JP4433812B2 - Soil purification method and soil purification agent - Google Patents
Soil purification method and soil purification agent Download PDFInfo
- Publication number
- JP4433812B2 JP4433812B2 JP2004024559A JP2004024559A JP4433812B2 JP 4433812 B2 JP4433812 B2 JP 4433812B2 JP 2004024559 A JP2004024559 A JP 2004024559A JP 2004024559 A JP2004024559 A JP 2004024559A JP 4433812 B2 JP4433812 B2 JP 4433812B2
- Authority
- JP
- Japan
- Prior art keywords
- soil
- hexavalent chromium
- water
- aqueous solution
- dissolved
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Processing Of Solid Wastes (AREA)
Description
本発明は、重金属に汚染された粘性土からなる土壌等を浄化する土壌浄化方法、及びこのような土壌浄化方法に用いるための土壌浄化剤に関する。 The present invention relates to a soil purification method for purifying soil or the like made of viscous soil contaminated with heavy metals, and a soil purification agent for use in such a soil purification method.
近年、大量の汚染土壌が最終処分場に搬出される事例が急増している。汚染土壌を処分場に搬出することは高コストであるとともに、処分場の残余容量も急減しているために、汚染土壌を洗浄して埋め戻す方法が提案されてきた。
特に、重金属で汚染された土壌に対しては、掘削した土を水による湿式分級によって、粒径が75μm以上の粗粒分と、粒径が75μm以下の細粒分とに分ける分級洗浄処理が施されてきた。ここで、細粒分は処分場に搬出されるが、粗粒分は健全土として埋め戻される(例えば、特許文献1参照。)。
In particular, for soil contaminated with heavy metals, classification cleaning treatment is performed by dividing the excavated soil into a coarse particle having a particle size of 75 μm or more and a fine particle having a particle size of 75 μm or less by wet classification with water. Has been applied. Here, the fine particles are carried out to the disposal site, but the coarse particles are backfilled as healthy soil (see, for example, Patent Document 1).
しかしながら、上記分級洗浄は、例えば粘性土のように細粒分を20%以上含む土には適用が困難であった。粘性土の場合、水のみでは洗浄効率が十分ではない上に、処分のためのコストが高いために、たとえ粗粒分を埋め戻しても採算が取れない恐れがあった。 However, the classification cleaning is difficult to apply to soil containing 20% or more of fine particles, such as viscous soil. In the case of cohesive soil, the washing efficiency is not sufficient with water alone, and the cost for disposal is high, so there is a possibility that even if the coarse particles are backfilled, it is not profitable.
一方、重金属が付着した粗粒分からなる汚染土を強酸性又は強塩基性の溶液にて洗浄する方法が検討されている。もし、この方法を粘性土の洗浄に用いるとすれば、土壌として水と共存している場合には溶出し得ない重金属までが溶出する恐れがある。土壌に対する強酸又は強塩基の作用は、例えば土壌汚染対策法施行規則(平成14年環境省令第29号)に基づき環境大臣が定める測定方法に従って採取土を処理する作用よりも強い場合がある。よって、強酸又は強塩基処理が施された粘性土は、例えば土壌汚染対策法(平成14年法律第53号)に基づく環境基準を満たさず埋め戻しもできない恐れがある。また、このような処理が施された粘性土は、環境基準に限らず、土壌の用途等に特化した基準も満たさなくなる恐れがある。 On the other hand, a method of washing contaminated soil composed of coarse particles to which heavy metals are attached with a strongly acidic or strongly basic solution has been studied. If this method is used to wash viscous soil, there is a risk that even heavy metals that cannot be eluted when soil coexists with water. The action of a strong acid or strong base on the soil may be stronger than the action of treating the collected soil according to the measurement method defined by the Minister of the Environment based on, for example, the Ordinance for Enforcement of the Soil Contamination Countermeasures Law (Ministry of Environment No. 29 of 2002). Therefore, viscous soil that has been subjected to strong acid or strong base treatment may not satisfy environmental standards based on, for example, the Soil Contamination Countermeasures Law (Act No. 53 of 2002) and cannot be backfilled. In addition, the viscous soil that has been subjected to such treatment is not limited to environmental standards, and may not satisfy standards specialized for soil use and the like.
本発明は、かかる課題に鑑みてなされたものであり、その目的とするところは、重金属に汚染された粘性土からなる土壌等を、高効率且つ低コストで、例えば土壌汚染対策法に基づく環境基準等の所定の基準を満たすように浄化する方法を提供することにある。 The present invention has been made in view of the above problems, and the object of the present invention is to provide a soil made of viscous soil contaminated with heavy metals at high efficiency and at low cost, for example, an environment based on the Soil Contamination Countermeasures Law. An object of the present invention is to provide a method of purifying so as to satisfy a predetermined standard such as a standard.
上記課題を解決するために、本発明は、六価クロムに汚染された粘性土からなる土壌を水溶液で洗浄することにより当該土壌を浄化する土壌浄化方法であって、前記水溶液は、硫酸ナトリウムを溶解させた水溶液、又は、炭酸ナトリウムを溶解させ当該炭酸ナトリウムの加水分解により高くなった水素イオン指数を希硫酸にて低下させた弱塩基性を呈する水溶液の何れか一方であることを特徴とする。 In order to solve the above problems, the present invention provides a soil purification method for purifying soil by washing soil made of viscous soil contaminated with hexavalent chromium with an aqueous solution, wherein the aqueous solution contains sodium sulfate. It is either a dissolved aqueous solution or a weakly basic aqueous solution in which sodium carbonate is dissolved and the hydrogen ion exponent increased by hydrolysis of the sodium carbonate is reduced with dilute sulfuric acid. .
さらに、本発明の土壌浄化剤は、六価クロムに汚染された粘性土からなる土壌を水溶液で浄化する際に用いられ、硫酸ナトリウムを溶解させた水溶液、又は、炭酸ナトリウムを溶解させ当該炭酸ナトリウムの加水分解により高くなった水素イオン指数を希硫酸にて低下させた弱塩基性を呈する水溶液の何れか一方であることを特徴とする。 Furthermore, the soil purification agent of the present invention is used when purifying soil consisting of viscous soil contaminated with hexavalent chromium with an aqueous solution, and an aqueous solution in which sodium sulfate is dissolved or sodium carbonate is dissolved in the sodium carbonate. It is any one of the aqueous solutions which show weak basicity which reduced the hydrogen ion index | exponent which became high by hydrolysis of (3) with the dilute sulfuric acid .
本発明における土壌浄化方法及び土壌浄化剤によれば、六価クロムに汚染された粘性土からなる土壌を、高効率且つ低コストで、例えば、土壌汚染対策法に基づく環境基準等の所定の基準を満たすように浄化することができる。また、浄化土及び土壌浄化剤ともに再利用可能である。 According to the soil purification method and the soil purification agent of the present invention, a soil composed of viscous soil contaminated with hexavalent chromium is highly efficient and low-cost, for example, a predetermined standard such as an environmental standard based on the Soil Contamination Countermeasures Law. Can be purified to meet. Moreover, both the purification soil and the soil purification agent can be reused.
以下、本発明における土壌浄化方法の一実施形態について、図1を参照しながら説明する。 Hereinafter, an embodiment of a soil purification method according to the present invention will be described with reference to FIG.
本実施形態では、重金属に汚染された粘性土からなる土壌を掘削し、掘削した土を洗浄することにより土壌を浄化する土壌浄化方法であって、土を洗浄するための水溶液は、無機化合物の塩を溶解させた水溶液を用いる。 In this embodiment, a soil purification method for excavating soil composed of viscous soil contaminated with heavy metals and cleaning the excavated soil, wherein the aqueous solution for cleaning the soil is an inorganic compound. An aqueous solution in which a salt is dissolved is used.
図1は、本発明の一実施形態における土壌浄化方法の工程を示すフローチャートであって、まず、六価クロム汚染された土壌をおよそ20m3掘削し、後述する六価クロムの水に対する初期溶出量を測定するために、掘削した土の一部を採取する(S100)。 FIG. 1 is a flowchart showing the steps of a soil purification method according to an embodiment of the present invention. First, approximately 20 m 3 of hexavalent chromium-contaminated soil is excavated, and an initial elution amount of hexavalent chromium to water described later is shown. Is measured, a part of the excavated soil is collected (S100).
次に、掘削した土に洗浄剤を添加し、例えばミキサ等で攪拌し泥水とする。ミキサ等による攪拌は例えばバッチ式で行い、泥水は例えばアンダータンクに溜める。本実施形態においては、この洗浄剤が、土壌を掘削した土を洗浄するための水溶液に相当する。 Next, a cleaning agent is added to the excavated soil and stirred with, for example, a mixer or the like to obtain muddy water. Agitation by a mixer or the like is performed in a batch system, for example, and muddy water is stored in, for example, an under tank. In this embodiment, this cleaning agent corresponds to an aqueous solution for cleaning the soil excavated from the soil.
なお、本発明は、本実施形態に限られるものではなく、無機化合物の塩、汚染土壌、重金属等の性質及び量等によっては、別途、酸又はアルカリを加えることで、添加前の洗浄剤の水素イオン指数(pH)を調整してもよく、また、洗浄剤を添加した後の泥水の水素イオン指数(pH)を調整してもよい。ここで、水素イオン指数(pH)は、およそ3.0乃至11.0であり、好ましくは、およそ4.0乃至7.0又はおよそ7.0乃至10.0である。 The present invention is not limited to this embodiment, and depending on the nature and amount of inorganic compound salts, contaminated soil, heavy metals, etc., by adding acid or alkali separately, The hydrogen ion index (pH) may be adjusted, and the hydrogen ion index (pH) of mud water after adding the cleaning agent may be adjusted. Here, the hydrogen ion index (pH) is approximately 3.0 to 11.0, and preferably approximately 4.0 to 7.0 or approximately 7.0 to 10.0.
このように、水素イオン指数(pH)を中性、弱酸性、又は弱塩基性となるように調整して汚染土壌を洗浄することにより、例えば、土壌として水と共存している場合には溶出し得ない重金属イオンの溶出を抑制することができる。また、このような中性、弱酸性、又は弱塩基性の水溶液にて洗浄された土は、特に中和等の処理をせずに土壌に埋め戻すことができる。 Thus, by washing the contaminated soil by adjusting the hydrogen ion index (pH) to be neutral, weakly acidic, or weakly basic, for example, when the soil coexists with water It is possible to suppress elution of heavy metal ions that cannot be performed. Moreover, the soil washed with such a neutral, weakly acidic, or weakly basic aqueous solution can be backfilled in the soil without any treatment such as neutralization.
その後、アンダータンク内に溜めた泥水を、所定の液固比になるように上記洗浄剤を添加し、例えば水中ミキサで攪拌する(S102)。攪拌された泥水に、シリカフュームや高分子物質からなる適宜な凝集剤を添加して凝集させ、沈降濃縮した泥水(スラッジ)とする(S104)。これにより泥水の脱水速度が向上する。このときの上水から適宜な重金属除去装置によって六価クロムを含む重金属を除去し、当該上水をステップS102における洗浄剤として回収する。
さらに、スラッジにすすぎ水を加えて水中ミキサで攪拌する(S106)。すすぎ水と攪拌されて再び泥水となった液に、シリカフュームや高分子物質からなる適宜な凝集剤を添加して凝集させ再びスラッジとする(S108)。このときの上水から適宜な重金属除去装置によって六価クロムを含む重金属を除去し、当該上水をステップS106におけるすすぎ水として回収する。
Thereafter, the cleaning agent is added to the muddy water stored in the under tank so as to have a predetermined liquid-solid ratio, and is stirred, for example, with an underwater mixer (S102). A suitable flocculant made of silica fume or a polymer substance is added to the agitated mud water to cause it to agglomerate to obtain a sedimented and concentrated mud water (sludge) (S104). This improves the muddy water dewatering rate. At this time, heavy metal containing hexavalent chromium is removed from the clean water by an appropriate heavy metal removing device, and the clean water is recovered as a cleaning agent in step S102.
Further, rinsing water is added to the sludge and stirred with an underwater mixer (S106). An appropriate flocculant made of silica fume or a polymer substance is added to the liquid which has been agitated with rinse water and becomes muddy water again, and agglomerated to form sludge again (S108). At this time, heavy metal containing hexavalent chromium is removed from the clean water by an appropriate heavy metal removing device, and the clean water is recovered as rinse water in step S106.
次に、スラッジを例えばフィルタープレスして脱水し固液分離する。この固液分離水の一部を、後述する六価クロムの濃度測定のために採取する(S110)。このときの固液分離水から適宜な重金属除去装置によって六価クロムを含む重金属を除去し、当該固液分離水をステップS106におけるすすぎ水として回収する。 Next, the sludge is dehydrated and separated into solid and liquid by, for example, filter pressing. A part of the solid-liquid separated water is collected for measuring the concentration of hexavalent chromium described later (S110). The heavy metal containing hexavalent chromium is removed from the solid-liquid separated water at this time by an appropriate heavy metal removing device, and the solid-liquid separated water is recovered as rinse water in step S106.
上記脱水により生じた脱水ケーキは、例えばプレコンパックにて密封保管する。この脱水ケーキの一部を、後述する六価クロムの水に対する溶出量測定のために採取する。もし、例えば当該六価クロムの溶出量の測定結果が後述する環境基準値(所定の値)よりも低ければ、この脱水ケーキを浄化土として埋め戻し材に有効利用する(S112)。ステップS112において採取した土から水への六価クロム溶出量が環境基準値よりも高い場合には、ステップS106に戻り土の再すすぎを行う。 The dehydrated cake generated by the above dehydration is hermetically stored in, for example, a pre-comp pack. A part of the dehydrated cake is collected for measuring the amount of hexavalent chromium to be dissolved in water, which will be described later. If, for example, the measurement result of the elution amount of the hexavalent chromium is lower than an environmental reference value (predetermined value) described later, this dehydrated cake is effectively used as a backfill material as purified soil (S112). If the elution amount of hexavalent chromium from the soil collected in step S112 to the water is higher than the environmental reference value, the process returns to step S106 to re-rinse the soil.
なお、本実施形態においては、土壌を汚染する金属元素を六価クロムとしたが、これに限定されるものではない。例えば、カドミウム(Cd)、鉛(Pb)、水銀(Hg)、ヒ素(As)、セレン(Se)等の金属元素に汚染された土壌を、洗浄剤によって洗浄してもよい。 In the present embodiment, the metal element that contaminates the soil is hexavalent chromium, but the present invention is not limited to this. For example, soil contaminated with metal elements such as cadmium (Cd), lead (Pb), mercury (Hg), arsenic (As), and selenium (Se) may be washed with a cleaning agent.
以下、本発明の実施例を示す。 Examples of the present invention will be described below.
本実施例では、六価クロム(Cr6+)を100乃至200mg/kg含有する関東ロームの土壌であって、土壌における粒度分布は、およそ15.2%が粒径75μm乃至2mm(砂)、およそ51.4%が粒径5μm乃至75μm(シルト)、およそ33.4%が粒径5μm以下(粘土)である土壌を浄化対象とした。 In this example, the soil of Kanto Loam containing 100 to 200 mg / kg of hexavalent chromium (Cr 6+ ), the particle size distribution in the soil is about 15.2% with a particle size of 75 μm to 2 mm (sand), about The soil with 51.4% particle size of 5 μm to 75 μm (silt) and approximately 33.4% particle size of 5 μm or less (clay) was targeted for purification.
また、無機化合物の塩である硫酸ナトリウム(Na2SO4)を溶解させた水溶液、又は無機化合物の塩である炭酸ナトリウム(Na2CO3)を溶解させ当該炭酸ナトリウムの加水分解により高くなった水素イオン指数(pH)を希硫酸(H2SO4)にて低下させた水溶液を洗浄剤として用いた。 In addition, an aqueous solution in which sodium sulfate (Na 2 SO 4 ), which is a salt of an inorganic compound, is dissolved, or sodium carbonate (Na 2 CO 3 ), which is a salt of an inorganic compound, is dissolved and becomes higher by hydrolysis of the sodium carbonate. An aqueous solution in which the hydrogen ion index (pH) was lowered with dilute sulfuric acid (H 2 SO 4 ) was used as a cleaning agent.
ここで、硫酸ナトリウムの濃度は、およそ0.05mol/Lであり、洗浄剤のpHは、およそ6.0乃至7.0である(弱酸性)。尚、硫酸ナトリウムの濃度は、およそ0.01乃至0.1mol/Lが好ましく、およそ0.05乃至0.1mol/Lがより好ましい。さらに、炭酸ナトリウムの濃度は、およそ0.01mol/Lであるが、硫酸の添加によって、洗浄剤のpHは、およそ8.0乃至9.0(弱塩基性)となっている。 Here, the concentration of sodium sulfate is approximately 0.05 mol / L, and the pH of the cleaning agent is approximately 6.0 to 7.0 (weakly acidic). The concentration of sodium sulfate is preferably about 0.01 to 0.1 mol / L, more preferably about 0.05 to 0.1 mol / L. Further, the concentration of sodium carbonate is approximately 0.01 mol / L, but the pH of the cleaning agent is approximately 8.0 to 9.0 (weakly basic) by the addition of sulfuric acid.
また、ステップS100及びS112で採取した土を用いて、土壌中の六価クロムが水に溶出する場合の六価クロム溶出量を測定し、ステップS110で採取した固液分離水中の六価クロムの濃度、即ち本実施例における洗浄剤の六価クロム除去力を測定した。 Further, using the soil collected in steps S100 and S112, the amount of hexavalent chromium eluted when the hexavalent chromium in the soil is eluted in water is measured, and the hexavalent chromium in the solid-liquid separated water collected in step S110 is measured. The concentration, that is, the hexavalent chromium removing power of the cleaning agent in this example was measured.
なお、六価クロム溶出量とは、土壌汚染対策法施行規則(平成14年環境省令29号)の規定に基づく土壌の汚染に係る環境基準で指定された検液作成法及び分析法(ジフェニルカルバジド吸光光度法)により測定された、当該検液中の六価クロムの濃度である。 Hexavalent chromium elution amount refers to the preparation and analysis methods (diphenylcarbamate) specified by the environmental standards for soil contamination based on the regulations of the Ordinance for Enforcement of the Soil Contamination Countermeasures Law (Ministry of the Environment Ordinance No. 29). It is the concentration of hexavalent chromium in the test solution measured by the zido absorptiometry).
表1に、本実施例における洗浄剤の六価クロム除去力と、上記検液作成法及び分析方法によって分析して得た六価クロム溶出量とを示す。
ここで、表1の「固液分離水」における六価クロムの濃度が、洗浄剤の六価クロム除去力に相当し、表1の「浄化土の溶出液」における六価クロムの濃度が、土壌から水への六価クロムの溶出量に相当する。また、表1においては、本実施例における土壌を、水で洗浄したときの六価クロムのデータも比較のために挙げている。 Here, the concentration of hexavalent chromium in the “solid-liquid separated water” in Table 1 corresponds to the hexavalent chromium removing power of the cleaning agent, and the concentration of hexavalent chromium in the “eluent of purified soil” in Table 1 is Corresponds to the elution amount of hexavalent chromium from soil to water. Moreover, in Table 1, the data of hexavalent chromium when the soil in a present Example was wash | cleaned with water are also given for the comparison.
表1に示されるように、2つの塩(Na2SO4及びNa2CO3+H2SO4)がそれぞれ溶解した洗浄剤中の六価クロムの濃度である0.20mg/L及び0.35mg/Lは、水洗浄による当該水中の六価クロムの濃度0.14mg/Lに比べて高い。
よって、本実施例における2つの塩の洗浄剤がそれぞれ有する六価クロム除去力は、水の有する六価クロム除去力に比べて大きいと言える。
As shown in Table 1, the concentrations of hexavalent chromium in the detergent in which two salts (Na 2 SO 4 and Na 2 CO 3 + H 2 SO 4 ) were dissolved were 0.20 mg / L and 0.35 mg, respectively. / L is higher than the concentration of hexavalent chromium in the water by washing with water of 0.14 mg / L.
Therefore, it can be said that the hexavalent chromium removing power of each of the two salt cleaning agents in this example is larger than the hexavalent chromium removing power of water.
また、表1に示されるように、上記検液作成法によって、2つの塩(Na2SO4及びNa2CO3+H2SO4)がそれぞれ溶解した洗浄剤によって洗浄した土から水に溶出した六価クロムの濃度は、0.03mg/L及び0.01mg/L未満である。 In addition, as shown in Table 1, by the above-described sample preparation method, two salts (Na 2 SO 4 and Na 2 CO 3 + H 2 SO 4 ) were each eluted from the soil washed with the detergent dissolved therein. The concentration of hexavalent chromium is 0.03 mg / L and less than 0.01 mg / L.
ここで、土壌汚染対策法(平成14年法律第53号)の規定に基づく土壌の六価クロム汚染に係る環境基準値は、0.05mg/Lであるから、本実施例における洗浄剤を用いて洗浄した土は、当該環境基準を満足すると言える。 Here, since the environmental standard value concerning the hexavalent chromium contamination of soil based on the provisions of the Soil Contamination Countermeasures Law (Act No. 53 of 2002) is 0.05 mg / L, the cleaning agent in this example was used. It can be said that the cleaned soil satisfies the environmental standards.
さらに、表1によれば、このような環境基準を満足するには、土壌の水洗浄だけでは不十分であるとも言える(水洗浄による六価クロム溶出量は0.07mg/L)。 Furthermore, according to Table 1, it can be said that only water washing of the soil is insufficient to satisfy such environmental standards (the amount of hexavalent chromium eluted by water washing is 0.07 mg / L).
ところで、本実施例における2つの塩(Na2SO4及びNa2CO3+H2SO4)がそれぞれ溶解した洗浄剤が、水のみを洗浄剤とする場合に比べ、六価クロム除去力及び六価クロム溶出量の両方で優れている理由としては、SO4 2−イオンと六価クロム汚染物質としての陰イオンCrO4 2−との交換作用が起こり易いことが挙げられる。また、このような交換作用は、当該交換される陰イオン(SO4 2−及びCrO4 2−)どうしの原子構造の類似性によって誘起されると考えることもできる。 By the way, compared with the case where the detergent in which the two salts (Na 2 SO 4 and Na 2 CO 3 + H 2 SO 4 ) in this example are dissolved is water alone, the hexavalent chromium removing power and the six The reason why it is excellent in both the amount of valent chromium elution is that the exchange action between SO 4 2− ions and anion CrO 4 2− as a hexavalent chromium contaminant is likely to occur. It can also be considered that such exchange action is induced by the similarity in atomic structure between the exchanged anions (SO 4 2− and CrO 4 2− ).
上記洗浄剤を用いて土壌を浄化すれば、六価クロムを高効率で除去し、しかも浄化された土壌から水への六価クロム溶出量を環境基準値よりも低くすることが容易となる。よって、関東ロームのような粘性土に対しても、低コスト且つ低負荷型の土壌浄化が可能となる。 If the soil is purified using the cleaning agent, hexavalent chromium can be removed with high efficiency, and the elution amount of hexavalent chromium from the purified soil into water can be easily made lower than the environmental standard value. Therefore, low-cost and low-load type soil remediation is possible even for viscous soil such as Kanto Loam.
また、本実施例においては、強酸又は強塩基性の洗浄剤を使用しないために、浄化後の土壌を、特に中和処理等を行なわずに再利用できる。さらに、洗浄剤に溶解している塩(Na2SO4及びNa2CO3+H2SO4)は、例えば還元性の鉄粉に対して活性ではないため、当該鉄粉によって六価クロムを還元処理し、洗浄剤を再利用できる。 Further, in this example, since no strong acid or strong basic detergent is used, the soil after purification can be reused without particularly performing neutralization treatment or the like. Furthermore, since salts (Na 2 SO 4 and Na 2 CO 3 + H 2 SO 4 ) dissolved in the cleaning agent are not active against, for example, reducing iron powder, hexavalent chromium is reduced by the iron powder. Can be processed and reused cleaning agents.
次に、本実施例では、六価クロム(Cr6+)に汚染された粘性土からなる関東ロームの土壌(溶出量0.2mg/L、含有量100mg/kg)を浄化対象とした。 Next, in this example, Kanto Loam soil (elution amount 0.2 mg / L, content 100 mg / kg) made of viscous soil contaminated with hexavalent chromium (Cr 6+ ) was targeted for purification.
この汚染土譲を、各洗浄剤を用いて7分間の攪拌洗浄を行った後、高分子凝集剤にて凝集させ、さらに加圧脱水にて固液分離してから、固体として得られた浄化土中の六価クロムが水に溶出する場合の溶出量を測定した。また、固液分離水中の六価クロムの濃度、即ち本実施の形態における洗浄剤の有する六価クロム除去力を測定した(環境省告示13号)。 The contaminated soil was washed with each cleaning agent for 7 minutes, then agglomerated with a polymer flocculant, further solid-liquid separated by pressure dehydration, and then purified as a solid. The amount of elution when hexavalent chromium in the soil was eluted in water was measured. Further, the concentration of hexavalent chromium in the solid-liquid separated water, that is, the hexavalent chromium removing power of the cleaning agent in the present embodiment was measured (Ministry of the Environment Notification No. 13).
表2に、本実施例における洗浄剤の六価クロム除去力(「固液分離水」における六価クロムの濃度)と、上記検液作成法及び分析法(ジフェニルカルバジド吸光光度法)によって分析して得た六価クロム溶出量(「浄化土の溶出液」における六価クロムの濃度)とを示す。なお、水、アルカリ(NaOH)で洗浄した場合のデータも比較のために挙げている。
表2に示されるように、水を洗浄剤として用いた場合には、固液分離水中の六価クロム濃度は、0.10mg/Lと低い値を示し、六価クロム除去量は少ない。また、洗浄前の六価クロム溶出量(0.2mg/L)と比較しても、高い値を示していないため、十分な洗浄効果はみられなかった。 As shown in Table 2, when water is used as a cleaning agent, the hexavalent chromium concentration in the solid-liquid separated water is as low as 0.10 mg / L, and the removal amount of hexavalent chromium is small. Moreover, even if compared with the hexavalent chromium elution amount (0.2 mg / L) before washing, since a high value was not shown, a sufficient washing effect was not observed.
他方、アルカリを洗浄剤として用いた場合には、固液分離水中の六価クロム濃度は0.20mg/Lと高い値を示し、六価クロムの除去は可能であったが、浄化土(処理土)の溶出液の六価クロム溶出量も0.18mg/Lと高い値を示し、環境基準値(0.05mg/L)を超えてしまうため、洗浄剤としては不適合であった。 On the other hand, when alkali was used as the cleaning agent, the hexavalent chromium concentration in the solid-liquid separation water was as high as 0.20 mg / L, and the removal of hexavalent chromium was possible. Since the elution amount of hexavalent chromium in the eluate of soil was as high as 0.18 mg / L and exceeded the environmental standard value (0.05 mg / L), it was unsuitable as a cleaning agent.
これに対し、硫酸塩(Na2SO4)、炭酸塩(Na2CO3)を洗浄剤として用いた場合には、固液分離水中の六価クロム濃度は、ともに、0.23mg/Lと高い値を示し、六価クロムの除去は可能であった。しかも、浄化土の溶出液(処理土)の六価クロム溶出量は、ともに、0.04mg/Lと低い値を示し、いずれも環境基準値(0.05mg/L)を超えなかった。 In contrast, when sulfate (Na 2 SO 4 ) and carbonate (Na 2 CO 3 ) were used as cleaning agents, the hexavalent chromium concentration in the solid-liquid separated water was 0.23 mg / L. A high value was exhibited, and hexavalent chromium could be removed. Moreover, the hexavalent chromium elution amount of the purified soil eluate (treated soil) both showed a low value of 0.04 mg / L, and none of them exceeded the environmental standard value (0.05 mg / L).
このことから、上記無機化合物の塩(無機塩)を洗浄剤として用いた場合には、土壌中に含まれる六価クロムのうち、主として溶出し易い状態にあるものが選択的に除去されるにすぎず、この際、溶出し難い状態にある六価クロムまで、あえて溶出し易い状態となって、溶出除去されるものではないことがわかる。 From this, when the salt of an inorganic compound (inorganic salt) is used as a cleaning agent, hexavalent chromium contained in the soil is selectively removed mainly in a state where it is easily eluted. However, at this time, even hexavalent chromium which is in a state of being difficult to elute is dared to be easily eluted, and it is understood that it is not removed by elution.
したがって、硫酸塩(Na2SO4)、炭酸塩(Na2CO3)は、洗浄剤として有効であるといえる。 Therefore, it can be said that sulfate (Na 2 SO 4 ) and carbonate (Na 2 CO 3 ) are effective as cleaning agents.
Claims (2)
前記水溶液は、硫酸ナトリウムを溶解させた水溶液、又は、炭酸ナトリウムを溶解させ当該炭酸ナトリウムの加水分解により高くなった水素イオン指数を希硫酸にて低下させた弱塩基性を呈する水溶液の何れか一方であることを特徴とする土壌浄化方法。 A soil purification method for purifying the soil by washing the soil made of viscous soil contaminated with hexavalent chromium with an aqueous solution,
The aqueous solution is either an aqueous solution in which sodium sulfate is dissolved or an aqueous solution exhibiting weak basicity in which sodium carbonate is dissolved and the hydrogen ion index increased by hydrolysis of the sodium carbonate is reduced with dilute sulfuric acid. soil purification method, characterized in that it.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004024559A JP4433812B2 (en) | 2003-03-26 | 2004-01-30 | Soil purification method and soil purification agent |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003085749 | 2003-03-26 | ||
JP2004024559A JP4433812B2 (en) | 2003-03-26 | 2004-01-30 | Soil purification method and soil purification agent |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004306013A JP2004306013A (en) | 2004-11-04 |
JP4433812B2 true JP4433812B2 (en) | 2010-03-17 |
Family
ID=33478312
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004024559A Expired - Fee Related JP4433812B2 (en) | 2003-03-26 | 2004-01-30 | Soil purification method and soil purification agent |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4433812B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006305442A (en) * | 2005-04-27 | 2006-11-09 | Ohbayashi Corp | Cleaning method for contaminated soil or contaminated water by addition/recovery of iron powder |
JP2010201385A (en) * | 2009-03-05 | 2010-09-16 | Taiheiyo Cement Corp | Method of cleaning heavy metal-containing field soil |
-
2004
- 2004-01-30 JP JP2004024559A patent/JP4433812B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004306013A (en) | 2004-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zou et al. | The study of operating variables in soil washing with EDTA | |
Kim et al. | Recycling of lead-contaminated EDTA wastewater | |
JP5950562B2 (en) | Volume reduction method for cesium-containing soil using powder treatment agent and volume reduction treatment system for cesium-containing soil | |
JP4235688B2 (en) | Purification method for contaminated soil | |
KR101151608B1 (en) | Method to remove heavy metals from sediments using two-stage washing apparatus | |
WO2012020449A1 (en) | Method for purifying cadmium-containing paddy soil | |
JP2023044341A (en) | Method for remediation of contaminated soil | |
WO2004037453A1 (en) | Method for clarifying soil | |
JP6080534B2 (en) | Method of removing radioactive cesium from wastewater and storing it stably | |
JP6327782B2 (en) | Method for removing radioactive cesium from wastewater containing radioactive cesium | |
JP6125824B2 (en) | Cleaning liquid composition for heavy metal contaminated soil and method for cleaning heavy metal contaminated soil | |
JP2015071166A (en) | Method for recovering material suspended in liquid | |
JP4443290B2 (en) | Purification method for heavy metal contaminated soil | |
JP4433812B2 (en) | Soil purification method and soil purification agent | |
JPH1034124A (en) | How to repair land contaminated by heavy metals and cyanide compounds | |
WO2013094284A1 (en) | Method for removing specific element | |
KR101859145B1 (en) | Method for treating arsenic contaminated soil using alkali solution washing with ulstrasonic wave | |
JP4351930B2 (en) | How to clean contaminated soil | |
JP3968752B2 (en) | Purification method for heavy metal contaminated soil | |
WO2007131278A1 (en) | Process for treatment of water to reduce fluoride levels | |
KR101856995B1 (en) | Method for recovering prussian blue and method for removing cesium from aqueous solution | |
JP6381102B2 (en) | Purification method for contaminated soil | |
Ding et al. | A closed-loop process for spent washing solution from multi-metal contaminated soil: EDTA reclamation and recycling | |
JP2007054818A (en) | Method for treating water polluted with selenium and agent therefor | |
KR101473314B1 (en) | separation method of heavy metals in soil and waste water purification using magnetically separated particles acquired from the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061220 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090115 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090120 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090319 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090915 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091110 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091208 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091221 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4433812 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130108 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130108 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130108 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130108 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140108 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |