JP4418500B2 - 光電変換装置及びその製造方法 - Google Patents
光電変換装置及びその製造方法 Download PDFInfo
- Publication number
- JP4418500B2 JP4418500B2 JP2008088595A JP2008088595A JP4418500B2 JP 4418500 B2 JP4418500 B2 JP 4418500B2 JP 2008088595 A JP2008088595 A JP 2008088595A JP 2008088595 A JP2008088595 A JP 2008088595A JP 4418500 B2 JP4418500 B2 JP 4418500B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode layer
- transparent electrode
- layer
- substrate
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/138—Manufacture of transparent electrodes, e.g. transparent conductive oxides [TCO] or indium tin oxide [ITO] electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F10/00—Individual photovoltaic cells, e.g. solar cells
- H10F10/10—Individual photovoltaic cells, e.g. solar cells having potential barriers
- H10F10/17—Photovoltaic cells having only PIN junction potential barriers
- H10F10/172—Photovoltaic cells having only PIN junction potential barriers comprising multiple PIN junctions, e.g. tandem cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F19/00—Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules
- H10F19/30—Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules comprising thin-film photovoltaic cells
- H10F19/31—Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules comprising thin-film photovoltaic cells having multiple laterally adjacent thin-film photovoltaic cells deposited on the same substrate
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F19/00—Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules
- H10F19/30—Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules comprising thin-film photovoltaic cells
- H10F19/31—Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules comprising thin-film photovoltaic cells having multiple laterally adjacent thin-film photovoltaic cells deposited on the same substrate
- H10F19/33—Patterning processes to connect the photovoltaic cells, e.g. laser cutting of conductive or active layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/20—Electrodes
- H10F77/206—Electrodes for devices having potential barriers
- H10F77/211—Electrodes for devices having potential barriers for photovoltaic cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/40—Optical elements or arrangements
- H10F77/42—Optical elements or arrangements directly associated or integrated with photovoltaic cells, e.g. light-reflecting means or light-concentrating means
- H10F77/48—Back surface reflectors [BSR]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/70—Surface textures, e.g. pyramid structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/70—Surface textures, e.g. pyramid structures
- H10F77/707—Surface textures, e.g. pyramid structures of the substrates or of layers on substrates, e.g. textured ITO layer on a glass substrate
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/52—PV systems with concentrators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/548—Amorphous silicon PV cells
Landscapes
- Photovoltaic Devices (AREA)
Description
本発明は、光電変換装置及びその製造方法に関し、特に発電層としてシリコンを用いる太陽電池に関する。
光を受光して電力に変換する光電変換装置として、太陽電池が知られている。太陽電池の中でも、例えば発電層(光電変換層)に薄膜シリコン系の層を積層させた薄膜系太陽電池は、大面積化が容易である、膜厚が結晶系太陽電池の1/100程度と薄く材料が少なくて済む、などの利点がある。このため、薄膜シリコン系太陽電池は、結晶系太陽電池と比較して低コストでの製造が可能となる。しかしながら、薄膜シリコン系太陽電池の短所としては、変換効率が結晶系に比べて低いことが挙げられる。
薄膜系太陽電池において、変換効率、すなわち、出力電力を増加させるために、種々の工夫がなされてきた。例えば、吸収波長帯域が異なる光電変換セルを2段重ねることによって、入射光を効率良く吸収させて高い発電効率を得るタンデム型太陽電池が提案されている。この場合、光電変換セルの結晶質シリコン層において波長500nmから1000nmの長波長光が吸収されるが、同波長域での結晶質シリコンの吸収係数が小さいために、太陽電池内で入射光を反射させて光路長を長くし、結晶質シリコンでの光吸収量を増大させる必要がある。このため、透明基板側から太陽光が入射するスーパーストレート型においては、発電層に対して光入射側と反対側の裏面構造の改良が検討されてきた。
特許文献1には、裏面構造として、太陽光の放射スペクトルの波長域の光に対して高い反射率を示す金属で背面電極を形成し、背面電極とシリコン半導体層との間に透明導電層を形成することが開示されている。透明導電層を形成することによって、背面電極材料とシリコン薄膜とが合金化するのを防止して背面電極の高反射率を維持し、変換効率の低下を防止することができる。
特公昭60−41878号公報
特許文献1に記載のように、層構成に着目して裏面構造を改良することによって、太陽電池の変換効率の改善を図ることができる。しかし、更なる変換効率の向上のためには、層構成の改良だけでは不十分である。
裏面構造として、発電層の上部に裏面側の透明電極層と金属層(裏面電極層)とが順次積層されている場合、金属層の基板側表面の形状は、金属層と接触する裏面側透明電極層の表面の形状に倣う。すなわち、裏面側透明電極層の表面に微小な凹凸が存在すると、金属層はその微小凹凸に倣って積層される。金属層の基板側表面が微小凹凸を有すると、金属層の基板側表面で基板側からの入射光が散乱し、散乱光が発電層で吸収される。従って、金属層表面での反射率を高めて発電層での光吸収量を向上させるには、表面形状に着目して裏面構造を改良する必要がある。
透明電極層は、一般的に、導電性を高くするために、例えば120℃から200℃の範囲内と、高温の基板温度条件で製膜される。高温条件で製膜することで、結晶粒が成長し、膜質向上と界面減少により、透明電極層の導電性を高くすることができる。しかしながら、高温の基板温度条件で製膜するため、結晶化が進み、結晶粒が粗大化する。結晶粒が粗大化すると、透明電極層の表面形状は、結晶粒を反映して、微小な凸凹形状となる。すなわち、金属層の基板側表面に微小凸凹が形成されてしまう課題があった。
本発明は、裏面構造の表面形状を最適化することによって、発電層の光吸収特性を向上させた光電変換装置及びその製造方法を提供する。
一般に裏面電極層材料として、光反射性の良好な銀が使用される。例えば、平滑なガラス基板上に銀薄膜を形成した場合、理想的な高反射率(約98%)が実現できる。
しかし、銀薄膜の表面に微小凹凸が存在することによって、銀薄膜表面において表面プラズモン共鳴による光吸収が発生する(以後、表面プラズモン吸収と記載)。表面プラズモン吸収が発生すると、基板側から入射し発電層を透過して裏面電極層としての銀薄膜に到達した光が、銀薄膜と裏面側透明電極層との界面で吸収されるため、発電層への反射光が減少する。この結果、発電層で吸収される光量が減少し、発電電流が低下する(すなわち、変換効率が低下する)。
本発明者らは、裏面側透明電極層に着目し、裏面側透明電極層の表面形状を制御して適正化することによって発電電流を増大させることができることを見出した。
すなわち、本発明の光電変換装置は、基板上に、該基板側から順に、第1透明電極層と、発電層と、第2透明電極層と、裏面電極層とを備える光電変換装置であって、前記裏面電極層が銀薄膜を備え、前記第2透明電極層の前記裏面電極層側の表面が微細な凹凸形状を有し、前記第2透明電極層の膜厚が、60nm以上100nm以下であり、前記第2透明電極層の前記裏面電極層側の表面の投影面積に対する表面積増加率が、10%以上32%以下であることを特徴とする。
第2透明電極層(裏面側透明電極層)の裏面電極側の表面形状には、下地である第1透明電極層のテクスチャに起因した大きな凹凸形状に加えて、第2透明電極層の製膜条件に起因する微小な凹凸形状が存在する。裏面電極層の基板側の表面形状は、第2透明電極層の裏面電極側表面の形状とほぼ同一となる。このように、第2透明電極層の裏面電極層側表面が微細な凹凸形状を有し、前記第2透明電極層の膜厚を、60nm以上100nm以下とし、投影面積に対する表面積増加率が10%以上32%以下とすることによって、銀薄膜を備える裏面電極層表面での表面プラズモン吸収による光損失が従来よりも低減し反射光が増加する。このため、発電層での短絡電流を増加させることができる。この結果、光電変換装置の出力を増大させて、変換効率を向上させることができる。なお、本発明における表面積増加率(ΔS)は、第2透明電極層の裏面電極層側表面の3次元表面積をS、前記表面を平面に投影したときの2次元投影面積をS0として、式(1)で表される。
ΔS(%) = {(S/S0)−1}×100 ・・・(1)
ΔS(%) = {(S/S0)−1}×100 ・・・(1)
また、本発明の光電変換装置は、基板上に、該基板側から順に、第1透明電極層と、発電層と、第2透明電極層と、裏面電極層とを備える光電変換装置であって、前記裏面電極層が銀薄膜を備え、前記第2透明電極層の前記裏面電極層側の表面が微細な凹凸形状を有し、前記第2透明電極層の膜厚が、60nm以上100nm以下であり、前記第2透明電極層が、針状結晶を有することを特徴とする。
このように、第2透明電極層の裏面電極層側の表面が微細な凹凸形状を有し、前記第2透明電極層の膜厚が、60nm以上100nm以下であり、第2透明電極層が針状結晶を有すると、第2透明電極層表面の微細構造が密となり、表面の凹凸の高低差が小さくなるので、平滑性の良い膜となる。裏面電極層の基板側表面もほぼ同一の形状となるため、銀薄膜を備える裏面電極層表面での表面プラズモン吸収による光損失が従来よりも低減し反射光が増加する。このため、発電層での短絡電流を増加させることができる。この結果、光電変換装置の出力を増大させて、変換効率を向上させることができる。
この場合、前記第2透明電極層の面内方向の前記針状結晶の長さに対する前記第2透明電極層の膜厚方向の前記針状結晶の長さの比が、2.2以上であることが好ましい。
このように、針状結晶の面内方向の長さに対する膜厚方向の長さの比(アスペクト比)が2.2以上、好ましくは2.5以上、より好ましくは2.8以上であれば、第2透明電極層表面の微細構造がより密となって、表面の平滑性が更に向上する。この結果、光電変換装置の出力及び変換効率を更に向上させることが可能である。
上記発明において、前記発電層が、2以上の電池層を備え、1つの電池層と該1つの電池層に最も近い他の電池層との間に設けられた中間コンタクト層を少なくとも1つ有してもよい。
中間コンタクト層は光閉じ込め増強効果がある。中間コンタクト層を設けることにより、裏面電極層及び第2透明電極層からの反射光を増加させることができ、短絡電流向上効果が高くなる。
本発明の光電変換装置の製造方法は、基板上に、該基板側から順に、第1透明電極層を形成する工程と、発電層を形成する工程と、第2透明電極層を形成する工程と、裏面電極層を形成する工程とを含む光電変換装置の製造方法であって、前記裏面電極層が銀薄膜を備え、前記第2透明電極層を、20℃以上90℃以下の基板温度で形成することを特徴とする。
従来、第2透明電極層は120℃から200℃の基板温度範囲で製膜されていた。本発明のように、20℃以上90℃以下、好ましくは20℃以上60℃以下の基板温度で第2透明電極層を形成することによって、第2透明電極層の裏面電極層側表面が、高低差が小さい微細な凹凸形状となり、平滑に近い表面となる。裏面電極層の基板側表面もほぼ同一の形状となる。このため、銀薄膜を備える裏面電極層表面での表面プラズモン吸収による光損失を低減して反射光を増加させることができ、発電層での短絡電流を向上させることができる。この結果、高い変換効率を有する光電変換装置を得ることができる。
上記発明において、前記第2透明電極層の前記裏面電極層側の表面の投影面積に対する表面積増加率が10%以上32%以下となるように、前記第2透明電極層を形成することが好ましい。
このように、第2透明電極層の裏面電極層側表面の投影面積に対する表面積増加率が10%以上32%以下であれば、第2透明電極層は平滑性の高い表面を有することになる。このため、銀薄膜を備える裏面電極層表面での表面プラズモン吸収による光損失を低減して反射光を増加させて発電層での短絡電流を向上させることができ、高い変換効率を有する光電変換装置を得ることができる。
上記発明において、前記第2透明電極層が、針状結晶を有することが好ましい。この場合、前記第2透明電極層の面内方向の前記針状結晶の長さに対する前記第2透明電極層の面垂直方向の前記針状結晶の長さの比が、2.2以上であることが好ましい。
第2透明電極層が針状結晶を有することにより、第2透明電極層の裏面電極側表面の微細構造が密となり、表面の凹凸の高低差がより小さくなるので、第2透明電極層の裏面電極側表面は高い平滑性を有する。このため、銀薄膜を備える裏面電極層表面での表面プラズモン吸収による光損失を低減して反射光を増加させて発電層での短絡電流を向上させることができ、高い変換効率を有する光電変換装置を得ることができる。特に、針状結晶の面内方向の長さに対する面垂直方向の長さの比(アスペクト比)が2.2以上、好ましくは2.5以上、より好ましくは2.8以上であれば、第2透明電極層表面の微細構造がより密であるため、表面の平滑性が更に向上する。この結果、出力が大きく変換効率の高い光電変換装置を得ることができる。
本発明の光電変換装置は、第2透明電極層の裏面電極層側の表面が微細な凹凸形状を有し、前記表面の投影面積に対する表面積増加率が、10%以上32%以下である。銀薄膜を備える裏面電極層の基板側表面も、第2透明電極層の裏面電極層側表面とほぼ同一の形状を有する。裏面電極層が上記形状の基板側表面を有するため、裏面電極層での表面プラズモン光吸収による損失が低減して反射光が増加する。このため、発電層での短絡電流が増加し、高い変換効率を有する光電変換装置となる。
また、本発明の光電変換装置は、第2透明電極層の裏面電極層側の表面が微細な凹凸形状を有し、第2透明電極層が、針状結晶を有する。このため、第2透明電極層表面の微細構造が密となり、表面の凹凸の高低差が小さくなり、従来よりも平滑性の良い表面となる。この結果、裏面電極層での表面プラズモン光吸収による損失が低減して反射光が増加して、高い変換効率を有する光電変換装置となる。
第2透明電極層を、20℃以上90℃以下の範囲内の基板温度で形成することによって、第2透明電極層の裏面伝電極側表面が上記形状である光電変換装置を製造することができる。第2透明電極層の表面形状は、裏面電極層での表面プラズモン光吸収による損失が低減され反射光が増加するように最適化されている。そのため、出力が大きく変換効率の高い光電変換装置を得ることができる。
本発明の光電変換装置の実施形態の構成について説明する。
図1は、本実施形態に係る光電変換装置の構成を示す概略図である。光電変換装置100は、シリコン系太陽電池であり、基板1、第1透明電極層2、発電層3としての第1電池層91(非晶質シリコン系)及び第2電池層92(結晶質シリコン系)、裏面構造として第2透明電極層6及び裏面電極層4を備える。なお、ここで、シリコン系とはシリコン(Si)やシリコンカーバイト(SiC)やシリコンゲルマニウム(SiGe)を含む総称である。また、結晶質シリコン系とは、非晶質シリコン系以外のシリコン系を意味するものであり、微結晶シリコンや多結晶シリコン系も含まれる。
図1は、本実施形態に係る光電変換装置の構成を示す概略図である。光電変換装置100は、シリコン系太陽電池であり、基板1、第1透明電極層2、発電層3としての第1電池層91(非晶質シリコン系)及び第2電池層92(結晶質シリコン系)、裏面構造として第2透明電極層6及び裏面電極層4を備える。なお、ここで、シリコン系とはシリコン(Si)やシリコンカーバイト(SiC)やシリコンゲルマニウム(SiGe)を含む総称である。また、結晶質シリコン系とは、非晶質シリコン系以外のシリコン系を意味するものであり、微結晶シリコンや多結晶シリコン系も含まれる。
次に、本実施形態の光電変換装置として、太陽電池パネルを製造する工程を図2から図5を用いて説明する。
(1)図2(a)
基板1としてソーダフロートガラス基板(例えば、1.4m×1.1m×板厚:3〜6mmの一辺が1mを超える大面積基板)を使用する。基板端面は熱応力や衝撃などによる破損防止にコーナー面取りやR面取り加工されていることが望ましい。
基板1としてソーダフロートガラス基板(例えば、1.4m×1.1m×板厚:3〜6mmの一辺が1mを超える大面積基板)を使用する。基板端面は熱応力や衝撃などによる破損防止にコーナー面取りやR面取り加工されていることが望ましい。
(2)図2(b)
第1透明電極層2として酸化錫(SnO2)を主成分とする膜厚約500nm以上800nm以下の透明電極膜を、熱CVD装置にて約500℃で製膜する。この際、透明電極膜の表面には、適当な凹凸のあるテクスチャが形成される。第1透明電極層2として、透明電極膜に加えて、基板1と透明電極膜との間にアルカリバリア膜(図示されず)を形成しても良い。アルカリバリア膜は、膜厚50nm以上150nm以下の酸化シリコン膜(SiO2)を熱CVD装置にて約500℃で製膜する。
第1透明電極層2として酸化錫(SnO2)を主成分とする膜厚約500nm以上800nm以下の透明電極膜を、熱CVD装置にて約500℃で製膜する。この際、透明電極膜の表面には、適当な凹凸のあるテクスチャが形成される。第1透明電極層2として、透明電極膜に加えて、基板1と透明電極膜との間にアルカリバリア膜(図示されず)を形成しても良い。アルカリバリア膜は、膜厚50nm以上150nm以下の酸化シリコン膜(SiO2)を熱CVD装置にて約500℃で製膜する。
(3)図2(c)
その後、基板1をX−Yテーブルに設置して、YAGレーザーの第1高調波(1064nm)を、図の矢印に示すように、第1透明電極層の層面側から入射する。加工速度が適切となるようにレーザーパワーを調整して、透明電極膜を発電セルの直列接続方向に対して垂直な方向へ、基板1とレーザー光を相対移動して、溝10を形成するように幅約6mmから15mmの所定幅の短冊状にレーザーエッチングする。
その後、基板1をX−Yテーブルに設置して、YAGレーザーの第1高調波(1064nm)を、図の矢印に示すように、第1透明電極層の層面側から入射する。加工速度が適切となるようにレーザーパワーを調整して、透明電極膜を発電セルの直列接続方向に対して垂直な方向へ、基板1とレーザー光を相対移動して、溝10を形成するように幅約6mmから15mmの所定幅の短冊状にレーザーエッチングする。
(4)図2(d)
第1電池層91として、非晶質シリコン薄膜からなるp層、i層及びn層を、プラズマCVD装置により製膜する。SiH4ガス及びH2ガスを主原料にして、減圧雰囲気:30Pa以上1000Pa以下、基板温度:約200℃にて、第1透明電極層2上に太陽光の入射する側から非晶質シリコンp層31、非晶質シリコンi層32、非晶質シリコンn層33の順で製膜する。非晶質シリコンp層31は非晶質のBドープシリコン膜であり、膜厚10nm以上30nm以下である。非晶質シリコンi層32は、膜厚200nm以上350nm以下である。非晶質シリコンn層33はPドープ非晶質シリコン膜であり、膜厚30nm以上50nm以下である。非晶質シリコンn層に代えて、結晶質シリコン膜を形成しても良く、あるいは、非晶質シリコン膜と結晶質シリコン膜との積層構造としても良い。非晶質シリコンp層31と非晶質シリコンi層32の間には、界面特性の向上のためにバッファー層を設けても良い。
第1電池層91として、非晶質シリコン薄膜からなるp層、i層及びn層を、プラズマCVD装置により製膜する。SiH4ガス及びH2ガスを主原料にして、減圧雰囲気:30Pa以上1000Pa以下、基板温度:約200℃にて、第1透明電極層2上に太陽光の入射する側から非晶質シリコンp層31、非晶質シリコンi層32、非晶質シリコンn層33の順で製膜する。非晶質シリコンp層31は非晶質のBドープシリコン膜であり、膜厚10nm以上30nm以下である。非晶質シリコンi層32は、膜厚200nm以上350nm以下である。非晶質シリコンn層33はPドープ非晶質シリコン膜であり、膜厚30nm以上50nm以下である。非晶質シリコンn層に代えて、結晶質シリコン膜を形成しても良く、あるいは、非晶質シリコン膜と結晶質シリコン膜との積層構造としても良い。非晶質シリコンp層31と非晶質シリコンi層32の間には、界面特性の向上のためにバッファー層を設けても良い。
第1電池層91上に、第2電池層92として結晶質シリコン薄膜からなるp層、i層及びn層を、プラズマCVD装置により製膜する。SiH4ガス及びH2ガスを主原料にして、減圧雰囲気:3000Pa以下、基板温度:約200℃、プラズマ発生周波数:40MHz以上100MHz以下にて、結晶質シリコンp層41、結晶質シリコンi層42、結晶質シリコンn層43の順で製膜する。
結晶質シリコンp層41はBドープした結晶質シリコン膜であり、膜厚10nm以上50nm以下である。結晶質シリコンi層42の膜厚は、1.2μm以上3.0μm以下である。結晶質シリコンn層43はPドープした結晶質シリコン膜であり、膜厚20nm以上50nm以下である。
本実施形態において、第1電池層91上に、第1電池層91と第2電池層92との接触性を改善するとともに電流整合性を取るために半反射膜となる中間コンタクト層5を形成しても良い。中間コンタクト層5として、DCスパッタリング装置により、ターゲット:GaドープZnO焼結体を用いて、膜厚20nm以上100nm以下のGZO(GaドープZnO)膜を形成する。
(5)図2(e)
基板1をX−Yテーブルに設置して、レーザーダイオード励起YAGレーザーの第2高調波(532nm)を、図の矢印に示すように、光電変換層3の膜面側から入射する。パルス発振:10kHz以上20kHz以下として加工速度に適切となるようにレーザーパワーを調整して、第1透明電極層2のレーザーエッチングラインの約100μmから150μmの横側を、溝11を形成するようにレーザーエッチングする。またこのレーザーは基板1側から入射しても良い。この場合は光電変換層3の第1電池層91で吸収されたエネルギーで発生する高い蒸気圧を利用できるので、更に安定したレーザーエッチング加工を行うことが可能となる。レーザーエッチングラインの位置は前工程でのエッチングラインと交差しないように位置決め公差を考慮して選定する。
基板1をX−Yテーブルに設置して、レーザーダイオード励起YAGレーザーの第2高調波(532nm)を、図の矢印に示すように、光電変換層3の膜面側から入射する。パルス発振:10kHz以上20kHz以下として加工速度に適切となるようにレーザーパワーを調整して、第1透明電極層2のレーザーエッチングラインの約100μmから150μmの横側を、溝11を形成するようにレーザーエッチングする。またこのレーザーは基板1側から入射しても良い。この場合は光電変換層3の第1電池層91で吸収されたエネルギーで発生する高い蒸気圧を利用できるので、更に安定したレーザーエッチング加工を行うことが可能となる。レーザーエッチングラインの位置は前工程でのエッチングラインと交差しないように位置決め公差を考慮して選定する。
(6)図3(a)
第2電池層92の結晶質シリコンn層43上に、順に第2透明電極層6及び裏面電極層4を形成する。
第2透明電極層6として、GZO膜をスパッタリング装置により製膜する。ターゲット:GaドープZnO焼結体を用いて、放電ガス:アルゴン及び酸素、膜厚:50nm以上150nm以下、基板温度:20℃以上90℃以下、好ましくは20℃以上60℃以下で製膜する。
第2電池層92の結晶質シリコンn層43上に、順に第2透明電極層6及び裏面電極層4を形成する。
第2透明電極層6として、GZO膜をスパッタリング装置により製膜する。ターゲット:GaドープZnO焼結体を用いて、放電ガス:アルゴン及び酸素、膜厚:50nm以上150nm以下、基板温度:20℃以上90℃以下、好ましくは20℃以上60℃以下で製膜する。
裏面電極層4として、スパッタリング装置により、放電ガス:アルゴン、製膜温度:約150℃にてAg膜を製膜する。あるいは、裏面電極層4として、Ag膜:200〜500nm、これを保護するものとして防食効果の高いTi膜:10〜20nmを順に積層して、Ag膜/Ti膜の積層膜を形成しても良い。この場合は、基板側にAg膜が設置される層構成とする。
(7)図3(b)
基板1をX−Yテーブルに設置して、レーザーダイオード励起YAGレーザーの第2高調波(532nm)を、図の矢印に示すように、基板1側から入射する。レーザー光が光電変換層3で吸収され、このとき発生する高いガス蒸気圧を利用して裏面電極層4が爆裂して除去される。パルス発振:1kHz以上10kHz以下として加工速度に適切となるようにレーザーパワーを調整して、透明電極層2のレーザーエッチングラインの約250μmから400μmの横側を、溝12を形成するようにレーザーエッチングする。
基板1をX−Yテーブルに設置して、レーザーダイオード励起YAGレーザーの第2高調波(532nm)を、図の矢印に示すように、基板1側から入射する。レーザー光が光電変換層3で吸収され、このとき発生する高いガス蒸気圧を利用して裏面電極層4が爆裂して除去される。パルス発振:1kHz以上10kHz以下として加工速度に適切となるようにレーザーパワーを調整して、透明電極層2のレーザーエッチングラインの約250μmから400μmの横側を、溝12を形成するようにレーザーエッチングする。
(8)図3(c)
発電領域を区分して、基板端周辺の膜端部においてレーザーエッチングによる直列接続部分が短絡し易い影響を除去する。基板1をX−Yテーブルに設置して、レーザーダイオード励起YAGレーザーの第2高調波(532nm)を、基板1側から入射する。レーザー光が透明電極層2と光電変換層3とで吸収され、このとき発生する高いガス蒸気圧を利用して裏面電極層4が爆裂して、裏面電極層4/光電変換層3/透明電極層2が除去される。パルス発振:1kHz以上10kHz以下として加工速度に適切となるようにレーザーパワーを調整して、基板1の端部から5mmから20mmの位置を、図3(c)に示すように、X方向絶縁溝15を形成するようにレーザーエッチングする。このとき、Y方向絶縁溝は後工程で基板1周囲領域の膜面研磨除去処理を行うので、設ける必要がない。
発電領域を区分して、基板端周辺の膜端部においてレーザーエッチングによる直列接続部分が短絡し易い影響を除去する。基板1をX−Yテーブルに設置して、レーザーダイオード励起YAGレーザーの第2高調波(532nm)を、基板1側から入射する。レーザー光が透明電極層2と光電変換層3とで吸収され、このとき発生する高いガス蒸気圧を利用して裏面電極層4が爆裂して、裏面電極層4/光電変換層3/透明電極層2が除去される。パルス発振:1kHz以上10kHz以下として加工速度に適切となるようにレーザーパワーを調整して、基板1の端部から5mmから20mmの位置を、図3(c)に示すように、X方向絶縁溝15を形成するようにレーザーエッチングする。このとき、Y方向絶縁溝は後工程で基板1周囲領域の膜面研磨除去処理を行うので、設ける必要がない。
絶縁溝15は基板1の端より5mmから10mmの位置にてエッチングを終了させることにより、太陽電池パネル端部からの太陽電池モジュール7内部への外部湿分浸入の抑制に、有効な効果を奏するので好ましい。
尚、以上までの工程におけるレーザー光はYAGレーザーとしているが、YVO4レーザーやファイバーレーザーなどが同様に使用できるものがある。
(9)図4(a)
後工程のEVA等を介したバックシート24との健全な接着・シール面を確保するために、基板1周辺(周囲領域14)の積層膜は、段差があるとともに剥離し易いため、積層膜を除去する。基板1の端から5mmから20mmで基板1の全周囲にわたり、X方向は前述の図3(c)工程で設けた絶縁溝15よりも基板端側において、Y方向は基板端側部付近の溝10よりも基板端側において、裏面電極層4/光電変換層3/透明電極層2を、砥石研磨やブラスト研磨などを用いて除去を行う。研磨屑や砥粒は基板1を洗浄処理して除去する。
後工程のEVA等を介したバックシート24との健全な接着・シール面を確保するために、基板1周辺(周囲領域14)の積層膜は、段差があるとともに剥離し易いため、積層膜を除去する。基板1の端から5mmから20mmで基板1の全周囲にわたり、X方向は前述の図3(c)工程で設けた絶縁溝15よりも基板端側において、Y方向は基板端側部付近の溝10よりも基板端側において、裏面電極層4/光電変換層3/透明電極層2を、砥石研磨やブラスト研磨などを用いて除去を行う。研磨屑や砥粒は基板1を洗浄処理して除去する。
(10)図4(b)
端子箱取付け部分はバックシート24に開口貫通窓を設けて集電板を取出す。この開口貫通窓部分には絶縁材を複数層設置して外部からの湿分などの浸入を抑制する。
端子箱取付け部分はバックシート24に開口貫通窓を設けて集電板を取出す。この開口貫通窓部分には絶縁材を複数層設置して外部からの湿分などの浸入を抑制する。
直列に並んだ一方端の太陽電池発電セルと、他方端部の太陽電池発電セルとから銅箔を用いて集電して太陽電池パネル裏側の端子箱部分から電力が取出せるように処理する。銅箔は各部との短絡を防止するために銅箔幅より広い絶縁シートを配置する。
集電用銅箔などが所定位置に配置された後に、太陽電池モジュール7の全体を覆い、基板1からはみ出さないようにEVA(エチレン酢酸ビニル共重合体)等による接着充填材シートを配置する。
EVAの上に、防水効果の高いバックシート24を設置する。バックシート24は本実施形態では防水防湿効果が高いようにPETシート/AL箔/PETシートの3層構造よりなる。
バックシート24までを所定位置に配置したものを、ラミネータにより減圧雰囲気で内部の脱気を行い約150℃から160℃でプレスしながら、EVAを架橋させて密着させる。
(11)図5(a)
太陽電池モジュール7の裏側に端子箱23を接着剤で取付ける。
太陽電池モジュール7の裏側に端子箱23を接着剤で取付ける。
(12)図5(b)
銅箔と端子箱23の出力ケーブルとをハンダ等で接続し、端子箱内部を封止剤(ポッティング剤)で充填して密閉する。これで太陽電池パネル50が完成する。
銅箔と端子箱23の出力ケーブルとをハンダ等で接続し、端子箱内部を封止剤(ポッティング剤)で充填して密閉する。これで太陽電池パネル50が完成する。
(13)図5(c)
図5(b)までの工程で形成された太陽電池パネル50について発電検査ならびに、所定の性能試験を行う。発電検査は、AM1.5、全天日射基準太陽光(1000W/m2)のソーラシミュレータを用いて行う。
図5(b)までの工程で形成された太陽電池パネル50について発電検査ならびに、所定の性能試験を行う。発電検査は、AM1.5、全天日射基準太陽光(1000W/m2)のソーラシミュレータを用いて行う。
(14)図5(d)
発電検査(図5(c))に前後して、外観検査をはじめ所定の性能検査を行う。
発電検査(図5(c))に前後して、外観検査をはじめ所定の性能検査を行う。
上記工程で製造された太陽電池において、図1に示すように、第2透明電極層6の裏面電極層4側の表面が微小な凹凸形状を有し、投影面積に対する表面積増加率が10%以上32%以下となり、平滑性の良い表面となる。
表面積増加率は、例えば、所定視野における第2透明電極層の裏面電極層側表面の原子間力電子顕微鏡(AFM)画像から得た3次元面積(S)と、所定視野における第2透明電極層の裏面電極層側表面を平面上に投影することによって生成された2次元の投影面積(S0)とから、式(1)を用いて算出することができる。
表面積増加率は、例えば、所定視野における第2透明電極層の裏面電極層側表面の原子間力電子顕微鏡(AFM)画像から得た3次元面積(S)と、所定視野における第2透明電極層の裏面電極層側表面を平面上に投影することによって生成された2次元の投影面積(S0)とから、式(1)を用いて算出することができる。
また上記工程で製造された太陽電池の第2透明電極層6は、結晶が膜厚方向に成長し、1つの結晶組織が膜厚方向に貫通した針状結晶を有する。アスペクト比(針状結晶の第2透明電極層面内方向の長さに対する膜厚方向の長さの比)が2.2以上、好ましくは2.5以上、より好ましくは2.8以上の針状結晶を有することにより、第2透明電極層6の裏面電極層4側表面の微細構造が密となり、表面の凹凸の高低差がより小さくなるので、平滑性の良い膜となる。
第2透明電極層の結晶組織の膜厚方向の長さは、1つの結晶組織が膜厚方向に貫通するため、第2透明電極層の膜厚と等しい。第2透明電極層の膜厚は、電界放射型走査型電子顕微鏡(FESEM)断面観察写真での計測、段差計測、製膜条件と膜厚との検量線を用い製膜条件から算出、などの方法によって得られる。結晶組織の第2透明電極層面内方向の長さは、原子間力電子顕微鏡(AFM)画像のパワースペクトラム密度(PSD)解析により、パワースペクトラム密度の極大となる周期から得られる。
第2透明電極層の結晶組織の膜厚方向の長さは、1つの結晶組織が膜厚方向に貫通するため、第2透明電極層の膜厚と等しい。第2透明電極層の膜厚は、電界放射型走査型電子顕微鏡(FESEM)断面観察写真での計測、段差計測、製膜条件と膜厚との検量線を用い製膜条件から算出、などの方法によって得られる。結晶組織の第2透明電極層面内方向の長さは、原子間力電子顕微鏡(AFM)画像のパワースペクトラム密度(PSD)解析により、パワースペクトラム密度の極大となる周期から得られる。
裏面電極層4は、第2透明電極層6の裏面電極側4表面に倣った表面形状となる。すなわち、図1に示すように、裏面電極層4の基板側1表面の形状は、第2透明電極層6の裏面電極層4側表面とほぼ同一の形状となる。裏面電極層4の基板1側表面が上記の表面形状を有することにより、裏面電極層4での表面プラズモン光吸収による損失が低減され、反射光が増加する。このため、本実施形態の太陽電池は、発電層での短絡電流が増加し、出力が大きく高い変換効率を有する。
なお、本実施形態の太陽電池における第2透明電極層6の裏面電極層4側表面の形状は、例えば、薬品を用いた化学的除去や剥離によって裏面電極層4を除去して第2透明電極層6を露出させ、AFMまたはFESEMを用いて観察することによって、確認することができる。
(GZO膜表面形状への製膜時の基板温度の影響)
ガラス基板上にGZO膜を製膜した。DCスパッタリング装置を用い、ターゲット:GaドープZnO焼結体、放電ガス:アルゴン及び酸素、膜厚:80nm狙い、基板温度:25℃、60℃、135℃、200℃で製膜した。
ガラス基板上にGZO膜を製膜した。DCスパッタリング装置を用い、ターゲット:GaドープZnO焼結体、放電ガス:アルゴン及び酸素、膜厚:80nm狙い、基板温度:25℃、60℃、135℃、200℃で製膜した。
各基板温度条件で製膜したGZO膜の表面形状を、AFM(Digital Instruments社製、NanoScope D−3100)を使用し、視野角:2μm×2μm、解像度:512ピクセル、Zレンジ:100nm/divまたは500nm/div、タッピングモードにて、同一試料の任意2視野を観察した。得られたAFM画像から表面積増加率の平均値を求めた。AFM画像の断面プロファイルで、1視野に付き無作為に抽出した15点(計30点)の凹凸の高さ及び幅(凹凸の山と谷との距離)を計測し、凹凸の高さ及び幅の平均値を算出した。AFM画像の1次元パワースペクトラム密度解析を行った。パワースペクトラム密度の横軸は周期であり、距離の次元である。ある距離で特有の構造を有する表面形状の場合、その距離に相当する周期にピークを示す。すなわち、パワースペクトル密度の極大を与える周期が、表面形状のピッチを表す。
各基板温度条件で製膜したGZO膜を、FESEM(日本電子社製、FESEM JSM−6301F)を使用し、加速電圧:3keV、倍率:10万倍、導電性コーティング:Ptコートにて観察した。
表1に、各基板温度で製膜したGZO膜の表面積増加率、AFM画像から得た凹凸の高さ及び幅を示す。基板温度が高い程、表面積増加率が大きく、凹凸の高さが大きい傾向があった。また、製膜時の基板温度が高い程、パワースペクトラム密度が高く検出された。すなわち、基板温度が高いと表面の微細凹凸の高低差が大きくなるという結果が得られた。基板温度が高いほど、パワースペクトラム密度の極大を与える周期の値が大きくなった。すなわち、基板温度が高いと、結晶粒が粗大化し、微細凸凹のピッチが大きくなるという結果が得られた。
図6は、基板温度(a)200℃、(b)135℃、(c)60℃、(d)25℃で製膜したGZO膜のFESEM像である。基板温度200℃及び135℃で製膜したGZO膜は、粒状の結晶組織(アスペクト比はそれぞれ、1.5、2.1)となり、表面に大きな凹凸が観察された。一方、基板温度60℃及び25℃で製膜したGZO膜は、膜厚方向(結晶成長方向)に長い針状の結晶組織(アスペクト比はそれぞれ、3.1、2.8)となり、表面の凹凸が小さかった。なお、アスペクト比について、膜厚方向の長さは、ガラス上のGZO膜をFESEMで断面観察し、膜厚を測長して求めた。幅方向の長さは、ガラス上のGZO膜をAFMにて表面形状分析して取得したパワースペクトラム密度の極大を与える周期とした。
以上の結果から、製膜時の基板温度とGZO膜表面形状に相関があるということができた。
(太陽電池の短絡電流及び表面プラズモン吸収の計算)
表1の結果より、GZO膜(第2透明電極層)表面の凹凸形状を考慮して、図7に示す太陽電池の積層構造モデルを与えて、電磁波解析(FDTD法)を行った。
表1の結果より、GZO膜(第2透明電極層)表面の凹凸形状を考慮して、図7に示す太陽電池の積層構造モデルを与えて、電磁波解析(FDTD法)を行った。
図7(a)の積層構造モデルは、単層の太陽電池であり、ガラス基板1上に、順に第1透明電極層2、発電層として非晶質シリコンp層31、非晶質シリコンi層32、結晶質シリコンn層43、第2透明電極層6、及び裏面電極層4が積層される。
第1透明電極層2は、テクスチャ構造の平均ピッチ(1周期分の幅)600nm、仰角(基板面からの角度)30°、平均膜厚500nmとした。なお、平均ピッチ及び仰角は、ガラス基板に製膜した第1透明電極層(ヘイズ率20%)の表面形状をAFM分析して求めた代表寸法とした。
p層31の膜厚は10nmであり、層上下のテクスチャ構造は第1透明電極層2の上側のテクスチャ構造に倣った構造とした。i層32の膜厚は200nmとして、下側テクスチャ構造はp層31と同一とし、上側テクスチャ構造は第1透明電極層2と同一ピッチの正弦関数で与えた。i層32を製膜後に、表面形状をAFM分析して求めた代表寸法を用いて、正弦関数の振幅を規定した。n層43の膜厚は30nmとし、層上下のテクスチャ構造はi層の上側テクスチャ構造に倣った形状とした。
第2透明電極層6(GZO膜)は、平均膜厚60nmとした。第2透明電極層6の下側のテクスチャ構造はn層43に倣った構造とした。第2透明電極層6の上側構造は、図7(b)に示すように、n層43と同一形状の大きなテクスチャ構造に、正弦関数で与えられる微小テクスチャ構造が存在する形状とした。
裏面電極層4は銀薄膜とし、平均膜厚250nmとした。裏面電極層4の下側テクスチャ構造は、第2透明電極層6の上側テクスチャ構造と同一とした。
微小テクスチャ構造の振幅及びピッチは、表1に示すGZO単膜の凹凸の高さ及び幅を基に決定した。第2透明電極層6の微小テクスチャ構造の振幅(高さ)及びピッチ(幅の2倍)を、それぞれ0nmから20nm、30nmから120nmの範囲で変更し、短絡電流及び銀吸収光の等価電流を計算した。なお、振幅0nmとは微小テクスチャ構造が存在しない場合を表す。短絡電流は、非晶質シリコンi層で吸収された光量を、太陽光スペクトルAM1.5の条件で電流に換算した値である。銀吸収光の等価電流は、裏面電極層の基板側表面で吸収された光量を、太陽光スペクトルAM1.5の条件で電流に換算した値である。
図8に、微小テクスチャ構造の振幅と短絡電流との関係を表したグラフを示す。同図において、横軸は振幅、縦軸は微小テクスチャの振幅0nmでの短絡電流値を基準とした場合の短絡電流の相対値である。図9に、微小テクスチャ構造の振幅と銀吸収光の等価電流との関係を表したグラフである。同図において、横軸は振幅、縦軸は微小テクスチャの振幅0nmでの短絡電流値を基準とした場合の銀吸収光の等価電流の相対値である。
微小テクスチャの振幅が大きくなる程、短絡電流が減少した。同一振幅で比較すると、微小テクスチャのピッチが小さい程、短絡電流が減少する傾向があった。銀吸収光の等価電流は短絡電流の傾向と逆であり、微小テクスチャの振幅が大きい場合に増加し、ピッチが小さい場合に増加した。
図8及び図9の結果から、短絡電流を増加させるには、第2透明電極層の微小テクスチャのピッチを大きくすること(GZOの結晶サイズを大きくすること)、振幅を小さくすること(微小テクスチャ構造を鏡面に近づけること)が有効であることが示された。
図8及び図9の結果から、短絡電流を増加させるには、第2透明電極層の微小テクスチャのピッチを大きくすること(GZOの結晶サイズを大きくすること)、振幅を小さくすること(微小テクスチャ構造を鏡面に近づけること)が有効であることが示された。
図8に、短絡電流損失の合否判定ラインとして、それぞれ振幅0nmの短絡電流値からの損失0.5%ライン及び損失1%ラインを示す。表1に示した各基板温度で製膜したGZO膜の振幅(高さ)とピッチ(幅の2倍)を図8に当てはめると、基板温度135℃及び200℃(振幅8〜10nm、ピッチ80nm)は、合否判定の第1段階(損失1%ライン)を満たすが、第2段階(損失0.5%ライン)を下回った。基板温度25℃及び60℃(振幅3〜5nm、ピッチ40〜80nm)は、合否判定の第1段階及び第2段階の両方を満たした。
上記結果から、次の考察が得られた。
第2透明電極層を90℃以下の基板温度(例えば25℃や60℃)で製膜した場合は、第2透明電極層の裏面電極層側表面の微小テクスチャの振幅が小さい。また、低温製膜したGZO膜は密な針状組織(アスペクト比2.2以上)となっている。すなわち、第2透明電極層としてGZO膜を低温で製膜した太陽電池は、表面積増加率が小さく鏡面に近い状態となるため、裏面電極層(銀)表面での表面プラズモン吸収が小さく、裏面電極層表面で反射される光の光量が大きくなると考えられる。この結果、発電層で発生する電流(短絡電流)の減少を抑制することができ、変換効率の低下も抑制することができると予想される。
第2透明電極層を90℃以下の基板温度(例えば25℃や60℃)で製膜した場合は、第2透明電極層の裏面電極層側表面の微小テクスチャの振幅が小さい。また、低温製膜したGZO膜は密な針状組織(アスペクト比2.2以上)となっている。すなわち、第2透明電極層としてGZO膜を低温で製膜した太陽電池は、表面積増加率が小さく鏡面に近い状態となるため、裏面電極層(銀)表面での表面プラズモン吸収が小さく、裏面電極層表面で反射される光の光量が大きくなると考えられる。この結果、発電層で発生する電流(短絡電流)の減少を抑制することができ、変換効率の低下も抑制することができると予想される。
一方、第2透明電極層を90℃より高い基板温度(例えば、135℃や200℃)で製膜した場合は、第2透明電極層の裏面電極層側表面の微小テクスチャの振幅が大きい。高温で製膜したGZO膜は、アスペクト比が小さい粒状組織であり、表面の凹凸が大きい。すなわち、第2透明電極層としてGZOを高温で製膜した太陽電池は、表面積増加率が大きく粗い表面であるため、表面プラズモン吸収が大きく、裏面電極層表面で反射される光の光量が小さいと考えられる。この結果、発電層での短絡電流が減少し、変換効率が低下すると予想される。
(第2透明電極層製膜時の基板温度と太陽電池性能との関係)
ガラス基板上に第1透明電極層、非晶質シリコンからなる発電層として、p層、i層及びn層、及び第2透明電極層を順次形成し、非晶質シリコンシングル型の積層体を作製した。
第1透明電極層としてSnO2膜を膜厚:700nmで製膜した。非晶質シリコンからなる発電層を、プラズマCVD装置により、p層膜厚:10nm、i層膜厚:200nm、n層膜厚:30nmで製膜した。第2透明電極層として、DCスパッタリング装置を用い、ターゲット:GaドープZnO焼結体、放電ガス:アルゴン及び酸素、基板温度:60℃または135℃でGZO膜を製膜した。基板温度60℃で製膜した場合のGZO膜厚は100nm、基板温度135℃で製膜した場合のGZO膜厚は60nmとした。
ガラス基板上に第1透明電極層、非晶質シリコンからなる発電層として、p層、i層及びn層、及び第2透明電極層を順次形成し、非晶質シリコンシングル型の積層体を作製した。
第1透明電極層としてSnO2膜を膜厚:700nmで製膜した。非晶質シリコンからなる発電層を、プラズマCVD装置により、p層膜厚:10nm、i層膜厚:200nm、n層膜厚:30nmで製膜した。第2透明電極層として、DCスパッタリング装置を用い、ターゲット:GaドープZnO焼結体、放電ガス:アルゴン及び酸素、基板温度:60℃または135℃でGZO膜を製膜した。基板温度60℃で製膜した場合のGZO膜厚は100nm、基板温度135℃で製膜した場合のGZO膜厚は60nmとした。
ガラス基板上に、第1透明電極層、第1電池層、中間コンタクト層、第2電池層、及び第2透明電極層を順次形成し、タンデム型の積層体を作製した。なお、第1電池層及び第2電池層は、それぞれ基板側からp層、i層、n層の順で製膜した。
第1透明電極層としてSnO2膜を膜厚:700nmで製膜した。非晶質シリコンからなる第1電池層を、プラズマCVD装置により、p層膜厚:10nm、i層膜厚:200nm、n層膜厚:30nmで製膜した。中間コンタクト層として膜厚70nmのGZO膜を形成した。結晶質シリコンからなる第2電池層を、プラズマCVD装置により、p層膜厚:30nm、i層膜厚:2000nm、n層膜厚:30nmで製膜した。第2透明電極層として、DCスパッタリング装置を用い、ターゲット:GaドープZnO焼結体、放電ガス:アルゴン及び酸素、基板温度:60℃または135℃で製膜した。基板温度60℃で製膜した場合のGZO膜厚は100nm、基板温度135℃で製膜した場合のGZO膜厚は60nmとした。
第1透明電極層としてSnO2膜を膜厚:700nmで製膜した。非晶質シリコンからなる第1電池層を、プラズマCVD装置により、p層膜厚:10nm、i層膜厚:200nm、n層膜厚:30nmで製膜した。中間コンタクト層として膜厚70nmのGZO膜を形成した。結晶質シリコンからなる第2電池層を、プラズマCVD装置により、p層膜厚:30nm、i層膜厚:2000nm、n層膜厚:30nmで製膜した。第2透明電極層として、DCスパッタリング装置を用い、ターゲット:GaドープZnO焼結体、放電ガス:アルゴン及び酸素、基板温度:60℃または135℃で製膜した。基板温度60℃で製膜した場合のGZO膜厚は100nm、基板温度135℃で製膜した場合のGZO膜厚は60nmとした。
比較として、第2透明電極層無しのタンデム型の積層体を作製した。なお、第1透明電極層、第1電池層、中間コンタクト層及び第2電池層は、上記の第2透明電極層を形成したタンデム型の積層体と同様にして形成した。
本実施例の場合は、凹凸の大きい第1透明電極層を形成しているため、ガラス基板にGZO膜を製膜した表1に比べて表面積増加率が大きくなった。また、第2電池層n層表面の表面積増加率は10%未満であった。これに対し、第2透明電極層表面の表面積増加率は増大した。シングル型及びタンデム型のいずれの場合においても、基板温度60℃で製膜した第2透明電極層は、表面積増加率が32%以下だった。基板温度135℃で製膜した場合は、基板温度60℃の場合に比べて第2透明電極層の表面積増加率が大きかった。
このように、シングル型太陽電池及びタンデム型太陽電池ともに、第2透明電極層の表面積増加率は製膜時の基板温度に依存した。従って、タンデム型においても、第2透明電極層製膜時の基板温度が低い場合、第2透明電極層は針状組織となり、微細テクスチャ構造の振幅が小さくなるため、第2透明電極層の表面形状は平滑に近いと考えられた。
第2透明電極層の基板温度を変えてタンデム型太陽電池セル(基板:5cm角)を作製した。第2透明電極層として、膜厚:60nm、基板温度を25℃、60℃、90℃、135℃、150℃にて、GZO膜を製膜した。裏面電極層を形成後、窒素雰囲気にて温度:160℃、処理時間:2時間のアニール処理を行った。
作製したタンデム型太陽電池セルの短絡電流及び変換効率を測定した。図10に短絡電流の平均値及び標準偏差を示す。同図において、横軸は第2透明電極層製膜時の基板温度、縦軸は基板温度150℃での短絡電流を基準とした場合の短絡電流の相対値である。図11に変換効率の平均値及び標準偏差を示す。同図において、横軸は第2透明電極層製膜時の基板温度、縦軸は基板温度150℃での変換効率を基準とした場合の変換効率の相対値である。なお、短絡電流及び変換効率の値は、5cm角基板面内のセルが15点、基板枚数が計5枚で測定した平均値であり、レーザーエッチング加工ミスによる仕損じのセルを除いた値である。
図10に示すように、基板温度90℃以下で第2透明電極層を製膜した太陽電池セルは、従来条件である基板温度135℃及び150℃で第2透明電極層を製膜した太陽電池セルに比べて、短絡電流が増大した。短絡電流の増大に対応して、図11に示すように、基板温度90℃以下で第2透明電極層を製膜した太陽電池セルでは変換効率も向上した。なお、基板温度90℃以下で第2透明電極層を製膜した太陽電池セルにおいては、短絡電流とともに開放電圧及び曲線因子も向上したため、図11に示す変換効率は、短絡電流増分の寄与のみの場合よりも大きい値となった。
図10及び図11には、太陽電池セルでの結果を示したが、例えば基板の大きさが1.4m×1.1m角の大面積太陽電池モジュールにおいても、同様に短絡電流増大によるモジュール出力の向上(従来比で、発電出力が約3%向上)を確認できた。
図12は、ガラス基板上にGZO膜と銀薄膜とを順に形成した試料(GZO製膜時の基板温度:25℃、60℃、90℃、135℃、150℃)のガラス基板側から光入射したときの分光反射スペクトルである。ガラス基板は、コーニング社#1737ガラス(板厚1.1mmt)である。同図において、横軸は波長、縦軸は反射率である。タンデム型太陽電池の第2電池層の吸収波長帯域は波長600nmから1000nmの範囲である。基板温度135℃及び150℃でGZO膜を製膜した場合は、第2電池層の吸収波長帯域での反射率が低く、特に波長900nm以下で反射率が大幅に低下した。基板温度90℃でGZO膜を製膜すると、短波長側での反射率が改善された。基板温度25℃及び60℃でGZO膜を製膜した場合は、第2電池層の吸収波長帯域全体で高い反射率が得られた。
タンデム型太陽電池セルにおいて、表2に示したように、第2透明電極層の裏面電極側表面の形状は製膜時の基板温度に依存し、90℃以下の温度(表2では60℃)で製膜すると平滑に近い微細凹凸形状となると考えられた。また、図12の反射スペクトルより、低温で製膜することにより、第2電池層の吸収波長帯域全体で高い反射率が得られた。従って、第2透明電極層を90℃以下で製膜したタンデム型太陽電池は、裏面電極層の基板側表面の微細凹凸形状に起因する表面プラズモン吸収が抑制され、短絡電流の減少及び変換効率の減少が抑制されると予測できた。この予測は、図10及び図11の結果と一致した。
なお、上記実施形態及び実施例では、非晶質シリコンシングル型太陽電池及びタンデム型太陽電池を例に挙げて説明したが、本発明はこれらに限定されない。本発明は、例えば、結晶質シリコンシングル型太陽電池、結晶質SiGeシングル型太陽電池、非晶質シリコン、結晶質シリコン、結晶質SiGe等の発電層を光入射面よりバンドギャップが広がるように順次積層させたトリプル型太陽電池などにも適用可能である。
1 基板
2 第1透明電極層
3 光電変換層
4 裏面電極層
5 中間コンタクト層
6 第2透明電極層
7 太陽電池モジュール
31 非晶質シリコンp層
32 非晶質シリコンi層
33 非晶質シリコンn層
41 結晶質シリコンp層
42 結晶質シリコンi層
43 結晶質シリコンn層
91 第1電池層
92 第2電池層
100 光電変換装置
2 第1透明電極層
3 光電変換層
4 裏面電極層
5 中間コンタクト層
6 第2透明電極層
7 太陽電池モジュール
31 非晶質シリコンp層
32 非晶質シリコンi層
33 非晶質シリコンn層
41 結晶質シリコンp層
42 結晶質シリコンi層
43 結晶質シリコンn層
91 第1電池層
92 第2電池層
100 光電変換装置
Claims (6)
- 基板上に、該基板側から順に、第1透明電極層と、発電層と、第2透明電極層と、裏面電極層とを備える光電変換装置であって、
前記裏面電極層が銀薄膜を備え、
前記第2透明電極層の前記裏面電極層側の表面が微細な凹凸形状を有し、
前記第2透明電極層の膜厚が、60nm以上100nm以下であり、
前記第2透明電極層の前記裏面電極層側の表面の投影面積に対する表面積増加率が、29%以上32%以下であることを特徴とする光電変換装置。 - 基板上に、該基板側から順に、第1透明電極層と、発電層と、第2透明電極層と、裏面電極層とを備える光電変換装置であって、
前記裏面電極層が銀薄膜を備え、
前記第2透明電極層の前記裏面電極層側の表面が微細な凹凸形状を有し、
前記第2透明電極層の膜厚が、60nm以上100nm以下であり、
前記第2透明電極層が、針状結晶を有し、
前記第2透明電極層の面内方向の前記針状結晶の長さに対する前記第2透明電極層の膜厚方向の前記針状結晶の長さの比が、3.1以上であることを特徴とする光電変換装置。 - 前記発電層が、2以上の電池層を備え、
1つの電池層と該1つの電池層に最も近い他の電池層との間に設けられた中間コンタクト層を少なくとも1つ有することを特徴とする請求項1または請求項2に記載の光電変換装置。 - 基板上に、該基板側から順に、第1透明電極層を形成する工程と、発電層を形成する工程と、第2透明電極層を形成する工程と、裏面電極層を形成する工程とを含む光電変換装置の製造方法であって、
前記裏面電極層が銀薄膜を備え、
膜厚が60nm以上100nm以下とされる前記第2透明電極層を、60℃の基板温度で形成することを特徴とする光電変換装置の製造方法。 - 前記第2透明電極層の前記裏面電極層側の表面の投影面積に対する表面積増加率が29%以上32%以下となるように、前記第2透明電極層を形成することを特徴とする請求項4に記載の光電変換装置の製造方法。
- 前記第2透明電極層が、針状結晶を有し、前記第2透明電極層の面内方向の前記針状結晶の長さに対する前記第2透明電極層の膜厚方向の前記針状結晶の長さの比が、3.1以上とすることを特徴とする請求項4または請求項5に記載の光電変換装置の製造方法。
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008088595A JP4418500B2 (ja) | 2008-03-28 | 2008-03-28 | 光電変換装置及びその製造方法 |
TW098100414A TWI462310B (zh) | 2008-03-28 | 2009-01-07 | Photoelectric conversion device and manufacturing method thereof |
CN200980100161A CN101779295A (zh) | 2008-03-28 | 2009-01-09 | 光电转换装置及其制造方法 |
AU2009230536A AU2009230536A1 (en) | 2008-03-28 | 2009-01-09 | Photovoltaic device and process for producing same |
PCT/JP2009/050178 WO2009119129A1 (ja) | 2008-03-28 | 2009-01-09 | 光電変換装置及びその製造方法 |
US12/672,868 US20100269897A1 (en) | 2008-03-28 | 2009-01-09 | Photovoltaic device and process for producing same |
KR1020107002607A KR100981900B1 (ko) | 2008-03-28 | 2009-01-09 | 광전 변환 장치 및 그 제조 방법 |
EP09726325A EP2190029A4 (en) | 2008-03-28 | 2009-01-09 | PHOTOELECTRIC CONVERSION DEVICE AND METHOD FOR THE PRODUCTION THEREOF |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008088595A JP4418500B2 (ja) | 2008-03-28 | 2008-03-28 | 光電変換装置及びその製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009246030A JP2009246030A (ja) | 2009-10-22 |
JP4418500B2 true JP4418500B2 (ja) | 2010-02-17 |
Family
ID=41113339
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008088595A Expired - Fee Related JP4418500B2 (ja) | 2008-03-28 | 2008-03-28 | 光電変換装置及びその製造方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US20100269897A1 (ja) |
EP (1) | EP2190029A4 (ja) |
JP (1) | JP4418500B2 (ja) |
KR (1) | KR100981900B1 (ja) |
CN (1) | CN101779295A (ja) |
AU (1) | AU2009230536A1 (ja) |
TW (1) | TWI462310B (ja) |
WO (1) | WO2009119129A1 (ja) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8895844B2 (en) * | 2009-10-23 | 2014-11-25 | The Board Of Trustees Of The Leland Stanford Junior University | Solar cell comprising a plasmonic back reflector and method therefor |
US8896077B2 (en) * | 2009-10-23 | 2014-11-25 | The Board Of Trustees Of The Leland Stanford Junior University | Optoelectronic semiconductor device and method of fabrication |
KR101084985B1 (ko) * | 2010-03-15 | 2011-11-21 | 한국철강 주식회사 | 플렉서블 기판을 포함하는 광기전력 장치 및 이의 제조 방법 |
US8999857B2 (en) | 2010-04-02 | 2015-04-07 | The Board Of Trustees Of The Leland Stanford Junior University | Method for forming a nano-textured substrate |
KR101108988B1 (ko) * | 2010-04-16 | 2012-02-06 | 금호전기주식회사 | 표면 결정성 요철 구조의 전면 투명전극을 갖는 cigs태양전지 모듈 및 그 제조방법 |
KR101194243B1 (ko) * | 2010-04-20 | 2012-10-29 | 한국철강 주식회사 | 탠덤형 광기전력 장치 및 이의 제조 방법 |
JP2012064723A (ja) * | 2010-09-15 | 2012-03-29 | Mitsubishi Heavy Ind Ltd | 光電変換装置の製造方法 |
KR20120085571A (ko) * | 2011-01-24 | 2012-08-01 | 엘지이노텍 주식회사 | 태양 전지 |
CN103022161A (zh) * | 2011-09-22 | 2013-04-03 | 吉富新能源科技(上海)有限公司 | 制作高导电高光反射低光损失之岛状成长结构背电极 |
TWI443846B (zh) * | 2011-11-01 | 2014-07-01 | Ind Tech Res Inst | 透明導電層結構 |
KR101450799B1 (ko) * | 2013-03-04 | 2014-10-15 | 엘에스엠트론 주식회사 | 박막형 태양전지 및 그 제조방법 |
CN104780479A (zh) * | 2014-01-11 | 2015-07-15 | 富泰华精密电子(郑州)有限公司 | 具有通音孔的电子装置及电子装置通音孔的加工方法 |
CN109817731B (zh) | 2019-02-02 | 2021-10-12 | 京东方科技集团股份有限公司 | 一种光电二极管及其制作方法、电子设备 |
EP4224537A1 (en) * | 2022-02-02 | 2023-08-09 | Airbus Defence and Space GmbH | A dual junction solar cell with light management features for space use, a photovoltaic assembly for space use including a dual junction solar cell, a satellite including the photovoltaic assembly and a method for manufacturing a dual junction solar cell for space use |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH670507A5 (ja) | 1986-05-23 | 1989-06-15 | Mettler Instrumente Ag | |
JPH03295110A (ja) * | 1990-04-12 | 1991-12-26 | Matsushita Electric Ind Co Ltd | 透明性導電フィラーならびに該フィラーを用いた透明性導電樹脂膜 |
JP2974485B2 (ja) * | 1992-02-05 | 1999-11-10 | キヤノン株式会社 | 光起電力素子の製造法 |
JP3025392B2 (ja) * | 1993-05-28 | 2000-03-27 | 旭硝子株式会社 | 薄膜太陽電池とその製造方法 |
FR2711276B1 (fr) * | 1993-10-11 | 1995-12-01 | Neuchatel Universite | Cellule photovoltaïque et procédé de fabrication d'une telle cellule. |
JP3029178B2 (ja) * | 1994-04-27 | 2000-04-04 | キヤノン株式会社 | 薄膜半導体太陽電池の製造方法 |
JP3792281B2 (ja) * | 1995-01-09 | 2006-07-05 | 株式会社半導体エネルギー研究所 | 太陽電池 |
DE69708463T2 (de) * | 1996-02-27 | 2002-05-16 | Canon K.K., Tokio/Tokyo | Photovoltaische Vorrichtung, die ein undurchsichtiges Substrat mit einer spezifischen unregelmässigen Oberflächenstruktur aufweist |
JP2984595B2 (ja) * | 1996-03-01 | 1999-11-29 | キヤノン株式会社 | 光起電力素子 |
JP3368176B2 (ja) * | 1997-07-11 | 2003-01-20 | キヤノン株式会社 | 酸化亜鉛薄膜の製造方法、それを用いた光起電力素子及び半導体素子基板の製造方法 |
US6951689B1 (en) * | 1998-01-21 | 2005-10-04 | Canon Kabushiki Kaisha | Substrate with transparent conductive layer, and photovoltaic element |
WO1999063600A1 (fr) * | 1998-06-01 | 1999-12-09 | Kaneka Corporation | Dispositif photoelectrique a couches minces et a base de silicium |
JP2000252497A (ja) * | 1999-02-26 | 2000-09-14 | Kanegafuchi Chem Ind Co Ltd | 薄膜光電変換装置の製造方法 |
JP2001085722A (ja) * | 1999-09-17 | 2001-03-30 | Mitsubishi Heavy Ind Ltd | 透明電極膜の製造方法及び太陽電池 |
JP2003086025A (ja) * | 2001-09-07 | 2003-03-20 | Sanyo Electric Co Ltd | 透明導電膜成膜基板及びその製造方法 |
JP2003188401A (ja) * | 2001-10-09 | 2003-07-04 | Mitsubishi Heavy Ind Ltd | タンデム型シリコン系薄膜光電変換装置 |
JP4222500B2 (ja) * | 2002-04-02 | 2009-02-12 | 株式会社カネカ | シリコン系薄膜光電変換装置 |
JP4789131B2 (ja) * | 2004-02-27 | 2011-10-12 | 独立行政法人産業技術総合研究所 | 太陽電池及び太陽電池の製造方法 |
-
2008
- 2008-03-28 JP JP2008088595A patent/JP4418500B2/ja not_active Expired - Fee Related
-
2009
- 2009-01-07 TW TW098100414A patent/TWI462310B/zh not_active IP Right Cessation
- 2009-01-09 WO PCT/JP2009/050178 patent/WO2009119129A1/ja active Application Filing
- 2009-01-09 AU AU2009230536A patent/AU2009230536A1/en not_active Abandoned
- 2009-01-09 KR KR1020107002607A patent/KR100981900B1/ko not_active Expired - Fee Related
- 2009-01-09 CN CN200980100161A patent/CN101779295A/zh active Pending
- 2009-01-09 US US12/672,868 patent/US20100269897A1/en not_active Abandoned
- 2009-01-09 EP EP09726325A patent/EP2190029A4/en not_active Withdrawn
Also Published As
Publication number | Publication date |
---|---|
TWI462310B (zh) | 2014-11-21 |
US20100269897A1 (en) | 2010-10-28 |
KR20100021673A (ko) | 2010-02-25 |
CN101779295A (zh) | 2010-07-14 |
WO2009119129A1 (ja) | 2009-10-01 |
EP2190029A1 (en) | 2010-05-26 |
AU2009230536A1 (en) | 2009-10-01 |
TW200945603A (en) | 2009-11-01 |
EP2190029A4 (en) | 2011-10-12 |
JP2009246030A (ja) | 2009-10-22 |
KR100981900B1 (ko) | 2010-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4418500B2 (ja) | 光電変換装置及びその製造方法 | |
WO2007074683A1 (ja) | 積層型光電変換装置 | |
US20110126903A1 (en) | Photovoltaic device | |
JP5330723B2 (ja) | 光電変換装置 | |
WO2010050035A1 (ja) | 光電変換装置の製造方法 | |
US20100229935A1 (en) | Photovoltaic device | |
EP2485264A1 (en) | Photoelectric conversion device | |
JP2011155026A (ja) | 光電変換装置の製造方法 | |
WO2010064455A1 (ja) | 光電変換装置 | |
JP4875566B2 (ja) | 光電変換装置の製造方法 | |
JP2011061124A (ja) | 光電変換装置の製造方法及び光電変換装置 | |
WO2012036074A1 (ja) | 光電変換装置の製造方法 | |
JP2010251424A (ja) | 光電変換装置 | |
JP2010135637A (ja) | 光電変換装置 | |
JP2011040796A (ja) | 光電変換装置及びその製造方法 | |
JP2009231616A (ja) | 光電変換装置及びその製造方法 | |
JP2011077380A (ja) | 光電変換装置 | |
JP2011096848A (ja) | 光電変換装置の製造方法 | |
JP2012253078A (ja) | 多接合型光電変換装置の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091110 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091127 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121204 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131204 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |