JP4466402B2 - Thick film conductor composition - Google Patents
Thick film conductor composition Download PDFInfo
- Publication number
- JP4466402B2 JP4466402B2 JP2005041048A JP2005041048A JP4466402B2 JP 4466402 B2 JP4466402 B2 JP 4466402B2 JP 2005041048 A JP2005041048 A JP 2005041048A JP 2005041048 A JP2005041048 A JP 2005041048A JP 4466402 B2 JP4466402 B2 JP 4466402B2
- Authority
- JP
- Japan
- Prior art keywords
- thick film
- powder
- film conductor
- mass
- composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004020 conductor Substances 0.000 title claims description 79
- 239000000203 mixture Substances 0.000 title claims description 36
- 239000000843 powder Substances 0.000 claims description 109
- 239000011521 glass Substances 0.000 claims description 63
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 42
- 229910052661 anorthite Inorganic materials 0.000 claims description 33
- GWWPLLOVYSCJIO-UHFFFAOYSA-N dialuminum;calcium;disilicate Chemical compound [Al+3].[Al+3].[Ca+2].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-] GWWPLLOVYSCJIO-UHFFFAOYSA-N 0.000 claims description 33
- 229910018068 Li 2 O Inorganic materials 0.000 claims description 30
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 27
- 239000000758 substrate Substances 0.000 claims description 12
- 239000000919 ceramic Substances 0.000 claims description 7
- 229910052763 palladium Inorganic materials 0.000 claims description 7
- 229910052709 silver Inorganic materials 0.000 claims description 7
- 238000010304 firing Methods 0.000 claims description 5
- 229910052737 gold Inorganic materials 0.000 claims description 5
- 229910052697 platinum Inorganic materials 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 239000000463 material Substances 0.000 claims 1
- 229910000679 solder Inorganic materials 0.000 description 46
- 239000000853 adhesive Substances 0.000 description 15
- 230000001070 adhesive effect Effects 0.000 description 15
- 230000003628 erosive effect Effects 0.000 description 13
- 239000002245 particle Substances 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- 238000000034 method Methods 0.000 description 6
- 239000002244 precipitate Substances 0.000 description 6
- 239000013078 crystal Substances 0.000 description 5
- 238000005476 soldering Methods 0.000 description 5
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 238000003912 environmental pollution Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 229910000510 noble metal Inorganic materials 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- QPLDLSVMHZLSFG-UHFFFAOYSA-N CuO Inorganic materials [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 2
- 239000001856 Ethyl cellulose Substances 0.000 description 2
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical compound CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- SQIFACVGCPWBQZ-UHFFFAOYSA-N delta-terpineol Natural products CC(C)(O)C1CCC(=C)CC1 SQIFACVGCPWBQZ-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000002003 electrode paste Substances 0.000 description 2
- 229920001249 ethyl cellulose Polymers 0.000 description 2
- 235000019325 ethyl cellulose Nutrition 0.000 description 2
- VASIZKWUTCETSD-UHFFFAOYSA-N manganese(II) oxide Inorganic materials [Mn]=O VASIZKWUTCETSD-UHFFFAOYSA-N 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 229940116411 terpineol Drugs 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- OAYXUHPQHDHDDZ-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethanol Chemical compound CCCCOCCOCCO OAYXUHPQHDHDDZ-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/062—Glass compositions containing silica with less than 40% silica by weight
- C03C3/064—Glass compositions containing silica with less than 40% silica by weight containing boron
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/089—Glass compositions containing silica with 40% to 90% silica, by weight containing boron
- C03C3/091—Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C8/00—Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
- C03C8/14—Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
- C03C8/18—Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions containing free metals
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Conductive Materials (AREA)
- Glass Compositions (AREA)
Description
本発明は、鉛を含有しない厚膜導体形成用組成物に関し、特に、チップ抵抗器、抵抗ネットワークおよびハイブリッドICなどを製造する際、セラミック基板上などに、厚膜導体を形成するために使用する厚膜導体形成用組成物に関する。 The present invention relates to a composition for forming a thick film conductor that does not contain lead. In particular, the present invention is used to form a thick film conductor on a ceramic substrate or the like when manufacturing a chip resistor, a resistor network, a hybrid IC, and the like. The present invention relates to a thick film conductor forming composition.
厚膜技術を用いて厚膜導体を形成する場合、一般には、導電率の高い導電粉末を、ガラス粉末などの酸化物粉末と共に、有機ビヒクル中に分散させて、導電ペーストを得て、該導電ペーストを、アルミナ基板等のセラミック基板上に、スクリーン印刷法等により、所定の形状に塗布し、500℃〜900℃で焼成することにより、厚膜導体を形成する。 When a thick film conductor is formed using thick film technology, generally, a conductive powder having high conductivity is dispersed in an organic vehicle together with an oxide powder such as glass powder to obtain a conductive paste. The paste is applied to a predetermined shape on a ceramic substrate such as an alumina substrate by a screen printing method or the like, and fired at 500 ° C. to 900 ° C. to form a thick film conductor.
導電粉末としては、導電率の高いAu、Ag、PdまたはPtからなり、平均粒径10μm以下の粉末が用いられており、特に、安価なAg粉末およびPd粉末が、一般的に使用されている。 As the conductive powder, a powder made of Au, Ag, Pd or Pt having a high conductivity and having an average particle size of 10 μm or less is used. In particular, inexpensive Ag powder and Pd powder are generally used. .
ガラス粉末としては、軟化点の制御が容易で、化学的耐久性の高いホウケイ酸鉛、またはアルミノホウケイ酸鉛系が用いられてきた。しかしながら、環境汚染を防止する昨今の観点から、鉛を含有しない導電ペーストが望まれている。 As the glass powder, lead borosilicate or lead aluminoborosilicate, which is easy to control the softening point and has high chemical durability, has been used. However, from the recent viewpoint of preventing environmental pollution, a conductive paste containing no lead is desired.
得られた厚膜導体を使用して、チップ抵抗器、抵抗ネットワークまたはハイブリッドIC等の電子部品を製造する際の製造工程、あるいは実装工程では、厚膜導体に半田付けが行なわれる。この半田付けの際に、Au、Ag、PdまたはPtが、半田中に溶け出し、導体部分が消失し、断線してしまうことがある。この現象を、半田食われと呼んでいる。半田食われは、チップ抵抗器、抵抗ネットワークまたはハイブリッドIC等の電子部品の歩留まりを低下させたり、これらの電子部品の信頼性を低下させる原因になるという問題がある。 The thick film conductor is soldered in a manufacturing process or a mounting process when manufacturing the electronic component such as a chip resistor, a resistor network, or a hybrid IC using the thick film conductor obtained. At the time of this soldering, Au, Ag, Pd or Pt may melt into the solder, and the conductor portion may be lost and disconnected. This phenomenon is called solder erosion. Solder erosion has the problem of reducing the yield of electronic components such as chip resistors, resistor networks, or hybrid ICs, and reducing the reliability of these electronic components.
さらに、前述のように環境汚染を防止するため、半田も、63Sn/37Pbの共晶半田から、鉛を含有しないSn含有量の高い組成の半田に変わりつつあり、Sn系半田の融点が高いことから、半田付け温度も高くなる傾向がある。このような半田組成の変更や、半田付け温度の上昇に伴い、半田食われが今まで以上に発生しやすくなったという問題もある。 Furthermore, as described above, in order to prevent environmental pollution, the solder is changing from a 63Sn / 37Pb eutectic solder to a solder with a high Sn content not containing lead, and the melting point of the Sn-based solder is high. Therefore, the soldering temperature tends to increase. With such a change in solder composition and an increase in soldering temperature, there is also a problem that solder erosion is more likely to occur than before.
半田食われを防ぐ方法の一つとして、厚膜導体形成用組成物中のガラス粉末の量を増やし、得られる厚膜導体の表面にガラス成分を浮かせる方法がある。しかしながら、この方法では、厚膜導体と電子部品の接触が不完全となったり、電子部品の特性値を測定するためのプローブと、厚膜導体との接触が不完全となる問題がある。 As one method for preventing solder erosion, there is a method of increasing the amount of glass powder in the composition for forming a thick film conductor and floating the glass component on the surface of the resulting thick film conductor. However, this method has a problem that the contact between the thick film conductor and the electronic component is incomplete, or the contact between the probe for measuring the characteristic value of the electronic component and the thick film conductor is incomplete.
また、特開平6−223616号公報には、PbO−SiO2−CaO−Al2O3系ガラス粉末と、Al2O3粉末と、SiO2粉末と、導電粉末とを、有機ビヒクルに分散させて、ペースト焼成時に、アノーサイト(CaAl2Si2O8)と呼ばれる針状の結晶相を厚膜導体の内部に析出させることにより、半田食われを防ぐ方法が記載されている。しかしながら、特開平6−223616号公報に記載の導電ペースト用組成物は、鉛を含有しているガラス粉末を用いており、環境汚染の観点から好ましくない。また、特開平6−223616号公報には、ガラス粉末中のPbOが15質量%未満では、アノーサイトが十分に析出しないと記載されているように、鉛を含有しない導電ペーストでは、半田食われを防ぐことが困難であった。 JP-A-6-223616 discloses that PbO—SiO 2 —CaO—Al 2 O 3 glass powder, Al 2 O 3 powder, SiO 2 powder, and conductive powder are dispersed in an organic vehicle. In addition, there is described a method for preventing solder erosion by precipitating a needle-like crystal phase called anorthite (CaAl 2 Si 2 O 8 ) inside a thick film conductor during paste firing. However, the conductive paste composition described in JP-A-6-223616 uses a glass powder containing lead, which is not preferable from the viewpoint of environmental pollution. Further, Japanese Patent Laid-Open No. 6-223616 describes that when PbO in the glass powder is less than 15% by mass, the anorthite does not sufficiently precipitate, so that the conductive paste containing no lead erodes the solder. It was difficult to prevent.
一方、特開平7−97269号公報および特開平2001−114556号公報には、SiO2−B2O3−Al2O3−CaO系ガラス粉末と、Al2O3粉末との混合物を加熱することによって、アノーサイトを析出させている。しかしながら、これらの場合には、十分な大きさのアノーサイトを析出させるためには、その結晶化温度が高い(ガラスの軟化温度が高い)ことから、900℃以上の高温が必要である。900℃以上の温度で電極ペーストを焼成すると,電極膜が過焼結となったり、融点が低いAgを主成分とする電極ペーストでは電極膜が島状になってしまい,均質な電極膜が形成できなくなるという問題がある。 On the other hand, in JP-A-7-97269 and JP-A-2001-114556, a mixture of SiO 2 —B 2 O 3 —Al 2 O 3 —CaO-based glass powder and Al 2 O 3 powder is heated. As a result, anorthite is deposited. However, in these cases, in order to precipitate a sufficiently large anorthite, the crystallization temperature is high (the softening temperature of the glass is high), so a high temperature of 900 ° C. or higher is required. When the electrode paste is baked at a temperature of 900 ° C. or higher, the electrode film becomes oversintered, or in the electrode paste mainly composed of Ag having a low melting point, the electrode film becomes an island shape, and a homogeneous electrode film is formed. There is a problem that it cannot be done.
本発明は、前述の事情に鑑み、半田食われが少なく、かつ、鉛を含有しない厚膜導体形成用組成物を提供することを目的とする。 In view of the circumstances described above, an object of the present invention is to provide a composition for forming a thick film conductor that is less likely to be eroded by solder and does not contain lead.
本発明の厚膜導体形成用組成物は、導電粉末と、酸化物粉末と、有機ビヒクルとからなり、前記酸化物粉末が、SiO2−B2O3−Al2O3−CaO−Li2O系ガラス粉末と、Al2O3粉末とを含む。ここで、SiO2−B2O3−Al2O3−CaO−Li2O系ガラス粉末には、これらの組成からなるもののほか、これらの成分以外に、ZnO、BaO、TiO2、ZrO2、Bi2O3等の他の成分を含有するガラス粉末も含まれる。また、酸化物粉末として、該ガラス粉末、Al2O3粉末のほか、Bi2O3、SiO2、CuO、ZnO、MnO2等を添加することは妨げられない。 The composition for forming a thick film conductor of the present invention comprises a conductive powder, an oxide powder, and an organic vehicle, and the oxide powder is SiO 2 —B 2 O 3 —Al 2 O 3 —CaO—Li 2. O system comprising a glass powder and Al 2 O 3 powder. Here, in addition to these components, the SiO 2 —B 2 O 3 —Al 2 O 3 —CaO—Li 2 O glass powder includes ZnO, BaO, TiO 2 , ZrO 2 in addition to those components. Also included are glass powders containing other components such as Bi 2 O 3 . In addition to the glass powder and Al 2 O 3 powder, addition of Bi 2 O 3 , SiO 2 , CuO, ZnO, MnO 2 or the like as the oxide powder is not hindered.
前記SiO2−B2O3−Al2O3−CaO−Li2O系ガラス粉末の組成比が、SiO2:20〜60質量%、B2O3:2〜25質量%、Al2O3:2〜25質量%、CaO:20〜50質量%、およびLi2O:0.1〜10質量%であることが好ましい。特に、前記ガラス粉末におけるLi2Oの組成比が、0.5〜6重量%の範囲にある場合には、厚膜導体形成用組成物に含まれるガラス粉末の含有量が少ない場合でも、得られる厚膜導体の耐半田性が損なわれることなく、その接着強度を向上させることができる。 The composition ratio of the SiO 2 —B 2 O 3 —Al 2 O 3 —CaO—Li 2 O glass powder is SiO 2 : 20 to 60% by mass, B 2 O 3 : 2 to 25% by mass, Al 2 O. 3 : 2 to 25% by mass, CaO: 20 to 50% by mass, and Li 2 O: 0.1 to 10% by mass are preferable. In particular, when the composition ratio of Li 2 O in the glass powder is in the range of 0.5 to 6% by weight, it can be obtained even when the content of the glass powder contained in the thick film conductor-forming composition is small. The adhesive strength of the thick film conductor can be improved without impairing the solder resistance of the thick film conductor.
なお、前記導電粉末は、Au、Ag、PdおよびPtの少なくとも1種類であることが好ましい。 The conductive powder is preferably at least one of Au, Ag, Pd and Pt.
また、前記導電粉末100質量部に対し、前記SiO2−B2O3−Al2O3−CaO−Li2O系ガラス粉末が0.1〜15質量部であり、前記Al2O3粉末が0.1〜8質量部であることが好ましい。 Further, the SiO 2 —B 2 O 3 —Al 2 O 3 —CaO—Li 2 O glass powder is 0.1 to 15 parts by mass with respect to 100 parts by mass of the conductive powder, and the Al 2 O 3 powder Is preferably 0.1 to 8 parts by mass.
本発明の厚膜導体形成用組成物により、従来の技術では困難であったが、鉛を含有せず、半田食われの少ない導体膜を形成することができた。 With the composition for forming a thick film conductor of the present invention, it was difficult with the prior art, but it was possible to form a conductor film that does not contain lead and has little solder erosion.
本発明の厚膜導体形成用組成物は、SiO2−B2O3−Al2O3−CaO−Li2O系ガラス粉末と、Al2O3粉末とを含有することを特徴とし、導電ペースト焼成時に前記ガラス粉末とAl2O3粉末とを反応させることにより、アノーサイトが厚膜導体内部に均一に析出している厚膜導体を得ることができる。かかる厚膜導体を用いると、僅かな量の厚膜導体中の貴金属が、半田に溶け出すことにより、アノーサイトが厚膜導体の表面に棘状に露出する。アノーサイトは針状の結晶であり、これが厚膜導体表面に棘状に露出すると、半田が、表面張力によって貴金属に達しなくなり、半田食われが進行しなくなる。 The composition for forming a thick film conductor of the present invention comprises SiO 2 —B 2 O 3 —Al 2 O 3 —CaO—Li 2 O-based glass powder and Al 2 O 3 powder, and has a conductive property. By reacting the glass powder and the Al 2 O 3 powder during paste firing, a thick film conductor in which anorthite is uniformly deposited inside the thick film conductor can be obtained. When such a thick film conductor is used, a small amount of the noble metal in the thick film conductor is dissolved into the solder, so that the anorthite is exposed in a spine shape on the surface of the thick film conductor. Anorthite is a needle-like crystal, and when this is exposed in a spine shape on the surface of the thick film conductor, the solder does not reach the noble metal due to the surface tension, and the solder erosion does not proceed.
本発明の厚膜導体形成用組成物において、前記ガラス粉末に、Al2O3粉末を混合させない場合、得られた厚膜導体とセラミック基板の界面付近に、アノーサイトが多く析出してしまうため、半田食われを抑制する効果が十分に得られない。すなわち、半田が、表面張力によって貴金属に達しないようにするためには、アノーサイトが厚膜導体内部に均一に析出している必要がある。さらに、半田付けにより露出するアノーサイトの棘の長さが1μm以上は必要である。長さが1μm未満の微細な結晶相では、該アノーサイト結晶が厚膜導体中から半田中に移動してしまい、半田食われを抑制する効果が十分に得られなくなる。 In the composition for forming a thick film conductor of the present invention, when an Al 2 O 3 powder is not mixed with the glass powder, a lot of anorthite is deposited near the interface between the obtained thick film conductor and the ceramic substrate. The effect of suppressing solder erosion cannot be sufficiently obtained. That is, in order to prevent the solder from reaching the noble metal due to the surface tension, the anorthite needs to be uniformly deposited inside the thick film conductor. Further, the length of the anorthite barb exposed by soldering should be 1 μm or more. In a fine crystal phase having a length of less than 1 μm, the anorthite crystal moves from the thick film conductor into the solder, and the effect of suppressing solder erosion cannot be sufficiently obtained.
前述のように、アノーサイトは、SiO2−B2O3−Al2O3−CaO系ガラス粉末と、Al2O3粉末との混合物を加熱することによっても、析出させることができる。この場合に、十分な大きさのアノーサイトを析出させるには、900℃以上の高温が必要である。これに対して本発明では、ガラス粉末中にLi2Oが含有されているため、低温でもアノーサイトを析出させることを可能としている。 As described above, anorthite can be precipitated also by heating a mixture of SiO 2 —B 2 O 3 —Al 2 O 3 —CaO glass powder and Al 2 O 3 powder. In this case, a high temperature of 900 ° C. or higher is required to deposit a sufficiently large anorthite. On the other hand, in the present invention, since Li 2 O is contained in the glass powder, anorthite can be precipitated even at a low temperature.
本発明に用いるSiO2−B2O3−Al2O3−CaO−Li2O系ガラス粉末の組成比は、SiO2:20〜60質量%、B2O3:2〜25質量%、Al2O3:2〜25質量%、CaO:20〜50質量%、およびLi2O:0.1〜10質量%であることが好ましい。 The composition ratio of the SiO 2 —B 2 O 3 —Al 2 O 3 —CaO—Li 2 O glass powder used in the present invention is as follows: SiO 2 : 20 to 60% by mass, B 2 O 3 : 2 to 25% by mass, al 2 O 3: 2~25 wt%, CaO: 20 to 50 wt%, and Li 2 O: is preferably 0.1 to 10 mass%.
ガラス粉末の組成において、SiO2が、20質量%より少なくなると、アノーサイトが析出しにくくなり、半田食われを防止できなくなるおそれがある。また、厚膜導体中のガラスの耐候性、耐水性および耐酸性が低下する傾向となる。一方、SiO2が、60質量%より多くなると、ガラスの軟化温度が高くなりすぎて、アノーサイトが析出する温度が高くなる傾向となる。 If the SiO 2 content is less than 20% by mass in the composition of the glass powder, it becomes difficult for anorthite to precipitate and solder erosion may not be prevented. In addition, the weather resistance, water resistance and acid resistance of the glass in the thick film conductor tend to decrease. On the other hand, when SiO 2 exceeds 60% by mass, the softening temperature of the glass becomes too high, and the temperature at which anorthite precipitates tends to increase.
B2O3が、2質量%より少なくなると、ガラスの軟化温度が高くなりすぎる傾向となる。また、厚膜導体のガラスが脆くなりやすくなってしまう。一方、B2O3が、25質量%より多くなると、ガラスが分相しやすくなり、厚膜導体中のガラスの耐候性、耐水性および耐酸性も低下するおそれがある。 When B 2 O 3 is less than 2% by mass, the softening temperature of the glass tends to be too high. In addition, the glass of the thick film conductor tends to become brittle. On the other hand, if the B 2 O 3 content exceeds 25% by mass, the glass is likely to undergo phase separation, and the weather resistance, water resistance, and acid resistance of the glass in the thick film conductor may be reduced.
ガラス粉末の組成において、Al2O3が、2質量%より少なくなると、アノーサイトが析出しにくくなり、また、厚膜導体中のガラスが分相しやすくなる。一方、Al2O3が、25質量%より多くなると、ガラスの軟化温度が高くなりすぎ、アノーサイトが析出する温度が高くなりすぎるおそれがある。 In the composition of the glass powder, when Al 2 O 3 is less than 2% by mass, anorthite is difficult to precipitate, and the glass in the thick film conductor is easily phase-separated. On the other hand, if Al 2 O 3 is more than 25% by mass, the softening temperature of the glass becomes too high, and the temperature at which anorthite precipitates may become too high.
CaOが、20質量%より少なくなると、アノーサイトが析出しにくい。CaOが、50質量%より多くなると、ガラス化しにくくなる。 When CaO is less than 20% by mass, anorthite is difficult to precipitate. When CaO exceeds 50 mass%, it will become difficult to vitrify.
Li2Oは、ガラスの軟化温度を低下させる働きがあり、Li2Oの含有量を増やすと、それに応じて、アノーサイトの結晶を大きく成長させることができる。従って、ガラス粉末の組成において、Li2Oが、0.1質量%よりも少なくなると、アノーサイトが析出しにくくなり、また、析出したアノーサイトの大きさも小さくなりやすい。一方、Li2Oが、10質量%より多くなると、ガラスの耐候性、耐水性および耐酸性が低下するおそれがある。なお、Li2Oが、4〜8質量%の範囲にある場合には、厚膜導体形成用組成物に含まれるガラス粉末の含有量が少ない場合でも、得られる厚膜導体の耐半田性が損なわれることなく、その接着強度を向上させることができる。 Li 2 O has a function of lowering the softening temperature of the glass. When the content of Li 2 O is increased, anorthite crystals can be grown correspondingly. Therefore, in the composition of the glass powder, if Li 2 O is less than 0.1% by mass, anorthite is difficult to precipitate, and the size of the precipitated anorthite tends to be small. On the other hand, if the Li 2 O content exceeds 10% by mass, the weather resistance, water resistance and acid resistance of the glass may be lowered. Incidentally, Li 2 O is, if the range of 4-8 wt%, even if a small amount of glass powder contained in the thick film conductor composition for forming solder resistance of the resulting thick-film conductors The adhesive strength can be improved without being damaged.
本発明のSiO2−B2O3−Al2O3−CaO−Li2O系ガラス粉末の組成比では、Li2Oは、ペースト焼成中に析出したアノーサイトにほとんど取り込まれて、固定化される。従って、形成された電極間に電位差があっても、Liイオンがマイグレーションしてしまうことはない。 In the composition ratio of the SiO 2 —B 2 O 3 —Al 2 O 3 —CaO—Li 2 O-based glass powder of the present invention, Li 2 O is almost taken into the anorthite precipitated during paste firing and immobilized. Is done. Therefore, even if there is a potential difference between the formed electrodes, Li ions do not migrate.
本発明で使用するガラス粉末は、SiO2−B2O3−Al2O3−CaO−Li2O系であるが、その組成中に他の成分を含むこともでき、軟化点または耐酸性等に応じて、ZnO、BaO、TiO2、ZrO2またはBi2O3等の成分を選択し、含有させることができる。 The glass powder used in the present invention is of the SiO 2 —B 2 O 3 —Al 2 O 3 —CaO—Li 2 O system, but it can also contain other components in its composition, softening point or acid resistance. Depending on the above, components such as ZnO, BaO, TiO 2 , ZrO 2 or Bi 2 O 3 can be selected and contained.
本発明のSiO2−B2O3−Al2O3−CaO−Li2O系ガラス粉末の平均粒径は、10μm以下が望ましい。平均粒径が10μm以上では、ガラス粉末の軟化が遅れ、電極膜と基板との接着強度が低下する傾向となり、好ましくない。 The average particle size of the SiO 2 —B 2 O 3 —Al 2 O 3 —CaO—Li 2 O glass powder of the present invention is preferably 10 μm or less. When the average particle size is 10 μm or more, the softening of the glass powder is delayed, and the adhesive strength between the electrode film and the substrate tends to decrease, which is not preferable.
本発明においては、導電粉末100質量部に対し、SiO2−B2O3−Al2O3−CaO−Li2O系ガラス粉末を0.1〜15質量部、Al2O3粉末を0.1〜8質量部、それぞれ添加している。 In the present invention, 0.1 to 15 parts by mass of SiO 2 —B 2 O 3 —Al 2 O 3 —CaO—Li 2 O-based glass powder and 0 to Al 2 O 3 powder with respect to 100 parts by mass of the conductive powder. .1 to 8 parts by mass are added respectively.
SiO2−B2O3−Al2O3−CaO−Li2O系ガラス粉末が、導電粉末の100質量部に対して0.1質量部より少なくなると、セラミック基板との接着強度が低下してしまう。また、15質量部より多くなると、厚膜導体の抵抗値が高くなるばかりでなく、厚膜導体の表面にガラスが浮き、メッキ性、半田の濡れ、および特性評価のためのプローブとの接触抵抗が、劣化するおそれがある。 When the SiO 2 —B 2 O 3 —Al 2 O 3 —CaO—Li 2 O-based glass powder is less than 0.1 part by mass with respect to 100 parts by mass of the conductive powder, the adhesive strength with the ceramic substrate decreases. End up. When the amount exceeds 15 parts by mass, not only the resistance value of the thick film conductor increases, but also glass floats on the surface of the thick film conductor, and the plating resistance, solder wettability, and contact resistance with the probe for property evaluation However, there is a risk of deterioration.
酸化物粉末に使用するAl2O3粉末の平均粒径は、3μm以下が望ましい。Al2O3粉末の平均粒径が3μmを超えると、アノーサイトが厚膜導体中に均一に析出しにくくなるばかりでなく、厚膜導体の表面が粗くなり、電子部品の特性を測定するためのプローブとの接触抵抗が大きくなるおそれがある。 The average particle size of the Al 2 O 3 powder used for the oxide powder is desirably 3 μm or less. When the average particle size of the Al 2 O 3 powder exceeds 3 μm, not only is the anorthite difficult to deposit uniformly in the thick film conductor, but also the surface of the thick film conductor becomes rough, and the characteristics of the electronic component are measured. The contact resistance with the probe may increase.
酸化物粉末に使用するAl2O3粉末が、導電粉末の100質量部に対して0.1質量部より少なくなると、アノーサイトの析出が少なく、半田食われを起こしやすくなる。一方、8質量部より多くなると、接触抵抗が大きくなるだけでなく、セラミック基板との接着強度が低下してしまう。 When the Al 2 O 3 powder used for the oxide powder is less than 0.1 parts by mass with respect to 100 parts by mass of the conductive powder, the precipitation of anorthite is small and solder erosion is likely to occur. On the other hand, when it exceeds 8 parts by mass, not only the contact resistance increases, but also the adhesive strength with the ceramic substrate decreases.
本発明に用いる導電粉末は、通常の厚膜導体の形成に用いられるものでよく、例えば、Au、Ag、PdおよびPt等の粉末を、1種類のみで、または2種類以上を組み合わせて使用することができる。導電粉末の平均粒径は、10μm以下が望ましく、導電粉末の形状は、粒状またはフレーク状等であってもよく、特に限定されない。 The conductive powder used in the present invention may be used for forming a normal thick film conductor. For example, powders of Au, Ag, Pd, Pt and the like are used alone or in combination of two or more. be able to. The average particle size of the conductive powder is desirably 10 μm or less, and the shape of the conductive powder may be granular or flaky, and is not particularly limited.
また、有機ビヒクルとしては、従来と同様に、エチルセルロースまたはメタクリレート等を、ターピネオールまたはブチルカルビトール等の溶剤に溶解したもので良い。 The organic vehicle may be one obtained by dissolving ethyl cellulose or methacrylate in a solvent such as terpineol or butyl carbitol as in the conventional case.
なお、本発明では、導電粉末、SiO2−B2O3−Al2O3−CaO−Li2O系ガラス粉末、およびAl2O3粉末以外にも、厚膜導体の接着強度や半田濡れ性等を向上させる目的で、従来から用いられる各種粉末、例えば、Bi2O3、SiO2、CuO、ZnOまたはMnO2等の酸化物粉末を添加することは、何ら差し支えない。 In the present invention, in addition to the conductive powder, SiO 2 —B 2 O 3 —Al 2 O 3 —CaO—Li 2 O glass powder, and Al 2 O 3 powder, the adhesive strength and solder wettability of the thick film conductor For the purpose of improving properties and the like, it is possible to add various kinds of conventionally used powders, for example, oxide powders such as Bi 2 O 3 , SiO 2 , CuO, ZnO or MnO 2 .
(実施例1)
平均粒径1.5μmの粒状Ag粉末99.0質量部、および平均粒径0.1μmの粒状Pd粉末1.0質量部からなる導電粉末に対して、表1に示した平均粒径3μmのガラス粉末Aを5質量部、および平均粒径0.5μmのAl2O3粉末を1質量部、それぞれ添加して、さらに、エチルセルロースのターピネオール溶液をビヒクルとして添加し、3本ロールミルで混練することにより、厚膜導体形成用ペーストを作製した。
Example 1
With respect to the conductive powder composed of 99.0 parts by mass of granular Ag powder having an average particle diameter of 1.5 μm and 1.0 part by mass of granular Pd powder having an average particle diameter of 0.1 μm, the average particle diameter of 3 μm shown in Table 1 was used. Add 5 parts by weight of glass powder A and 1 part by weight of Al 2 O 3 powder having an average particle size of 0.5 μm, and add a terpineol solution of ethyl cellulose as a vehicle, and knead in a three-roll mill. Thus, a thick film conductor forming paste was prepared.
作製した厚膜導体形成用ペーストを、96%アルミナ基板上にスクリーン印刷し、150℃で乾燥した。乾燥した基板を、ピーク温度850℃で9分間、トータル30分間のベルト炉で焼成し、所定のパターンの厚膜導体膜を形成した。 The produced paste for forming a thick film conductor was screen-printed on a 96% alumina substrate and dried at 150 ° C. The dried substrate was baked in a belt furnace for 9 minutes at a peak temperature of 850 ° C. for a total of 30 minutes to form a thick film conductor film having a predetermined pattern.
得られた厚膜導体の膜厚の評価は、2.0mm×2.0mmのパッドについて、触針型の膜厚計により測定することにより行った。 The film thickness of the obtained thick film conductor was evaluated by measuring a 2.0 mm × 2.0 mm pad with a stylus type film thickness meter.
面積抵抗値の評価は、幅0.5mm、長さ50mmの導体パターンの抵抗値をデジタルマルチメータにより測定して、得られた値を面積抵抗値に換算することにより行った。 The area resistance value was evaluated by measuring the resistance value of a conductor pattern having a width of 0.5 mm and a length of 50 mm with a digital multimeter, and converting the obtained value into an area resistance value.
耐半田性の評価は、次のように行った。まず、幅0.5mm、長さ50mmの焼成した厚膜導体を用いて、270℃に保持した96.5質量%Sn−3質量%Ag−0.5質量%Cu組成の鉛フリー半田浴中に、10秒間、浸した後、抵抗値を測定する操作を1回として、この操作を繰り返した。測定された抵抗値が1kΩ以上になったことにより、半田食われが起きたことを確認し、半田食われが起きるまでの繰返し回数を、耐半田性の評価とした。 Evaluation of solder resistance was performed as follows. First, in a lead-free solder bath having a composition of 96.5 mass% Sn-3 mass% Ag-0.5 mass% Cu maintained at 270 ° C. using a fired thick film conductor having a width of 0.5 mm and a length of 50 mm. Then, after dipping for 10 seconds, this operation was repeated with one operation for measuring the resistance value. When the measured resistance value was 1 kΩ or more, it was confirmed that solder erosion occurred, and the number of repetitions until solder erosion occurred was evaluated as solder resistance.
接着強度の評価は、2.0mm×2.0mmのパターンの厚膜導体上に、直径0.65mmのSnメッキ銅線を、96.5質量%Sn−3質量%Ag−0.5質量%Cu組成の鉛フリー半田を用いて半田付けし、垂直方向に引っ張り、剥離させ、剥離時の引っ張り力を測定することにより行った。 The evaluation of the adhesive strength was performed by using an Sn-plated copper wire having a diameter of 0.65 mm on a thick film conductor having a pattern of 2.0 mm × 2.0 mm, 96.5 mass% Sn-3 mass% Ag-0.5 mass%. Soldering was performed using a lead-free solder having a Cu composition, and the film was pulled and peeled in the vertical direction, and the tensile force at the time of peeling was measured.
測定された厚膜導体の膜厚、面積抵抗値、耐半田性および接着強度を、それぞれ表3に示す。 Table 3 shows the measured film thickness, sheet resistance, solder resistance, and adhesive strength of the thick film conductor.
本実施例の厚膜導体は、12回、半田に浸しても、面積抵抗値は10Ω以下で、断線することは無く、耐半田性に優れていた。また、その接着強度も、60N以上と高かった。 The thick film conductor of this example had an area resistance value of 10Ω or less even when immersed in solder 12 times, and was not broken, and was excellent in solder resistance. Moreover, the adhesive strength was as high as 60 N or more.
(実施例2、3、比較例1、2)
使用量およびガラス粉末の種類を、表1および表2に示したように変更した以外は、実施例1と同様に厚膜導体を得て、実施例1と同様に測定を行った。
(Examples 2 and 3, Comparative Examples 1 and 2)
A thick film conductor was obtained in the same manner as in Example 1 except that the amount used and the type of glass powder were changed as shown in Tables 1 and 2, and measurements were performed in the same manner as in Example 1.
測定された厚膜導体の膜厚、面積抵抗値、耐半田性および接着強度を、表3に示す。 Table 3 shows the measured film thickness, sheet resistance value, solder resistance and adhesive strength of the thick film conductor.
実施例2の厚膜導体は、12回、半田に浸しても、面積抵抗値は10Ω以下で、断線することは無く、耐半田性に優れていた。また、その接着強度も、60N以上と高かった。 Even when the thick film conductor of Example 2 was immersed in solder 12 times, the sheet resistance value was 10Ω or less, and it did not break and had excellent solder resistance. Moreover, the adhesive strength was as high as 60 N or more.
実施例3の厚膜導体は、12回、半田に浸しても、抵抗値は10Ω以下で、断線することは無かった。接着強度も、60N以上と高かった。ガラス粉末Cは、ガラス粉末Aやガラス粉末Bよりも、軟化温度が低く、ガラス粉末が少量でも、ガラス粉末Cを用いた実施例3のように、得られる厚膜導体の接着強度が高いことが分かる。 Even if the thick film conductor of Example 3 was immersed in solder 12 times, the resistance value was 10Ω or less and there was no disconnection. The adhesive strength was also as high as 60 N or more. Glass powder C has a lower softening temperature than glass powder A and glass powder B, and even with a small amount of glass powder, the adhesive strength of the resulting thick film conductor is high as in Example 3 using glass powder C. I understand.
一方、比較例1の厚膜導体は、接着強度が低く、4回目に面積抵抗値が1kΩ以上になってしまい、耐半田性に劣っていた。 On the other hand, the thick film conductor of Comparative Example 1 had low adhesive strength, and the area resistance value became 1 kΩ or more at the fourth time, and was inferior in solder resistance.
比較例2の厚膜導体は、4回目に面積抵抗値が1kΩ以上になってしまい、耐半田性に劣っていた。 The thick film conductor of Comparative Example 2 had an area resistance value of 1 kΩ or more at the fourth time, and was inferior in solder resistance.
(比較例3)
酸化物粉末に対して、Al2O3粉末を加えなかった他は、ガラス粉末の種類(ガラス粉末A)および導電粉末とガラス粉末の割合については、実施例1と同様にして、厚膜導体を得て、実施例1と同様に測定を行った。
(Comparative Example 3)
The thick film conductor was the same as in Example 1 except that the Al 2 O 3 powder was not added to the oxide powder, and the type of glass powder (glass powder A) and the ratio of conductive powder to glass powder were the same as in Example 1. And measured in the same manner as in Example 1.
測定された厚膜導体の膜厚、面積抵抗値、耐半田性および接着強度を、表3に示す。 Table 3 shows the measured film thickness, sheet resistance value, solder resistance and adhesive strength of the thick film conductor.
比較例3の厚膜導体は、3回目に面積抵抗値が1kΩ以上になり、耐半田性に劣っていた。 The thick film conductor of Comparative Example 3 had a sheet resistance value of 1 kΩ or more at the third time and was inferior in solder resistance.
比較例1のように、Li2Oを含まないガラス粉末Dを使用して得た導体ペーストでは、厚膜導体中にアノーサイトが十分に析出および成長しないので、厚膜導体のAgまたはPdが、完全に半田に食われてしまっている。このことから、Li2Oがアノーサイトの析出および成長を促進させていることが理解される。 In the conductor paste obtained by using the glass powder D containing no Li 2 O as in Comparative Example 1, anorthite does not sufficiently precipitate and grow in the thick film conductor, so that Ag or Pd of the thick film conductor is It ’s completely eaten by solder. From this, it is understood that Li 2 O promotes the precipitation and growth of anorthite.
比較例2のように、CaOを含まないガラス粉末Eを使用して得た導体ペーストでは、アノーサイトが析出せず、厚膜導体のAgまたはPdが、完全に半田に食われてしまっている。アノーサイトは、SiとAlとCaの複合酸化物であり、Caを含まないガラス組成ではCaが供給されず、アノーサイトが析出しないためである。 As in Comparative Example 2, in the conductor paste obtained using the glass powder E containing no CaO, anorthite does not precipitate, and the Ag or Pd of the thick film conductor is completely eaten by the solder. . This is because anorthite is a complex oxide of Si, Al, and Ca, and Ca is not supplied in a glass composition that does not contain Ca, and anorthite does not precipitate.
比較例3は、Al2O3粉末を含まない比較例である。酸化物粉末として、Al2O3粉末を加えない場合では、アノーサイトが厚膜導体中に均一に析出せず、厚膜導体とアルミナ基板の界面部に集中的に析出してしまい、半田から厚膜導体を保護することができないことがわかる。 Comparative Example 3 is a comparative example that does not contain Al 2 O 3 powder. In the case where Al 2 O 3 powder is not added as the oxide powder, the anorthite does not deposit uniformly in the thick film conductor, but concentrates on the interface between the thick film conductor and the alumina substrate. It can be seen that the thick film conductor cannot be protected.
Claims (7)
After applying the conductive paste using the thick film conductor composition according to any one of claims 1 to 5 to a ceramic substrate, it is obtained by firing at a temperature of 500 ° C or higher and lower than 900 ° C, A thick film conductor characterized in that anorthite is uniformly deposited inside, and the Li 2 O is immobilized on the anorthite.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005041048A JP4466402B2 (en) | 2005-02-17 | 2005-02-17 | Thick film conductor composition |
CN 200610006955 CN1822240B (en) | 2005-02-17 | 2006-01-26 | Compound for forming thick film conductor |
TW95105210A TWI312770B (en) | 2005-02-17 | 2006-02-16 | A composition for forming a thick film conductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005041048A JP4466402B2 (en) | 2005-02-17 | 2005-02-17 | Thick film conductor composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006228572A JP2006228572A (en) | 2006-08-31 |
JP4466402B2 true JP4466402B2 (en) | 2010-05-26 |
Family
ID=36923472
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005041048A Expired - Lifetime JP4466402B2 (en) | 2005-02-17 | 2005-02-17 | Thick film conductor composition |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP4466402B2 (en) |
CN (1) | CN1822240B (en) |
TW (1) | TWI312770B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150123725A (en) | 2014-04-25 | 2015-11-04 | 스미토모 긴조쿠 고잔 가부시키가이샤 | Composition for forming thick film conductor and thick film conductor using same |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5488282B2 (en) * | 2010-07-13 | 2014-05-14 | 昭栄化学工業株式会社 | Conductive paste |
JP5454414B2 (en) | 2010-08-18 | 2014-03-26 | 住友金属鉱山株式会社 | Thick film conductor forming composition, thick film conductor formed using the composition, and chip resistor using the thick film conductor |
JP5835325B2 (en) * | 2011-06-21 | 2015-12-24 | 住友金属鉱山株式会社 | Ruthenium oxide powder, composition for thick film resistor, thick film resistor paste and thick film resistor using the same |
JP5673515B2 (en) * | 2011-12-12 | 2015-02-18 | 住友金属鉱山株式会社 | Thick film conductor forming composition, thick film conductor using the same, and method for producing the same |
JP6114001B2 (en) * | 2012-10-26 | 2017-04-12 | 京セラ株式会社 | Conductive paste, circuit board and electronic device |
CN103456388B (en) * | 2013-08-06 | 2017-11-07 | 浙江光达电子科技有限公司 | It is a kind of that the thick film ink of insulating barrier can be generated on solar silicon wafers |
JP2016219256A (en) * | 2015-05-20 | 2016-12-22 | 住友金属鉱山株式会社 | Cu paste composition and thick film conductor |
MY186590A (en) | 2015-10-01 | 2021-07-29 | Shoei Chemical Ind Co | Conductive paste and terminal electrode forming method for laminated ceramic part |
CN106229028B (en) * | 2016-08-18 | 2017-11-28 | 贵研铂业股份有限公司 | A kind of tubular oxygen sensor burning platinum slurry and preparation method thereof altogether |
CN110714133B (en) * | 2019-10-22 | 2021-12-21 | 西安宏星电子浆料科技股份有限公司 | Silver palladium alloy powder for conductive composition and preparation method thereof |
CN110970151B (en) * | 2019-12-18 | 2021-03-30 | 广东顺德弘暻电子有限公司 | High-weldability anti-warping thick film conductor slurry for stainless steel base material and preparation method thereof |
TWI839636B (en) * | 2021-09-09 | 2024-04-21 | 大陸商南京匯聚新材料科技有限公司 | Electrode paste and method of preparing conductive thick film therefrom |
CN113707359B (en) * | 2021-09-09 | 2023-04-28 | 南京汇聚新材料科技有限公司 | Electrode paste, conductive thick film and preparation method thereof |
CN116354604A (en) * | 2023-05-31 | 2023-06-30 | 江苏精瓷智能传感技术研究院有限公司 | Preparation method of glass ceramic sealing material for platinum resistance film temperature sensing |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1213441C (en) * | 2003-03-07 | 2005-08-03 | 中国科学院上海硅酸盐研究所 | Lead-free thick film conductor paste composition for aluminum nitride substrates |
-
2005
- 2005-02-17 JP JP2005041048A patent/JP4466402B2/en not_active Expired - Lifetime
-
2006
- 2006-01-26 CN CN 200610006955 patent/CN1822240B/en active Active
- 2006-02-16 TW TW95105210A patent/TWI312770B/en active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150123725A (en) | 2014-04-25 | 2015-11-04 | 스미토모 긴조쿠 고잔 가부시키가이샤 | Composition for forming thick film conductor and thick film conductor using same |
Also Published As
Publication number | Publication date |
---|---|
JP2006228572A (en) | 2006-08-31 |
TW200630316A (en) | 2006-09-01 |
CN1822240B (en) | 2010-05-12 |
TWI312770B (en) | 2009-08-01 |
CN1822240A (en) | 2006-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5454414B2 (en) | Thick film conductor forming composition, thick film conductor formed using the composition, and chip resistor using the thick film conductor | |
JP4466402B2 (en) | Thick film conductor composition | |
KR101172723B1 (en) | Copper conductor paste, conductor circuit board and electronic part | |
JP6954285B2 (en) | Conductive paste | |
KR101786722B1 (en) | Conductive paste | |
CN103392212A (en) | Chip resistor and method of producing same | |
JP2000048642A (en) | Conductive paste and glass circuit substrate | |
JP5673515B2 (en) | Thick film conductor forming composition, thick film conductor using the same, and method for producing the same | |
KR102265548B1 (en) | Composition for forming thick film conductor and thick film conductor using same | |
JP6769208B2 (en) | Lead-free conductive paste | |
JP5556518B2 (en) | Conductive paste | |
KR102639865B1 (en) | Powder composition for forming thick film conductor and paste for forming thick film conductor | |
JP7187832B2 (en) | Powder composition for forming thick film conductor and paste for forming thick film conductor | |
JP4760836B2 (en) | Conductive paste and glass circuit structure | |
JP7581791B2 (en) | Powder composition for forming thick film conductor, paste for forming thick film conductor, and thick film conductor | |
JP2019110105A5 (en) | ||
JP3216323B2 (en) | Composition for forming thick film conductor | |
JP2020202154A (en) | Powder composition for forming thick film conductor and paste for forming thick film conductor | |
JPS6220571A (en) | Electrically-conductive composition | |
JP2019032993A (en) | Thick film conductor forming composition and method for producing thick film conductor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070604 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090918 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091006 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091028 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100202 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100215 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4466402 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130305 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130305 Year of fee payment: 3 |