[go: up one dir, main page]

JP4466169B2 - Manufacturing method of substrate for semiconductor device - Google Patents

Manufacturing method of substrate for semiconductor device Download PDF

Info

Publication number
JP4466169B2
JP4466169B2 JP2004109656A JP2004109656A JP4466169B2 JP 4466169 B2 JP4466169 B2 JP 4466169B2 JP 2004109656 A JP2004109656 A JP 2004109656A JP 2004109656 A JP2004109656 A JP 2004109656A JP 4466169 B2 JP4466169 B2 JP 4466169B2
Authority
JP
Japan
Prior art keywords
wiring pattern
substrate
semiconductor device
layer
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004109656A
Other languages
Japanese (ja)
Other versions
JP2005294660A (en
Inventor
聡 秋本
俊雄 大房
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2004109656A priority Critical patent/JP4466169B2/en
Publication of JP2005294660A publication Critical patent/JP2005294660A/en
Application granted granted Critical
Publication of JP4466169B2 publication Critical patent/JP4466169B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

本発明は、複数の配線層からなり、薄型で高密度配線を有する半導体装置用基板に関する。   The present invention relates to a semiconductor device substrate comprising a plurality of wiring layers and having thin and high density wiring.

電子技術の進歩に伴い、電子情報端末の小型化、軽量化、高機能化がますます求められてきており、このため、半導体装置用基板においても、高密度化が強く求められている。従来、半導体装置用基板は、絶縁層と配線パターンが交互に繰り返された構造を有しているが、各層にある配線パターン間の電気的接続方法は、スルーホールもしくはビアホール等を介してなされている。即ち、断面構造は「配線層21(配線パターンとその周囲の絶縁物)」と「絶縁層22(絶縁物とビアホール)」を交互に積み重ねた構造、つまり、配線パターンが形成された配線層と、上下の配線パターンに対応して配置されたφ50〜150μm前後の円形パターンのみで構成されるビアホールが形成された絶縁層を交互に積み重ねた構造となっている(図1参照)。   Along with the advancement of electronic technology, there is an increasing demand for miniaturization, weight reduction, and high functionality of electronic information terminals. For this reason, high density is also strongly demanded for semiconductor device substrates. Conventionally, a substrate for a semiconductor device has a structure in which an insulating layer and a wiring pattern are alternately repeated. However, an electrical connection method between wiring patterns in each layer is made through a through hole or a via hole. Yes. That is, the cross-sectional structure is a structure in which “wiring layer 21 (wiring pattern and insulator around it)” and “insulating layer 22 (insulator and via hole)” are alternately stacked, that is, the wiring layer on which the wiring pattern is formed and In this structure, insulating layers having via holes formed only by circular patterns having a diameter of about 50 to 150 μm arranged corresponding to the upper and lower wiring patterns are alternately stacked (see FIG. 1).

また、通常の多層基板やビルドアップ多層基板以外に、全層IVH構造の基板も知られている。この構造の基板には各種プロセスが提案されており、絶縁層となるプリプレグをレーザーで穿孔し、導電ペーストを充填した後、表裏に導箔を重ねて銅張積層板形成と同様なプロセスで表面が銅箔で覆われた素材を形成し、表面の導箔をエッチングして配線パターンを形成するもの(特許文献1〜3)や、銅箔にとげ状の導電ペーストを印刷し、加熱硬化後にプリプレグと通常の銅箔を重ねて銅張積層板形成と同様なプロセスで表面が銅箔で覆われた素材を形成し、表面の導箔をエッチングして配線パターンを形成するもの(特許文献4)や、これと類似の技術が多数知られている(図2参照)。   In addition to a normal multilayer substrate and a buildup multilayer substrate, a substrate having an all-layer IVH structure is also known. Various processes have been proposed for substrates with this structure. After prepregs that serve as insulating layers are drilled with a laser and filled with a conductive paste, conductive foils are stacked on the front and back surfaces in the same process as copper-clad laminates. After forming a material covered with copper foil, etching the conductive foil on the surface to form a wiring pattern (Patent Documents 1 to 3), or printing a spine-shaped conductive paste on the copper foil, after heat curing A prepreg and normal copper foil are stacked to form a material whose surface is covered with copper foil by a process similar to that for forming a copper-clad laminate, and a conductive pattern on the surface is etched to form a wiring pattern (Patent Document 4) ) And many similar techniques are known (see FIG. 2).

最近では、特殊な網目状の基材に感光剤を塗布し、露光した部位を活性化して無電解銅めっきを行うことで上下が貫通した導電部と非導電部を選択的に形成し、その表面に配線パターンを形成する技術が発表されている(非特許文献1)。
しかし、いずれの技術も導電部(ビアホール)を形成した絶縁層を基本として、その表面に配線パターンを形成し、配線層と絶縁層(+ビアホール)を交互に積み重ねる構造には変わりない。
Recently, a photosensitive agent is applied to a special mesh substrate, and the exposed part is activated and electroless copper plating is performed to selectively form a conductive part and a non-conductive part penetrating vertically. A technique for forming a wiring pattern on the surface has been announced (Non-Patent Document 1).
However, any of these techniques is based on an insulating layer in which conductive portions (via holes) are formed, and a wiring pattern is formed on the surface, and the wiring layers and insulating layers (+ via holes) are alternately stacked.

従来技術においては、上下の配線パターン間を接続するためのビアホールを形成する場合、ビアホール径は通常φ100〜200μm程度で、ビアホールを受けるための上下のビアランドはそれより50〜100μm大きなサイズが必要だった。例えば、ビアホールがφ150μmとすると、ビアランドの寸法はそれより60μm大きな210μmになる。   In the prior art, when forming a via hole for connecting the upper and lower wiring patterns, the diameter of the via hole is usually about φ100 to 200 μm, and the upper and lower via lands for receiving the via hole need to be 50 to 100 μm larger than that. It was. For example, if the via hole has a diameter of 150 μm, the via land size is 210 μm, which is 60 μm larger than that.

これに対し、同じ技術レベルのプロセスを用いても配線パターンは100μm前後のピッチでの形成が可能で、配線パターン内にビアランドが存在すると、3本の配線が並んだ部分をビアランドが占めてしまい、配線密度が極端に低下する。また、より高密度を要求する製品にはUVレーザーでビアホールを形成するプロセスが知られており、この場合にはφ50μm程度までのビアが形成可能になっている。ビア径がφ50μmの場合、ビアランド寸法は約110μmになり、それでも1〜2本の配線を阻害することになる。   On the other hand, the wiring pattern can be formed with a pitch of about 100 μm even if the process of the same technical level is used, and if the via land exists in the wiring pattern, the via land occupies the portion where the three wirings are arranged. Wiring density is extremely reduced. Further, a process for forming a via hole with a UV laser is known for products requiring higher density. In this case, a via having a diameter of up to about 50 μm can be formed. When the via diameter is 50 μm, the via land size is about 110 μm, which still inhibits one or two wires.

このように、ビアホールが配線パターンの高密度化に大きく影響するため、ビアホールの更なる微細化とビアランド寸法とビア径との差の縮小が望まれている。しかし、φ50μm程度かそれ以下のビア径では安定してビアを穿孔することが難しく、ビアのめっきに
ついては前処理も含めて更に困難な状況となっている。
As described above, since the via hole greatly affects the high density of the wiring pattern, further miniaturization of the via hole and reduction of the difference between the via land size and the via diameter are desired. However, if the diameter of the via is about 50 μm or less, it is difficult to stably drill the via, and the plating of the via is further difficult including the pretreatment.

以上については、ビアホールを形成する場合の技術的課題だが、レーザー加工装置などのビアを形成するための設備が配線パターン形成設備以外に必要なことなど、設備的な問題も含んでいる。
特許第3231537号公報 特許2991032号公報 特許3366458号公報 特許第3251711号公報 東芝レビューVOL.57,No.4(2002):「ナノ多孔質体と選択的めっき技術を組み合わせた新しい高密度配線技術」
The above is a technical problem in forming a via hole, but also includes a facility problem such that a facility for forming a via such as a laser processing apparatus is required in addition to the wiring pattern forming facility.
Japanese Patent No. 3321537 Japanese Patent No. 2991032 Japanese Patent No. 3366458 Japanese Patent No. 3251711 Toshiba Review VOL. 57, no. 4 (2002): "New high-density wiring technology combining nanoporous materials and selective plating technology"

本発明は、上記問題を解決するためになされたものであり、レーザー加工装置などのビアを形成するための設備を用いずに、配線パターンの接続部の更なる微細化を可能とした、薄型で高密度な配線パターンを有する半導体装置用基板を提供することを課題とするものである。
また、上記半導体装置用基板の製造方法を提供することを課題とする。
The present invention has been made in order to solve the above-mentioned problem, and enables thinning of the connection portion of the wiring pattern without using a facility for forming a via such as a laser processing apparatus. An object of the present invention is to provide a semiconductor device substrate having a high-density wiring pattern.
It is another object of the present invention to provide a method for manufacturing the semiconductor device substrate.

即ち、請求項1の発明においては、(1)平坦なベース基板上に第1の配線パターンとその周囲の絶縁物を表面が略同一平面状となるように形成する工程と、(2)次の第2の配線パターンを上記第1の配線パターン上に直接積み重ねて形成し接続部を設け、該第2の配線パターンの周囲の絶縁物を表面が略同一平面状となるように形成する工程と、(3)上記(2)工程を必要な層数分繰り返す工程、を少なくとも有することを特徴とする半導体装置用基板の製造方法としたものである。
これは、平坦なベース基板上に配線パターンとその周囲を充填するような絶縁物をほぼ同じ厚みで形成し、表面が略同一平面となるように形成し、それを必要な層数だけ重ねることによって、所望の半導体装置用基板を得るための製造方法である。
That is, in the first aspect of the present invention, (1) a step of forming the first wiring pattern and the surrounding insulator on a flat base substrate so that the surfaces thereof are substantially flush with each other; step of second wiring patterns provided a connection portion formed by stacking directly on the first wiring pattern, the periphery of the insulator of the second wiring pattern surface formed to be substantially coplanar And (3) a step of repeating the above step (2) for the required number of layers.
This is because an insulating material that fills the wiring pattern and its periphery is formed on a flat base substrate with approximately the same thickness, and the surface is formed to be substantially flush with the required number of layers. Is a manufacturing method for obtaining a desired substrate for a semiconductor device.

また、請求項2の発明においては、前記(3)工程後に、平坦なベース基板の少なくとも一部を除去する工程を有することを特徴とする請求項1に記載の半導体装置用基板の製造方法としたものである。
According to a second aspect of the invention, there is provided a method of manufacturing a substrate for a semiconductor device according to the first aspect, further comprising a step of removing at least a part of the flat base substrate after the step (3). It is a thing.

また、請求項3の発明においては、前記平坦なベース基板が50〜700μmの厚みの金属板、ガラス板、プラスチック板、又はシリコン基板であることを特徴とする請求項1又は2のいずれかに記載の半導体装置用基板の製造方法としたものである。
これは、微細パターン形成に適した平滑で入手が容易な半導体用や表示装置用などに使用されるベース基板材料とその一般的な厚みについて規定したものである。
The invention according to claim 3 is characterized in that the flat base substrate is a metal plate, glass plate, plastic plate, or silicon substrate having a thickness of 50 to 700 μm. This is a manufacturing method of the semiconductor device substrate described.
This stipulates the base substrate material used for smooth and easily available semiconductors and display devices suitable for fine pattern formation and its general thickness.

本発明の半導体装置用基板は、接続部の構造が上下に隣接する配線層の上下配線パターンが直接積み重なる構造であるので、多層部に従来のビアホール(スルーホールやブラインドホール)を介さないで層間接続が可能なことから、超薄型で高密度配線を有する半導体装置用基板となる。   The substrate for a semiconductor device according to the present invention has a structure in which the upper and lower wiring patterns of the wiring layers adjacent to each other in the upper and lower sides are directly stacked, so that the multilayer portion does not include a conventional via hole (through hole or blind hole). Since connection is possible, the substrate for a semiconductor device having ultra-thin and high-density wiring is obtained.

