en) * 2019-12-27 2020-04-24 中国第一重型机械集团大连加氢反应器制造有限公司 Argon tungsten-arc welding wire for welding Cr-Mo-V steel for hydrogenation reactor and preparation method thereof

Also Published As

Publication number Publication date
JP2001321986A (en) 2001-11-20

Similar Documents

Publication Publication Date Title
KR101840914B1 (en) SUBMERGED ARC WELDING WIRE FOR HIGH-STRENGTH 2.25Cr-1Mo-V STEEL AND WELD METAL
WO2012176586A1 (en) Carburization-resistant metal material
KR101764040B1 (en) Coated electrode
KR20160136468A (en) Zinc based alloy coated steel having superior resistance to liquid metal embrittlement and cracking
JP2006225718A (en) DEPOSITED METAL FOR HIGH STRENGTH Cr-Mo STEEL HAVING EXCELLENT LOW TEMPERATURE TOUGHNESS AND SR CRACK RESISTANCE
KR20230025882A (en) Solid wire for gas metal arc welding
JP4478059B2 (en) Gas shielded arc welding wire for refractory structural steel.
JP3850764B2 (en) Welding wire for high Cr ferritic heat resistant steel
JP6235402B2 (en) Weld metal with excellent strength, toughness and SR cracking resistance
JP3283773B2 (en) High strength Cr-Mo steel coated arc welding metal and coated arc welding method
EP4066985A1 (en) Ni-based alloy flux-cored wire
JPWO2018066573A1 (en) Austenitic heat-resistant alloy and welded joint using the same
JP4471449B2 (en) High strength Cr-Mo steel MIG or TIG welding wire
JP5012194B2 (en) Ferritic stainless steel sheet for water heater with high welded joint strength and manufacturing method thereof
JPH08150478A (en) Submerged arc welding method for high strength cr-mo steel and weld metal
JP5670305B2 (en) Solid wire for gas shielded arc welding of high strength steel sheet
CN113490571B (en) Welding material for high Cr ferrite heat-resistant steel
JPH07290275A (en) Welding wire for high strength cr-mo steel
JP4467167B2 (en) Welding wire for low alloy heat resistant steel
JP2004091860A (en) Weld metal for low-alloy heat-resisting steel
JP2018144060A (en) Filler metal for tig welding
JP7360032B2 (en) Austenitic heat resistant steel welded joints
JP2000212701A (en) Invar alloy excellent in weld high temperature crack resistance and hot workability
JP7334771B2 (en) Steel for the shell of the container for the melt, the shell of the container for containing the melt, and the container for containing the melt
CN114850627B (en) Flux-cored wire, weld metal, gas shielded arc welding method, and method for manufacturing welded joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100302

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4471449

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

EXPY Cancellation because of completion of term