[go: up one dir, main page]

JP4433892B2 - Vane for variable nozzles with fluid deflecting ridges - Google Patents

Vane for variable nozzles with fluid deflecting ridges Download PDF

Info

Publication number
JP4433892B2
JP4433892B2 JP2004175627A JP2004175627A JP4433892B2 JP 4433892 B2 JP4433892 B2 JP 4433892B2 JP 2004175627 A JP2004175627 A JP 2004175627A JP 2004175627 A JP2004175627 A JP 2004175627A JP 4433892 B2 JP4433892 B2 JP 4433892B2
Authority
JP
Japan
Prior art keywords
vane
fluid
ridge
fluid deflecting
along
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004175627A
Other languages
Japanese (ja)
Other versions
JP2005351241A (en
Inventor
正和 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004175627A priority Critical patent/JP4433892B2/en
Publication of JP2005351241A publication Critical patent/JP2005351241A/en
Application granted granted Critical
Publication of JP4433892B2 publication Critical patent/JP4433892B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Supercharger (AREA)
  • Control Of Turbines (AREA)

Description

本発明は、流体機械の可変ノズルを構成するベーンに係り、特に可変ノズルを絞ったときのノズルに於ける流体の流れを改善し、流体機械の低負荷運転時の作動効率を高めることに係わる   The present invention relates to a vane constituting a variable nozzle of a fluid machine, and more particularly, to improving the flow of fluid in the nozzle when the variable nozzle is throttled and increasing the operation efficiency of the fluid machine during low load operation.

排気タービンの如き流体機械のノズルを複数個のベーンの間隔を置いた配列により構成し、流体機械の負荷に合わせてベーンの傾動角を変えることによりノズルの開度を変える可変ノズルはよく知られている。この種の可変ノズルに於ける各ベーンは、一般に、ノズル開度の変更のためにそれらを回動させることのできる支持軸により担持され、これらの支持軸を互いに連結する種々の構造のリンク機構やカム機構により、一斉に同期して回動されるようになっている。また、かかるリンク機構やカム機構を省略すべく、各ベーンに対し2種類の異なる偏向角を呈するベーンを用意し、それらを翼長方向に接続しておき、排気タービンの負荷範囲を大小に2分し、その大小に応じてベーンを翼長方向にスライドさせて、負荷に合わせたベーン偏向角の切り換えを行うことが、下記の特許文献1に記載されている。
特開平4−66726号公報
A variable nozzle is well known in which a nozzle of a fluid machine such as an exhaust turbine is constituted by an arrangement having a plurality of vane intervals, and the opening degree of the nozzle is changed by changing the tilt angle of the vane according to the load of the fluid machine. ing. Each vane in this type of variable nozzle is generally carried by a support shaft that can be rotated to change the opening of the nozzle, and link mechanisms of various structures that connect these support shafts to each other. And the cam mechanism are rotated synchronously all at once. In addition, in order to omit the link mechanism and the cam mechanism, vanes exhibiting two different deflection angles for each vane are prepared and connected in the blade length direction so that the load range of the exhaust turbine can be increased or decreased. The following Patent Document 1 describes that the vane deflection angle is switched in accordance with the load by sliding the vane in the blade length direction according to the size.
JP-A-4-66726

近年とくにその需要が増している車輌用ターボ過給機に於ける排気タービンでは、その使用負荷範囲が広いので、上記特許文献1に記載の如くベーン偏向角が2種類に切り換えられるだけでは不十分であるだけでなく、通常のリンク機構やカム機構によりベーンが開閉される場合にも、翼型断面形状が一通りのベーンでは、排気タービンの使用負荷範囲の全域にわたって、特に運転時間のかなりの部分を占める低負荷運転領域に於いても、良好なノズル性能を得ることが困難であるという問題がある。   An exhaust turbine in a turbocharger for a vehicle, for which demand has been increasing in recent years, has a wide load range, so it is not sufficient to switch the vane deflection angle to two types as described in Patent Document 1 above. In addition, when a vane is opened and closed by a normal link mechanism or cam mechanism, a vane with a single airfoil cross-sectional shape has a considerable operating time over the entire load range of the exhaust turbine. There is a problem that it is difficult to obtain good nozzle performance even in a low-load operation region that occupies a portion.