本発明者は、鋭意検討の結果、上記のような従来の問題を解決することができた。図3は、本発明による半導体装置用基板の一例の断面図である。図3に示すように、半導体装置用基板の接続部は、上下に隣接する配線層の上下配線パターン(31〜34)が相互に直接積み重なる構造となっている。また、上下配線パターンは接続部以外では接触、又は必要な絶縁抵抗値以下の間隔に近接しないよう配設されている。
すなわち、従来のビアホール(スルーホールやブラインドホール)が必要ないことから、薄型で高密度配線を有する半導体装置用基板となる。
As a result of intensive studies, the present inventor was able to solve the conventional problems as described above. FIG. 3 is a cross-sectional view of an example of a substrate for a semiconductor device according to the present invention. As shown in FIG. 3, the connection part of the substrate for a semiconductor device has a structure in which upper and lower wiring patterns (31 to 34) of wiring layers adjacent to each other are directly stacked. In addition, the upper and lower wiring patterns are arranged so as not to be in contact with each other at a portion other than the connecting portion or close to an interval equal to or less than a necessary insulation resistance value.
That is, since a conventional via hole (through hole or blind hole) is not required, the semiconductor device substrate is thin and has high-density wiring.

以下に、実施例に基づき、本発明をさらに具体的に説明するが、これに限定されるものではない。   Hereinafter, the present invention will be described more specifically based on examples, but is not limited thereto.

(4層配線基板の作成)
表裏に、第2層の配線パターン2及び第3層の配線パターン3が形成され、かつ、表裏がビアホール1で導通せしめてなる2層配線基板(図4(a))の両面に、絶縁性フィルム(ABF−70H(商品名)、味の素ファインテクノ(株)製)をラミネートし、140℃で60分間加熱して樹脂を硬化させた。この絶縁性フィルム表面を、両面ともバフによる物理研磨により、第2層、第3層の配線パターンの銅表面が露出するまで研磨を行った(図4(b))。
(Creation of 4-layer wiring board)
The second layer wiring pattern 2 and the third layer wiring pattern 3 are formed on the front and back sides, and both sides of the two-layer wiring board (FIG. 4A) in which the front and back sides are electrically connected by the via holes 1 are insulated. A film (ABF-70H (trade name), manufactured by Ajinomoto Fine Techno Co., Ltd.) was laminated, and the resin was cured by heating at 140 ° C. for 60 minutes. The insulating film surface was polished by buffing on both sides until the copper surfaces of the second and third layer wiring patterns were exposed (FIG. 4B).

次に、過マンガン酸処理を行って、絶縁性フィルム表面を両面とも粗化した後、無電解銅めっきを行いシード層4を形成した(図4(c))。その後、両面に厚みが20μmのドライフィルム(サンフォートAQ−2058(商品名)、旭化成(株)製)をラミネートし、平行光型の露光機で、それぞれ第1層と第4層の配線パターンを焼付け、1%炭酸ナトリウム溶液で現像し、ドライフィルムのパターン5を得た(図4(d))。その後、電解めっきにより配線パターン部をめっきした後(図4(e))、ドライフィルムを剥離し(図4(f))、フラッシュエッチングにより、シード層を除去することで、第1層の配線パターン6及び第4層の配線パターン7を形成した(図4(g))。   Next, after permanganic acid treatment was performed to roughen both surfaces of the insulating film, electroless copper plating was performed to form a seed layer 4 (FIG. 4C). Thereafter, a dry film (Sunfort AQ-2058 (trade name), manufactured by Asahi Kasei Co., Ltd.) having a thickness of 20 μm is laminated on both sides, and the first and fourth layer wiring patterns are respectively formed using a parallel light type exposure machine. The film was baked and developed with a 1% sodium carbonate solution to obtain a dry film pattern 5 (FIG. 4D). Thereafter, after plating the wiring pattern portion by electrolytic plating (FIG. 4E), the dry film is peeled off (FIG. 4F), and the seed layer is removed by flash etching, so that the first layer wiring A pattern 6 and a fourth-layer wiring pattern 7 were formed (FIG. 4G).

この両面にこれまでと同様にして、絶縁性フィルム(ABF−70H(商品名)、味の素ファインテクノ(株)製)をラミネートし、140℃で60分間加熱して樹脂を硬化させ、両面とも表面をバフによる物理研磨により、第1層、第4層の配線パターンの銅表面が露出するまで研磨を行い、4層配線を有する多層回路基板を作成した(図4(h))。   Insulating films (ABF-70H (trade name), manufactured by Ajinomoto Fine Techno Co., Ltd.) are laminated on both sides in the same manner as before, and the resin is cured by heating at 140 ° C. for 60 minutes. Was polished until the copper surfaces of the wiring patterns of the first layer and the fourth layer were exposed by buffing, and a multilayer circuit board having a four-layer wiring was produced (FIG. 4 (h)).

(放熱板付き3層配線基板の作成)
厚みが100μmのジルコニウム系銅板8(C151(商品名)、三菱伸銅(株)製、CDA合金NO.C15100)(図5(a))の両面に、厚みが20μmのドライフィルム9(サンフォートAQ−2058(商品名)、旭化成(株)製)をラミネートし、平行光型の露光機で一方の面に配線パターンのネガパターンを焼付け、もう片方の面は全面露光を行った後、1%炭酸ナトリウム溶液で現像を行った後(図5(b))、電解めっきを約15μm行い、3%水酸化ナトリウム溶液でドライフィルムを剥離し、第3層の配線パターン10を形成した(図5(c))。
(Making a three-layer wiring board with a heat sink)
Zirconium-based copper plate 8 having a thickness of 100 μm (C151 (trade name), manufactured by Mitsubishi Shindoh Co., Ltd., CDA alloy NO. C15100) (FIG. 5A) (FIG. 5A), dry film 9 having a thickness of 20 μm (Sunfort) AQ-2058 (trade name, manufactured by Asahi Kasei Co., Ltd.) is laminated, a negative pattern of the wiring pattern is baked on one surface with a parallel light type exposure machine, and the other surface is exposed to the entire surface. After development with a% sodium carbonate solution (FIG. 5B), electrolytic plating was performed at about 15 μm, and the dry film was peeled off with a 3% sodium hydroxide solution to form a third-layer wiring pattern 10 (FIG. 5). 5 (c)).

次に、第3層の配線パターンを形成した側に絶縁性フィルム(ABF−70H(商品名)、味の素ファインテクノ(株)製)をラミネートし、140℃で60分間加熱して樹脂を硬化させた。この絶縁性フィルム表面をバフによる物理研磨により、第3層の配線パターンの銅表面が露出するまで研磨を行った(図5(d))。
次に、過マンガン酸処理を行って、絶縁性フィルム表面を粗化した後、無電解銅めっきを行いシード層11を形成した(図5(e))。その後、第3層の配線パターンを形成したときと同様に、両面に厚みが20μmのドライフィルム(サンフォートAQ−2058(商品名)、旭化成(株)製)をラミネートし、平行光型の露光機で第3層の配線パターンがある面に第2層の配線パターンのネガパターンを焼付け、もう片方の面は全面露光を行った後、1%炭酸ナトリウム溶液で現像(図5(f))、電解めっき(図5(g))、ドライフィルムを剥離し、第2層の配線パターン12を形成した(図5(h))。この工程を繰り返すことにより第1層の配線パターン13を形成し、放熱板付き3層配線を有する多層回路基板を作成した(図5(j))。
Next, an insulating film (ABF-70H (trade name), manufactured by Ajinomoto Fine Techno Co., Ltd.) is laminated on the side on which the wiring pattern of the third layer is formed, and the resin is cured by heating at 140 ° C. for 60 minutes. It was. The insulating film surface was polished by buffing until the copper surface of the third layer wiring pattern was exposed (FIG. 5D).
Next, a permanganate treatment was performed to roughen the surface of the insulating film, and then electroless copper plating was performed to form a seed layer 11 (FIG. 5E). Thereafter, a dry film (Sunfort AQ-2058 (trade name), manufactured by Asahi Kasei Co., Ltd.) having a thickness of 20 μm is laminated on both surfaces in the same manner as when the third-layer wiring pattern is formed, and a parallel light type exposure is performed. The negative pattern of the second layer wiring pattern was printed on the surface having the third layer wiring pattern on the machine, and the other surface was exposed to the entire surface and then developed with a 1% sodium carbonate solution (FIG. 5 (f)). Then, electrolytic plating (FIG. 5G), the dry film was peeled off, and a second layer wiring pattern 12 was formed (FIG. 5H). By repeating this process, a first-layer wiring pattern 13 was formed, and a multilayer circuit board having a three-layer wiring with a heat sink was created (FIG. 5 (j)).

(超薄膜3層配線基板の作成)
実施例2で作成した放熱板付き3層配線を有する多層回路基板(図6(a))の配線層側の面を、厚みが20μmのドライフィルム(サンフォートAQ−2058(商品名)、旭化成(株)製)をラミネートすることで保護し、他方面のジルコニウム系銅板8をエッチングにより除去することで、超薄膜3層配線基板を作成した(図6(b))。
(Creation of ultra-thin three-layer wiring board)
The surface on the wiring layer side of the multilayer circuit board (FIG. 6 (a)) having the three-layer wiring with a heat sink created in Example 2 is a dry film (Sunfort AQ-2058 (trade name), Asahi Kasei Co., Ltd.) having a thickness of 20 μm. (Made by Co., Ltd.) was protected by laminating, and the zirconium-based copper plate 8 on the other side was removed by etching to produce an ultrathin film three-layer wiring board (FIG. 6B).

以上、実施例に基づき具体例を述べたが、これに限定されるものではない。また、本発明においては、必要に応じて、既存のソルダーレジスト14やカバーレイをコーティングする構成としても良く(図7)、さらに接続端子に金めっき、錫めっき、耐熱プリフラックス塗布などの防錆用の処理を施しても良い。また、ハンドリング性向上のため、スティフナー(補強板)15を搭載してもよい(図8)。   As mentioned above, although the specific example was described based on the Example, it is not limited to this. Moreover, in this invention, it is good also as a structure which coats the existing soldering resist 14 and coverlay as needed (FIG. 7), and also rust prevention, such as gold plating, tin plating, and heat-resistant preflux application | coating to a connection terminal You may perform the process for. Further, a stiffener (reinforcing plate) 15 may be mounted to improve handling properties (FIG. 8).

従来の一般的なビルドアップ技術による半導体装置用基板の構成を示す断面図である。It is sectional drawing which shows the structure of the board | substrate for semiconductor devices by the conventional general buildup technique. 従来の薄型基板技術による半導体装置用基板の構成を示す断面図である。It is sectional drawing which shows the structure of the board | substrate for semiconductor devices by the conventional thin board | substrate technique. 本発明に係わる半導体装置用基板の構成を示す断面図である。It is sectional drawing which shows the structure of the board | substrate for semiconductor devices concerning this invention. 実施例1の工程説明図である。2 is a process explanatory diagram of Example 1. FIG. 実施例2の工程説明図である。6 is a process explanatory diagram of Example 2. FIG. 実施例3の工程説明図である。6 is a process explanatory diagram of Example 3. FIG. スルダーレジストを形成した説明図である。It is explanatory drawing which formed the solder resist. ステエフナーを形成した説明図である。It is explanatory drawing which formed the stefner.

符号の説明Explanation of symbols

1・・・ビアホール
2、12・・・第2層の配線パターン
3、10・・・第3層の配線パターン
4、11・・・シード層
5・・・ドライフィルムのパターン
6、13・・・第1層の配線パターン
7・・・第4層の配線パターン
8・・・ジルコニウム系銅板
9・・・ドライフィルム
14…ソルダーレジスト
15…スティフナー
21・・・配線層
22・・・絶縁層
23・・・表面の導箔をエッチングして配線パターンを形成するもの
31、32、33、34・・・上下配線パターン
35・・・絶縁物
DESCRIPTION OF SYMBOLS 1 ... Via hole 2, 12 ... 2nd layer wiring pattern 3, 10 ... 3rd layer wiring pattern 4, 11 ... Seed layer 5 ... Dry film pattern 6, 13, ... First layer wiring pattern 7... Fourth layer wiring pattern 8. Zirconium-based copper plate 9... Dry film 14. Solder resist 15. Stiffener 21. ... Etching the conductive foil on the surface to form a wiring pattern 31, 32, 33, 34 ... Vertical wiring pattern 35 ... Insulator

Claims (3)

(1)平坦なベース基板上に第1の配線パターンとその周囲の絶縁物を表面が略同一平面状となるように形成する工程と、
(2)次の第2の配線パターンを上記第1の配線パターン上に直接積み重ねて形成し接続部を設け、該第2の配線パターンの周囲の絶縁物を表面が略同一平面状となるように形成する工程と、
(3)上記(2)工程を必要な層数分繰り返す工程、
を少なくとも有することを特徴とする半導体装置用基板の製造方法。
(1) forming a first wiring pattern and an insulating material around the first wiring pattern on a flat base substrate so that the surfaces thereof are substantially coplanar;
(2) a second wiring pattern is formed by stacking directly on the first wiring pattern connecting part of the following is provided, so that the periphery of the insulator of the second wiring pattern surface is substantially coplanar Forming the step,
(3) A step of repeating the above step (2) for the required number of layers,
The manufacturing method of the board | substrate for semiconductor devices characterized by having at least.
前記(3)工程後に、平坦なベース基板の少なくとも一部を除去する工程を有することを特徴とする請求項1に記載の半導体装置用基板の製造方法。   2. The method for manufacturing a substrate for a semiconductor device according to claim 1, further comprising a step of removing at least a part of the flat base substrate after the step (3). 前記平坦なベース基板が50〜700μmの厚みの金属板、ガラス板、プラスチック板、又はシリコン基板であることを特徴とする請求項1又は2のいずれかに記載の半導体装置用基板の製造方法。
3. The method for manufacturing a substrate for a semiconductor device according to claim 1, wherein the flat base substrate is a metal plate, glass plate, plastic plate, or silicon substrate having a thickness of 50 to 700 [mu] m.
JP2004109656A 2004-04-02 2004-04-02 Manufacturing method of substrate for semiconductor device Expired - Fee Related JP4466169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004109656A JP4466169B2 (en) 2004-04-02 2004-04-02 Manufacturing method of substrate for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004109656A JP4466169B2 (en) 2004-04-02 2004-04-02 Manufacturing method of substrate for semiconductor device

Publications (2)

Publication Number Publication Date
JP2005294660A JP2005294660A (en) 2005-10-20
JP4466169B2 true JP4466169B2 (en) 2010-05-26

Family

ID=35327231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004109656A Expired - Fee Related JP4466169B2 (en) 2004-04-02 2004-04-02 Manufacturing method of substrate for semiconductor device

Country Status (1)

Country Link
JP (1) JP4466169B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100757910B1 (en) * 2006-07-06 2007-09-11 삼성전기주식회사 A buried pattern board and its manufacturing method
US9440135B2 (en) * 2012-05-29 2016-09-13 Zhuhai Advanced Chip Carriers & Electronic Substrate Solutions Technologies Co. Ltd. Multilayer electronic structures with integral vias extending in in-plane direction

Also Published As

Publication number Publication date
JP2005294660A (en) 2005-10-20

Similar Documents

Publication Publication Date Title
TWI271136B (en) Flexible multi-layered wiring substrate and its manufacturing method
JP4564342B2 (en) Multilayer wiring board and manufacturing method thereof
JP5580135B2 (en) Printed wiring board manufacturing method and printed wiring board
JP2015122545A (en) Multilayer wiring board and manufacturing method of the same
JP2009260204A (en) Printed circuit board and method of manufacturing the same
JP5506877B2 (en) Multilayer printed circuit board and manufacturing method thereof
KR101049678B1 (en) Thermal printed circuit board and method of manufacturing same
TWI500366B (en) Multilayer printed wiring board and manufacturing method thereof
JP2005236067A (en) Wiring substrate, its manufacturing method and semiconductor package
TWI459879B (en) Method for manufacturing multilayer flexible printed wiring board
KR20130053289A (en) Manufacturing method of printed circuit board
JP2004152904A (en) Electrolytic copper foil, film with electrolytic copper foil, multilayer wiring board, and method of manufacturing the same
JP3942535B2 (en) Manufacturing method of multilayer wiring board
JP2003124637A (en) Multilayer wiring board
JP4466169B2 (en) Manufacturing method of substrate for semiconductor device
JP2001094252A (en) Method for manufacturing of multilayer semiconductor board
JP2009026898A (en) Method of manufacturing multilayer printed wiring board, and multilayer printed wiring board
TW200403962A (en) Wiring substrate and manufacturing method thereof
KR100658972B1 (en) Printed Circuit Board and Manufacturing Method
JP2004111578A (en) Process for producing build-up printed wiring board with heat spreader and build-up printed wiring board with heat spreader
CN109378295A (en) Camera module package substrate and its manufacturing method based on copper post conducting technology
KR100468195B1 (en) A manufacturing process of multi-layer printed circuit board
JP2010147145A (en) Printed circuit board and method of producing the same
JP4736251B2 (en) Film carrier and manufacturing method thereof
JP3994952B2 (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100215

R150 Certificate of patent or registration of utility model

Ref document number: 4466169

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees