[go: up one dir, main page]

JP4427971B2 - Ice heat storage method - Google Patents

Ice heat storage method Download PDF

Info

Publication number
JP4427971B2
JP4427971B2 JP2003163603A JP2003163603A JP4427971B2 JP 4427971 B2 JP4427971 B2 JP 4427971B2 JP 2003163603 A JP2003163603 A JP 2003163603A JP 2003163603 A JP2003163603 A JP 2003163603A JP 4427971 B2 JP4427971 B2 JP 4427971B2
Authority
JP
Japan
Prior art keywords
heat exchanger
circulation line
ice
heat
circulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003163603A
Other languages
Japanese (ja)
Other versions
JP2005003208A (en
Inventor
恒雄 幸喜
一夫 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2003163603A priority Critical patent/JP4427971B2/en
Publication of JP2005003208A publication Critical patent/JP2005003208A/en
Application granted granted Critical
Publication of JP4427971B2 publication Critical patent/JP4427971B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は空気調和装置等に備えられる氷蓄熱方法及び氷蓄熱装置に関するものである。
【0002】
【従来の技術】
ビル或は地域冷房を行うシステムとして、安価な夜間電力を利用して製氷して蓄熱し、昼間の冷房には氷の溶解による蓄熱の放出で冷房を行う冷房システムがあり、斯かる冷房システムは氷蓄熱装置を具備している。
【0003】
図2により従来の氷蓄熱装置について説明する。
【0004】
図2中、1は冷却塔、2はターボ冷凍機、3は氷蓄熱槽、4は第1熱交換器、5は第2熱交換器、6は第3熱交換器、10はターボ冷凍機の熱交換器を示している。
【0005】
前記氷蓄熱槽3の底部に連通する第1循環ライン7が前記熱交換器10に接続され、前記第1循環ライン7の途中に第1循環ポンプ8、第1弁9が設けられている。前記ターボ冷凍機2から前記氷蓄熱槽3に接続される第2循環ライン11が設けられ、該第2循環ライン11には前記ターボ冷凍機2側から第2循環ポンプ12、第2弁13、過冷却解除器14が設けられている。
【0006】
前記第1循環ライン7の前記第1循環ポンプ8と前記第1弁9との間から分岐した第3循環ライン15は前記第2熱交換器5を経て前記氷蓄熱槽3に接続され、前記第3循環ライン15の第2熱交換器5の上流側には第3弁16が設けられている。
【0007】
前記第1循環ライン7の第1循環ポンプ8の下流側に前記第3熱交換器6を通過する分岐ライン17が設けられ、該分岐ライン17には分岐循環ポンプ18が設けられている。
【0008】
前記第2循環ライン11のターボ冷凍機2の上流側と前記第2循環ライン11の前記第2循環ポンプ12の下流側に接続され、前記第1熱交換器4を通過する第4循環ライン19が設けられ、該第4循環ライン19の前記第1熱交換器4の上流側には第4弁21が設けられている。
【0009】
前記第1熱交換器4には第1負荷ライン22、前記第2熱交換器5には第2負荷ライン23が接続され、該第2負荷ライン23、前記第1負荷ライン22は冷房装置(図示せず)等の熱負荷装置に接続されている。前記第3熱交換器6には第3負荷ライン24が接続され、該第3負荷ライン24は予熱源(図示せず)に接続されている。
【0010】
尚、前記冷却塔1とターボ冷凍機2とは冷却ライン25で接続され、該冷却ライン25には冷却循環ポンプ26が設けられ、前記ターボ冷凍機2が稼働されている状態でターボ冷凍機2からの廃熱を冷却している。
【0011】
上記氷蓄熱装置に於いて蓄熱が行われる場合は、前記ターボ冷凍機2が駆動され、前記第2循環ライン11を経て冷媒(水)が循環される。
【0012】
前記第3弁16、前記第4弁21が閉じられ、前記第1弁9、前記第2弁13が開かれた状態で、前記第1循環ポンプ8、前記分岐循環ポンプ18、前記第2循環ポンプ12が駆動され、前記氷蓄熱槽3から冷水が汲上げられ、前記熱交換器10へ送出される。前記分岐循環ポンプ18は汲上げられた冷水の一部を前記第3熱交換器6に循環させ、該第3熱交換器6により加熱し、前記熱交換器10に供給される冷水が循環中に氷結しない所定温度となる様にする。該熱交換器10で冷水は過冷却状態迄冷却され、過冷却水は前記過冷却解除器14で製氷され氷水となり、氷水が前記氷蓄熱槽3に戻される。
【0013】
冷媒の前記第1循環ライン7、前記第2循環ライン11の循環、前記ターボ冷凍機2の駆動により前記氷蓄熱槽3内の水が漸次製氷され、蓄熱が行われる。
【0014】
冷房が行われる場合は、前記第1弁9が閉じられ、前記第3弁16が開かれ、前記第1循環ポンプ8が駆動される。
【0015】
前記氷蓄熱槽3より汲上げられた冷水は、前記第2熱交換器5で放熱し、前記第2負荷ライン23を循環する熱負荷側の冷媒を冷却し、昇温して前記氷蓄熱槽3に戻される。
【0016】
熱負荷が大きく、前記第2熱交換器5による冷却だけでは不十分な場合は、第2熱交換器5による冷却に加えて、前記ターボ冷凍機2による冷却が行われる。
【0017】
前記第2弁13が閉じられ、前記第4弁21が開かれ、前記ターボ冷凍機2、前記第2循環ポンプ12が駆動される。前記ターボ冷凍機2で冷却された冷水が前記第4循環ライン19を循環し、前記第1熱交換器4により前記第1負荷ライン22を循環する冷媒を冷却する。
【0018】
尚、上記従来例の他、氷蓄熱装置としては例えば特許文献1に示されるものがある。
【0019】
【特許文献1】
特開平5−118588号公報
【0020】
【発明が解決しようとする課題】
上記従来の氷蓄熱装置に於いて、製氷を行う循環ラインでは、循環途中で冷水が氷結しない様に、所定温度迄前記第3熱交換器6により循環する冷水の一部を氷蓄熱装置の系外の熱源により加熱している。この為、氷蓄熱装置の成績係数が低下するという問題があり、更に冷房装置(図示せず)等の熱負荷装置の冷媒を冷却する第1熱交換器4、第2熱交換器5の他に、冷水加熱用の第3熱交換器6が設けられる構成であるので、熱交換器の設置、及び配管等装置の構成が複雑となる等問題があった。
【0021】
本発明は斯かる実情に鑑み、氷蓄熱装置での成績係数の向上、及び氷蓄熱装置の構成の簡略化を図るものである。
【0022】
【課題を解決するための手段】
本発明は、氷蓄熱槽と、第1熱交換器とターボ冷凍機と第1循環ポンプとを具備し前記氷蓄熱槽の冷媒を循環させる循環ラインと、第2熱交換器と第2循環ポンプとを具備し前記氷蓄熱槽の冷媒を循環させる他の循環ラインとを有し、前記第1熱交換器で前記冷媒を加熱しつつ、氷蓄熱時には前記他の循環ラインを切離し前記ターボ冷凍機で前記冷媒を冷却し製氷する氷蓄熱方法に係り、又氷蓄熱槽と、第1熱交換器とターボ冷凍機と第1循環ポンプとを具備し前記氷蓄熱槽の冷媒を循環させる循環ラインと、第2熱交換器と第2循環ポンプとを具備し前記氷蓄熱槽の冷媒を循環させる他の循環ラインとを有し、冷房時には前記他の循環ラインを作動させる氷蓄熱方法に係り、更に又冷房時は負荷の増大に応じターボ冷凍機と第1熱交換器を含む閉鎖循環ラインが構成され、該閉鎖循環ラインを作動させる氷蓄熱方法に係るものである。
【0023】
又本発明は、氷蓄熱槽と、第1熱交換器とターボ冷凍機と第1循環ポンプとを具備し前記氷蓄熱槽の冷媒を循環させる循環ラインと、第2熱交換器と第2循環ポンプとを具備し前記氷蓄熱槽の冷媒を循環させる他の循環ラインとを有し、前記第1熱交換器、第2熱交換器は熱負荷側と熱交換可能とした氷蓄熱装置に係り、更に又負荷の増大に対応して、前記ターボ冷凍機と第1熱交換器を含む閉鎖循環ラインが構成される様にした氷蓄熱装置に係るものである。
【0024】
【発明の実施の形態】
以下、図面を参照しつつ本発明の実施の形態を説明する。
【0025】
図1は本発明に係る氷蓄熱装置の概略構成を示しており、図1に於いて図2中で示したものと同等のものには同符号を付してある。
【0026】
氷蓄熱槽3に接続された第1循環ライン28は、第1熱交換器4を経てターボ冷凍機2に接続され、前記第1循環ライン28の第1熱交換器4の上流側に第1弁29、第1循環ポンプ31が設けられている。又、前記第1循環ライン28の前記第1熱交換器4の入側、出側間を接続するバイパス管32が設けられ、該バイパス管32にはバイパス弁33が設けられている。
【0027】
前記ターボ冷凍機2から前記氷蓄熱槽3を接続する第2循環ライン34が設けられ、該第2循環ライン34には過冷却解除器14が設けられている。
【0028】
前記氷蓄熱槽3に接続された第3循環ライン36は、第2熱交換器5を経て前記氷蓄熱槽3に接続され、前記第3循環ライン36の第2熱交換器5の上流側には第2弁37、第2循環ポンプ38が設けられている。
【0029】
前記第1弁29の下流側と前記第2循環ライン34とが前記氷蓄熱漕3の水中でバイパス循環ライン39により接続され、該バイパス循環ライン39に第4弁41が設けられている。
【0030】
図1中、42は冷房装置等の熱負荷であり、前記第1熱交換器4と前記熱負荷42間で第1負荷ライン43が形成され、該第1負荷ライン43に第1負荷循環ポンプ44が設けられている。前記熱負荷42と前記第2熱交換器5間で第2負荷ライン45が形成され、該第2負荷ライン45に第2負荷循環ポンプ46が設けられている。尚、前記第1負荷ライン43、第2負荷ライン45の一部は共用となっており、集合分配管47、集合分配管48により前記第1負荷ライン43と、第2負荷ライン45とに分岐されている。
【0031】
先ず、氷蓄熱作動について説明する。
【0032】
前記第2弁37、前記バイパス弁33、前記第4弁41を閉じ、前記第1弁29を開き、前記第1循環ポンプ31を駆動すると共に前記ターボ冷凍機2を駆動する。又、前記第1負荷循環ポンプ44を低速駆動し、前記第1負荷ライン43に小流量の冷媒を循環させる。この循環量は予め下限流量が設定されており、最小流量が前記下限流量以下とならない様になっている。尚、氷蓄熱作動時には前記熱負荷42は停止されている。
【0033】
前記第1熱交換器4の出口側の流体温度は温度検出器(図示せず)により検出され、前記氷蓄熱槽3から汲上げられた冷水は、前記第1熱交換器4により所定温度、例えば冷水が氷結しない0.2℃〜0.5℃の温度に加熱される。前記ターボ冷凍機2は冷水を過冷却し、過冷却された過冷却水は前記過冷却解除器14で製氷され、氷水となって前記氷蓄熱槽3に戻される。前記第1循環ライン28、前記第2循環ライン34を冷水が循環される過程で漸次蓄氷されていく。
【0034】
尚、前記第1熱交換器4での加熱量は僅かでよく、前記バイパス弁33を開け、冷水の一部を前記第1熱交換器4で加熱する様にしてもよい。
【0035】
次に、冷房が行われる場合は、前記ターボ冷凍機2が停止された状態で、前記第2弁37が開かれ、前記第2循環ポンプ38が駆動される。該第2循環ポンプ38により汲取られた冷水は、前記第2熱交換器5を通り、前記氷蓄熱槽3に戻される。
【0036】
前記第2負荷循環ポンプ46が駆動されることで、第2負荷ライン45の冷媒が前記熱負荷42と第2熱交換器5間を循環し、前記第2熱交換器5で冷水により冷却され、更に前記熱負荷42で放熱され、冷却が行われる。
【0037】
該熱負荷42での熱負荷が大きく、前記第2熱交換器5だけの冷却では対応ができない場合は、前記ターボ冷凍機2による冷却が、加算される。
【0038】
即ち、前記第1弁29、前記バイパス弁33が閉じられ、前記第4弁41が開かれる。この状態では、前記第2循環ライン34、前記バイパス循環ライン39によりターボ冷凍機2、第1熱交換器4を含む閉鎖した循環ラインが形成される。
【0039】
前記第1循環ポンプ31が駆動され、前記第1熱交換器4と前記ターボ冷凍機2間で冷媒(水)が循環され、該冷媒が冷却され、該冷媒により前記第1負荷ライン43を循環する冷媒が冷却され、前記ターボ冷凍機2による冷却が加算される。
【0040】
前記第1熱交換器4の出口側の流体温度は温度検出器(図示せず)により検出され、冷水の温度が5.0℃〜9.0℃となる様に、前記第1熱交換器4の熱交換量が制御される。尚、熱交換量の制御は、前記第4弁41の開度調整、前記第1循環ポンプ31の冷水循環量の調整等によって行われる。
【0041】
上記した本発明に係る氷蓄熱装置では、氷蓄熱作動に於ける冷水の加熱熱源は熱負荷42であり、同一系内の熱源を利用しており、成績係数が向上する。
【0042】
更に、冷水加熱用の熱交換器は、冷房用の前記第1熱交換器4が使用されるので、別途冷水加熱用の熱交換器を設ける必要がなく、熱交換器の数が少なくて良く、配管構造も簡略化される。
【0043】
【発明の効果】
以上述べた如く本発明によれば、氷蓄熱槽と、第1熱交換器とターボ冷凍機と第1循環ポンプとを具備し前記氷蓄熱槽の冷媒を循環させる循環ラインと、第2熱交換器と第2循環ポンプとを具備し前記氷蓄熱槽の冷媒を循環させる他の循環ラインとを有し、前記第1熱交換器で前記冷媒を加熱しつつ、氷蓄熱時には前記他の循環ラインを切離し前記ターボ冷凍機で前記冷媒を冷却し製氷するので、前記循環ラインで製氷が行われる場合、成績係数が向上し、又冷房用の第1熱交換器により製氷時の冷水の加熱が行え、熱交換器の兼用ができ、及び氷蓄熱装置の構成の簡略化を図れる等の優れた効果を発揮する。
【図面の簡単な説明】
【図1】本発明の実施の形態を示す構成概略図である。
【図2】従来例を示す構成概略図である。
【符号の説明】
1 冷却塔
2 ターボ冷凍機
3 氷蓄熱槽
4 第1熱交換器
5 第2熱交換器
14 過冷却解除器
28 第1循環ライン
29 第1弁
31 第1循環ポンプ
32 バイパス管
33 バイパス弁
34 第2循環ライン
36 第3循環ライン
37 第2弁
38 第2循環ポンプ
39 バイパス循環ライン
41 第4弁
42 熱負荷
43 第1負荷ライン
45 第2負荷ライン
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ice heat storage method and an ice heat storage device provided in an air conditioner or the like.
[0002]
[Prior art]
As a system for building or district cooling, there is a cooling system that makes ice using low-cost nighttime electricity and stores heat, and in the daytime cooling, there is a cooling system that cools by releasing the stored heat by melting ice, such cooling system is It has an ice heat storage device.
[0003]
A conventional ice heat storage device will be described with reference to FIG.
[0004]
In FIG. 2, 1 is a cooling tower, 2 is a turbo refrigerator, 3 is an ice storage tank, 4 is a first heat exchanger, 5 is a second heat exchanger, 6 is a third heat exchanger, and 10 is a turbo refrigerator. The heat exchanger is shown.
[0005]
A first circulation line 7 communicating with the bottom of the ice heat storage tank 3 is connected to the heat exchanger 10, and a first circulation pump 8 and a first valve 9 are provided in the middle of the first circulation line 7. A second circulation line 11 connected from the turbo chiller 2 to the ice heat storage tank 3 is provided, and the second circulation line 11 includes a second circulation pump 12, a second valve 13, and the like from the turbo chiller 2 side. A supercooling releaser 14 is provided.
[0006]
A third circulation line 15 branched from between the first circulation pump 8 and the first valve 9 of the first circulation line 7 is connected to the ice heat storage tank 3 via the second heat exchanger 5, A third valve 16 is provided on the upstream side of the second heat exchanger 5 in the third circulation line 15.
[0007]
A branch line 17 that passes through the third heat exchanger 6 is provided downstream of the first circulation pump 8 in the first circulation line 7, and a branch circulation pump 18 is provided in the branch line 17.
[0008]
A fourth circulation line 19 connected to the upstream side of the turbo chiller 2 in the second circulation line 11 and the downstream side of the second circulation pump 12 in the second circulation line 11 and passing through the first heat exchanger 4. A fourth valve 21 is provided on the upstream side of the first heat exchanger 4 in the fourth circulation line 19.
[0009]
A first load line 22 is connected to the first heat exchanger 4, a second load line 23 is connected to the second heat exchanger 5, and the second load line 23 and the first load line 22 are connected to a cooling device ( (Not shown) or the like. A third load line 24 is connected to the third heat exchanger 6, and the third load line 24 is connected to a preheating source (not shown).
[0010]
The cooling tower 1 and the turbo refrigerator 2 are connected by a cooling line 25. The cooling line 25 is provided with a cooling circulation pump 26, and the turbo refrigerator 2 is in a state where the turbo refrigerator 2 is in operation. Cooling waste heat from.
[0011]
When heat storage is performed in the ice heat storage device, the turbo refrigerator 2 is driven, and the refrigerant (water) is circulated through the second circulation line 11.
[0012]
With the third valve 16 and the fourth valve 21 closed and the first valve 9 and the second valve 13 opened, the first circulation pump 8, the branch circulation pump 18, and the second circulation The pump 12 is driven, and cold water is pumped from the ice heat storage tank 3 and sent to the heat exchanger 10. The branch circulation pump 18 circulates a part of the pumped cold water to the third heat exchanger 6 and is heated by the third heat exchanger 6, and the cold water supplied to the heat exchanger 10 is circulating. Set the temperature so that it does not freeze. The chilled water is cooled to a supercooled state by the heat exchanger 10, and the supercooled water is made into ice water by the supercool release unit 14, and the ice water is returned to the ice heat storage tank 3.
[0013]
Water in the ice heat storage tank 3 is gradually made into ice by circulating the first circulation line 7 and the second circulation line 11 of the refrigerant and driving the turbo chiller 2 to store heat.
[0014]
When cooling is performed, the first valve 9 is closed, the third valve 16 is opened, and the first circulation pump 8 is driven.
[0015]
The cold water pumped up from the ice heat storage tank 3 dissipates heat in the second heat exchanger 5, cools the refrigerant on the heat load side circulating through the second load line 23, raises the temperature, and the ice heat storage tank Returned to 3.
[0016]
When the heat load is large and the cooling by the second heat exchanger 5 is not sufficient, the cooling by the turbo refrigerator 2 is performed in addition to the cooling by the second heat exchanger 5.
[0017]
The second valve 13 is closed, the fourth valve 21 is opened, and the turbo refrigerator 2 and the second circulation pump 12 are driven. The cold water cooled by the turbo refrigerator 2 circulates in the fourth circulation line 19, and the first heat exchanger 4 cools the refrigerant circulating in the first load line 22.
[0018]
In addition to the above conventional example, an ice heat storage device is disclosed in Patent Document 1, for example.
[0019]
[Patent Document 1]
JP-A-5-118588 [0020]
[Problems to be solved by the invention]
In the conventional ice heat storage device, in the circulation line for making ice, a part of the cold water circulated by the third heat exchanger 6 up to a predetermined temperature is used so that the cold water does not freeze during the circulation. Heated by an external heat source. For this reason, there is a problem that the coefficient of performance of the ice heat storage device decreases, and in addition to the first heat exchanger 4 and the second heat exchanger 5 that cool the refrigerant of a heat load device such as a cooling device (not shown). In addition, since the third heat exchanger 6 for heating the cold water is provided, there is a problem that the installation of the heat exchanger and the configuration of the piping and the like are complicated.
[0021]
In view of such circumstances, the present invention aims to improve the coefficient of performance in an ice heat storage device and to simplify the configuration of the ice heat storage device.
[0022]
[Means for Solving the Problems]
The present invention comprises an ice heat storage tank, a first heat exchanger, a turbo refrigerator, and a first circulation pump, a circulation line for circulating the refrigerant of the ice heat storage tank, a second heat exchanger, and a second circulation pump. And the other circulation line for circulating the refrigerant of the ice heat storage tank, and heating the refrigerant by the first heat exchanger, and disconnecting the other circulation line at the time of the ice heat storage, the turbo refrigerator An ice heat storage method for cooling the refrigerant and making ice, and a circulation line comprising an ice heat storage tank, a first heat exchanger, a turbo refrigerator, and a first circulation pump for circulating the refrigerant in the ice heat storage tank; An ice heat storage method comprising a second heat exchanger and a second circulation pump, and having another circulation line for circulating the refrigerant of the ice heat storage tank, and operating the other circulation line during cooling, During cooling, the turbo chiller and the first heat exchanger are installed as the load increases. No closed circulation line is constituted, it relates to ice thermal storage method of operating the closed circulation line.
[0023]
The present invention also includes an ice heat storage tank, a first heat exchanger, a turbo refrigerator, and a first circulation pump, a circulation line for circulating the refrigerant of the ice heat storage tank, a second heat exchanger, and a second circulation. An ice heat storage device comprising a pump and another circulation line for circulating the refrigerant of the ice heat storage tank, wherein the first heat exchanger and the second heat exchanger are capable of exchanging heat with a heat load side. Furthermore, the present invention relates to an ice heat storage device in which a closed circulation line including the turbo chiller and the first heat exchanger is configured in response to an increase in load.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0025]
FIG. 1 shows a schematic configuration of an ice heat storage device according to the present invention. In FIG. 1, the same components as those shown in FIG.
[0026]
The first circulation line 28 connected to the ice heat storage tank 3 is connected to the turbo chiller 2 via the first heat exchanger 4, and the first circulation line 28 is connected to the first heat exchanger 4 upstream of the first heat exchanger 4. A valve 29 and a first circulation pump 31 are provided. Further, a bypass pipe 32 is provided for connecting the inlet side and the outlet side of the first heat exchanger 4 of the first circulation line 28, and a bypass valve 33 is provided in the bypass pipe 32.
[0027]
A second circulation line 34 is provided to connect the ice heat storage tank 3 from the turbo chiller 2, and the supercooling release unit 14 is provided in the second circulation line 34.
[0028]
The third circulation line 36 connected to the ice heat storage tank 3 is connected to the ice heat storage tank 3 via the second heat exchanger 5, and upstream of the second heat exchanger 5 in the third circulation line 36. Are provided with a second valve 37 and a second circulation pump 38.
[0029]
The downstream side of the first valve 29 and the second circulation line 34 are connected by the bypass circulation line 39 in the water of the ice storage tank 3, and a fourth valve 41 is provided in the bypass circulation line 39.
[0030]
In FIG. 1, reference numeral 42 denotes a heat load such as a cooling device, and a first load line 43 is formed between the first heat exchanger 4 and the heat load 42, and the first load circulation pump is connected to the first load line 43. 44 is provided. A second load line 45 is formed between the heat load 42 and the second heat exchanger 5, and a second load circulation pump 46 is provided in the second load line 45. Part of the first load line 43 and the second load line 45 is shared, and the first load line 43 and the second load line 45 are branched by the collective distribution pipe 47 and the collective distribution pipe 48. Has been.
[0031]
First, the ice heat storage operation will be described.
[0032]
The second valve 37, the bypass valve 33, and the fourth valve 41 are closed, the first valve 29 is opened, the first circulation pump 31 is driven, and the turbo refrigerator 2 is driven. Further, the first load circulation pump 44 is driven at a low speed to circulate a small flow rate of refrigerant through the first load line 43. The circulation amount is set in advance with a lower limit flow rate so that the minimum flow rate does not fall below the lower limit flow rate. Note that the heat load 42 is stopped during the ice heat storage operation.
[0033]
The fluid temperature on the outlet side of the first heat exchanger 4 is detected by a temperature detector (not shown), and the cold water pumped from the ice heat storage tank 3 is cooled to a predetermined temperature by the first heat exchanger 4. For example, cold water is heated to a temperature of 0.2 ° C. to 0.5 ° C. at which it does not freeze. The turbo refrigerator 2 supercools the cold water, and the supercooled water that has been supercooled is made into ice by the supercool releaser 14 and returned to the ice heat storage tank 3 as ice water. Ice is gradually stored in the process of cold water circulating through the first circulation line 28 and the second circulation line 34.
[0034]
Note that the heating amount in the first heat exchanger 4 may be small, and the bypass valve 33 may be opened so that a part of the cold water is heated in the first heat exchanger 4.
[0035]
Next, when cooling is performed, the second valve 37 is opened and the second circulation pump 38 is driven with the turbo refrigerator 2 stopped. The cold water pumped by the second circulation pump 38 passes through the second heat exchanger 5 and is returned to the ice heat storage tank 3.
[0036]
When the second load circulation pump 46 is driven, the refrigerant in the second load line 45 circulates between the heat load 42 and the second heat exchanger 5 and is cooled by cold water in the second heat exchanger 5. Further, heat is dissipated by the heat load 42 and cooling is performed.
[0037]
When the heat load at the heat load 42 is large and it is not possible to cope with the cooling only by the second heat exchanger 5, the cooling by the turbo refrigerator 2 is added.
[0038]
That is, the first valve 29 and the bypass valve 33 are closed, and the fourth valve 41 is opened. In this state, a closed circulation line including the turbo refrigerator 2 and the first heat exchanger 4 is formed by the second circulation line 34 and the bypass circulation line 39.
[0039]
The first circulation pump 31 is driven, the refrigerant (water) is circulated between the first heat exchanger 4 and the turbo chiller 2, the refrigerant is cooled, and circulates through the first load line 43 by the refrigerant. The refrigerant to be cooled is cooled, and the cooling by the turbo refrigerator 2 is added.
[0040]
The fluid temperature on the outlet side of the first heat exchanger 4 is detected by a temperature detector (not shown), and the temperature of the cold water is 5.0 ° C. to 9.0 ° C. 4 is controlled. The amount of heat exchange is controlled by adjusting the opening of the fourth valve 41, adjusting the amount of chilled water circulating in the first circulation pump 31, and the like.
[0041]
In the ice heat storage device according to the present invention described above, the heating heat source of the cold water in the ice heat storage operation is the heat load 42, and the heat source in the same system is used, so that the coefficient of performance is improved.
[0042]
Furthermore, since the first heat exchanger 4 for cooling is used as the heat exchanger for cooling water, it is not necessary to provide a separate heat exchanger for cooling water, and the number of heat exchangers may be small. The piping structure is also simplified.
[0043]
【The invention's effect】
As described above, according to the present invention, the ice heat storage tank, the first heat exchanger, the turbo refrigerator, and the first circulation pump, the circulation line for circulating the refrigerant of the ice heat storage tank, and the second heat exchange are provided. And a second circulation pump that circulates the refrigerant in the ice heat storage tank and heats the refrigerant with the first heat exchanger, and stores the other circulation line at the time of ice heat storage. When the ice is made in the circulation line, the coefficient of performance is improved, and the first heat exchanger for cooling can heat the cold water during ice making. It can also be used as a heat exchanger, and exhibits excellent effects such as simplification of the configuration of the ice heat storage device.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an embodiment of the present invention.
FIG. 2 is a schematic configuration diagram illustrating a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Cooling tower 2 Turbo refrigerator 3 Ice heat storage tank 4 1st heat exchanger 5 2nd heat exchanger 14 Supercooling release device 28 1st circulation line 29 1st valve 31 1st circulation pump 32 Bypass pipe 33 Bypass valve 34 1st 2 circulation line 36 3rd circulation line 37 2nd valve 38 2nd circulation pump 39 Bypass circulation line 41 4th valve 42 Thermal load 43 1st load line 45 2nd load line

Claims (1)

氷蓄熱槽と、第1熱交換器とターボ冷凍機と第1循環ポンプとを具備し前記氷蓄熱槽の冷媒を循環させる一方の循環ラインと、第2熱交換器と第2循環ポンプとを具備し前記氷蓄熱槽の冷媒を循環させる他の循環ラインとを有し、前記一方の循環ラインは前記第1熱交換器を介して熱負荷を冷却し、前記他の循環ラインは前記第2熱交換器を介して前記熱負荷を冷却し、氷蓄熱時には前記一方の循環ラインから前記他の循環ラインを切離し前記第1熱交換器で前記冷媒を加熱しつつ、前記ターボ冷凍機で前記冷媒を冷却し製氷し、冷房時には前記他方の循環ラインから前記一方の循環ラインを切離し前記他の循環ラインを作動させ、前記第2熱交換器を介して前記熱負荷を冷却し、冷房時の前記熱負荷の増大に応じバイパス循環ラインによって前記ターボ冷凍機の下流側と前記第1循環ポンプの上流側とを接続し、前記一方の循環ラインから前記氷蓄熱槽を切離して冷媒を循環させる閉鎖循環ラインが構成され、前記第1熱交換器及び前記第2熱交換器を介して前記他の循環ライン及び前記閉鎖循環ラインにより前記熱負荷を冷却することを特徴とする氷蓄熱方法。 One circulation line comprising an ice heat storage tank, a first heat exchanger, a turbo refrigerator, and a first circulation pump for circulating the refrigerant of the ice heat storage tank, a second heat exchanger and a second circulation pump provided to have the other side of the circulation line for circulating refrigerant in the ice thermal storage tank, the one circulation line is the thermal load is cooled through the first heat exchanger, the other side of the circulation line is the the thermal load is cooled through the second heat exchanger, at the time of the ice cold storage while heating the refrigerant in the other hand the first heat exchanger disconnect circulation line from the one circulation line, the turbo chiller in the refrigerant cooled by ice, during cooling by operating the circulation line of the other side disconnect said one circulation line from the other circulation line, the heat load is cooled through the second heat exchanger, bypass circulation line with an increase of the thermal load of the cooling The connection with the downstream side of the turbo chiller and upstream of the first circulating pump, a closed circulation line for circulating refrigerant from the one of the circulation line disconnect the ice heat storage tank is constructed, the first heat by ice thermal storage method characterized by cooling the heat load exchanger and through the second heat exchanger by the other side of the circulation line and the closed circulation line.
JP2003163603A 2003-06-09 2003-06-09 Ice heat storage method Expired - Fee Related JP4427971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003163603A JP4427971B2 (en) 2003-06-09 2003-06-09 Ice heat storage method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003163603A JP4427971B2 (en) 2003-06-09 2003-06-09 Ice heat storage method

Publications (2)

Publication Number Publication Date
JP2005003208A JP2005003208A (en) 2005-01-06
JP4427971B2 true JP4427971B2 (en) 2010-03-10

Family

ID=34090677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003163603A Expired - Fee Related JP4427971B2 (en) 2003-06-09 2003-06-09 Ice heat storage method

Country Status (1)

Country Link
JP (1) JP4427971B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102538098B (en) * 2012-02-13 2014-03-26 中国科学院广州能源研究所 Tetrabutyl ammonium bromide (TBAB) slurry and water separation type dynamic ice storage system
JP2014066517A (en) * 2014-01-24 2014-04-17 Tokyo Denki Univ Ice heat storage device

Also Published As

Publication number Publication date
JP2005003208A (en) 2005-01-06

Similar Documents

Publication Publication Date Title
JP5396246B2 (en) Air conditioner for vehicles
CN101410260B (en) Heat storage device
JP6910210B2 (en) Air conditioner
EP2192286B1 (en) Method and system for extra cooling of the coolant in a vehicle´s cooling system
WO2013088190A1 (en) Thermal control system for a cabin of a vehicle and method for controlling the cabin temperature
US20200166291A1 (en) Latent heat storage system having a latent heat storage device and method for operating a latent heat storage system
EP2678612B1 (en) Air conditioning system with ice storage
CN212362185U (en) Self-defrosting air source heat pump unit
JP4427971B2 (en) Ice heat storage method
KR100734904B1 (en) Heat pump system for both heating and cooling
CN110259561B (en) Vehicle oil temperature thermal management system and vehicle
KR200411589Y1 (en) Heat pump system for both heating and cooling
TW200936965A (en) Ice making and air conditioning system utilizing supercooled water
JP3359495B2 (en) Thermal storage air conditioning system
JP2006145098A (en) Thermal storage air conditioner
JP2003202135A (en) Regenerative air-conditioning device
JP3516314B2 (en) Ice heat storage device using supercooled water
JP4312513B2 (en) Air conditioner
JP2508758B2 (en) Freezing / heating control device mounted on the vehicle
JP3445410B2 (en) Ice storage system
CN115200115B (en) Air conditioner and control method
JP2004156805A (en) Heat pump system
US20230147794A1 (en) Vehicle cabin and rechargeable energy storage system heating
JP3308141B2 (en) Ice storage air conditioning equipment
JP3731121B2 (en) Ice heat storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees