[go: up one dir, main page]

JP4411377B2 - Method for producing polymer - Google Patents

Method for producing polymer Download PDF

Info

Publication number
JP4411377B2
JP4411377B2 JP2000332561A JP2000332561A JP4411377B2 JP 4411377 B2 JP4411377 B2 JP 4411377B2 JP 2000332561 A JP2000332561 A JP 2000332561A JP 2000332561 A JP2000332561 A JP 2000332561A JP 4411377 B2 JP4411377 B2 JP 4411377B2
Authority
JP
Japan
Prior art keywords
polymer
polymerization
carbon dioxide
fine powder
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000332561A
Other languages
Japanese (ja)
Other versions
JP2002128808A (en
Inventor
勝信 水口
岸夫 柴藤
勝人 大竹
猛 佐古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
NOF Corp
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NOF Corp, National Institute of Advanced Industrial Science and Technology AIST filed Critical NOF Corp
Priority to JP2000332561A priority Critical patent/JP4411377B2/en
Publication of JP2002128808A publication Critical patent/JP2002128808A/en
Application granted granted Critical
Publication of JP4411377B2 publication Critical patent/JP4411377B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Polymerisation Methods In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、超臨界二酸化炭素を用いた重合体の製造方法に関する。
【0002】
【従来の技術】
従来から高分子微粉体等の重合体を製造する方法としては、有機溶剤中にて不飽和単量体を溶液重合した後、得られた高分子溶液から有機溶剤を除去し、乾燥、粉砕などを行うプロセスが一般的である。該プロセスでは、重合体を得るまでに何段階もの操作が必要である。また、このようなプロセスで高分子微粉体を製造すると、得られる微粉体の大きさが不均一となるという欠点がある。
【0003】
その他の方法としては、特開昭56−76447号公報に水不溶の不飽和単量体を界面活性剤の存在下、水中に分散させて乳化重合させる方法が開示されている。しかしながら、このような方法においては、多量の水を使用するため、多量の廃水処理が必要となり、環境負荷が大きい。また、このようなプロセスで高分子微粉体を製造しようとする場合、得られた微粒子の単離の際に微粒子同士が融着し、結果的に大きな粒子や塊になってしまい、微粉体等を得ることが困難である。
【0004】
近年、環境負荷の低い反応方法として超臨界二酸化炭素を溶剤に用いた反応方法の研究が進められている。高分子合成の分野においても、従来からの有機溶剤を多量に使用する製法に代わって、超臨界二酸化炭素を溶剤に用いたポリマーの合成が検討されている。例えば、特開平8−104830号公報には一度重合した高分子物質の溶液を超臨界相に溶解させて急速膨張させることにより塗料用高分子微粒子を製造する技術が開示されており、特開平8−113652号公報には一度生成した高分子固体を超臨界相に溶解させて、急速膨張させて塗料用高分子微粒体を製造する方法が開示されている。
【0005】
しかし、これら開示された技術では、超臨界相での膨張に先立ち、超臨界流体以外の溶剤で重合反応を行い高分子物質を得る工程が必要となるので、工程が煩雑であるとともに有機溶剤量の減量を達成することは困難である。
【0006】
超臨界流体中において重合反応を行う技術としては、スチレン−アクリロニトリルの単量体混合物を、超臨界二酸化炭素中で、ラジカル重合開始剤の存在下で反応させる方法(特開平8−41135号公報)、スチレン−酢酸ビニルの単量体混合物を超臨界二酸化炭素中でラジカル重合開始剤の存在下で反応させる方法(特開平10−45838号公報)などが知られている。
【0007】
しかし、これら開示されている技術では前者の収率が84%、後者の収率が12〜56%であって、系中に残存する未反応の単量体を除去するための工程が必要である。更には、これら開示されている方法では、重合体は超臨界二酸化炭素中に溶解していない溶融状態で製造されているため、高分子組成物は塊状で得られる。従って、高分子微粉体を得るためには粉砕等の更なる工程を必要とする。
【0008】
一方、特表平9−503798号公報には、超臨界二酸化炭素可溶部位としてフッ素化及びケイ素化された部位を持つ界面活性剤を用いた、超臨界二酸化炭素中でのポリマーの分散重合反応が開示されている。しかし、その収率は20〜75%と低いため工業規模でのポリマー製造には不利である。しかも、当該方法により得られる重合体の製品は、フルオロポリマーを含むため、有機溶剤に難溶で汎用性に乏しい。このような重合体の製品をそのまま塗料用組成物などとして利用した場合、フッ素の撥油・撥水作用による塗膜表面へのムラが現れるので、このような用途における利用が困難である。また、当該方法により得られる重合体の製品からフルオロポリマーを除去しようとした場合、有機溶剤を多量に使用することが必要となり、結局環境負荷が低減しにくくなる。
【0009】
【発明が解決しようとする課題】
本発明の第1の目的は、環境負荷が低く、工程が簡便で、収率が高く、汎用性の高い重合体を効率的に得ることができる重合体の製造方法を提供することにある。
【0011】
【課題を解決するための手段】
本発明によれば、炭素数10以上で、かつ分子中にカルボキシル基を少なくとも1つ以上有する非重合性分散剤の存在下で、超臨界二酸化炭素中で重合性単量体を重合することを特徴とする重合体の製造方法が提供される。
【0013】
【発明の実施の形態】
本発明の重合体の製造方法では、超臨界二酸化炭素中で重合性単量体を重合する。
【0014】
前記超臨界二酸化炭素とは、二酸化炭素をその臨界点(臨界温度31℃または臨界圧力73.5kg/cm2)以上に加温・加圧することにより得られ、それ以上に加圧しても液化されない状態の流体となった二酸化炭素をいい、通常、気体と液体の性質を有する。
【0015】
前記超臨界二酸化炭素は、ボンベ等に入った市販の二酸化炭素ガスを、重合反応を行う反応容器内に導入し、所定の温度及び圧力とすることで得ることができる。導入する二酸化炭素ガスは純度99.9%以上のものを用いることが好ましい。
【0016】
前記超臨界二酸化炭素には更に他の添加溶剤を配合して用いてもよい。前記添加溶剤としては、水、メタノール、エタノール等の低級アルコール、アセトニトリル等を用いることができる。前記の添加溶剤は超臨界二酸化炭素100重量部に対して0.1から100重量部程度加えることができるが、公害発生の防止や環境負荷の低減の観点からは添加溶剤は用いないことが好ましい。
【0017】
本発明の重合体の製造方法では、重合を、特定の非重合性分散剤の存在下において行う。
【0018】
前記非重合性分散剤は、分子内に少なくとも1つのカルボキシル基を有し、その分子を構成する炭素数が10以上である。
【0019】
前記非重合性分散剤の炭素数が10未満である場合には、超臨界二酸化炭素中での分散能が低く、ポリマー及びモノマーが超臨界二酸化炭素中に分散されないため重合が完結せず、未反応モノマーが残留する。
【0020】
前記非重合性分散剤としては、デカン酸、ウンデカン酸、ドデカン酸、トリデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸、ヘプタデカン酸、オクタデカン酸、ノナデカン酸、エイコサン酸、ドコサン酸等の炭素数10〜40の直鎖若しくは枝分かれした長鎖アルキルカルボン酸、あるいは1−ナフトエ酸、2−ナフトエ酸等の炭素数10〜40の芳香族カルボン酸、あるいは、重量平均分子量1,000〜1,000,000のポリカルボン酸ホモポリマー及び、重量平均分子量1,000〜1,000,000で、カルボン酸割合(ポリマーを構成するモノマー単位の総量中における、カルボン酸を有するモノマー単位の割合)が1〜99モル%のポリカルボン酸コポリマーが挙げられる。好ましくは、炭素数14以上の脂肪酸を用いることができ、特に炭素数20〜40の長鎖アルキルカルボン酸あるいは炭素数20〜40の枝分かれしたアルキルカルボン酸が好ましい。
【0021】
本発明の製造方法において重合される重合性単量体は、前記非重合性分散剤の存在下で超臨界二酸化炭素中で重合することができる単量体であれば特に限定されず、分子内に少なくとも1つのエチレン性不飽和結合部を有するもの等を用いることができる。具体的に例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、sec−ブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、デシル(メタ)アクリレート、ドデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート等の(メタ)アクリル酸アルキルエステル類;メタクリル酸、アクリル酸、クロトン酸、イタコン酸、メサコン酸、マレイン酸、フマル酸などの重合性カルボン酸類やこれらのハーフエステル類やこれらのジエステル類;ω−カルボキシ−ポリカプロラクトン(n=2)モノアクリレート[例えば、アロニックスM−5300(商品名、東亞合成化学工業(株)製)]若しくはアクリル酸ダイマー[例えば、アロニックスM−5600(商品名、東亞合成化学工業(株)製)]等の炭化水素鎖の末端等に不飽和結合を有する化合物;ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート等の水酸基含有単量体;スチレン、α−メチルスチレン等のスチレン系単量体;酢酸ビニルなどのビニルエステル類;メチルビニルエーテル、エチルビニルエーテルなどのビニルエーテル類;p−ビニルトルエン、アクリロニトリルなどを挙げることができる。また更には、2、2、2−トリフルオロメチルアクリレート、2、2、2−トリフルオロメチルメタクリレート等の含フッ素α、β―エチレン性不飽和単量体などが挙げられる。これらは一種類用いてもよいし、二種類以上組み合わせて用いてもよい。中でも、(メタ)アクリル酸アルキルエステルが特に好ましい。
【0022】
本発明の製造方法において、前記重合性単量体組成物の重合の態様は、特に限定されるものではなく、公知の重合の態様とすることができる。例えば、ラジカル重合、アニオン重合、カチオン重合のいずれでもよく、ラジカル重合が特に好ましい。
【0023】
ラジカル重合は、重合開始剤を用いて行うことができる。前記重合開始剤としては、特に限定されるものではなく、例えば、t−ブチルハイドロパーオキシド、クメンハイドロパーオキシド、t−ブチルパーオキシネオデカネート、t−ブチルパーオキシピバレート、メチルエチルケトンパーオキシド、アセチルシクロヘキシルスルホニルパーオキシド等の有機過酸化物、更に、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、2,2’−アゾビス(イソブチロニトリル)(以下、AIBNと略す)、2,2’−アゾビス(2−メチルブチロニトリル)等のアゾ系開始剤を好ましく挙げることができる。特にAIBNが好ましい。
【0024】
これらのラジカル重合開始剤は,一種類のみ用いてもよいし、二種類以上組み合わせて用いてもよい。
【0025】
またラジカル重合開始剤の使用量は目的とする重合体の分子量から適宜決定することができ、特に限定されないが、重合性単量体100重量部に対して、好ましくは0.001〜30重量部、より好ましくは0.1〜10重量部とすることができる。
【0026】
前記重合は、具体的に例えば、前記の重合性単量体100重量部に対して、二酸化炭素の使用量を5〜1,500重量部とし、圧力30〜400kg/cm2、好ましくは60〜360kg/cm2で、温度31〜160℃、好ましくは40〜150℃で、バッチ式で行うことができる。特に、ラジカル重合により重合を行う場合の反応温度は、好ましくは40〜150℃、より好ましくは50〜100℃とすることができる。反応温度が50〜100℃であるとラジカル重合開始剤が熱により分解しやすく、効果的に生長反応が進行しやすいため特に好ましい。
【0027】
前記重合を行う際の重合時間は、重合温度やその他の条件に左右され、一定に定めることはできないが、一般に2〜48時間が好ましい。
【0028】
前記重合は、単量体100重量部に対して、前記非重合性分散剤を0.01〜100重量部、好ましくは0.1〜50重量部程度加えて行うことができる。単量体100重量部に対する非重合性分散剤の添加量が0.01重量部未満の場合は分散剤の分散能が低く、ポリマー、ポリマーラジカル及びモノマーが超臨界二酸化炭素中で充分に分散されないため重合が完結せず、未反応モノマーが重合体に残留するため好ましくない。また、100重量部を超える場合には得られる重合体の強度が低下し、好ましくない。
【0029】
重合反応が進行することにより、超臨界二酸化炭素中において、重合体を生成させることができる。重合終了後、温度及び圧力を下げ、二酸化炭素を排出することにより、重合体を、容易に反応系から取り出すことができる。重合体は、通常高分子微粉体として取り出され、更なる破砕等の工程を経ることなく、直接微粉体の製品として用いることができる。また、必要に応じて、前記分散剤を除去してから製品とすることもできる。
【0030】
得られた重合体から分散剤を除去する方法としては、例えばメタノール、エタノール、プロパノールなどのアルコール類や、アセトン、メチルエチルケトンなどのケトン類、あるいはジエチルエーテル、ジイソプロピルエーテルなどのエーテル類、あるいはアセトニトリルなどのニトリル類及びベンゼン、トルエン、キシレンなどの芳香族類、あるいは水酸化ナトリウム水溶液や、水酸化カリウム水溶液、水酸化カルシウム水溶液等のアルカリ性水溶液で洗浄することにより、容易に除去できる。
【0031】
本発明の製造方法で得られた重合体は、好ましくはエチレン性不飽和単量体に基づく構成単位を含む。合体の分子量は、重量平均分子量として1,000〜1,000,000、好ましくは10,000〜300,000とすることができる。また、本発明の製造方法における前記重合反応により、微粉体等の粉体得ることができ、その粒子の平均粒径は0.1〜50μm、好ましくは0.1〜20μmとすることができる。このような平均粒径を有することにより、例えば、粉体塗料として用いた場合、平滑性の優れた塗装被膜を与えることができる。
【0032】
本発明の製造方法により、粒径の揃った高品質な微粉体を得ることができる。
【0033】
本発明により得られる重合体は、塗料、インク、接着剤、成形品、化粧品材料、医療品などの材料として好適に用いることができる。
【0034】
【発明の効果】
本発明の重合体の製造方法では、環境負荷が低く、工程が簡便で、収率が高く、汎用性の高い重合体を効率的に得ることができる。さらに、重合体として高分子微粉体を製造することができ、粒径の揃った高品質の微粉体を簡便に得ることができる。
【0036】
【実施例】
以下、実施例に基づいて本発明を更に詳細に説明するが、本発明はこれらに限定されない。
【0037】
実施例において用いた測定方法等は、以下の通りである。
1. 重量平均分子量の測定;
ゲル浸透クロマトグラフィー(GPC);
機種;東ソー社製、GPC−8020、
条件;カラム;東ソー社製、TSKgel−G3000PWXL、東ソー社製、TSKgel−G6000PWXLの2本を直列連結、
カラム温度;45℃、
流量;1mL/min
溶離液;リン酸緩衝液(pH7.4、20mM)
標準試料;ポリエチレングリコール
検出器;UV(東ソー社製UV−8020)、RI(東ソー社製RI−8020)の2つを使用。
2. 粉体の粒径測定;
機種;走査型電子顕微鏡(日立製作所製S−80)
測定条件;加速電圧15KVおよび20KVで測定、粒子100個の平均粒径を粒径とした。
3. ガラス転移温度の測定
示差走査熱量計DSC(セイコーDSC−220)により行った。
【0038】
【実施例1】
攪拌装置及び測温装置を有する容積54mLの金属製高圧用重合容器を31℃以上まで昇温し、重合容器にメタクリル酸メチル5.40g、重合開始剤としてAIBN21.6mg並びに炭素数22のドコサン酸0.54gを添加し、その後二酸化炭素を注入し、速やかに重合容器内の温度が65℃、圧力が300kg/cm2になるように加熱及び加圧した。所定の温度、圧力に到達した後、700rpmで攪拌を行いながら、24時間単量体を重合させた。重合終了後、重合容器内の温度と圧力を下げた後、二酸化炭素を排出した。重合容器内には白色の微粉体が得られ、その収量は5.08gであった。
【0039】
この高分子微粉体は、前述のGPCで測定したところMw(重量平均分子量)が180,000であった。また、この高分子微粉体の走査型電子顕微鏡による観察では、粒径3.3μmの大きさの揃った微粉体であることが確認できた。図1に走査型電子顕微鏡による観察結果の写真を示す。
【0040】
この高分子微粉体のガラス転移点(Tg)を測定したところ105℃であった。
【0041】
【実施例2】
攪拌装置及び測温装置を有する容積54mLの金属製高圧用重合容器を31℃以上まで昇温し、重合容器にメタクリル酸メチル3.78g、n−ブチルメタアクリレート1.62g、重合開始剤としてのAIBN21.6mg並びに炭素数22のドコサン酸0.54gを添加し、その後二酸化炭素を注入し、速やかに重合容器内の温度が65℃、圧力が300kg/cm2になるように加熱及び加圧した。所定の温度、圧力に到達した後、700rpmで攪拌を行いながら、24時間単量体を重合させた。重合終了後、重合容器内の温度と圧力を下げた後、二酸化炭素を排出した。重合容器内には白色の微粉体が得られ、その収量は5.23gであった。
【0042】
この高分子微粉体は、前述のGPCで測定したところMw(重量平均分子量)が210,000であった。また、この高分子微粉体の走査型電子顕微鏡による観察では、粒径2.8μmの大きさの揃った微粉体であることが確認できた。
【0043】
この高分子微粉体のガラス転移点を測定したところ75℃であった。
【0044】
【実施例3】
攪拌装置及び測温装置を有する容積54mLの金属製高圧用重合容器を31℃以上まで昇温し、重合容器にメタクリル酸メチル5.40g、重合開始剤としてAIBN21.6mg並びに炭素数22のドコサン酸3.40gを添加し、その後二酸化炭素を注入し、速やかに重合容器内の温度が65℃、圧力が300kg/cm2になるように加熱及び加圧した。所定の温度、圧力に到達した後、700rpmで攪拌を行いながら、24時間単量体を重合させた。重合終了後、重合容器内の温度と圧力を下げた後、二酸化炭素を排出した。重合容器内には白色の微粉体が得られ、その収量は7.30gであった。
【0045】
この高分子微粉体は、前述のGPCで測定したところMw(重量平均分子量)が109,000であった。また、この高分子微粉体の走査型電子顕微鏡による観察では、粒径2.3μmの大きさの揃った微粉体であることが確認できた。
この高分子微粉体のガラス転移点を測定したところ105℃であった。
【0046】
【実施例4】
攪拌装置及び測温装置を有する容積54mLの金属製高圧用重合容器を31℃以上まで昇温し、重合容器にメタクリル酸メチル5.40g、重合開始剤としてAIBN21.6mg並びに炭素数14のミリスチン酸0.54gを添加し、その後二酸化炭素を注入し、速やかに重合容器内の温度が65℃、圧力が300kg/cm2になるように加熱及び加圧した。所定の温度、圧力に到達した後、700rpmで攪拌を行いながら、24時間単量体を重合させた。重合終了後、重合容器内の温度と圧力を下げた後、二酸化炭素を排出した。重合容器内には白色の微粉体が得られ、その収量は5.21gであった。
この高分子微粉体は、前述のGPCで測定したところMw(重量平均分子量)が140,000であった。また、この高分子微粉体の走査型電子顕微鏡による観察では、粒径3.4μmの大きさの揃った微粉体であることが確認できた。
【0047】
この高分子微粉体のガラス転移点を測定したところ105℃であった。
【0048】
【実施例5】
攪拌装置及び測温装置を有する容積54mLの金属製高圧用重合容器を31℃以上まで昇温し、重合容器にスチレン5.40g、重合開始剤としてAIBN21.6mg並びに炭素数22のドコサン酸0.54gを添加し、その後二酸化炭素を注入し、速やかに重合容器内の温度が65℃、圧力が300kg/cm2になるように加熱及び加圧した。所定の温度、圧力に到達した後、700rpmで攪拌を行いながら、24時間単量体を重合させた。重合終了後、重合容器内の温度と圧力を下げた後、二酸化炭素を排出した。重合容器内には白色の微粉体が得られ、その収量は5.06gであった。
【0049】
この高分子微粉体は前述のGPCで測定したところMw(重量平均分子量)は190,000であった。また、この高分子微粉体の走査型電子顕微鏡による観察では、粒径2.0μmの大きさの揃った微粉体であることが確認できた。
【0050】
この高分子微粉体のガラス転移点を測定したところ100℃であった。
【0051】
【比較例1】
攪拌装置及び測温装置を有する容積54mLの金属製高圧用重合容器を31℃以上まで昇温し、重合容器にメタクリル酸メチル5.40g、重合開始剤としてのAIBN21.6mg並びに界面活性剤としてポリ(1,1−ジヒドロペルフルオロオクチルアクリレート)0.54gを添加し、その後二酸化炭素を注入し、速やかに重合容器内の温度が65℃、圧力が300kg/cm2になるように加熱及び加圧した。所定の温度、圧力に到達した後、700rpmで攪拌を行いながら、24時間単量体を重合させた。重合終了後、重合容器内の温度と圧力を下げた後、二酸化炭素を排出した。重合容器内には未反応モノマーと白色の高分子微粉体及びペレット状の高分子体が得られ、その高分子微粉体の収量は3.10gであった。
【0052】
この高分子微粉体の走査型電子顕微鏡による観察では、微粒子が会合した大きさの不均一な会合体であることが観察できた。図2に走査型電子顕微鏡による観察結果の写真を示す。
【0053】
【比較例2】
攪拌装置及び測温装置を有する容積54mLの金属製高圧用重合容器を31℃以上まで昇温し、重合容器にメタクリル酸メチル5.40g、重合開始剤としてのAIBN21.6mgを添加し、その後二酸化炭素を注入し、速やかに重合容器内の温度が65℃、圧力が300kg/cm2になるように加熱及び加圧した。所定の温度、圧力に到達した後、700rpmで攪拌を行いながら、24時間単量体を重合させた。24時間後、重合容器内の温度と圧力を下げ、二酸化炭素を排出した。重合容器内には無色透明のペレット状重合体と未反応メタクリル酸メチルが認められ、重合反応が完結していないことが確認された。
【0054】
【比較例3】
攪拌装置及び測温装置を有する容積54mLの金属製高圧用重合容器を31℃以上まで昇温し、重合容器にメタクリル酸メチル5.40g、重合開始剤としてAIBN21.6mg並びに炭素数2の酢酸0.54gを添加し、その後二酸化炭素を注入し、速やかに重合容器内の温度が65℃、圧力が300kg/cm2になるように加熱及び加圧した。所定の温度、圧力に到達した後、700rpmで攪拌を行いながら、24時間単量体を重合させた。重合終了後、重合容器内の温度と圧力を下げた後、二酸化炭素を排出した。重合容器内には無色透明のペレット状重合体とメタクリル酸メチルが認められ、重合反応が完結していないことが確認された。
【図面の簡単な説明】
【図1】図1は実施例1で得られた重合体の走査型電子顕微鏡による観察結果を示す写真である。
【図2】図2は比較例1で得られた重合体の走査型電子顕微鏡による観察結果を示す写真である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to polymer production how using supercritical carbon dioxide.
[0002]
[Prior art]
Conventional methods for producing polymers such as polymer fine powder include solution polymerization of unsaturated monomers in an organic solvent, removal of the organic solvent from the resulting polymer solution, drying, pulverization, etc. The process of doing is common. In this process, several steps are required to obtain a polymer. Further, when the polymer fine powder is produced by such a process, there is a disadvantage that the size of the obtained fine powder becomes non-uniform.
[0003]
As another method, JP-A-56-76447 discloses a method in which a water-insoluble unsaturated monomer is dispersed in water in the presence of a surfactant and subjected to emulsion polymerization. However, in such a method, since a large amount of water is used, a large amount of wastewater treatment is required, and the environmental load is large. In addition, when trying to produce a fine polymer powder by such a process, the fine particles are fused to each other when the obtained fine particles are isolated, resulting in large particles or lumps. Is difficult to get.
[0004]
In recent years, research on a reaction method using supercritical carbon dioxide as a solvent has been advanced as a reaction method with a low environmental load. Also in the field of polymer synthesis, synthesis of polymers using supercritical carbon dioxide as a solvent is being considered instead of the conventional production method using a large amount of an organic solvent. For example, JP-A-8-104830 discloses a technique for producing polymer fine particles for coating by dissolving a polymer material polymerized once in a supercritical phase and rapidly expanding the solution. JP-A-113652 discloses a method for producing a polymer fine particle for coating by dissolving a polymer solid once produced in a supercritical phase and rapidly expanding it.
[0005]
However, these disclosed techniques require a process of obtaining a polymer material by performing a polymerization reaction with a solvent other than the supercritical fluid prior to expansion in the supercritical phase, and thus the process is complicated and the amount of organic solvent It is difficult to achieve weight loss.
[0006]
As a technique for performing a polymerization reaction in a supercritical fluid, a method of reacting a monomer mixture of styrene-acrylonitrile in supercritical carbon dioxide in the presence of a radical polymerization initiator (JP-A-8-41135) A method of reacting a monomer mixture of styrene-vinyl acetate in supercritical carbon dioxide in the presence of a radical polymerization initiator (Japanese Patent Laid-Open No. 10-45838) is known.
[0007]
However, in these disclosed techniques, the former yield is 84% and the latter yield is 12 to 56%, and a process for removing unreacted monomers remaining in the system is necessary. is there. Furthermore, in these disclosed methods, since the polymer is produced in a molten state that is not dissolved in supercritical carbon dioxide, the polymer composition is obtained in a lump. Therefore, further steps such as pulverization are required to obtain the polymer fine powder.
[0008]
On the other hand, JP 9-503798 A discloses a dispersion polymerization reaction of a polymer in supercritical carbon dioxide using a surfactant having a fluorinated and siliconized site as a supercritical carbon dioxide soluble site. Is disclosed. However, the yield is as low as 20 to 75%, which is disadvantageous for polymer production on an industrial scale. Moreover, since the polymer product obtained by the method contains a fluoropolymer, it is hardly soluble in an organic solvent and lacks versatility. When such a polymer product is used as it is as a coating composition or the like, unevenness on the surface of the coating film due to the oil and water repellency of fluorine appears, making it difficult to use in such applications. Moreover, when it is going to remove a fluoropolymer from the polymer product obtained by the said method, it is necessary to use a large amount of organic solvents, and it becomes difficult to reduce an environmental load after all.
[0009]
[Problems to be solved by the invention]
A first object of the present invention is to provide a method for producing a polymer that can efficiently obtain a polymer having a low environmental load, a simple process, a high yield, and high versatility.
[0011]
[Means for Solving the Problems]
According to the present invention, it is possible to polymerize a polymerizable monomer in supercritical carbon dioxide in the presence of a non-polymerizable dispersant having 10 or more carbon atoms and having at least one carboxyl group in the molecule. A method for producing the characterized polymer is provided.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
In the method for producing a polymer of the present invention, a polymerizable monomer is polymerized in supercritical carbon dioxide.
[0014]
The supercritical carbon dioxide is obtained by heating and pressurizing carbon dioxide to the critical point (critical temperature 31 ° C. or critical pressure 73.5 kg / cm 2 ) or higher, and is not liquefied even if it is further pressurized. This refers to carbon dioxide that has become a fluid in a state, and usually has gas and liquid properties.
[0015]
The supercritical carbon dioxide can be obtained by introducing a commercially available carbon dioxide gas contained in a cylinder or the like into a reaction vessel in which a polymerization reaction is performed, and setting a predetermined temperature and pressure. The carbon dioxide gas to be introduced preferably has a purity of 99.9% or higher.
[0016]
The supercritical carbon dioxide may be further mixed with another additive solvent. As the additive solvent, water, lower alcohols such as methanol and ethanol, acetonitrile and the like can be used. The additive solvent can be added in an amount of about 0.1 to 100 parts by weight with respect to 100 parts by weight of supercritical carbon dioxide, but it is preferable not to use the additive solvent from the viewpoint of preventing pollution and reducing the environmental load. .
[0017]
In the method for producing a polymer of the present invention, polymerization is carried out in the presence of a specific non-polymerizable dispersant.
[0018]
The non-polymerizable dispersant has at least one carboxyl group in the molecule and has 10 or more carbon atoms constituting the molecule.
[0019]
When the carbon number of the non-polymerizable dispersant is less than 10, the dispersibility in supercritical carbon dioxide is low, and the polymer and the monomer are not dispersed in supercritical carbon dioxide. Reactive monomer remains.
[0020]
Examples of the non-polymerizable dispersant include decanoic acid, undecanoic acid, dodecanoic acid, tridecanoic acid, tetradecanoic acid, pentadecanoic acid, hexadecanoic acid, heptadecanoic acid, octadecanoic acid, nonadecanoic acid, eicosanoic acid, docosanoic acid and the like. 40 linear or branched long-chain alkyl carboxylic acids, or aromatic carboxylic acids having 10 to 40 carbon atoms such as 1-naphthoic acid and 2-naphthoic acid, or a weight average molecular weight of 1,000 to 1,000,000 And a weight average molecular weight of 1,000 to 1,000,000, and a carboxylic acid ratio (ratio of monomer units having a carboxylic acid in the total amount of monomer units constituting the polymer) is 1 to 99. A mol% polycarboxylic acid copolymer may be mentioned. Preferably, a fatty acid having 14 or more carbon atoms can be used, and a long-chain alkyl carboxylic acid having 20 to 40 carbon atoms or a branched alkyl carboxylic acid having 20 to 40 carbon atoms is particularly preferable.
[0021]
The polymerizable monomer that is polymerized in the production method of the present invention is not particularly limited as long as it is a monomer that can be polymerized in supercritical carbon dioxide in the presence of the non-polymerizable dispersant. Those having at least one ethylenically unsaturated bond can be used. Specifically, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, sec-butyl (meth) ) (Meth) acrylic acid alkyl esters such as acrylate, cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, decyl (meth) acrylate, dodecyl (meth) acrylate, hexadecyl (meth) acrylate; methacrylic acid, acrylic acid , Crotonic acid, itaconic acid, mesaconic acid, maleic acid, fumaric acid and other polymerizable carboxylic acids, their half esters and their diesters; ω-carboxy-polycaprolactone (n = 2) monoacrylate [Example For example, hydrocarbon chains such as Aronix M-5300 (trade name, manufactured by Toagosei Chemical Industry Co., Ltd.) or acrylic acid dimer [for example, Aronix M-5600 (trade name, manufactured by Toagosei Chemical Industry Co., Ltd.)]. A compound having an unsaturated bond at the terminal of hydroxyl group; a hydroxyl group-containing monomer such as hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate and polyethylene glycol (meth) acrylate; styrene such as styrene and α-methylstyrene Examples thereof include vinyl monomers such as vinyl acetate; vinyl ethers such as methyl vinyl ether and ethyl vinyl ether; p-vinyltoluene and acrylonitrile. Furthermore, fluorine-containing α, β-ethylenically unsaturated monomers such as 2,2,2-trifluoromethyl acrylate, 2,2,2-trifluoromethyl methacrylate and the like can be mentioned. These may be used alone or in combination of two or more. Among them, (meth) acrylic acid alkyl ester is particularly preferable.
[0022]
In the production method of the present invention, the polymerization mode of the polymerizable monomer composition is not particularly limited, and can be a known polymerization mode. For example, any of radical polymerization, anionic polymerization, and cationic polymerization may be used, and radical polymerization is particularly preferable.
[0023]
The radical polymerization can be performed using a polymerization initiator. The polymerization initiator is not particularly limited, and examples thereof include t-butyl hydroperoxide, cumene hydroperoxide, t-butyl peroxyneodecanate, t-butyl peroxypivalate, methyl ethyl ketone peroxide, Organic peroxides such as acetylcyclohexylsulfonyl peroxide, 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis (isobutyronitrile) (hereinafter abbreviated as AIBN), Preferred examples include azo initiators such as 2,2′-azobis (2-methylbutyronitrile). AIBN is particularly preferable.
[0024]
These radical polymerization initiators may be used alone or in combination of two or more.
[0025]
The amount of radical polymerization initiator used can be appropriately determined from the molecular weight of the target polymer, and is not particularly limited, but is preferably 0.001 to 30 parts by weight with respect to 100 parts by weight of the polymerizable monomer. More preferably, it can be 0.1-10 weight part.
[0026]
Specifically, the polymerization is performed, for example, by using 5 to 1,500 parts by weight of carbon dioxide with respect to 100 parts by weight of the polymerizable monomer, and a pressure of 30 to 400 kg / cm 2 , preferably 60 to It can be carried out batchwise at 360 kg / cm 2 and at a temperature of 31 to 160 ° C., preferably 40 to 150 ° C. In particular, the reaction temperature when the polymerization is performed by radical polymerization is preferably 40 to 150 ° C, more preferably 50 to 100 ° C. A reaction temperature of 50 to 100 ° C. is particularly preferred because the radical polymerization initiator is easily decomposed by heat and the growth reaction is likely to proceed effectively.
[0027]
The polymerization time for carrying out the polymerization depends on the polymerization temperature and other conditions and cannot be fixed, but generally 2 to 48 hours are preferable.
[0028]
The polymerization can be carried out by adding 0.01 to 100 parts by weight, preferably 0.1 to 50 parts by weight of the non-polymerizable dispersant with respect to 100 parts by weight of the monomer. When the amount of the non-polymerizable dispersant added to 100 parts by weight of the monomer is less than 0.01 parts by weight, the dispersant has low dispersibility, and the polymer, polymer radical and monomer are not sufficiently dispersed in supercritical carbon dioxide. Therefore, the polymerization is not completed, and unreacted monomers remain in the polymer, which is not preferable. Moreover, when it exceeds 100 weight part, the intensity | strength of the polymer obtained falls and it is unpreferable.
[0029]
As the polymerization reaction proceeds, a polymer can be produced in supercritical carbon dioxide. After completion of the polymerization, the polymer can be easily taken out from the reaction system by lowering the temperature and pressure and discharging carbon dioxide. The polymer is usually taken out as a polymer fine powder, and can be directly used as a fine powder product without undergoing further crushing and the like. Moreover, it can also be set as a product after removing the said dispersing agent as needed.
[0030]
Examples of a method for removing the dispersant from the obtained polymer include alcohols such as methanol, ethanol and propanol, ketones such as acetone and methyl ethyl ketone, ethers such as diethyl ether and diisopropyl ether, and acetonitrile. It can be easily removed by washing with nitriles and aromatics such as benzene, toluene and xylene, or alkaline aqueous solutions such as aqueous sodium hydroxide, aqueous potassium hydroxide and aqueous calcium hydroxide.
[0031]
The polymer obtained by the production method of the present invention preferably contains a constitutional unit based on an ethylenically unsaturated monomer. The molecular weight of the polymer, as a weight average molecular weight 1,000 to 1,000,000, preferably can be 10,000 to 300,000. Moreover, powders, such as a fine powder , can be obtained by the said polymerization reaction in the manufacturing method of this invention , The average particle diameter of the particle | grain can be 0.1-50 micrometers, Preferably it can be 0.1-20 micrometers. . By having such an average particle diameter, for example, when used as a powder paint, a coating film having excellent smoothness can be provided.
[0032]
The manufacturing method of the present invention, it is possible to obtain a high-quality fine powder having a uniform particle size.
[0033]
The polymer obtained by the present invention can be suitably used as a material for paints, inks, adhesives, molded articles, cosmetic materials, medical products and the like.
[0034]
【The invention's effect】
In the method for producing a polymer of the present invention, a polymer having a low environmental load, a simple process, a high yield, and high versatility can be efficiently obtained. Furthermore, a polymer fine powder can be produced as a polymer, and a high-quality fine powder having a uniform particle size can be easily obtained.
[0036]
【Example】
EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to these.
[0037]
The measurement methods used in the examples are as follows.
1. Measurement of weight average molecular weight;
Gel permeation chromatography (GPC);
Model: manufactured by Tosoh Corporation, GPC-8020,
Conditions: Column: Tosoh Corporation, TSKgel-G3000PW XL , Tosoh Corporation, TSKgel-G6000PW XL
Column temperature: 45 ° C.
Flow rate: 1 mL / min
Eluent: phosphate buffer (pH 7.4, 20 mM)
Standard sample: Polyethylene glycol detector: UV (Tosoh UV-8020) and RI (Tosoh RI-8020) are used.
2. Measuring the particle size of the powder;
Model: Scanning electron microscope (S-80 manufactured by Hitachi, Ltd.)
Measurement conditions: measured at an acceleration voltage of 15 KV and 20 KV, and the average particle diameter of 100 particles was defined as the particle diameter.
3. Measurement of glass transition temperature It was carried out with a differential scanning calorimeter DSC (Seiko DSC-220).
[0038]
[Example 1]
A 54-mL metal high-pressure polymerization vessel having a stirrer and a temperature measuring device is heated to 31 ° C. or higher, and 5.40 g of methyl methacrylate is added to the polymerization vessel, 21.6 mg of AIBN is used as a polymerization initiator, and docosanoic acid having 22 carbon atoms. 0.54 g was added, and then carbon dioxide was injected, and heated and pressurized quickly so that the temperature in the polymerization vessel was 65 ° C. and the pressure was 300 kg / cm 2 . After reaching the predetermined temperature and pressure, the monomer was polymerized for 24 hours while stirring at 700 rpm. After completion of the polymerization, the temperature and pressure in the polymerization vessel were lowered, and then carbon dioxide was discharged. White fine powder was obtained in the polymerization vessel, and the yield was 5.08 g.
[0039]
The polymer fine powder had an Mw (weight average molecular weight) of 180,000 as measured by GPC as described above. Moreover, observation of this polymer fine powder with a scanning electron microscope confirmed that it was a fine powder having a particle size of 3.3 μm. FIG. 1 shows a photograph of the results of observation by a scanning electron microscope.
[0040]
It was 105 degreeC when the glass transition point (Tg) of this polymer fine powder was measured.
[0041]
[Example 2]
A 54 mL metal high-pressure polymerization vessel having a stirrer and a temperature measuring device was heated to 31 ° C. or more, and 3.78 g of methyl methacrylate, 1.62 g of n-butyl methacrylate were added to the polymerization vessel as a polymerization initiator. 21.6 mg of AIBN and 0.54 g of docosanoic acid having 22 carbon atoms were added, and then carbon dioxide was injected, and heated and pressurized quickly so that the temperature in the polymerization vessel was 65 ° C. and the pressure was 300 kg / cm 2 . . After reaching the predetermined temperature and pressure, the monomer was polymerized for 24 hours while stirring at 700 rpm. After completion of the polymerization, the temperature and pressure in the polymerization vessel were lowered, and then carbon dioxide was discharged. White fine powder was obtained in the polymerization vessel, and the yield was 5.23 g.
[0042]
The polymer fine powder had an Mw (weight average molecular weight) of 210,000 as measured by GPC as described above. Further, observation of this polymer fine powder with a scanning electron microscope confirmed that it was a fine powder having a particle size of 2.8 μm.
[0043]
It was 75 degreeC when the glass transition point of this polymer fine powder was measured.
[0044]
[Example 3]
A 54-mL metal high-pressure polymerization vessel having a stirrer and a temperature measuring device is heated to 31 ° C. or higher, and 5.40 g of methyl methacrylate is added to the polymerization vessel, 21.6 mg of AIBN is used as a polymerization initiator, and docosanoic acid having 22 carbon atoms. 3.40 g was added, and then carbon dioxide was injected, and immediately heated and pressurized so that the temperature in the polymerization vessel was 65 ° C. and the pressure was 300 kg / cm 2 . After reaching the predetermined temperature and pressure, the monomer was polymerized for 24 hours while stirring at 700 rpm. After completion of the polymerization, the temperature and pressure in the polymerization vessel were lowered, and then carbon dioxide was discharged. White fine powder was obtained in the polymerization vessel, and the yield was 7.30 g.
[0045]
The polymer fine powder had an Mw (weight average molecular weight) of 109,000 as measured by GPC as described above. Further, observation of this polymer fine powder with a scanning electron microscope confirmed that it was a fine powder having a particle size of 2.3 μm.
It was 105 degreeC when the glass transition point of this polymer fine powder was measured.
[0046]
[Example 4]
A 54-mL metal high-pressure polymerization vessel having a stirrer and a temperature measuring device was heated to 31 ° C. or more, and 5.40 g of methyl methacrylate was added to the polymerization vessel, 21.6 mg of AIBN as a polymerization initiator, and myristic acid having 14 carbon atoms. 0.54 g was added, and then carbon dioxide was injected, and heated and pressurized quickly so that the temperature in the polymerization vessel was 65 ° C. and the pressure was 300 kg / cm 2 . After reaching the predetermined temperature and pressure, the monomer was polymerized for 24 hours while stirring at 700 rpm. After completion of the polymerization, the temperature and pressure in the polymerization vessel were lowered, and then carbon dioxide was discharged. White fine powder was obtained in the polymerization vessel, and the yield was 5.21 g.
The polymer fine powder had an Mw (weight average molecular weight) of 140,000 as measured by GPC as described above. Further, observation of this polymer fine powder with a scanning electron microscope confirmed that it was a fine powder having a particle size of 3.4 μm.
[0047]
It was 105 degreeC when the glass transition point of this polymer fine powder was measured.
[0048]
[Example 5]
A metal high-pressure polymerization vessel having a volume of 54 mL having a stirrer and a temperature measuring device was heated to 31 ° C. or more, 5.40 g of styrene was added to the polymerization vessel, 21.6 mg of AIBN was used as a polymerization initiator, and 0.2 wt. 54 g was added, and then carbon dioxide was injected, and immediately heated and pressurized so that the temperature in the polymerization vessel was 65 ° C. and the pressure was 300 kg / cm 2 . After reaching the predetermined temperature and pressure, the monomer was polymerized for 24 hours while stirring at 700 rpm. After completion of the polymerization, the temperature and pressure in the polymerization vessel were lowered, and then carbon dioxide was discharged. White fine powder was obtained in the polymerization vessel, and the yield was 5.06 g.
[0049]
When this polymer fine powder was measured by GPC as described above, Mw (weight average molecular weight) was 190,000. Further, observation of this polymer fine powder with a scanning electron microscope confirmed that it was a fine powder with a particle size of 2.0 μm.
[0050]
It was 100 degreeC when the glass transition point of this polymer fine powder was measured.
[0051]
[Comparative Example 1]
A 54-mL metal high-pressure polymerization vessel having a stirrer and a temperature measuring device was heated to 31 ° C. or higher, and 5.40 g of methyl methacrylate was added to the polymerization vessel, 21.6 mg of AIBN as a polymerization initiator, and poly (polyethylene) as a surfactant. (1,1-dihydroperfluorooctyl acrylate) (0.54 g) was added, and then carbon dioxide was injected. The mixture was quickly heated and pressurized so that the temperature in the polymerization vessel was 65 ° C. and the pressure was 300 kg / cm 2 . . After reaching the predetermined temperature and pressure, the monomer was polymerized for 24 hours while stirring at 700 rpm. After completion of the polymerization, the temperature and pressure in the polymerization vessel were lowered, and then carbon dioxide was discharged. In the polymerization vessel, unreacted monomer, white polymer fine powder and pellet-shaped polymer were obtained, and the yield of the polymer fine powder was 3.10 g.
[0052]
Observation of this fine polymer powder with a scanning electron microscope revealed that the fine particles were non-uniform aggregates with the size of the associated fine particles. FIG. 2 shows a photograph of the results of observation by a scanning electron microscope.
[0053]
[Comparative Example 2]
A 54-mL metal high-pressure polymerization vessel having a stirrer and a temperature measuring device is heated to 31 ° C. or more, and 5.40 g of methyl methacrylate and 21.6 mg of AIBN as a polymerization initiator are added to the polymerization vessel. Carbon was injected and immediately heated and pressurized so that the temperature in the polymerization vessel was 65 ° C. and the pressure was 300 kg / cm 2 . After reaching the predetermined temperature and pressure, the monomer was polymerized for 24 hours while stirring at 700 rpm. After 24 hours, the temperature and pressure in the polymerization vessel were lowered, and carbon dioxide was discharged. A colorless transparent pellet-like polymer and unreacted methyl methacrylate were observed in the polymerization vessel, and it was confirmed that the polymerization reaction was not completed.
[0054]
[Comparative Example 3]
A 54-mL metal high-pressure polymerization vessel having a stirrer and a temperature measuring device is heated to 31 ° C. or more, and 5.40 g of methyl methacrylate is added to the polymerization vessel, 21.6 mg of AIBN is used as a polymerization initiator, and acetic acid having 2 carbon atoms is added. .54 g was added, and then carbon dioxide was injected, and immediately heated and pressurized so that the temperature in the polymerization vessel was 65 ° C. and the pressure was 300 kg / cm 2 . After reaching the predetermined temperature and pressure, the monomer was polymerized for 24 hours while stirring at 700 rpm. After completion of the polymerization, the temperature and pressure in the polymerization vessel were lowered, and then carbon dioxide was discharged. A colorless and transparent pellet-like polymer and methyl methacrylate were observed in the polymerization vessel, and it was confirmed that the polymerization reaction was not completed.
[Brief description of the drawings]
FIG. 1 is a photograph showing the observation results of the polymer obtained in Example 1 with a scanning electron microscope.
FIG. 2 is a photograph showing the observation result of the polymer obtained in Comparative Example 1 with a scanning electron microscope.

Claims (2)

炭素数10以上で、かつ分子中にカルボキシル基を少なくとも1つ以上有する非重合性分散剤の存在下で、超臨界二酸化炭素中で重合性単量体を重合することを特徴とする重合体の製造方法。  A polymer characterized by polymerizing a polymerizable monomer in supercritical carbon dioxide in the presence of a non-polymerizable dispersant having at least 10 carbon atoms and having at least one carboxyl group in the molecule. Production method. 前記非重合性分散剤が、炭素数14以上の脂肪酸である請求項1記載の重合体の製造方法。  The method for producing a polymer according to claim 1, wherein the non-polymerizable dispersant is a fatty acid having 14 or more carbon atoms.
JP2000332561A 2000-10-31 2000-10-31 Method for producing polymer Expired - Lifetime JP4411377B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000332561A JP4411377B2 (en) 2000-10-31 2000-10-31 Method for producing polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000332561A JP4411377B2 (en) 2000-10-31 2000-10-31 Method for producing polymer

Publications (2)

Publication Number Publication Date
JP2002128808A JP2002128808A (en) 2002-05-09
JP4411377B2 true JP4411377B2 (en) 2010-02-10

Family

ID=18808753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000332561A Expired - Lifetime JP4411377B2 (en) 2000-10-31 2000-10-31 Method for producing polymer

Country Status (1)

Country Link
JP (1) JP4411377B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003292837A1 (en) 2003-02-25 2004-09-17 Japan As Represented By President Of Shizuoka University Process for producing polymer
JP2008291141A (en) * 2007-05-25 2008-12-04 Chugoku Marine Paints Ltd High solid type antifouling coating composition, coating film comprising the composition, substrate coated with the coating film, and antifouling method

Also Published As

Publication number Publication date
JP2002128808A (en) 2002-05-09

Similar Documents

Publication Publication Date Title
TW320639B (en)
CA2727872C (en) Process to disperse organic microparticles / nanoparticles into non-aqueous resin medium
JPH09501457A (en) Production of polymer emulsion
JP5876175B2 (en) Sealer coating composition
US6828363B2 (en) Process for the preparation of powder coating compositions
JP5544706B2 (en) UNSATURATED CARBOXYLIC ACID CROSSLINKED POLYMER AND METHOD FOR PRODUCING THE POLYMER
JPS59199703A (en) Manufacture of emulsifier-free and protective colloid-free emulsion polymer
US6646041B2 (en) Aqueous dispersion of addition polymer particles
JP6361107B2 (en) Resin composition and film
JP4411377B2 (en) Method for producing polymer
EP1325088A1 (en) Aqueous dispersion of addition polymer particles
JP2009132878A (en) Polymer particle and method for producing the same
US20120157613A1 (en) Bulk polymerization of (meth)acrylate copolymers soluble under aqueous-alkaline conditions
JP2021195521A (en) Molded body and method for manufacturing the same
JP2006249389A (en) Production method for polymer having hydroxy group
JP2020139079A (en) Copolymer, aqueous dispersion thereof, graft copolymer, thermoplastic resin composition, and molded article thereof
JP3101022B2 (en) Method for producing polymer fine particles
JP4068278B2 (en) Aqueous dispersant made of vinyl alcohol polymer
JP2005343993A (en) Method for producing polymer fine powder
TW201226480A (en) Coating composition with (meth) acrylic polymers and coalescents
JP4398080B2 (en) Paint composition
KR100680934B1 (en) Dispersion Polymerization in Supercritical Carbon Dioxide Solvent Using Partially Fluorinated Random Copolymers
JPH11124530A (en) Emulsion for aqueous coating
JP2002322337A (en) Acrylic resin plastisol and acrylic resin molded products
JP2002128837A (en) Method of producing copolymer

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070528

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090917

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4411377

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term