本発明は、上記の事情に鑑み、低負荷運転領域に於いても良好なノズル性能を得ることのできる可変ノズル用ベーンを提供することを課題としている。   In view of the above circumstances, an object of the present invention is to provide a variable nozzle vane capable of obtaining good nozzle performance even in a low load operation region.

上記の課題を解決するものとして、本発明は、複数個が間隔を置いて配列されることにより流体機械の可変ノズルを構成し、その傾動角が変えられることにより該可変ノズルの開度を変化させるベーンにして、背面の下流端部に翼長の少なくとも一部に亙って翼横断面で見て翼型断面形状より山形に膨出した流体そらせ隆起が設けられていることを特徴とするベーンを提案するものである。 In order to solve the above problems, the present invention configures a variable nozzle of a fluid machine by arranging a plurality of the nozzles at intervals, and changes the opening angle of the variable nozzle by changing the tilt angle. The vane is provided with a fluid deflecting bulge bulging in a mountain shape from the airfoil cross-sectional shape as viewed in the cross-section of the wing over at least a part of the wing length at the downstream end of the back surface. Vane is proposed.

前記流体そらせ隆起は、翼長に沿って一端から途中まで、或は翼長に沿って両端部を除く中央部に、或は翼長に沿って中央部を除く両端部に、或は翼長に沿って一端から下流側へ向かうにつれて増大する幅にて、或は翼長に沿って中央部が中高となるように、設けられてよい。   The fluid deflecting ridge is from one end to the middle along the wing length, or at the central portion excluding both ends along the wing length, or at both ends excluding the central portion along the wing length, or at the wing length. It may be provided with a width that increases from one end to the downstream side along the center of the blade, or so that the central portion becomes a middle height along the blade length.

前記流体そらせ隆起は可変ノズルが最も絞られたとき隣りのベーンの腹面に当接するようになっていてもよい。   The fluid deflecting ridge may come into contact with the abdominal surface of the adjacent vane when the variable nozzle is most narrowed.

また、上記の如きベーンは、その上流端と下流端の間の実質的に中央の位置にて支持されて傾動角が変更されるようになっていてよい。   The vane as described above may be supported at a substantially central position between the upstream end and the downstream end so that the tilt angle is changed.

この種の複数個のベーンが間隔を置いて配列され、その傾動角が変えられることにより開度が変えられるようになった可変ノズルに於いては、例えば排気タービンの負荷が低下し、ベーンが大きく傾動されてノズルが絞られたとき、各ベーンの背面に沿って流れた流体流は、その流れに含まれているロータの中心へ向かう方向の運動量により、ベーンの下流端を出たところで該ベーンの腹側へ回り込むように流れ、ノズル出口に渦流層が形成されてタービンの作動効率が大きく低下するが、このとき、上記の如く背面の下流端部に翼長の少なくとも一部に亙って翼横断面で見て翼型断面形状より山形に膨出した流体そらせ隆起が設けられていれば、ベーンの背面に沿って流れる流体流に上記のロータ中心へ向かう方向の運動量を打ち消す放射方向の運動量を付与し、ノズル出口に渦流層が形成されことを抑え、低負荷運転時に於けるタービンの作動効率を高めることができる。 In a variable nozzle in which a plurality of vanes of this type are arranged at intervals and the opening degree can be changed by changing the tilt angle, for example, the load of the exhaust turbine is reduced, and the vanes are reduced. When the nozzle is squeezed by being greatly tilted, the fluid flow that flows along the back surface of each vane is moved away from the downstream end of the vane due to the momentum in the direction toward the center of the rotor included in the flow. The turbine flows to the ventral side of the vane, and a vortex layer is formed at the nozzle outlet to greatly reduce the operating efficiency of the turbine.At this time, as described above, at least part of the blade length at the downstream end of the rear surface. if fluid deflector ridge is provided with bulges Yamagata from airfoil-shaped cross section as viewed in the wing cross section, counteract the direction of momentum toward said rotor center to the fluid stream flowing along the back of the vane radiation Te Grant momentum direction, suppressing the swirl layer Ru are formed in the nozzle outlet, it is possible to increase the operating efficiency of at turbine during low load operation.

上記の如き流体そらせ隆起は、ベーンがある程度以上開方向に回動され、ベーン間を通って流れる流体流にベーンにより偏向を付与する度合が低減された流体機械の中乃至高負荷運転時には、ベーン間を通って流れる流体流に対するその影響は薄れ、ノズルを通って流れる流体流に実質的な乱れを生じさせることはないが、特にかかる流体そらせ隆起が翼長に沿って一端から途中まで、或は翼長に沿って両端部を除く中央部に、或は翼長に沿って中央部を除く両端部に、或は翼長に沿って一端から下流側へ向かうにつれて増大する幅にて、或は翼長に沿って中央部が中高となるように設けられれば、ベーンによるノズルの個別の設計に応じて、流体機械の中乃至高負荷運転時にノズルを通って流れる流体流が流体そらせ隆起より受ける影響と、流体機械の低負荷運転時に於ける流体そらせ隆起の渦流抑制効果の間の調和を最適化することができる。   The fluid deflecting ridge as described above is used in a medium to high load operation of a fluid machine in which the vanes are rotated in the opening direction to some extent and the degree of deflection of the fluid flow flowing between the vanes by the vanes is reduced. Its effect on the fluid flow flowing through it is diminished and does not cause substantial turbulence in the fluid flow flowing through the nozzle, but in particular such a fluid deflection ridge extends from one end to the middle along the wing length, or Is along the blade length at the center excluding both ends, or along the blade length at both ends except the center, or with a width that increases from one end to the downstream along the blade length, or If the central part of the machine is installed along the blade length so that the middle part is at a medium height, the flow of fluid flowing through the nozzle during medium to high load operation of the fluid machine may be less Affected and It is possible to optimize the harmony between the vortex suppression effect of deflecting in a fluid at low load operation of the fluid machine ridges.

尚、上記の各例の如く流体そらせ隆起がベーンの翼長に沿う幅の一部に設けられれば、流体そらせ隆起の部分の上を流れる流体流がロータ中心へ向かう方向の運動量を打ち消す放射方向の運動量を付与されると共に、流体そらせ隆起によりベーン間の流路断面積がそれだけ絞られるので、流体そらせ隆起が設けられていない部分を流れる流体の流速がそれに応じて増大され、流体そらせ隆起が設けられていない部分を流れた流体流についても、ベーンの下流端を出たところでのベーンの腹面方向への回りこみ傾向は低減され、こうして流体そらせ隆起をベーンの翼長に沿う幅の一部に設けることによっても、ベーン出口に於ける渦流抑制効果を十分に得ることができる。また、特に流体そらせ隆起が翼長に沿って中央部を除く両端部に設けられる場合には、ベーンの両端部とハウジングのノズル壁面との間にある不可避のクリアランスを経て漏洩する流体の流れを抑制し、それだけ流体機械の作動効率を上げる効果も得られる。   In addition, if the fluid deflector ridge is provided in a part of the width along the vane blade length as in each of the above examples, the radial direction in which the fluid flow flowing over the fluid deflector ridge cancels out the momentum in the direction toward the rotor center. And the flow cross-sectional area between the vanes is reduced by the fluid swell ridge, so that the flow velocity of the fluid flowing through the portion where the fluid swell ridge is not provided is increased accordingly, and the fluid swell ridge Even in the case of a fluid flow that has flowed through a portion that is not provided, the tendency of the vane to sneak in the ventral direction at the downstream end of the vane is reduced, so that the fluid deflecting ridge is part of the width along the vane blade length. Also, it is possible to sufficiently obtain the effect of suppressing the vortex flow at the vane outlet. Also, especially when the fluid deflecting ridges are provided along the wing length at both ends except the central portion, the flow of fluid leaking through the inevitable clearance between the both ends of the vane and the nozzle wall surface of the housing It is also possible to obtain the effect of suppressing the operation efficiency of the fluid machine.

また、この種の可変ノズル用ベーンは、特にノズルが大きく絞られたとき、即ちベーンの偏向角が増大したときには、流体流により振動起こしやすく、ベーン駆動機構に不可避的に存在する遊びによりベーンの偏向角にばらつきが生じやすいが、可変ノズルが最も絞られたとき流体そらせ隆起が隣りのベーンの腹面に当接するようになっていれば、このことによってベーンの偏向角にばらつきが生ずることが回避される。尚、この場合には、可変ノズルが最終位置まで閉じられたときに限り、流体そらせ隆起部分がその上を流れる流体流にロータ中心へ向かう方向の運動量を打ち消す放射方向の運動量を付与作用は失われるが、その場合にも、流体そらせ隆起によりベーン間の流路断面積が絞られた分、流体そらせ隆起が設けられていない部分を流れる流体の流速が増大し、流体そらせ隆起が設けられていない部分を流れた流体流がベーンの下流端を出たところでベーンの腹面方向への回り込む傾向が低減されという効果は維持される。   Also, this type of variable nozzle vane is prone to vibration due to the fluid flow, especially when the nozzle is greatly squeezed, that is, when the deflection angle of the vane increases, and the vane drive mechanism inevitably causes play of the vane. Variations in deflection angle are likely to occur, but this avoids variations in the deflection angle of the vane if the fluid deflector ridge comes into contact with the abdominal surface of the adjacent vane when the variable nozzle is most narrowed. Is done. Note that in this case, only when the variable nozzle is closed to the final position, the fluid deflecting raised portion imparts momentum in the radial direction that cancels the momentum in the direction toward the rotor center to the fluid flow flowing thereabove. However, even in this case, the flow velocity of the fluid flowing through the portion where the fluid deflecting ridge is not provided is increased by the amount of the flow path cross-sectional area between the vanes reduced by the fluid deflecting ridge, and the fluid deflecting ridge is provided. The effect of reducing the tendency of the fluid flow that has flowed through the non-circulated portion to flow toward the ventral surface of the vane after leaving the downstream end of the vane is maintained.

また、ベーンが上記の如き流体そらせ隆起を設けられない通常の翼型断面を有しているときには、ベーンが全開位置近傍にあるときと全閉位置近傍にあるときとでベーンに作用する偏向モーメントの方向が反転するので、ベーンをその上流端と下流端の間の中央位置にて支持して傾動角を変更しようとすれば、ベーンの回動支持は強固で遊びのないものとされなければならないが、上記の流体そらせ隆起が設けられた場合には、ベーンに作用する流体からの偏向モーメントの方向のそのような反転は生じないので、特に強固で遊びのないベーン回動支持構造によらなくても、ベーンをその上流端と下流端の間の実質的に中央の位置にて支持して傾動角を安定して変更することができる。   Also, when the vane has a normal airfoil cross-section that is not provided with a fluid deflecting ridge as described above, the deflection moment acting on the vane when the vane is near the fully open position and when it is near the fully closed position Therefore, if the tilt angle is changed by supporting the vane at the center position between the upstream end and the downstream end, the rotation support of the vane must be strong and free of play. However, in the case where the above-described fluid deflecting ridge is provided, such a reversal of the direction of the deflection moment from the fluid acting on the vane does not occur. Even if it is not, the tilt angle can be stably changed by supporting the vane at a substantially central position between the upstream end and the downstream end.

以下に添付の図を参照して本発明を実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明によるベーンによって可変ノズルが構成された排気タービンの要部を示す概略断面図である。排気タービンは回転中心軸線C−Cの周りに回転するよう、ハウジング10より図には示されていない軸受を介して支持されたタービンロータ12を備えている。図はタービンロータ12の回転中心軸線C−Cを含む垂直面による断面を回転中心軸線C−Cより上の半分についてのみ示している。タービンロータ12は回転中心軸線C−Cの周りに環状に配列された翼列14を備えており、その周縁がなす翼列入口の周りに複数のベーン16が環状に配列されてタービンのノズルを形成している。各ベーン16は軸18により支持され、軸18がベーン回動機構20によりその中心軸線の周りに回動されることによりその偏向姿勢を制御され、ロータ回転中心軸線C−Cの周りに環状に延在する排ガス室22よりノズル入口通路24を経て内向きに流れる排ガス流を偏向させつつ絞って加速し、タービンロータ12の翼列入口へ噴付けるようになっている。   FIG. 1 is a schematic cross-sectional view showing a main part of an exhaust turbine in which a variable nozzle is constituted by a vane according to the present invention. The exhaust turbine includes a turbine rotor 12 supported by a housing 10 via a bearing (not shown) so as to rotate around a rotation center axis CC. The figure shows a cross section of the turbine rotor 12 with a vertical plane including the rotation center axis C-C only about the half above the rotation center axis C-C. The turbine rotor 12 includes a blade row 14 arranged in an annular shape around a rotation center axis C-C, and a plurality of vanes 16 are arranged in an annular shape around a blade row inlet formed by a peripheral edge of the blade row 14. Forming. Each vane 16 is supported by a shaft 18, and its deflection posture is controlled by rotating the shaft 18 around its central axis by a vane rotating mechanism 20, and annularly around the rotor rotation central axis CC. The exhaust gas flow flowing inward from the extending exhaust gas chamber 22 through the nozzle inlet passage 24 is accelerated while being deflected and sprayed to the blade row inlet of the turbine rotor 12.

図2はノズルを構成しているベーン16の配列の一部を示す側面図である。ベーン16はノズルを開く方向へは図中二点鎖線にて示されている位置まで回動され、タービンの負荷の低下に伴って最大で図中実線にて示されている位置までノズルを閉じる方向へ回動されるようになっている。ベーン16には、その背面26の下流端部に翼長の少なくとも一部に亙って翼横断面で見て翼型断面形状より図2に例示したような山形の形状に膨出した流体そらせ隆起28が設けられている。 FIG. 2 is a side view showing a part of the arrangement of the vanes 16 constituting the nozzle. The vane 16 is rotated to the position indicated by the two-dot chain line in the drawing in the direction of opening the nozzle, and the nozzle is closed to the position indicated by the solid line in the drawing as the turbine load decreases. It is turned in the direction. The vane 16 is deflecting the fluid and bulges chevron shaped like over at least a portion of the blade length as viewed in the wing cross-section illustrated from airfoil shaped cross-section in FIG. 2 to the downstream end portion of the back 26 A ridge 28 is provided.

図示の例では、ベーン16が図2に於いて実線にて示されている最大閉じ位置まで偏向されたとき、流体そらせ隆起28は隣りのベーンの腹面に当接するようになっている。ベーン16が上記の如き流体そらせ隆起28が設けられていない場合には、例えばベーンがその一つを点線にて示されている如き回動位置にあるとき、ベーンの背面26に沿って流れた流体流は、その流れに含まれているロータの中心へ向かう方向の運動量により、ベーンの下流端を出たところで図2に矢印S1にて示されている如くベーンの腹側へ回り込むように流れ、ノズル出口に渦流層が形成されてタービンの作動効率が大きく低下するが、これに対し上記の如き流体そらせ隆起28が設けられることにより、ベーンの背面26に沿って流れる流体流は図2に矢印S2にて示されている如く偏向されてロータ中心へ向かう方向の運動量を打ち消す放射方向の運動量を付与され、ノズル出口に渦流層が形成されことが抑制される。   In the illustrated example, when the vane 16 is deflected to the maximum closed position shown by the solid line in FIG. 2, the fluid deflector ridge 28 comes into contact with the abdominal surface of the adjacent vane. If the vane 16 is not provided with a fluid deflection ridge 28 as described above, the vane 16 has flowed along the vane back surface 26, for example when the vane is in a pivoting position, one of which is indicated by the dotted line. Due to the momentum toward the center of the rotor contained in the flow, the fluid flow flows from the downstream end of the vane to the ventral side of the vane as shown by the arrow S1 in FIG. The vortex layer is formed at the nozzle outlet, and the operation efficiency of the turbine is greatly reduced. On the other hand, the fluid flow along the vane back surface 26 is shown in FIG. As shown by the arrow S2, it is deflected and given a momentum in the radial direction that cancels out the momentum in the direction toward the rotor center, and the formation of a vortex layer at the nozzle outlet is suppressed.

ベーン16がかかる閉じ位置より図2に於いて二点鎖線にて示されている最大開き位置へ向けてある程度以上開き方向に回動されると、ベーン間を通って流れる流体流がベーンにより偏向を受ける度合が下がるので、ベーン間を通って流れる流体流に対する流体そらせ隆起28の影響は薄れるが、この点については、特にかかる流体そらせ隆起をベーンの翼長に沿う全幅のうちのどの程度の幅に亙って設けるかを考慮することにより、排気タービンの中乃至高負荷運転時にノズルを通って流れる排ガス流が流体そらせ隆起より受ける影響と、排気タービンの低負荷運転時に於ける流体そらせ隆起の渦流抑制効果の間の調和を最適化することができる。   When the vane 16 is rotated in an opening direction from the closed position toward the maximum opening position indicated by a two-dot chain line in FIG. 2 to some extent, the fluid flow flowing between the vanes is deflected by the vanes. The effect of the fluid baffle ridge 28 on the fluid flow flowing between the vanes is diminished, but in this regard, in particular, how much of the total width along the vane wing length is such a fluid baffle ridge. Considering whether it is provided over the width, the exhaust gas flow flowing through the nozzle during middle to high load operation of the exhaust turbine is affected by the fluid deflection ridge, and the fluid swell ridge during low load operation of the exhaust turbine. The harmony between the eddy current suppression effects can be optimized.

図1および2に示されている例では、流体そらせ隆起26は翼長に沿ってベーンの一端から全幅の半分を幾分越えるところまで設けられているが、流体そらせ隆起26を設ける位置および態様については、図3および4に例示した如く種々の実施の形態が可能である。図3はベーン16を図2の矢印III−IIIの方向に見た流体そらせ隆起26のいくつかの例を示すベーンの平面図であり、図4は図3のベーンを図示の切断面にて矢印IV−IVに見た断面図である。このうちAは図1および2に示した例に対応しており、Bは流体そらせ隆起がベーンの翼長に沿って両端部を除く中央部に設けられている例であり、Cは流体そらせ隆起がベーンの翼長に沿って中央部を除く両端部に設けられている例であり、Dは流体そらせ隆起がベーンの翼長に沿って一端から下流側へ向かうにつれて増大する幅にて設けられている例であり、Eは流体そらせ隆起がベーンの翼長に沿って中央部が中高となるように設けられている例である。   In the example shown in FIGS. 1 and 2, the fluid baffle ridge 26 is provided along one wing length from one end of the vane to over half of its full width, but the location and manner in which the fluid baffle ridge 26 is provided. As shown in FIGS. 3 and 4, various embodiments are possible. FIG. 3 is a plan view of the vane showing some examples of the fluid deflecting ridge 26 when the vane 16 is viewed in the direction of arrows III-III in FIG. 2, and FIG. 4 is a sectional view of the vane of FIG. It is sectional drawing seen to arrow IV-IV. 1 corresponds to the example shown in FIGS. 1 and 2, B is an example in which a fluid deflecting ridge is provided in the central portion excluding both ends along the vane blade length, and C is a fluid deflecting ridge. In the example, the ridges are provided at both ends except for the central portion along the vane blade length, and D is provided with a width that increases as the fluid deflected ridges extend from one end to the downstream side along the vane blade length. E is an example in which the fluid deflecting ridge is provided so that the central portion is at a middle height along the vane blade length.

以上に於いては本発明をいくつかの実施の形態について詳細に説明したが、これらの実施の形態について本発明の範囲内にて種々の変更が可能であることは当業者にとって明らかであろう。   While the present invention has been described in detail with respect to several embodiments thereof, it will be apparent to those skilled in the art that various modifications can be made to these embodiments within the scope of the present invention. .

本発明によるベーンによって可変ノズルが構成された排気タービンの要部を示す概略断面図。The schematic sectional drawing which shows the principal part of the exhaust turbine in which the variable nozzle was comprised by the vane by this invention. 図1の排気タービンに於けるノズルを構成しているベーンの配列の一部を示す側面図。The side view which shows a part of arrangement | sequence of the vane which comprises the nozzle in the exhaust turbine of FIG. 図2のベーンを図2の矢印III−IIIの方向に見た流体そらせ隆起のいくつかの例を示すベーンの平面図。FIG. 3 is a plan view of the vane showing some examples of fluid deflecting ridges when the vane of FIG. 2 is viewed in the direction of arrows III-III in FIG. 2. 図3のベーンを図示の切断面にて矢印IV−IVの方向に見た断面図。Sectional drawing which looked at the vane of FIG. 3 in the direction of arrow IV-IV in the cut surface of illustration.

符号の説明Explanation of symbols

10…ハウジング、12…タービンロータ、14…翼列、16…ベーン、18…軸、20…ベーン回動機構、22…排ガス室、24…ノズル入口通路、26…ベーンの背面、28…流体そらせ隆起   DESCRIPTION OF SYMBOLS 10 ... Housing, 12 ... Turbine rotor, 14 ... Blade row, 16 ... Vane, 18 ... Shaft, 20 ... Vane rotation mechanism, 22 ... Exhaust gas chamber, 24 ... Nozzle inlet passage, 26 ... Back surface of vane, 28 ... Fluid deflection Uplift

Claims (8)

複数個が間隔を置いて配列されることにより流体機械の可変ノズルを構成し、その傾動角が変えられることにより該可変ノズルの開度を変化させるベーンにして、背面の下流端部に翼長の少なくとも一部に亙って翼横断面で見て翼型断面形状より山形に膨出した流体そらせ隆起が設けられていることを特徴とするベーン。 A variable nozzle of a fluid machine is configured by arranging a plurality of nozzles at an interval, and a vane that changes the opening of the variable nozzle by changing the tilt angle of the variable nozzle is provided at the downstream end of the back surface. A vane characterized in that a fluid deflecting bulge is provided which bulges in a mountain shape from the airfoil cross-sectional shape when viewed in cross section of the blade over at least a part of the vane. 前記流体そらせ隆起は翼長に沿って一端から途中まで設けられていることを特徴とする請求項1に記載のベーン。   The vane according to claim 1, wherein the fluid deflecting ridge is provided from one end to the middle along the wing length. 前記流体そらせ隆起は翼長に沿って両端部を除く中央部に設けられていることを特徴とする請求項1に記載のベーン。   2. The vane according to claim 1, wherein the fluid deflecting ridge is provided at a central portion excluding both ends along the blade length. 前記流体そらせ隆起は翼長に沿って中央部を除く両端部に設けられていることを特徴とする請求項1に記載のベーン。   The vane according to claim 1, wherein the fluid deflecting ridge is provided at both end portions excluding the central portion along the blade length. 前記流体そらせ隆起は翼長に沿って一端から下流側へ向かうにつれて増大する幅にて設けられていることを特徴とする請求項1に記載のベーン。   The vane according to claim 1, wherein the fluid deflecting ridge is provided with a width that increases from one end to the downstream side along the wing length. 前記流体そらせ隆起は翼長に沿って中央部が中高となるように設けられていることを特徴とする請求項1に記載のベーン。   The vane according to claim 1, wherein the fluid deflecting ridge is provided so that a center portion thereof becomes a middle height along the wing length. 前記流体そらせ隆起は可変ノズルが最も絞られたとき隣りのベーンの腹面に当接するようになっていることを特徴とする請求項1〜6のいずれかに記載のベーン。   The vane according to any one of claims 1 to 6, wherein the fluid deflecting ridge is adapted to abut against the abdominal surface of an adjacent vane when the variable nozzle is most narrowed. ベーンはその上流端と下流端の間の実質的に中央の位置にて支持されて傾動角が変更されるようになっていることを特徴とする請求項1〜7のいずれかに記載のベーン。   The vane according to any one of claims 1 to 7, wherein the vane is supported at a substantially central position between the upstream end and the downstream end to change the tilt angle. .
JP2004175627A 2004-06-14 2004-06-14 Vane for variable nozzles with fluid deflecting ridges Expired - Fee Related JP4433892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004175627A JP4433892B2 (en) 2004-06-14 2004-06-14 Vane for variable nozzles with fluid deflecting ridges

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004175627A JP4433892B2 (en) 2004-06-14 2004-06-14 Vane for variable nozzles with fluid deflecting ridges

Publications (2)

Publication Number Publication Date
JP2005351241A JP2005351241A (en) 2005-12-22
JP4433892B2 true JP4433892B2 (en) 2010-03-17

Family

ID=35585909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004175627A Expired - Fee Related JP4433892B2 (en) 2004-06-14 2004-06-14 Vane for variable nozzles with fluid deflecting ridges

Country Status (1)

Country Link
JP (1) JP4433892B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9689275B2 (en) 2013-10-30 2017-06-27 Hyundai Motor Company Variable geometry turbo system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009020591B4 (en) * 2009-05-09 2021-01-07 BMTS Technology GmbH & Co. KG Charging device with a variable turbine geometry, in particular exhaust gas turbocharger of a motor vehicle
WO2013080795A1 (en) 2011-11-30 2013-06-06 三菱重工業株式会社 Radial turbine
JP5964081B2 (en) * 2012-02-29 2016-08-03 三菱重工業株式会社 Variable capacity turbocharger
JP6326912B2 (en) * 2014-03-31 2018-05-23 株式会社Ihi Variable nozzle unit and variable capacity turbocharger
KR101669000B1 (en) * 2015-06-30 2016-10-25 현대위아 주식회사 Structure of vane to reduce side clearance loss and improving stability of flow, vane cartridge and turbocharger
JP6578617B2 (en) * 2016-03-30 2019-09-25 三菱重工エンジン&ターボチャージャ株式会社 Turbocharger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9689275B2 (en) 2013-10-30 2017-06-27 Hyundai Motor Company Variable geometry turbo system

Also Published As

Publication number Publication date
JP2005351241A (en) 2005-12-22

Similar Documents

Publication Publication Date Title
JP6000089B2 (en) Radial turbine
JP4373629B2 (en) Axial flow turbine
JP3794868B2 (en) Gas turbine stationary blade
US8764380B2 (en) Rotor blade
KR19980064736A (en) Turbine nozzle and turbine rotor of an axial turbine
JP2007524022A (en) Camber wings for use in turbochargers
JP4924984B2 (en) Cascade of axial compressor
JP2008520881A (en) Variable nozzle turbocharger
JP5947393B2 (en) A fluid energy machine in which a rotatable guide member used in an exhaust gas turbocharger is disposed obliquely
JP4433892B2 (en) Vane for variable nozzles with fluid deflecting ridges
WO2011070636A1 (en) Turbine and turbine rotor blade
JP5201333B2 (en) Variable nozzle vane shape and variable capacity turbocharger
JP2005519219A (en) Improved vanes for use with variable form turbochargers
JP6200350B2 (en) Radial turbine or mixed flow turbine
JP2006207556A (en) Turbine blade train
JP5977508B2 (en) Water turbine stay vane and water turbine
JPH0478803B2 (en)
JP2012102745A (en) Diagonal flow turbine
JP5308077B2 (en) Turbine and turbine blade
WO2020100420A1 (en) Nozzle vane
JPH0893404A (en) Turbine nozzle and turbine rotor blade
JP7165804B2 (en) nozzle vane
JP2014062533A (en) Variable geometry exhaust turbosupercharger
JP7550880B2 (en) Turbine
JPH051659Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees