JP4428734B2 - Imaging device - Google Patents
Imaging device Download PDFInfo
- Publication number
- JP4428734B2 JP4428734B2 JP04215498A JP4215498A JP4428734B2 JP 4428734 B2 JP4428734 B2 JP 4428734B2 JP 04215498 A JP04215498 A JP 04215498A JP 4215498 A JP4215498 A JP 4215498A JP 4428734 B2 JP4428734 B2 JP 4428734B2
- Authority
- JP
- Japan
- Prior art keywords
- vibration
- image
- shake
- camera
- correction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000003384 imaging method Methods 0.000 title claims description 27
- 238000001514 detection method Methods 0.000 claims description 23
- 230000000694 effects Effects 0.000 claims description 12
- 239000011358 absorbing material Substances 0.000 claims description 6
- 238000013016 damping Methods 0.000 claims description 3
- 239000006096 absorbing agent Substances 0.000 claims description 2
- 230000003287 optical effect Effects 0.000 description 13
- 230000006641 stabilisation Effects 0.000 description 13
- 238000011105 stabilization Methods 0.000 description 13
- 238000000034 method Methods 0.000 description 9
- 230000006870 function Effects 0.000 description 8
- 238000002955 isolation Methods 0.000 description 7
- 239000000758 substrate Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- ORQBXQOJMQIAOY-UHFFFAOYSA-N nobelium Chemical compound [No] ORQBXQOJMQIAOY-UHFFFAOYSA-N 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- GGCZERPQGJTIQP-UHFFFAOYSA-N sodium;9,10-dioxoanthracene-2-sulfonic acid Chemical compound [Na+].C1=CC=C2C(=O)C3=CC(S(=O)(=O)O)=CC=C3C(=O)C2=C1 GGCZERPQGJTIQP-UHFFFAOYSA-N 0.000 description 1
- 238000010408 sweeping Methods 0.000 description 1
Images
Landscapes
- Adjustment Of Camera Lenses (AREA)
- Studio Devices (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、防振(除振,抑振ともいう)機能を備えた、ビデオカメラ等の撮像装置に関するものである。
【0002】
【従来の技術】
近年のビデオカメラには、手ぶれ防止手段が搭載された防振機能付きカメラが一般的となっている。手ぶれ防止機能の方式としては、光学式補正と電子式補正とがある。
【0003】
光学式手ぶれ補正では、撮像素子に入射される撮影光の光路途中に、光軸変位が可能なプリズムやレンズ部材を配置し、手ぶれに応じ光軸の変位を行うことで、ぶれ補正を行う。光学式に用いられる手ぶれ検出手段としては、振動ジャイロ等の角速度センサを用い、直接カメラに加わる揺れ成分の検出を行い、この出力を積分することで、カメラの角変位を検出するのが一般的となっている。
【0004】
一方、電子式手ぶれ補正は、フィールド間での映像信号の変化からカメラの動き量を算出し、ぶれ信号とする、動きベクトル検出方式と併用される場合が多く、動きベクトル検出用のフィールドメモリの蓄積画像を、動きが除去されるようにメモリ画像の一部を抽出することで補正を行っている。
【0005】
また、電子式手ぶれ補正の別のシステムとして、ぶれ検出にはセンサを用い、撮像素子に受光された画像の一部のみを切り出し、検出されるぶれに応じ切り出し位置を制御することで、ぶれ補正を行うタイプも出てきている。
【0006】
電子式の場合、映像信号に対し電気的な補正を行うため、補正周期はフィールド周期となり、露光時間中の手ぶれを除去することができない反面、光学方式よりも小型軽量にできるというメリットがある。また、撮像素子に高密度の大型タイプのものを用いることで、切り出しまたはメモリから抽出される撮影像の解像度を上げ、光学式に比べ不利であった、画質劣化にも改良がなされつつある。
【0007】
【発明が解決しようとする課題】
しかしながら、前述の従来例のような手ぶれ補正手段では、方式によらず、除去すべき対象は手ぶれ(周波数は3Hz〜8Hz程度)であり、車上等を考慮しても補正効果があるのは20Hz程度までであり、それ以上の周波数の揺れに対しては防振できなかった。ビデオカメラの場合、あくまで「手ぶれ補正機能」であって、カメラに伝わるあらゆる振動を除去できるような“防振機能”ではなかった。特に電子式の場合、補正周期がフィールド周期になるため、フィールド周期の1/2以下の周波数(NTSCなら30Hz以下)でなければ、原理上、補正ができず、歩道橋等の橋桁や、車上や船上の三脚などにカメラを設置した場合の振動周波数が高い場所での撮影シーンにおいては、防振効果がなかったり、場合によっては補正系の応答特性上、位相遅延になり、逆に加振してしまうという問題があった。
【0008】
また、電子防振の場合、光学防振に比べ大きな揺れに対しての補正効果は低く、補正範囲が小さいという問題があった。これは、撮影画像全体に対する抽出画像の大きさの比率が小さい程、原理上、より大きな揺れを補正できるが、抽出画像を小さくすることにより、画素数が減少すること、小さな撮影画像は後処理で電子的な拡大処理が必要なこと、等により画質劣化が激しいため、防振効果を犠牲にして画質を優先することが、主として行われているためである。
【0009】
本発明は、このような状況のもとでなされたもので、手ぶれ補正機能を“防振機能”に近づけるべく、広範囲な周波数のぶれに対しても防振効果があり、且つ、より大きな揺れに対しても防振できる撮像装置を提供することを目的とするものである。
【0010】
【課題を解決するための手段】
上記目的を達成するため、本発明では、撮像装置を次の(1)のとおりに構成する。
【0011】
(1)レンズ鏡筒と撮像素子を有する撮像手段と、前記撮像手段の揺れを検出するための、前記撮像手段に対し固定された検出手段と、前記検出手段により検出された揺れを補正する補正手段と、ファインダとを有する撮像装置であって、互に固定された前記撮像手段と前記検出手段は、当該撮像装置本体の外装部材に対して振動吸収材により支持され、前記ファインダは、前記振動吸収部材により支持されることなく前記外装部材に対して支持され、前記振動吸収材は、前記補正手段が補正可能な揺れ周波数よりも高い周波数の揺れに対し、防振効果があるものであることを特徴とする撮像装置。
【0020】
【発明の実施の形態】
以下本発明の実施の形態をビデオカメラの実施例により詳しく説明する。なお、実施例は、動画を撮影する装置であるが、静止画を撮影するいわゆるデジタルカメラ、更には銀塩フィルムカメラ等において同様に実施することができる。
【0021】
【実施例】
(実施例1)
図1は、実施例1である“ビデオカメラ”の構成を示す断面図である。図1(a)はビデオカメラ本体を正面から見た図面で、フロントカバー部材を取り外した様子を示している(図1(b)において、平面BB´で切った断面図)。また図1(b)は、(a)図を平面AA打で切った断面図を表している。(b)図にて、被写体からの光は、レンズ鏡筒101を通って、CCD等の撮像素子102上に結像され、信号線103を介し、信号処理回路を有する基板104へと送られ映像信号として処理され、必要に応じ、磁気記録装置105で記録されたり、ファインダ106に表示される。107はマイク、108は振動型ジャイロ等の角速度センサ111,112が固定されているセンサ保持部材であり、それぞれ信号線109,110を介し、基板104へ検出信号が送られる。角速度センサ111,112はセンサ保持部材108でレンズ鏡筒101に固定され、一体化している。
【0022】
113はビデオカメラ本体の外装(ハウジングともいう)部材である。本実施例の特徴として、レンズ鏡筒101と撮像素子102と角速度センサの保持部材108とが、一体化し、外装部材113に対し振動吸収材としてのゴム座114を介して接続され、撮像部や揺れ検出部が手ぶれ等の外濫の影響を受けにくい構造となっている。
【0023】
本実施例では、磁気記録装置105や基板104は、外装部材113に直接固定されている構造としているが、信号線103,110のフレキ部分で振動吸収され、撮像部,揺れ検出部101,102,108への影響はない。本実施例の構造は、少なくとも一体化した撮像部101,102と揺れ検出部108が、振動吸収材114を介し、本体外装部材113に接続されていれば良く、基板104や磁気記録装置105等も、撮像部と一体化され、ビデオカメラ本体全体が外装部材113に対し、ゴム座接続されるような構造であっても構わない。
【0024】
図1(a)を用い、ゴム座114を介したレンズ鏡筒101と外装部材113との接続方法を説明する。ゴム座114はレンズ鏡筒101およびセンサ保持部材108(ピッチ用角速度センサ111とヨウ用角速度センサ112とがセンサ保持部材108に固定)に固定されている(その固定方法は、例えば接着剤でも、ビス止めでも構わないが、本実施例では簡単のため接着剤で固定されているものとする)。ゴム座114には、外装からネジ止めされるビス115の直径より大きな径の、止め用穴114aが空いている。このゴム穴114aとビス115との接触面で、レンズ鏡筒101が外装部材111に対し保持され、つり構造化していることになる。
【0025】
このつり構造により、撮像系(101,102)と揺れ検出系(111,112)に伝わる揺れは、ゴム座114の減衰作用により揺れ振幅が小さくなり、また揺れ周波数も高い周波数の揺れが除去される。従って、手ぶれ補正手段が苦手とする大振幅,高周波数の揺れ成分が、ゴムにより除去できるので、ゴムで除去できなかった揺れ成分は、逆に容易に手ぶれ補正手段で補正可能となる。
【0026】
次に図2を用い、電子式防振を説明する。101はレンズ鏡筒、102はCCD等の撮像素子である。撮像素子102上の像は光電変換され、フレキシブル配線された信号線103を介し、増幅器201で最適なレベルに増幅され、カメラ信号処理回路202へと入力され標準テレビ信号に変換される。
【0027】
また、図2のカメラは、電子的な手ぶれ補正機能を備えており、防振のON/OFFはスイッチ211の状態を検出することで行っている。角速度センサ111,112でレンズ鏡筒101と撮像素子102からなる撮像部の揺れ角速度を検出し、増幅器207,208でそれぞれ増幅後、積分器209,210で角速度信号を積分して角変位に変換し、防振制御部マイコン205に取り込む。マイコン205は、得られた角変位、即ち揺れ角θと光学系の焦点距離fに応じ、撮像素子102上の揺れによる画素移動分(ほぼf・tanθに相当)を、揺れによる移動方向とは逆方向に動かすことで揺れ補正を行う。なお、角速度センサ111,112から増幅器207,208(基板104内)へは、フレキシブル配線された信号線110を介して接続されている。
【0028】
図3は電子的な防振制御で抽出される画像領域を説明するための図である。(a)の301が撮像素子102の有効画素領域であり、そのうちの一部の領域302のみを抽出して、揺れを補正するように302を301の範囲の中で開始点(x0,y0)移動させることで防振を行い、領域302のみをTVやファインダ等のモニタ106に表示したり、磁気記録装置105に記録する(図3(b))。
【0029】
そのための手法として、フィールドメモリを用いて領域301の画像を一旦記憶し、領域302の画像のみを読み出しながら、303の大きさになるように拡大処理しつつ、水平・垂直走査線間を補間して303の表示を得る方法と、抽出領域302が予め標準TV信号に必要な走査線数を満足するように、撮像素子を高密度の高画素タイプの大型CCDを用いる方法とがある。前者,後者共に高価なフィールドメモリや大型CCDを必要とするので、本実施例では、汎用のPAL用のCCDを、NTSCのカメラに用いる構成とする。PAL用CCDは垂直方向の画素密度が高いので、垂直走査方向はタイミングジェネレータ等のCCD駆動回路で、NTSC規格に対しての余分ライン数の範囲内で、高速掃き出しすべきライン数を角変位に応じて変化させれば、垂直方向の切り出し画像の位置を変化させることが可能となる。また、水平走査方向はラインメモリとメモリ制御回路との構成でタテヨコ比分だけ拡大処理を行いつつ、ラインメモリへの書き込み開始画素位置と読み出し開始画素位置との関係を変化させれば、水平方向の画面位置変更が行え、安価な揺れ補正装置が実現できる。
【0030】
図2はそのような補正系の構成になっており、垂直走査方向の画素移動はマイコン205が、CCD駆動回路206を制御し、高速掃き出し制御を行わせることで、所望の走査領域の抽出を行い、水平走査方向の画素移動は、カメラ信号処理回路202で処理された映像信号を取り込む、ラインメモリ203とメモリ制御回路204とで、メモリされた水平走査画像の読み出し位置を揺れ補正画素移動量に応じて可変にしながら、かつタテヨコ比に見合うだけ拡大処理(メモリ読み出しレートを変更)を行い、その信号をカメラ信号処理回路202に戻し色処理等を施すことで標準TV信号に変換する。
【0031】
図2に示される防振系を有するビデオカメラを、図1に示すような構成で配置することにより、主として2つの利点が得られる。
【0032】
1つには、ゴム座等の防振部材の受動的な防振効果により、高周波な振動成分の除去が行え、揺れ検出系,電子式補正系からなる能動的な防振システムにより、低周波の振動成分が除去可能となり、広範囲の周波数帯にわたって手ぶれや振動の影響が除去可能になることである。図4にその様子を示す。図4は揺れ周波数に対する抑振効果を示しており、電子式防振システムの特性を401、振動吸収部材の特性を402に示す。
【0033】
第2の利点として、振動吸収部材により手ぶれや振動の振幅を減衰できるので、電子式防振システムで補正可能な揺れ角(光軸上でのカメラ回転角度に換算したもの:
最大補正角θ=Tan-1 (CCD 上での切出し位置最大移動量/焦点距離)
以上の揺れがカメラ本体に印加された場合でも、防振することが可能となる。
【0034】
以上、本実施例を、PAL用CCDとラインメモリとを使った構成について説明したが、フィールドメモリを使って抽出画像の位置を制御することで補正しても良いし、拡大制御しなくとも済む大型或は超高画素タイプのCCDを使っても構わない。また、電子式の補正系に限らず、光学式の手ぶれ補正系であっても構わなく、その場合は、光学補正系もカメラ外装に対して振動吸収部材を介して接続すれば良い。本実施例では、揺れ検出手段として角速度センサを用いたが加速度センサでも良く、その場合は防振制御マイコン内または外部で、更に1回積分処理行えば良い。また揺れ角変位量算出はハードウエアの構成として図2では説明したが、ソフトウエアで処理されても構わない。また、振動吸収部材としてゴム材を例として説明したが、これに限られるものではなく、振動を吸収できる、弾性率の高い素材であれば、実施可能である。
【0035】
(実施例2)
実施例1では、揺れ検出手段に揺れセンサを用いる場合を例にとって説明したが、実施例2は、撮影像の変化から撮像系の揺れ量を検出する、いわゆる動きベクトル検出手段を用いた場合の例である。
【0036】
この場合、外装部材から振動吸収部材を介してつり構造とするのは、レンズ鏡筒および撮像素子からなる撮像系のみで良く、図1の構成は、図5のようにすれば、同様の効果を得ることができる。また、防振システムのブロックとしては、図6のようになる。図6では、図2と同じ構成の部分は同一の番号で記し、詳細の説明を割愛する。
【0037】
カメラ信号処理回路202からの映像信号は、フィールドメモリ301および動き検出回路303に送られる。動き検出回路303では連続する映像信号(例えばフィールド間)から、被写体の変化部分を抽出して防振制御部304に出力する。防振制御部304では動き信号に応じて、画面の一部の移動なのか、画面全体の移動なのかを判断し(カメラが動いているのか否か)、後者の場合に、その動きを補正する補正命令をメモリ制御回路302に出力する。メモリ制御回路302では補正信号に応じて選択した領域を、フィールドメモリ301に記憶した映像情報の中から抜き出し、その信号をカメラ信号処理回路202に戻し色処理等を施すことで標準TV信号に変換する。フィールドメモリ301を使う防振システムでは、CCD駆動回路206による高速掃き出し制御で、垂直方向の画像切り出しを行う必要性はない。
【0038】
【発明の効果】
以上説明したように、本発明によれば、広範囲な周波数のぶれに対しても抑振効果があり、より大きな揺れに対しても防振できる撮像装置が提供できる。詳しくは、少なくとも、撮像系とこれに接続されている揺れ検出センサとを(動きベクトル検出の場合は撮像系のみで良い)、撮像装置の外装であるハウジング部材から、振動吸収材を介して支持することで、撮像装置本体より撮像系に伝わる揺れは、高い周波数成分が除去されることになり、また撮像系に伝わる低周波数の揺れ成分は、揺れ検出手段と補正手段とにより、抑振されるので、手持ちの撮影から、車上・船上の三脚撮影、歩道橋の橋桁設置撮影まで、あらゆる撮影状況に対して、手ぶれや振動による撮影画像の乱れを除去した、快適な撮像装置を提供することが可能となる。
【0039】
特に、振動吸収材を介することにより、本体から撮像系に伝わる揺れ振幅を急峻に減衰させることが可能となるので、揺れの大きい撮影状況に対しても、撮像系への揺れは小振幅となり、防振可能となる。これにより、揺れ補正範囲の拡大が行え、ぶれのない安定した撮影画像が得れる、快適な撮影を実現できる撮像装置を提供することが可能になる。
【図面の簡単な説明】
【図1】 実施例1の構成を示す断面図
【図2】 実施例1の要部の構成を示すブロック図
【図3】 電子式防振の説明図
【図4】 防振特性を示す図
【図5】 実施例2の構成を示す断面図
【図6】 実施例2の要部の構成を示すブロック図
【符号の説明】
101 レンズ鏡筒
102 撮像素子
108 センサ保持部材
114 ゴム座(振動吸収部材)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an imaging apparatus such as a video camera having a vibration isolation (also referred to as vibration isolation or vibration suppression) function.
[0002]
[Prior art]
In recent video cameras, cameras with an anti-vibration function in which camera shake prevention means are mounted are common. There are optical correction and electronic correction as methods of the camera shake prevention function.
[0003]
In optical camera shake correction, a prism or lens member capable of optical axis displacement is arranged in the middle of the optical path of photographing light incident on an image sensor, and the optical axis is displaced according to camera shake, thereby performing camera shake correction. As a camera shake detection means used in the optical system, it is common to detect angular components of the camera by detecting the vibration component directly applied to the camera using an angular velocity sensor such as a vibration gyro and integrating the output. It has become.
[0004]
On the other hand, electronic image stabilization is often used in combination with a motion vector detection method that calculates the amount of motion of a camera from a change in video signal between fields and uses it as a shake signal. The stored image is corrected by extracting a part of the memory image so that the motion is removed.
[0005]
In addition, as another system for electronic camera shake correction, a sensor is used for camera shake detection, and only part of the image received by the image sensor is cut out, and the camera shake correction is performed by controlling the cutout position according to the detected camera shake. There are also types that do this.
[0006]
In the case of the electronic system, since the video signal is electrically corrected, the correction period is a field period, and hand shake during the exposure time cannot be removed, but there is an advantage that it can be made smaller and lighter than the optical system. Further, by using a high-density large-sized image pickup device, the resolution of a captured image extracted or extracted from a memory is increased, and image quality degradation, which is disadvantageous compared to the optical type, is being improved.
[0007]
[Problems to be solved by the invention]
However, in the above-described conventional camera shake correction means, regardless of the method, the object to be removed is camera shake (frequency is about 3 Hz to 8 Hz), and there is a correction effect even when considering on-vehicle etc. It was up to about 20 Hz, and it was not possible to prevent vibrations at frequencies higher than that. In the case of a video camera, it is merely a “camera shake correction function”, not a “anti-vibration function” that can remove any vibration transmitted to the camera. In particular, in the case of an electronic system, the correction cycle is a field cycle, so unless it is a frequency less than ½ of the field cycle (30 Hz or less for NTSC), in principle, it cannot be corrected, and bridge girders such as pedestrian bridges, In a shooting scene where the vibration frequency is high when the camera is installed on a tripod or on a ship, there is no anti-vibration effect or, depending on the response characteristics of the correction system, there is a phase delay, There was a problem of doing.
[0008]
Further, in the case of electronic image stabilization, there is a problem that the correction effect for large shaking is lower than that of optical image stabilization and the correction range is small. In principle, the smaller the ratio of the size of the extracted image to the entire captured image, the more the shake can be corrected. However, the smaller the extracted image, the smaller the number of pixels, and the smaller the captured image is post-processed. This is because the image quality is greatly deteriorated due to the necessity of electronic enlargement processing and the like, and therefore priority is given to the image quality at the expense of the image stabilization effect.
[0009]
The present invention has been made under such circumstances. In order to bring the image stabilization function closer to the “anti-vibration function”, the present invention has an anti-vibration effect against a wide range of vibrations and has a greater vibration. An object of the present invention is to provide an image pickup apparatus that can also prevent vibration.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, in the present invention, the imaging apparatus is configured as described in (1 ) below.
[0011]
(1) Image pickup means having a lens barrel and an image pickup device, detection means fixed to the image pickup means for detecting the shake of the image pickup means, and correction for correcting the shake detected by the detection means An image pickup apparatus having a means and a finder, wherein the image pickup means and the detection means fixed to each other are supported by a vibration absorbing material with respect to an exterior member of the image pickup apparatus body, and the viewfinder is supported against the outer member without being supported by the absorbing member, the vibration absorbing material, said correcting means to swing a frequency higher than the correctable shaking frequency, Ru der that there is a vibration damping effect An imaging apparatus characterized by that.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to examples of video cameras. In addition, although an Example is an apparatus which image | photographs a moving image, it can implement similarly in what is called a digital camera which image | photographs a still image, Furthermore, a silver salt film camera etc.
[0021]
【Example】
Example 1
FIG. 1 is a cross-sectional view illustrating a configuration of a “video camera” according to the first embodiment. FIG. 1A is a view of the video camera body as viewed from the front, and shows a state in which the front cover member is removed (a cross-sectional view taken along a plane BB ′ in FIG. 1B). Moreover, FIG.1 (b) represents sectional drawing which cut | disconnected (a) figure by plane AA hit. (B) In the figure, light from a subject passes through a
[0022]
[0023]
In this embodiment, the
[0024]
A method of connecting the
[0025]
Due to this suspension structure, the vibration transmitted to the imaging system (101, 102) and the vibration detection system (111, 112) has a small amplitude due to the damping action of the
[0026]
Next, electronic vibration isolation will be described with reference to FIG.
[0027]
The camera shown in FIG. 2 has an electronic camera shake correction function, and the image stabilization is turned on / off by detecting the state of the
[0028]
FIG. 3 is a diagram for explaining an image region extracted by electronic image stabilization control. 301 of (a) is an effective pixel area of the
[0029]
As a technique for this purpose, the image of the
[0030]
FIG. 2 shows the configuration of such a correction system. In the pixel movement in the vertical scanning direction, the
[0031]
By arranging the video camera having the image stabilization system shown in FIG. 2 in the configuration shown in FIG. 1, two main advantages can be obtained.
[0032]
For one thing, high-frequency vibration components can be removed by the passive vibration-proofing effect of the vibration-proofing members such as rubber seats, and low-frequency by the active vibration-proofing system consisting of the vibration detection system and electronic correction system. Vibration components can be removed, and the effects of camera shake and vibration can be removed over a wide frequency band. This is shown in FIG. FIG. 4 shows the effect of suppressing the vibration frequency. 401 shows the characteristics of the electronic vibration isolation system, and 402 shows the characteristics of the vibration absorbing member.
[0033]
As a second advantage, since the vibration absorbing member can attenuate the vibration and vibration amplitude, the swing angle (converted to the camera rotation angle on the optical axis) that can be corrected by the electronic vibration isolation system:
Maximum correction angle θ = Tan -1 (Maximum moving amount of cutout position on CCD / focal length)
Even when the above shaking is applied to the camera body, it is possible to prevent vibration.
[0034]
Although the present embodiment has been described with respect to the configuration using the PAL CCD and the line memory, the correction may be performed by controlling the position of the extracted image using the field memory, or the enlargement control may not be required. A large or ultra-high pixel type CCD may be used. Further, not only an electronic correction system but also an optical camera shake correction system may be used. In this case, the optical correction system may be connected to the camera exterior via a vibration absorbing member. In this embodiment, an angular velocity sensor is used as the shake detection means, but an acceleration sensor may be used. In this case, integration processing may be performed once more in the vibration control microcomputer or outside. Further, although the calculation of the swing angle displacement amount has been described with reference to FIG. 2 as a hardware configuration, it may be processed by software. Further, the rubber material has been described as an example of the vibration absorbing member. However, the present invention is not limited to this, and any material can be used as long as it can absorb vibration and has a high elastic modulus.
[0035]
(Example 2)
In the first embodiment, the case where a shake sensor is used as the shake detection unit has been described as an example. However, in the second embodiment, a case where a so-called motion vector detection unit that detects a shake amount of an imaging system from a change in a captured image is used. It is an example.
[0036]
In this case, only the imaging system including the lens barrel and the imaging element may be used as the suspension structure from the exterior member via the vibration absorbing member. The configuration of FIG. 1 has the same effect as shown in FIG. Can be obtained. The block of the image stabilization system is as shown in FIG. In FIG. 6, the same components as those in FIG. 2 are denoted by the same reference numerals, and detailed description thereof is omitted.
[0037]
The video signal from the camera
[0038]
【The invention's effect】
As described above, according to the present invention, it is possible to provide an imaging apparatus that has a vibration suppression effect against a wide range of frequency fluctuations and can prevent vibrations even from larger vibrations. Specifically, at least the imaging system and the shake detection sensor connected to the imaging system (only the imaging system may be used in the case of motion vector detection) are supported from the housing member that is the exterior of the imaging device via the vibration absorbing material. As a result, the vibration transmitted from the image pickup apparatus body to the image pickup system is removed from the high frequency component, and the low frequency shake component transmitted to the image pickup system is suppressed by the shake detection means and the correction means. Therefore, to provide a comfortable imaging device that eliminates camera shakes and vibrations caused by vibrations in every shooting situation, from hand-held shooting to shooting on a tripod on a vehicle or on a ship, and shooting on a bridge girder on a footbridge. Is possible.
[0039]
In particular, through the vibration absorber, it is possible to sharply attenuate the swing amplitude transmitted from the main body to the imaging system, so that even for a large shaking shooting situation, the swing to the imaging system has a small amplitude, Vibration isolation is possible. As a result, it is possible to provide an imaging apparatus capable of realizing comfortable shooting, in which the shake correction range can be expanded and a stable captured image without blurring can be obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a configuration of Example 1. FIG. 2 is a block diagram showing a configuration of a main part of Example 1. FIG. 3 is an explanatory diagram of electronic vibration isolation. FIG. FIG. 5 is a cross-sectional view showing the configuration of the second embodiment. FIG. 6 is a block diagram showing the configuration of the main part of the second embodiment.
101
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04215498A JP4428734B2 (en) | 1998-02-24 | 1998-02-24 | Imaging device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04215498A JP4428734B2 (en) | 1998-02-24 | 1998-02-24 | Imaging device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11237654A JPH11237654A (en) | 1999-08-31 |
JP4428734B2 true JP4428734B2 (en) | 2010-03-10 |
Family
ID=12628036
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP04215498A Expired - Fee Related JP4428734B2 (en) | 1998-02-24 | 1998-02-24 | Imaging device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4428734B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006293060A (en) * | 2005-04-12 | 2006-10-26 | Sharp Corp | Cushioning structure for equipment |
JP5261849B2 (en) * | 2009-09-10 | 2013-08-14 | 株式会社タムロン | Monitor camera |
JP5761843B2 (en) * | 2011-02-03 | 2015-08-12 | 株式会社タムロン | Video camera |
JP5853175B2 (en) | 2011-03-28 | 2016-02-09 | パナソニックIpマネジメント株式会社 | Imaging device |
JP5987339B2 (en) * | 2012-02-14 | 2016-09-07 | 株式会社リコー | Imaging device |
WO2018088028A1 (en) * | 2016-11-09 | 2018-05-17 | 積水ポリマテック株式会社 | Vibration control device and unmanned aircraft |
JP6910219B2 (en) * | 2017-06-27 | 2021-07-28 | ローム株式会社 | Calibration method of the image pickup device |
-
1998
- 1998-02-24 JP JP04215498A patent/JP4428734B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH11237654A (en) | 1999-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6501503B2 (en) | Image pickup device having means for correcting the motion of an image | |
JP2004180306A (en) | Digital zoom in digital video camera | |
JPH05199449A (en) | Vibration proof camera | |
JP4428734B2 (en) | Imaging device | |
JP3564247B2 (en) | Image motion compensation device | |
JP4536855B2 (en) | Anti-vibration device, imaging device, and control method of anti-vibration device | |
JP6250446B2 (en) | Image processing system, image processing apparatus, image processing method, and program | |
JP3402770B2 (en) | Image stabilizing device and photographing device | |
JP3279342B2 (en) | Camera shake correction device for video cameras | |
JP4064001B2 (en) | camera | |
JP3460385B2 (en) | Image stabilization device | |
KR100498042B1 (en) | Device and method capable of acquisition stbilization image | |
JPH0951469A (en) | Image pickup device and method for correcting shake of image | |
JPH07283999A (en) | Image synthesizer and image photographing device | |
JP2011135537A (en) | Imaging apparatus and control method of the same | |
JP3216820B2 (en) | Image stabilization device | |
JPH11275449A (en) | Video camera | |
KR100562334B1 (en) | CMOS image sensor distortion correction method and apparatus | |
JP3937574B2 (en) | Imaging device | |
JP3079638B2 (en) | Solid-state imaging device | |
JP3460382B2 (en) | Image stabilizer and video camera | |
KR960004156B1 (en) | Camera shake correction device | |
JPH07284001A (en) | Camera shake correction device | |
KR100285948B1 (en) | Apparatus for compensating for trembling of hands in video camera | |
JPH1065949A (en) | Image processor and image pickup device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050208 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070219 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070227 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070427 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070807 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091029 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091215 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121225 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131225 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |