[go: up one dir, main page]

JP2006145098A - Thermal storage air conditioner - Google Patents

Thermal storage air conditioner Download PDF

Info

Publication number
JP2006145098A
JP2006145098A JP2004334333A JP2004334333A JP2006145098A JP 2006145098 A JP2006145098 A JP 2006145098A JP 2004334333 A JP2004334333 A JP 2004334333A JP 2004334333 A JP2004334333 A JP 2004334333A JP 2006145098 A JP2006145098 A JP 2006145098A
Authority
JP
Japan
Prior art keywords
heat
storage tank
heat storage
heat exchanger
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004334333A
Other languages
Japanese (ja)
Inventor
Ryosuke Tomita
良輔 富田
Takeshi Ito
毅 伊藤
Masakazu Kamikura
正教 上倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004334333A priority Critical patent/JP2006145098A/en
Publication of JP2006145098A publication Critical patent/JP2006145098A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

【課題】 除霜運転により室内機の温度が下がるのを防止する。
【解決手段】 蓄熱式空気調和装置の除霜運転時に、ブラインを熱源機1のブライン側熱交換器12と蓄熱槽5で循環させ、水を熱交換器3と室内機7で循環させるようにすることにより、ブラインと水との熱交換が行われないので熱源機1で冷却されたブラインによって室内機7に流通する水が冷却されることを防止できる。したがって、除霜運転による室内機7の温度の低下を防止でき、室内機7から冷風が吹出すなどの不具合を回避することができる。
【選択図】 図2
PROBLEM TO BE SOLVED: To prevent the temperature of an indoor unit from being lowered by defrosting operation.
SOLUTION: During defrosting operation of a heat storage type air conditioner, brine is circulated in the brine side heat exchanger 12 and the heat storage tank 5 of the heat source device 1, and water is circulated in the heat exchanger 3 and the indoor unit 7. By doing so, since heat exchange between brine and water is not performed, it is possible to prevent the water flowing through the indoor unit 7 from being cooled by the brine cooled by the heat source unit 1. Therefore, a decrease in the temperature of the indoor unit 7 due to the defrosting operation can be prevented, and problems such as cold air blowing from the indoor unit 7 can be avoided.
[Selection] Figure 2

Description

本発明は、蓄熱式空気調和装置に係り、特に、暖房運転中に除霜運転を行う蓄熱式空気調和装置に関する。   The present invention relates to a regenerative air conditioner, and more particularly to a regenerative air conditioner that performs a defrosting operation during heating operation.

蓄熱式空気調和装置は、夜間の電力を利用して蓄熱槽に熱を蓄えておき、昼間の暖房運転時に利用して昼間の電力消費量を低減するものである。このような蓄熱式空気調和装置は、例えば特許文献1に記載のように、冷凍サイクルの冷媒によりブラインを加熱する熱源機と、このブラインを並列接続された熱交換器または蓄熱槽に循環させる流路と、これらの熱交換器と蓄熱槽を介して水を室内機に循環する流路を備えて構成される。そして、蓄熱運転時においては、夜間の電力を利用して加熱したブラインを蓄熱槽に循環させることで槽内の水を温水にして蓄熱する。一方、暖房運転時においては、ブラインにより熱交換器を介して水を加熱し、加熱した水を蓄熱槽を介して室内機に循環させるようにしている。   The heat storage type air conditioner uses heat at night to store heat in a heat storage tank, and uses it during heating operation in the daytime to reduce daytime power consumption. Such a heat storage type air conditioner is, for example, as disclosed in Patent Document 1, a heat source unit that heats a brine by a refrigerant in a refrigeration cycle, and a flow that circulates the brine to a heat exchanger or a heat storage tank connected in parallel. It comprises a channel and a channel for circulating water to the indoor unit through these heat exchangers and a heat storage tank. And at the time of heat storage operation, the brine in the heat storage tank is circulated to the heat storage tank by using the electric power at night, and the water in the tank is heated and stored. On the other hand, during heating operation, water is heated with brine through a heat exchanger, and the heated water is circulated through the heat storage tank to the indoor unit.

このような蓄熱式空気調和装置は、暖房運転の際、熱源機を構成する冷凍サイクルの蒸発器の表面に霜が付着すると熱源機の性能が低下することから、特許文献1に記載の蓄熱式空気調和装置は、定期的にまたは着霜を感知したときに、熱源機の冷媒の循環方向を逆転させ高温の冷媒を蒸発器に流す除霜運転を行うようにしている。   In such a heat storage type air conditioner, when frost adheres to the surface of the evaporator of the refrigeration cycle that constitutes the heat source unit during heating operation, the performance of the heat source unit deteriorates. The air conditioner performs a defrosting operation in which the circulation direction of the refrigerant in the heat source unit is reversed and the high-temperature refrigerant flows through the evaporator periodically or when frost formation is detected.

特開平8−28932号公報(第5図、第2頁参照)Japanese Patent Laid-Open No. 8-28932 (see FIG. 5 and page 2)

ところで、特許文献1の蓄熱式空気調和装置は、除霜運転時において、ブラインを、室内機に温水を供給する熱交換器から蓄熱槽に切り替えて循環させることによって除霜の熱を蓄熱槽から供給するようにしている。   By the way, the heat storage type air conditioner of patent document 1 switches the heat | fever of a defrost from a heat storage tank by switching and circulating a brine from the heat exchanger which supplies warm water to an indoor unit at the time of a defrost operation. I am trying to supply.

しかし、蓄熱槽の温度が下がることにより室内機の温度が下がることについては配慮されていない。   However, no consideration is given to a decrease in the temperature of the indoor unit due to a decrease in the temperature of the heat storage tank.

本発明の課題は、除霜運転により室内機の温度が下がるのを防止することにある。   The subject of this invention is preventing the temperature of an indoor unit falling by defrost operation.

上記課題を解決するために、本発明の蓄熱式空気調和装置は、冷凍サイクルの冷媒により第1の熱媒体を加熱する第1の熱交換器を有する熱源機と、第1の熱媒体を並列接続された第2の熱交換器と蓄熱槽を介して第1の熱交換器に循環する第1の循環ポンプを備えた第1の熱媒循環流路と、第2の熱交換器と蓄熱槽に室内機を介して第2の熱媒体を循環する第2の循環ポンプを備えた第2の熱媒循環流路と、第2の熱交換器と蓄熱槽の入口側の第1の熱媒循環流路にそれぞれ設けられた第2熱交換器入口弁および蓄熱槽入口弁と、蓄熱槽の出口側の第2の熱媒循環流路に設けられた蓄熱槽出口弁と、第2の熱媒循環流路の蓄熱槽の入口側と蓄熱槽出口弁の下流側とをバイパス弁を介して接続してなるバイパス管とを備え、熱源機の暖房運転時に、蓄熱槽入口弁およびバイパス弁を閉じて第2熱交換器入口弁および蓄熱槽出口弁を開き、熱源機の除霜運転時に、第2熱交換器入口弁および蓄熱槽出口弁を閉じて蓄熱槽入口弁およびバイパス弁を開く制御手段を設けてなることを特徴とする。   In order to solve the above problems, a heat storage air conditioner of the present invention includes a heat source device having a first heat exchanger that heats a first heat medium with a refrigerant of a refrigeration cycle, and a first heat medium in parallel. A first heat medium circulation passage provided with a first circulation pump that circulates to the first heat exchanger via a connected second heat exchanger and a heat storage tank, a second heat exchanger, and heat storage A second heat medium circulation passage provided with a second circulation pump that circulates the second heat medium in the tank via the indoor unit, a first heat on the inlet side of the second heat exchanger and the heat storage tank. A second heat exchanger inlet valve and a heat storage tank inlet valve respectively provided in the medium circulation flow path, a heat storage tank outlet valve provided in the second heat medium circulation flow path on the outlet side of the heat storage tank, Heating operation of the heat source device, comprising a bypass pipe connecting the inlet side of the heat storage tank of the heat medium circulation flow path and the downstream side of the outlet valve of the heat storage tank via a bypass valve In addition, the heat storage tank inlet valve and the bypass valve are closed, the second heat exchanger inlet valve and the heat storage tank outlet valve are opened, and the second heat exchanger inlet valve and the heat storage tank outlet valve are closed during the defrosting operation of the heat source unit. Control means for opening the heat storage tank inlet valve and the bypass valve is provided.

すなわち、本発明は、熱源機の除霜運転時に、第1の熱媒体(ブライン)を第1の熱交換器と蓄熱槽に循環させ、第2の熱媒体(水)を第2の熱交換器と室内機に循環させるようにしたのである。   That is, according to the present invention, during the defrosting operation of the heat source unit, the first heat medium (brine) is circulated through the first heat exchanger and the heat storage tank, and the second heat medium (water) is second heat exchanged. It was made to circulate between the unit and the indoor unit.

これにより、除霜運転時において第1の熱媒体と第2の熱媒体との熱交換が行われないから、除霜運転により冷却された第1の熱媒体によって室内機に流通する第2の熱媒体が冷却されることを防止できる。したがって、室内機から冷風が吹出すなどの不具合を回避することができる。   Thereby, since heat exchange with the 1st heat carrier and the 2nd heat carrier is not performed at the time of defrosting operation, the 2nd circulating to the indoor unit by the 1st heat carrier cooled by defrosting operation It is possible to prevent the heat medium from being cooled. Accordingly, it is possible to avoid problems such as cold air blowing from the indoor unit.

本発明によれば、除霜運転により室内機の温度が下がるのを防止できる。   ADVANTAGE OF THE INVENTION According to this invention, it can prevent that the temperature of an indoor unit falls by defrost operation.

以下、本発明の実施形態を図面を用いて説明する。図1は、本発明を適用してなる蓄熱式空気調和装置の暖房運転時の系統構成図、図2は除霜運転時の系統構成図である。本実施形態の蓄熱式空気調和装置は、図1に示すように、熱源機1、熱交換器3、蓄熱槽5、および室内機7を備えて構成されている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a system configuration diagram during heating operation of a regenerative air conditioner to which the present invention is applied, and FIG. 2 is a system configuration diagram during defrosting operation. As shown in FIG. 1, the heat storage type air conditioner of this embodiment includes a heat source device 1, a heat exchanger 3, a heat storage tank 5, and an indoor unit 7.

熱源機1は、圧縮機11、第1の熱交換器であるブライン側熱交換器12、膨張弁13および空気側熱交換器14を順次連結してなる冷凍サイクルが形成されている。すなわち、圧縮機11から吐出された冷媒がブライン側熱交換器12に導かれて凝縮され、この凝縮された液冷媒が膨張弁13で減圧された後、空気側熱交換器14で蒸発して圧縮機11に戻されるようになっている。また、圧縮機11は四方弁15により冷媒の吐出方向を切り替えて暖房運転または除霜運転を行えるようになっている。   The heat source unit 1 is formed with a refrigeration cycle in which a compressor 11, a brine side heat exchanger 12 as a first heat exchanger, an expansion valve 13 and an air side heat exchanger 14 are sequentially connected. That is, the refrigerant discharged from the compressor 11 is led to the brine side heat exchanger 12 to be condensed, and this condensed liquid refrigerant is decompressed by the expansion valve 13 and then evaporated by the air side heat exchanger 14. It is returned to the compressor 11. In addition, the compressor 11 can perform a heating operation or a defrosting operation by switching a refrigerant discharge direction by a four-way valve 15.

ブライン側熱交換器12は、第1の熱媒体であるブラインが流通し、冷媒と熱交換されるようになっている。ブライン側熱交換器12から排出されるブラインは、循環ポンプ21によって循環流路22を循環されるようになっている。この循環流路22は、ブラインを並列接続された熱交換器3と蓄熱槽5を介してブライン側熱交換器12に循環するようになっている。すなわち、ブライン側熱交換器12のブライン出口は、熱交換器3内の伝熱流路31の一端に連結され、伝熱流路31の他端は循環ポンプ21を介してブライン側熱交換器12のブライン入口に連結されている。また、ブライン側熱交換器12と熱交換器3の熱媒循環流路は、分岐して蓄熱槽5内に設けられた伝熱管51の一端に連結されている。伝熱管51の他端は、循環ポンプ21を介してブライン側熱交換器12のブライン入口に共通に連結されている。   In the brine-side heat exchanger 12, the brine as the first heat medium flows and heat exchange with the refrigerant is performed. The brine discharged from the brine side heat exchanger 12 is circulated through the circulation flow path 22 by the circulation pump 21. The circulation channel 22 circulates the brine to the brine side heat exchanger 12 via the heat exchanger 3 and the heat storage tank 5 connected in parallel. That is, the brine outlet of the brine side heat exchanger 12 is connected to one end of the heat transfer channel 31 in the heat exchanger 3, and the other end of the heat transfer channel 31 is connected to the brine side heat exchanger 12 via the circulation pump 21. Connected to the brine inlet. Further, the heat medium circulation passages of the brine side heat exchanger 12 and the heat exchanger 3 are branched and connected to one end of a heat transfer tube 51 provided in the heat storage tank 5. The other end of the heat transfer tube 51 is commonly connected to the brine inlet of the brine side heat exchanger 12 via the circulation pump 21.

一方、熱交換器3と蓄熱槽5に室内機7を介して第2の熱媒体である水を循環する循環ポンプ23を備えた循環流路24が設けられている。すなわち、室内機7の水出口は、熱交換器3内に設けられた伝熱流路31に熱的に接続された伝熱流路32の一端に連結されている。伝熱流路32の他端は蓄熱槽5の水入口に連結され、蓄熱槽5の水出口は循環ポンプ23を介して室内機7の水入口に連結されている。   On the other hand, the heat exchanger 3 and the heat storage tank 5 are provided with a circulation flow path 24 including a circulation pump 23 that circulates water as a second heat medium via the indoor unit 7. That is, the water outlet of the indoor unit 7 is connected to one end of a heat transfer channel 32 that is thermally connected to the heat transfer channel 31 provided in the heat exchanger 3. The other end of the heat transfer channel 32 is connected to the water inlet of the heat storage tank 5, and the water outlet of the heat storage tank 5 is connected to the water inlet of the indoor unit 7 via the circulation pump 23.

また、熱交換器3の入口側の循環流路22に第2熱交換器入口弁である電動二方弁25が、蓄熱槽5の入口側の循環流路22に蓄熱槽入口弁である電動二方弁26がそれぞれ設けられている。蓄熱槽5の出口側の循環流路24に蓄熱槽出口弁である弁27が設けられている。循環流路24の蓄熱槽5の入口側と弁27の下流側とはバイパス流路28で連結されている。バイパス流路28にバイパス弁である弁29が設けられている。なお、本実施形態では、弁27と弁29は電動三方弁30として一体に形成されている。これらの電動二方弁25、26、および電動三方弁30は、図示していない制御器により開閉制御されるようになっている。   An electric two-way valve 25 that is a second heat exchanger inlet valve is provided in the circulation flow path 22 on the inlet side of the heat exchanger 3, and an electric motor that is a heat storage tank inlet valve is provided on the circulation flow path 22 on the inlet side of the heat storage tank 5. Two-way valves 26 are respectively provided. A valve 27, which is a heat storage tank outlet valve, is provided in the circulation channel 24 on the outlet side of the heat storage tank 5. The inlet side of the heat storage tank 5 in the circulation channel 24 and the downstream side of the valve 27 are connected by a bypass channel 28. The bypass passage 28 is provided with a valve 29 which is a bypass valve. In the present embodiment, the valve 27 and the valve 29 are integrally formed as an electric three-way valve 30. The electric two-way valves 25 and 26 and the electric three-way valve 30 are controlled to be opened and closed by a controller (not shown).

次に、このように構成された蓄熱式空気調和装置の動作について説明する。まず、夜間の暖房蓄熱運転時においては、電動二方弁25を全閉、電動二方弁26を全開とする。そして、熱源機1を運転するとともに循環ポンプ21を作動させる。また、循環ポンプ23は停止する。これにより、熱源機1でブラインが加熱され、加熱されたブラインは蓄熱槽5内の伝熱管51に循環される。この結果、蓄熱槽5内の水がブラインによって加熱され温水が蓄えられる。   Next, the operation of the heat storage type air conditioner configured as described above will be described. First, during nighttime heat storage operation, the electric two-way valve 25 is fully closed and the electric two-way valve 26 is fully opened. And while operating the heat-source equipment 1, the circulation pump 21 is operated. Moreover, the circulation pump 23 stops. Thereby, the brine is heated by the heat source device 1, and the heated brine is circulated to the heat transfer tube 51 in the heat storage tank 5. As a result, the water in the heat storage tank 5 is heated by the brine and hot water is stored.

昼間の暖房空調運転時は、図1に示すように、電動二方弁25を全開、電動二方弁26を全閉とするとともに循環ポンプ21を作動させる。また、電動三方弁30の弁27を全開、弁29を全閉にし、循環ポンプ23を作動させる。なお、図中の白抜きの弁は開、黒塗りの弁は閉を示す。これにより、熱源機1によってブラインが加熱され、加熱されたブラインが熱交換器3に循環する。一方、蓄熱槽5内に蓄えられていた温水は循環ポンプ23により抜き出されて室内機7へ供給される。室内機7から排出された水は熱交換器3で再加熱されて蓄熱槽5に導かれる。このようにして室内機7に所望の熱量が供給され暖房が行われる。   During the daytime heating and air conditioning operation, as shown in FIG. 1, the electric two-way valve 25 is fully opened, the electric two-way valve 26 is fully closed, and the circulation pump 21 is operated. Further, the valve 27 of the electric three-way valve 30 is fully opened, the valve 29 is fully closed, and the circulation pump 23 is operated. In the figure, the white valves are open and the black valves are closed. Thereby, the brine is heated by the heat source device 1, and the heated brine is circulated to the heat exchanger 3. On the other hand, the hot water stored in the heat storage tank 5 is extracted by the circulation pump 23 and supplied to the indoor unit 7. The water discharged from the indoor unit 7 is reheated by the heat exchanger 3 and guided to the heat storage tank 5. In this way, a desired amount of heat is supplied to the indoor unit 7 to perform heating.

次に、本実施形態の特徴である除霜運転時の動作について図2を参照して説明する。熱源機1は、着霜による能力低下などを解消するために、定期的にまたは着霜を感知した場合に四方弁15を切り替えて除霜運転を行う。すなわち、圧縮機11から吐出された冷媒が空気側熱交換器14で凝縮され、膨張弁13で減圧されブライン側熱交換器12で蒸発して圧縮機11に戻す逆サイクルで運転される。このとき、制御器は、電動二方弁25を全閉、電動二方弁26を全開とするとともに循環ポンプ21を作動させる。また、電動三方弁30の弁27を全閉、弁29を全開にし、循環ポンプ23を作動させる。   Next, the operation | movement at the time of the defrost operation which is the characteristics of this embodiment is demonstrated with reference to FIG. The heat source unit 1 performs a defrosting operation by switching the four-way valve 15 periodically or when frosting is detected in order to eliminate a decrease in capacity due to frosting. In other words, the refrigerant discharged from the compressor 11 is condensed in the air-side heat exchanger 14, depressurized by the expansion valve 13, evaporated in the brine-side heat exchanger 12, and operated in a reverse cycle returning to the compressor 11. At this time, the controller fully closes the electric two-way valve 25 and fully opens the electric two-way valve 26 and operates the circulation pump 21. Further, the valve 27 of the electric three-way valve 30 is fully closed, the valve 29 is fully opened, and the circulation pump 23 is operated.

これにより、冷媒はブラインから吸熱して空気側熱交換器14に熱を移動させて除霜が行われる。一方、冷媒により冷却されたブラインは蓄熱槽5を循環して蓄熱槽5内の水を冷却する。このとき水は、熱交換器3と室内機で循環する。すなわち、水は蓄熱槽5に流通することなく循環する。   Thereby, the refrigerant absorbs heat from the brine and moves the heat to the air-side heat exchanger 14 to perform defrosting. On the other hand, the brine cooled by the refrigerant circulates in the heat storage tank 5 to cool the water in the heat storage tank 5. At this time, water circulates in the heat exchanger 3 and the indoor unit. That is, water circulates without flowing through the heat storage tank 5.

このように本実施形態によれば、室内機7に循環される水を蓄熱槽5へは流さず熱交換器3へ流すことによって、除霜運転時においてブラインと水との熱交換が行われないから熱源機1に冷却されたブラインによって室内機7に流通する水が冷却されることを防止できる。したがって、除霜運転による室内機の温度の低下を抑制でき、室内機から冷風が吹出すようなことがなくなるため不快感を抑えることができる。   As described above, according to the present embodiment, the water circulated through the indoor unit 7 does not flow into the heat storage tank 5 but flows into the heat exchanger 3 so that heat exchange between brine and water is performed during the defrosting operation. Therefore, it is possible to prevent the water flowing through the indoor unit 7 from being cooled by the brine cooled by the heat source unit 1. Accordingly, it is possible to suppress a decrease in the temperature of the indoor unit due to the defrosting operation, and it is possible to suppress discomfort because no cold air is blown out from the indoor unit.

また、本実施形態では、電動二方弁25、26を設けているが、これに代えて、電動二方弁25、26の機能を有する電動三方弁を用いてもよい。逆に、電動三方弁30を電動二方弁27と29に替えることもできる。   In the present embodiment, the electric two-way valves 25 and 26 are provided. Alternatively, an electric three-way valve having the functions of the electric two-way valves 25 and 26 may be used. Conversely, the electric three-way valve 30 can be replaced with electric two-way valves 27 and 29.

本発明を適用してなる一実施形態の蓄熱式空気調和装置の暖房運転時の系統構成図である。It is a system configuration | structure figure at the time of the heating operation of the thermal storage type air conditioner of one Embodiment to which this invention is applied. 本発明を適用してなる一実施形態の蓄熱式空気調和装置の除霜運転時の系統構成図である。It is a system configuration | structure figure at the time of the defrost driving | operation of the thermal storage type air conditioner of one Embodiment to which this invention is applied.

符号の説明Explanation of symbols

1 熱源機
3 熱交換器
5 蓄熱槽
7 室内機
12 ブライン側熱交換器
14 空気側熱交換器
21、23 循環ポンプ
25、26 電動二方弁
27、29 弁
30 電動三方弁
DESCRIPTION OF SYMBOLS 1 Heat source machine 3 Heat exchanger 5 Heat storage tank 7 Indoor unit 12 Brine side heat exchanger 14 Air side heat exchanger 21, 23 Circulation pump 25, 26 Electric two-way valve 27, 29 Valve 30 Electric three-way valve

Claims (1)

冷凍サイクルの冷媒により第1の熱媒体を加熱する第1の熱交換器を有する熱源機と、前記第1の熱媒体を並列接続された第2の熱交換器と蓄熱槽を介して前記第1の熱交換器に循環する第1の循環ポンプを備えた第1の熱媒循環流路と、前記第2の熱交換器と前記蓄熱槽に室内機を介して第2の熱媒体を循環する第2の循環ポンプを備えた第2の熱媒循環流路と、前記第2の熱交換器と前記蓄熱槽の入口側の前記第1の熱媒循環流路にそれぞれ設けられた第2熱交換器入口弁および蓄熱槽入口弁と、前記蓄熱槽の出口側の前記第2の熱媒循環流路に設けられた蓄熱槽出口弁と、前記第2の熱媒循環流路の前記蓄熱槽の入口側と前記蓄熱槽出口弁の下流側とをバイパス弁を介して接続してなるバイパス管とを備え、前記熱源機の暖房運転時に、前記蓄熱槽入口弁および前記バイパス弁を閉じて前記第2熱交換器入口弁および前記蓄熱槽出口弁を開き、前記熱源機の除霜運転時に、前記第2熱交換器入口弁および前記蓄熱槽出口弁を閉じて前記蓄熱槽入口弁および前記バイパス弁を開く制御手段を設けてなる蓄熱式空気調和装置。
A heat source device having a first heat exchanger that heats the first heat medium with the refrigerant of the refrigeration cycle, a second heat exchanger in which the first heat medium is connected in parallel, and the heat storage tank through the heat storage tank. A first heat medium circulation passage having a first circulation pump that circulates to one heat exchanger, and a second heat medium circulated through the indoor unit to the second heat exchanger and the heat storage tank. A second heat medium circulation passage provided with a second circulation pump, and a second heat medium circulation passage provided on the inlet side of the second heat exchanger and the heat storage tank, respectively. Heat exchanger inlet valve and heat storage tank inlet valve, heat storage tank outlet valve provided in the second heat medium circulation channel on the outlet side of the heat storage tank, and heat storage in the second heat medium circulation channel A bypass pipe formed by connecting a tank inlet side and a downstream side of the heat storage tank outlet valve via a bypass valve, during heating operation of the heat source unit The heat storage tank inlet valve and the bypass valve are closed and the second heat exchanger inlet valve and the heat storage tank outlet valve are opened. During the defrosting operation of the heat source unit, the second heat exchanger inlet valve and the heat storage tank A regenerative air conditioner comprising control means for closing an outlet valve and opening the heat storage tank inlet valve and the bypass valve.
JP2004334333A 2004-11-18 2004-11-18 Thermal storage air conditioner Pending JP2006145098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004334333A JP2006145098A (en) 2004-11-18 2004-11-18 Thermal storage air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004334333A JP2006145098A (en) 2004-11-18 2004-11-18 Thermal storage air conditioner

Publications (1)

Publication Number Publication Date
JP2006145098A true JP2006145098A (en) 2006-06-08

Family

ID=36624995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004334333A Pending JP2006145098A (en) 2004-11-18 2004-11-18 Thermal storage air conditioner

Country Status (1)

Country Link
JP (1) JP2006145098A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010050002A1 (en) * 2008-10-29 2010-05-06 三菱電機株式会社 Air conditioner
KR101280211B1 (en) 2011-11-02 2013-06-28 대성히트펌프 주식회사 Heat pump system with frost prevention and operating methodology for heat pump system
JP5452628B2 (en) * 2010-02-10 2014-03-26 三菱電機株式会社 Air conditioner
CN108036557A (en) * 2017-12-28 2018-05-15 广东芬尼克兹节能设备有限公司 A kind of parallel connection Cascade type heat pump system
US11079122B2 (en) 2013-03-04 2021-08-03 Johnson Controls Technology Company Modular liquid based heating and cooling system
CN115406060A (en) * 2022-08-31 2022-11-29 珠海格力电器股份有限公司 Control method and device for opening of heat storage valve of air conditioning system and air conditioning system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010050002A1 (en) * 2008-10-29 2010-05-06 三菱電機株式会社 Air conditioner
JP5312471B2 (en) * 2008-10-29 2013-10-09 三菱電機株式会社 Air conditioner
US8752397B2 (en) 2008-10-29 2014-06-17 Mitsubishi Electric Corporation Air-conditioning apparatus
US9115931B2 (en) 2008-10-29 2015-08-25 Mitsubishi Electric Corporation Air-conditioning apparatus
JP5452628B2 (en) * 2010-02-10 2014-03-26 三菱電機株式会社 Air conditioner
KR101280211B1 (en) 2011-11-02 2013-06-28 대성히트펌프 주식회사 Heat pump system with frost prevention and operating methodology for heat pump system
US11079122B2 (en) 2013-03-04 2021-08-03 Johnson Controls Technology Company Modular liquid based heating and cooling system
CN108036557A (en) * 2017-12-28 2018-05-15 广东芬尼克兹节能设备有限公司 A kind of parallel connection Cascade type heat pump system
CN108036557B (en) * 2017-12-28 2023-11-14 广东芬尼克兹节能设备有限公司 Parallel cascade heat pump system
CN115406060A (en) * 2022-08-31 2022-11-29 珠海格力电器股份有限公司 Control method and device for opening of heat storage valve of air conditioning system and air conditioning system

Similar Documents

Publication Publication Date Title
KR101758179B1 (en) Heat pump type speed heating apparatus
CN111251802B (en) Thermal management system of vehicle and vehicle
JP3886977B2 (en) Combined air conditioning system
JP4298990B2 (en) Refrigeration equipment using carbon dioxide as refrigerant
KR20110117973A (en) Heat pump type hot water supply device
JP2008032376A (en) Heat pump liquid heating air conditioner or apparatus
KR101178945B1 (en) Heat Pump System Using Dual Heat Sources for Electric Vehicle
JP6883186B2 (en) Heat pump system
CN111251803B (en) Thermal management system of vehicle and vehicle
JP2007198730A (en) Air conditioning refrigeration device
JP2005042943A (en) Heat storage type air conditioner
JP2008134045A (en) Heat pump system
KR20190098068A (en) Heat pump system for vehicle
JP2006145098A (en) Thermal storage air conditioner
JP2001263848A (en) Air conditioner
CN219283480U (en) Air conditioning system
JP5150225B2 (en) Heat pump system
KR20120047677A (en) Air conditioner
JP3284905B2 (en) Heat pump system
KR102393637B1 (en) Hybrid type chiller and heater using water as a heat transfer medium
KR101753086B1 (en) Hybrid type air conditioning and heat pump system
JP3284582B2 (en) Heat storage type air conditioner and cool storage device for air conditioner
JP2009270773A (en) Cold system
JP2008128587A (en) Heat pump system
JP5166840B2 (en) Heat pump system