JP4388298B2 - 顕微鏡システム - Google Patents
顕微鏡システム Download PDFInfo
- Publication number
- JP4388298B2 JP4388298B2 JP2003114682A JP2003114682A JP4388298B2 JP 4388298 B2 JP4388298 B2 JP 4388298B2 JP 2003114682 A JP2003114682 A JP 2003114682A JP 2003114682 A JP2003114682 A JP 2003114682A JP 4388298 B2 JP4388298 B2 JP 4388298B2
- Authority
- JP
- Japan
- Prior art keywords
- stage
- focus
- sample
- specimen
- focus position
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Microscoopes, Condenser (AREA)
- Automatic Focus Adjustment (AREA)
Description
【発明の属する技術分野】
本発明は、例えば対物レンズと標本との間の相対距離を調節して標本に対するオートフォーカスを行う電動焦準装置などを備えた顕微鏡システムに関する。
【0002】
【従来の技術】
現在、微細な標本を観察したり、標本の観察像をビデオ画像データとして記録することができる顕微鏡がある。この顕微鏡は、例えば生物分野の研究をはじめ、工業分野の検査工程にまで幅広く利用されている。この顕微鏡を利用する場合、通常、焦準ハンドルの操作により標本に対する焦点調整を行ってピント合せ作業を行う。ところが、高倍対物レンズのように焦点深度が浅く、フォーカス範囲が狭い場合には、素早くピント合わせ作業を行うのにかなりの熟練を要し、作業性が悪い。
【0003】
このように作業性が悪いと、観察者の疲労、工業分野における生産効率の低下という悪影響を及ぼすことになる。特に検査工程などのルーチン作業中では、ピント合わせの作業を素早く行って検査時間を短縮することが非常に重要になる。
【0004】
このような実情からピント合わせ作業を自動的にできる顕微鏡用のオートフォーカス(以下、AFと称する)装置が種々提案され、さらにこれらの改善を目的とした提案も数多く行われている。
【0005】
工業分野におけるAF装置は、前述した操作性、スループットの向上のみならず、例えば多層形成された半導体ウエハのような段差形状を有する標本に対してそれぞれの層の欠陥及びパターン間の線幅を漏れなく検出、測定したり、標本上の微小に段差形状を高精度に測定するというニーズがあり、これらの検査、測定に適した性能を有するAF装置が提案されている。
【0006】
このような工業分野のAF装置では、標本への対応性、AF時間の短縮等の理由から例えば赤外光レーザ等の光を標本に投射し、標本からの反射光の状態を検出してフォーカス動作を行う、いわゆるアクティブ型AF方式が多い。
【0007】
一方、生物分野におけるAF装置では、より正確なピント位置が要求されること、アクティブ方式において不可能な反射率の低い透過型の標本を使用することなどから、観察画像のコントラストを検出してAF動作を行ういわゆるパッシブ型AF方式が主流である。
【0008】
最近では、工業分野、生物分野に限らず、標本を載置するステージの平面(XY平面)方向への駆動を電動化し、AFと併用することで標本の検査を自動化、高速化するケースが増えている。例えば、生物分野では、病理組織を遠隔地から検査するようないわゆるテレパソロジー技術が該当し、工業分野では、前述した半導体ウエハの自動欠陥検査装置などが該当する。
【0009】
このようなAF装置を備えた顕微鏡システムでは、XY平面内の移動に伴うAFによりピントのズレ、すなわち標本をXY平面内で移動した場合、特定の位置、例えばアクティブ型AFであれば標本の反射率が極端に低い範囲、パッシブ型AFであればコントラストの極端に低い範囲などで、各AF方式でピント合わせが困難とされる標本エリアでAF動作に失敗し、ピント位置がズレてしまう。
【0010】
このようなピントのズレが生じると、正確な標本の検査が行えなくなって検査ミスが生じたり、又観察者の手動によるピント合わせが必要になるなどしてスループットの低下に繋がる。
【0011】
このような問題を軽減するために例えば特開2001−91846には、AFが成功した場合のXYZ位置を順次記憶し、現在位置においてAFが失敗に終わった場合、前回AFが成功したときのZ位置を読み出し、このZ位置へステージを移動させることで、AF失敗によるピントズレを最小限に留めることが記載されている。
【0012】
【発明が解決しようとする課題】
しかしながら、標本面に傾きがあると、前回のAFが現在位置から遠い位置で行われた場合、前回AFが行われた位置と現在位置とでは、それぞれピントを合わせるためのZ位置が全く異なり、前回AFが成功したときのZ位置へステージを移動させたとしても、現在位置ではピント位置が大きくズレてしまう。
【0013】
又、特開2001−91846公報には、初期設定として基準標本をステージ上に載置し、この基準標本上の各位置でAFを行ってそのピント位置(Z位置)を予め記憶し、これらピント位置を用いて標本のXY平面内の移動に伴うステージのZ位置の補正を行うことが開示されている。
【0014】
しかしながら、このピント位置の補正では、ステージ自体の傾きの補正しか考慮されておらず、このステージ上に載置されている標本面の傾きに対しては何ら対策が施されていない。そのうえ、初期設定を行うのに多大な時間を要する。
【0015】
そこで本発明は、標本内に対してAFが動作しないところがあっても、標本に対するピントズレを極力抑えて、安定して標本の画像を得ることができる顕微鏡システムを提供することを目的とする。
【0016】
【課題を解決するための手段】
本発明の第1の態様は、標本を載置するステージを対物レンズの光軸に対して垂直な平面方向に移動可能とし、かつ前記ステージと前記対物レンズとの間の距離を相対的に調整して前記標本に対するオートフォーカスを行う顕微鏡システムにおいて、前記標本に対して前記オートフォーカスされたときの前記ステージの平面方向での座標を示す位置データと、前記標本と前記対物レンズとの間の距離のフォーカスデータとを記憶する位置記憶手段と、前記標本に対して前記オートフォーカスがされない場合、このオートフォーカスされない前記座標から最も近い座標の前記位置データを前記位置記憶手段から検索し、この検索された前記位置データに対応する前記フォーカスデータを用いて前記ステージと前記対物レンズとの相対的な距離を変化させるフォーカス位置補正手段と、を具備したことを特徴とする顕微鏡システムである。
【0017】
また、本発明の第2の態様は、標本を載置するステージを対物レンズの光軸に対して垂直な平面方向に移動可能とし、かつ、前記ステージと前記対物レンズとの間の距離を相対的に調整して前記標本に対するオートフォーカスを行う顕微鏡システムにおいて、前記標本に対して前記オートフォーカスされたときの前記ステージの平面方向での座標を示す位置データと、前記標本と前記対物レンズとの間の距離のフォーカスデータを記憶する位置記憶手段と、前記位置記憶手段に記憶されている少なくとも2箇所の座標における前記位置データ及び前記フォーカスデータに基づいて、前記標本面の傾きを算出する標本傾き算出手段と、前記標本に対して前記オートフォーカスがされない場合、このオートフォーカスされない座標での前記位置データと、前記標本傾き算出手段によって算出された前記標本の傾きと、に基づいてフォーカス位置を予測し、このフォーカス位置に基づいて前記ステージと前記対物レンズとの相対的な距離を変化させるフォーカス位置補正手段と、を具備したことを特徴とする顕微鏡システムである。
【0018】
本発明の第3の態様は、前記標本について、前記各座標での前記オートフォーカスが可能であるか否かを判断するオートフォーカス実行可否判断手段を含むことを特徴とする第1の態様または第2の態様の顕微鏡システムである。
また、本発明の第4の態様は、標本を載置するステージを、対物レンズの光軸に対して垂直な平面方向に移動可能とし、かつ、前記ステージと前記対物レンズとの間の距離を相対的に調整して常に前記標本に対してフォーカス位置を追従するリアルタイムオートフォーカスを行う顕微鏡システムにおいて、前記ステージの前記平面方向への移動量が予め設定された移動量に達する毎に、前記ステージの前記平面方向における位置データと、前記標本と前記対物レンズとの間の距離のフォーカスデータと、を記憶する位置記憶手段と、前記位置記憶手段に記憶されている少なくとも2箇所の前記オートフォーカス位置の前記位置データ及び前記フォーカスデータに基づいて、前記標本面の傾きを算出する標本傾き算出手段と、前記標本に対するフォーカス位置の追従ができない場合、このフォーカス位置の追従ができない範囲内において、前記標本傾き算出手段により算出された前記標本面の傾きに基づいてフォーカス位置を予測し、このフォーカス位置に従って前記ステージと前記対物レンズとを相対的に移動するフォーカス位置補正手段と、を具備したことを特徴とする顕微鏡システムである。
【0019】
【発明の実施の形態】
以下、本発明の第1の実施の形態について図面を参照して説明する。
【0020】
図1は顕微鏡システムの構成図である。電動レボルバを構成するレボルバ本体1には、複数の対物レンズ2が取付けられている。このレボルバ本体1は、レボルバ用モータ3の駆動によって回転し、任意の倍率を持った対物レンズ2を光路中に挿入させるものとなっている。
【0021】
レボルバ穴(以下、レボ穴と省略する)位置検出部4は、レボルバ本体1のどの穴位置に対物レンズ2が取付けられているかを検出してその検出信号をコントロール部5に送出する。
【0022】
このコントロール部5は、操作部6からの対物レンズ2の選択信号を受け、この選択信号により指示される対物レンズ2が光路中に挿入するための信号をレボルバ用モータ駆動部7に送出する機能を有する。
【0023】
このレボルバ用モータ駆動部7は、コントロール部5からの信号を入力し、レボルバ用モータ3を駆動してレボルバ本体1を回転し、指示された対物レンズ2を光路中に挿入する。
【0024】
コントロール部5は、図2に示すようにCPU本体8に対してデータバス9を介してROM10、RAM11及びI/Oポート12が接続されている。このうちROM10には、顕微鏡システムを制御するためのプログラムが格納されている。RAM11は、顕微鏡システムの制御に必要なデータを格納する例えば揮発性メモリである。I/Oポート12は、制御信号の入出力を行う。又、コントロール部5には、図示しないがCPU本体8を制御するために必要な発振器、アドレスデコーダ等の周辺回路が備えられている。各々の周辺装置に対する制御は、I/Oポート12及びデータバス9を介して行われる。
【0025】
Zステージ13上には、XYステージ14が設けられている。このXYステージ14上には、標本Sが載置される。Zステージ13は、Z方向(光軸方向)に移動可能であって、焦準用モータ15の駆動によって光軸方向に上下動する。XYステージ14は、光軸方向に対して垂直なXY平面内に移動可能であって、XYステージ用モータ16の駆動によってXY平面内に2次元移動する。
【0026】
焦準用モータ15には焦準用モータ駆動部17が接続され、XYステージ用モータ16にはXYステージ用モータ駆動部18が接続され、これらモータ15、16はそれぞれ各モータ駆動部17、18によって駆動する。又、焦準用モータ駆動部17及びXYステージ用モータ駆動部18は、それぞれコントロール部5のI/Oポート12に接続され、コントロール部5からの制御信号を入力する。
【0027】
操作部6は、顕微鏡システムに対する操作指示を行うもので、AF開始スイッチ、フォーカス設定スイッチ、XY移動スイッチが設けられている。
【0028】
一方、基準光源19は、AFに用いられるもので、例えば赤外線レーザ等の可視外光波長領域の波長のレーザ光を出力する。この基準光源19は、レーザ駆動部20によってパルス点灯され、かつ出射するレーザ光の強度が制御される。
【0029】
この基準光源19から出射されたレーザ光は、コリメータレンズ21によって平行光に成形され、投光側ストッパ22により光束の径の半分がカットされる。このカットされたレーザ光は、偏光ビームスプリッタ(以下、PBSと称する)23に入射し、ここでP偏光成分のみが反射する。
【0030】
このPBS23で反射したP偏光成分のレーザ光束は、集光レンズ群24により一旦集光されて色収差レンズ群25に入射する。この色収差レンズ群25は、色収差レンズ駆動部26によって色収差レンズ駆動用モータ27が駆動することにより光軸方向(矢印イ方向)に移動する。この色収差レンズ群25の光軸方向への移動により色収差の補正が可能になる。なお、色収差レンズ駆動部26は、コントロール部5から送出される制御信号に従って色収差レンズ駆動用モータ27を駆動する。
【0031】
この色収差レンズ群25を通過したレーザ光束は、λ/4板28を透過して45°偏光されてダイクロイックミラー29に入射する。このダイクロイックミラー29は、赤外域のみのレーザ光束を反射する。このダイクロイックミラー29で反射したレーザ光束は、対物レンズ2により集光されて標本S上にスポット形状の像として照射される。
【0032】
標本Sで反射された光束は、標本Sに対するレーザ光束の照射の光路とは逆の光路、すなわち対物レンズ2、ダイクロイックミラー29を進行してλ/4板28に入射し、ここで45°偏光されてS偏光成分に切り換わる。このλ/4板28により偏光された光束は、色補正レンズ群25、集光レンズ群24を進行してPBS23に入射する。そして、PBS23に入射した光束は、S偏光成分になっているので、PBS23をそのまま透過し、さらに集光レンズ群30により受光センサ31上に結像される。
【0033】
この受光センサ31は、2分割フォトダイオードであって、その分割ライン31aによってA範囲とB範囲との各受光領域に分けられる。この受光センサ31は、分割ライン31aを光軸上に一致させて配置される。
【0034】
この受光センサ31に結像される光束のスポットは、図3(a)(b)に示すようにフォーカス位置の場合(標本Sがピント位置にある場合)にそのスポット領域が狭くなる。従って、受光センサ31は、高い光強度を示すセンサ信号を出力する。又、スポットが図4(a)(b)に示すようにピント位置から上側(前ピン位置)にある場合は、A範囲に偏った光強度分布となり、受光センサ31は、かかる光強度分布を示すセンサ信号を出力する。又、スポットが図5(a)(b)に示すようにピント位置から下側(後ピン位置)にある場合は、B範囲に偏った光強度分布となり、受光センサ31は、かかる光強度分布を示すセンサ信号を出力する。
【0035】
信号処理部32は、受光センサ31から出力されたセンサ信号を入力し、このセンサ信号をA範囲とB範囲との各信号成分(A範囲信号、B範囲信号)に分割し、これらA範囲信号、B範囲信号毎の各光強度の総和をそれぞれ算出し、図6(a)に示すような横軸をZステージ13の上下方向(デフォーカス)としたピント位置を挟んで左右対称なA範囲信号、B範囲信号の各カーブを検出し、これらカーブをコントローラ5に送出する。
【0036】
このコントローラ5は、A範囲信号、B範囲信号を入力し、これら信号から次式
(A−B)/(A+B) …(1)
を算出して図6(b)に示すようなカーブを求め、このカーブにおける入射光強度がゼロクロス点になるようにZステージ13を上下方向に制御する制御信号を焦準用モータ駆動部17に送出し、フォーカス動作を行う。
【0037】
以上のようにレーザ光を出射する光源19を点灯制御し、標本Sに照射したときの反射光を検出することで、アクティブ型のAF光学系が構成される。
【0038】
一方、標本Sを観察するための照明用光源33が設けられている。この照明用光源33から放射された照明光は、レンズ34を通り、ハーフミラー35で反射して標本Sを上側から照射する。標本Sからの反射光は、対物レンズ2を通り、ハーフミラー35を透過した後、ダイクロイックミラー29を透過し、観察光となる。
【0039】
なお、図示しないマニュアル焦準機構などを用いてZステージ13を光軸方向に上下動させたときの移動量を検出するエンコーダ36が設けられている。このエンコーダ36の出力パルスは、パルスカウンタ37によりカウントされ、このカウント値がコントロール部5に送られるようになっている。
【0040】
コントロール部5は、図7に示すように位置記憶部38とフォーカス位置補正部39とを有する。このうち位置記憶部38は、標本Sに対してAFされたときのXYステージ14の平面方向の位置データ(XY座標)と、標本Sと対物レンズ2との間の距離のフォーカスデータすなわちZステージ13のZ方向の位置とを例えばRAM11に記憶する機能を有する。
【0041】
フォーカス位置補正部39は、標本Sに対してAFがされないと、このAFされないXYステージ14のXY座標から最も近い位置のXY座標をRAM11から検索し、この検索されたXY座標に対応するZ方向の位置に従ってZステージ13を光軸方向に移動させる機能を有する。
【0042】
次に、上記の如く構成された装置のAF動作について説明する。
【0043】
観察者は、例えば図8に示すように半導体ウエハSの表面上に対して複数の観察位置QA、QB、QC、…にピントを合わせながら半導体ウエハSの検査を行う。
【0044】
先ず、観察者は、観察位置QAにおいて操作部6のAF開始スイッチを押し、初回目のAF動作を行わさせる。すなわち、基準光源19から出射されたレーザ光は、コリメータレンズ21によって平行光に成形され、投光側ストッパ22により光束の径の半分がカットされ、このカットされたレーザ光がPBS23に入射してP偏光成分のみが反射する。このPBS23で反射したP偏光成分のレーザ光束は、集光レンズ群24により一旦集光されて色収差レンズ群25に入射し、この色収差レンズ群25を通過したレーザ光束は、λ/4板28を透過して45°偏光されてダイクロイックミラー29に入射し、このダイクロイックミラー29で反射した赤外域のみのレーザ光束は、対物レンズ2により集光されて標本S上にスポット形状の像として照射される。
【0045】
標本Sで反射された光束は、標本Sに対するレーザ光束の照射の光路とは逆の光路を通ってPBS23に入射し、このPBS23をそのまま透過し、集光レンズ群30により受光センサ31上に結像される。
【0046】
この受光センサ31は、結像される光束のスポットが図3(a)(b)に示すフォーカス位置の場合と、図4(a)(b)に示すピント位置から上側(前ピン位置)にある場合と、図5(a)(b)に示すピント位置から下側(後ピン位置)にある場合とがあり、それぞれ光強度分布を示すセンサ信号を出力する。
【0047】
信号処理部32は、受光センサ31から出力されたセンサ信号を入力し、このセンサ信号をA範囲信号とB範囲信号とに分割し、これらA範囲信号、B範囲信号毎の各光強度の総和をそれぞれ算出し、図6(a)に示すような横軸をZステージ13の上下方向(デフォーカス)としたピント位置を挟んで左右対称なA範囲信号、B範囲信号の各カーブを検出し、これらカーブをコントローラ5に送出する。
【0048】
このコントローラ5は、A範囲信号、B範囲信号を入力し、これら信号から上記式(1)を算出して図6(b)に示すようなカーブを求め、このカーブにおける入射光強度がゼロクロス点になるようにZステージ13をZ方向に制御する制御信号を焦準用モータ駆動部17に送出し、フォーカス動作を行う。
【0049】
ここで、観察位置QAにおいてAF動作が成功すれば、上述したフォーカス位置の手動調整及びフォーカス位置記憶の際のスイッチ操作などは必要なく、AF動作完了の後、コントロール部5の位置記憶部38は、現在(観察位置QA)のZステージ13のZ位置を初回の観察位置QAにおけるピント位置(ZA)とし、このピント位置(ZA)を観察位置QAのXY座標(XA,YA)と共に、すなわちフォーカス位置(XA,YA,ZA)としてRAM11に記憶する。
【0050】
一方、正常にピントが合わない、すなわち標本Sの形状や反射率等の要因によりAF動作が失敗に終わった場合、コントロール部5は、図示しない表示手段にAF失敗を表示して観察者に通知し、かつ手動によるピント合わせを促す。
【0051】
観察者は、エンコーダ36又は図示しないマニュアル焦準機構を使ってZステージ13を光軸方向に移動させ、標本Sをピント位置に移動させ、この後に操作部6のフォーカス設定スイッチを押す。このフォーカス設定スイッチの押し操作を受けてコントロール部5の位置記憶部38は、自動的に観察位置QAにおけるフォーカス位置(XA,YA,ZA)をRAM11に記憶する。
【0052】
次に、観察位置QAにおいて標本Sの観察が終了した観察者は、操作部6のXY移動スイッチを用いてXYステージを移動させ、観察位置QBを視野内に移動させ、AF動作を開始する。このAF動作が成功した場合、上記初回目と同様に、コントロール部5の位置記憶部38は、自動的に観察位置QBにおけるフォーカス位置(XB,YB,ZB)をRAM11に記憶する。
【0053】
一方、AF動作が失敗に終わった場合、コントロール部5の位置記憶部38は、初回目にAF動作又は手動によりピント合わせを行ったときのピント位置ZAをRAM11から読み出し、このピント位置ZAにZステージ13をZ方向に移動させ、AF失敗によりピントの大幅なボケを防止する。
【0054】
次に、観察者は、操作部6のXY移動スイッチを用いてXYステージを移動させ、観察位置QCを視野内に移動させ、AF動作を開始する。このAF動作が成功した場合、上記同様に、コントロール部5の位置記憶部38は、自動的に観察位置QCおけるフォーカス位置(XC,YC,ZC)をRAM11に記憶する。
【0055】
一方、AF動作が失敗に終わった場合、コントロール部5のフォーカス位置補正部39は、現在(観察位置QC)の座標(XC,YC)と、前回までにAF動作が成功してRAM11に記憶されている観察位置の各座標(XN,YN)を読み出し、これら座標(XN,YN)のうち現在の座標(XC,YC)に最も近い観察位置、すなわち
(XC−XN)2+(Y C −Y N ) 2…(2)
が最も小さくなるようなAF動作の成功した観察位置のフォーカス位置(XN,YN,ZN)を選択し、このフォーカス位置でのZ位置ZNにZステージ13を移動させる。
【0056】
すなわち、図8に示す半導体ウエハSの観察においては、2つの観察位置QA、QBにおいてAF動作が成功している場合、観察位置QCに対する観察位置QAと観察位置QBとの各距離を比較すると、観察位置QAよりも観察位置QBの方が観察位置QCに近いので、フォーカス位置補正部39は、観察位置QBにおけるピント位置ZBを検索し、このピント位置ZBにする制御信号を焦準用モータ駆動部17に送出する。これにより、Zステージ13は、ピント位置ZBに移動する。
【0057】
なお、観察位置QBにおいてAF動作が失敗していれば、Zステージ13は、ピント位置ZAに移動する。
【0058】
このように上記第1の実施の形態においては、任意の観察位置Qn(例えばQC)においてAF動作が失敗した場合、過去にAF動作が成功した観察位置QA,QB,…,のうち最も距離の近い観察位置QA,QB,…,(例えばQB)のフォーカス位置(XB,YB,ZB)に基づいてZステージ13をZ方向に移動するので、AF動作が失敗したとしても、標本Sの傾きによるピントずれの影響を極力回避でき、最もピント位置に近いとされるZ位置に標本Sを載置するXYステージ14をXY方向に移動して標本Sに対して殆ど正確に近いピントの合った標本像を得ることができる。
【0059】
標本Sのピント位置は、主に標本Sの傾きに依存する場合が多いので、AF動作を失敗した観察位置が過去にAF動作の成功した観察位置に距離的に近いほど、Zステージ13のZ位置の補正により移動したピント位置は、本来のAF動作により成功したときのピント位置に近くなり、殆ど正確に近いピント位置を得ることができる。換言すれば、同じ標本S上の複数の観察位置QA,QB,…,QNにおいてAF動作の成功回数が多いほど、より正確なZ位置補正ができる。そして、このようにAF動作の成功したフォーカス位置(XB,YB,ZB)を多くRAM11に記憶しておけば、標本Sに対してランダムな位置で観察を行って、たとえAF動作が失敗したとてしも、殆ど正確に近いピントの合った標本像を得ることができる。
【0060】
従って、例えば半導体ウエハの欠陥検査等では、同一半導体ウエハ表面上において多くの観察位置QNにおいて検査を行うので、本発明によるAF動作失敗時のZ位置補正は有効である。
【0061】
次に、本発明の第2の実施の形態について説明する。なお、図1と同一部分には同一符号を付してその詳しい説明は省略する。
【0062】
本発明の顕微鏡システムは、上記第1の実施の形態と比較してコントロール部5に図9の機能ブロック図に示すように標本傾き算出部40及びフォーカス位置補正部41を備えている。
【0063】
標本傾き算出部40は、RAM11に記憶されている少なくとも2箇所のオートフォーカス位置のXYステージ14のXY座標及びZステージ13のZ方向の位置に基づいて標本S面の傾きを算出する機能を有する。
【0064】
フォーカス位置補正部41は、標本Sに対してAF動作がされないと、このAF動作されないXYステージ14のXY座標と、標本傾き算出部40により算出された標本S面の傾きとに基づいてフォーカス位置を予測し、このフォーカス位置に従ってZステージ13をZ方向に移動する機能を有する。
【0065】
次に、上記の如く構成された装置のAF動作について説明する。
【0066】
観察者は、例えば図10に示すように半導体ウエハSの表面上に対して複数の観察位置QA、QB、QC、QD、…にピントを合わせながら半導体ウエハSの検査を行う。
【0067】
先ず、観察者は、観察位置QAにおいて操作部6のAF開始スイッチを押し、初回目のAF動作を行わさせる。ここで、観察位置QAにおいてAF動作が成功すれば、上述したフォーカス位置の手動調整及びフォーカス位置記憶の際のスイッチ操作などは必要なく、AF動作完了の後、コントロール部5の位置記憶部38は、現在のZステージ13のZ位置を初回の観察位置QAにおけるピント位置(ZA)とし、このピント位置(ZA)を観察位置QAのXY座標(XA,YA)と共に、すなわちフォーカス位置(XA,YA,ZA)としてRAM11に記憶する。
【0068】
一方、正常にピントが合わずにAF動作が失敗に終わった場合、コントロール部5は、図示しない表示手段にAF失敗を表示して観察者に通知し、かつ手動によるピント合わせを促す。観察者は、エンコーダ36又は図示しないマニュアル焦準機構を使ってZステージ13をZ方向に移動させ、標本Sをピント位置に移動させ、この後に操作部6のフォーカス設定スイッチを押す。このフォーカス設定スイッチの押し操作を受けてコントロール部5の位置記憶部38は、自動的に観察位置QAにおけるフォーカス位置(XA,YA,ZA)をRAM11に記憶する。
【0069】
次に、観察者は、操作部6のXY移動スイッチを用いてXYステージを移動させ、観察位置QBを視野内に移動させ、AF動作を開始する。このAF動作が成功した場合、上記初回目と同様に、コントロール部5の位置記憶部38は、自動的に観察位置QBにおけるフォーカス位置(XB,YB,ZB)をRAM11に記憶する。
【0070】
さらに、コントロール部5の標本傾き算出部40は、現在(観察位置QB)のZステージ13のZ位置、すなわちピント位置ZBと観察位置QAの座標(XA,YA)におけるピント位置ZAとの差分ΔZA−B
ΔZA−B=(ZB−ZA) …(3)
を算出し、この差分ΔZA−Bを観察位置QAからQBへの移動に伴うピント位置の変化としてRAM11に記憶する。
【0071】
一方、AF動作が失敗に終わった場合、コントロール部5の位置記憶部38は、ピント位置ZBとピント位置ZAとの差分ΔZA−Bの算出を行わず、初回目にAF動作又は手動によりピント合わせを行ったときのピント位置ZAをRAM11から読み出し、このピント位置ZAにZステージ13をZ方向に移動させる。
【0072】
次に、観察者は、操作部6のXY移動スイッチを用いてXYステージを移動させ、観察位置QCを視野内に移動させ、AF動作を開始する。このAF動作が成功した場合、上記同様に、コントロール部5の位置記憶部38は、自動的に観察位置QCにおけるフォーカス位置(XC,YC,ZC)をRAM11に記憶する。
【0073】
さらに、コントロール部5の標本傾き算出部40は、現在(観察位置QC)のZステージ13のZ位置、すなわちピント位置ZCと、観察位置QBの座標(XB,YB)におけるピント位置ZBとの差分ΔZB−C
ΔZB−C=(ZC−ZB) …(4)
を算出し、この差分ΔZB−Cを観察位置QBからQCへの移動に伴うピント位置の変化としてRAM11に記憶する。
【0074】
一方、AF動作が失敗に終わった場合、コントロール部5の位置記憶部38は、ピント位置ZBとピント位置ZCとの差分ΔZB−Cの算出を行わず、現在位置(観察位置QC)に最も近いAF動作の成功位置、例えば観察位置QBでAF動作が成功していればかかる観察位置QB、失敗していれば観察位置QAにおけるピント位置ZB又はZAにZステージ13を移動する。
【0075】
ところで、ここまでの操作において各観察位置QB、QCでAF動作が成功している場合、RAM11に記憶された各観察位置QB、QCの各XY座標と各ピント位置のずれとから標本Sを平面とした場合の傾きが算出できる。
【0076】
すなわち、X軸方向の傾きをαとし、Y軸方向の傾きをβとすると、
α・ΔXA−B+β・ΔYA−B=ΔZA−B …(5)
α・ΔXB−C+β・ΔYB−C=ΔZB−C …(6)
の2式におけるΔXA−B、ΔYA−B、ΔZA−B、ΔXB−C、ΔYB−C、ΔZB−Cに対してRAM11に記憶されている各差分ΔXA−B、ΔYA−B、ΔZA−B、ΔXB−C、ΔYB−C、ΔZB−Cの値を代入することで、X軸方向の傾きαとY軸方向の傾きβとが求められる。
【0077】
なお、これら差分ΔXA−B、ΔYA−B、ΔXB−C、ΔYB−Cの値は、図10に示すように各観察位置QAとQB、QBとQCとの各間におけるXYステージ14のX軸方向、Y軸方向における各移動量であって、コントロール部5の標本傾き算出部40により観察位置QAからQB、QBからQCにそれぞれ移動する毎に求めてRAM11に記憶される。
【0078】
従って、フォーカス位置補正部41は、上記各式(5)及び(6)を演算して現在の標本Sにおける平面の傾き、すなわちX軸方向の傾きをα及びY軸方向の傾きをβを算出することで、任意のXY軸方向への移動(ΔX,ΔY)に伴うピント位置のずれΔZを
ΔZ=α・ΔX+β・ΔY …(7)
の式により近似し、予測することが可能になる。
【0079】
次に、観察者は、操作部6のXY移動スイッチを用いてXYステージを移動させ、観察位置QDを視野内に移動させ、AF動作を開始する。このAF動作が成功した場合、上記同様に、コントロール部5の位置記憶部38は、自動的に観察位置QDにおけるフォーカス位置(XD,YD,ZD)をRAM11に記憶すると共に、現在(観察位置QD)のZステージ13のZ位置ZDと観察位置QCの座標(XC,YC)におけるピント位置ZCとの差分ΔZC−D(=ZD−ZC)を求め、これを観察位置QCからQDへの移動に伴うピント位置の変化としてRAM11に記憶する。
【0080】
一方、AF動作が失敗に終わった場合、コントロール部5のフォーカス位置補正部41は、XY平面の移動量ΔXC−D、ΔYC−Dから上記式(7)を演算して
ΔZC−D=α・ΔXC−D+β・ΔYC−D …(8)
なる観察位置QCとQDとの間のピント位置のずれΔZC−Dを求め、このずれΔZC−Dに従ってZステージ13をZ方向に移動する制御信号を焦準用モータ駆動部17に送出する。これにより、Zステージ13は、Z方向にΔZC−Dだけ移動する。
【0081】
このように上記第2の実施の形態においては、標本傾き算出部40によりRAM11に記憶されている少なくとも2箇所のオートフォーカス位置のXY座標及びピント位置Zに基づいて標本S面の傾きを算出し、標本Sに対してAF動作がされない場合、フォーカス位置補正部41によりAF動作されないXYステージ14のXY座標と、標本傾き算出部40により算出された標本S面の傾きとに基づいてフォーカス位置を予測し、このフォーカス位置に従ってZステージ13を移動するので、任意の観察位置QN(XN,YN)においてAF動作が失敗した場合のピント位置の補正量を、標本Sの傾きを加味した値にすることができ、これにより、均一な勾配を持つ標本S面上に対するAF動作失敗時におけるZステージ13のZ位置を、標本S面の傾きに影響されず、最もピント位置に近い位置に移動することができる。
【0082】
又、上記第1の実施の形態と同様に、同じ標本S上の複数の観察位置QA,QB,…,QNにおいてAF動作の成功回数が多いほど、標本Sの傾きの予測がより正確にできる。
【0083】
次に、本発明の第3の実施の形態について説明する。なお、図1と同一部分には同一符号を付してその詳しい説明は省略する。
【0084】
本発明の顕微鏡システムは、上記第2の実施の形態と比較して、AF動作の形態と、コントロール部5に図11の機能ブロック図に示すようにフォーカス位置補正部42とを備えた点が異なる。
【0085】
AF動作の形態について説明すると、上記第2の実施の形態では、観察位置QN(XN,YN)及びピント位置ZNの取得及びその記憶は、その観察位置QN(XN,YN)においてAF動作を開始させ、このAF動作の成功/失敗の判断を行った後である。すなわち、各観察位置QN(XN,YN)においてAF動作が開始され、それぞれ異なる各観察位置QN(XN,YN)間の移動時には、AF動作が行われていないことが前提である。このAF動作の形態は、いわゆるワンショットAFと呼ばれ、各観察位置QN(XN,YN)において一度だけ行うAF動作である。
【0086】
これに対して各観察位置QN(XN,YN)への移動の際にもAF動作を行い、常にピント位置を追従するタイプのAF動作をリアルタイムAFと称し、連続的にピント像を得る場合に多用される。
【0087】
リアルタイムAFの場合、上記第2の実施の形態で説明したワンショットAFのように標本Sの観察位置QN(XN,YN)及びピント位置ZNを取得するタイミングであるAF開始の指令は、始めの観察位置QAのみで、その後の各観察位置QN(XN,YN)では発せられない。
【0088】
リアルタイムAFの動作において、標本Sに対するピント位置が得られない(AF失敗)場合は、主として標本Sの反射率が低い場合である。この場合、ピント位置の追従動作は行わず、Zステージ13はZ方向に対して停止したままとなり、再び標本Sの反射率が所定値を超えてピント位置の追従ができるようになるまで待機状態になるのが通常である。
【0089】
例えば、図12に示すように標本Sの面上において、観察位置aからリアルタイムAFを開始し、XYステージ14のXY方向への移動により観察位置を観察軌跡Kに沿って移動した場合、例えば反射率の低い範囲G内においてピント位置が検出できず、ピント位置の追従動作ができなくなると、Zステージ13は、範囲Gと接する位置bからZ方向への移動を停止し、範囲Gから出る位置cからピント位置の追従動作を再開する。なお、Zステージ13は、範囲G内を移動しているとき、Z位置は位置bにおけるZ位置のままとなる。
【0090】
従って、標本Sに勾配があると、リアルタイムAFが出来ない範囲G内では、標本Sの像が次第にボケてしまう。
【0091】
このような事からフォーカス位置補正部42は、標本Sに対するフォーカス位置の追従ができなければ、このフォーカス位置の追従できない範囲G内において、標本傾き算出部40により算出された標本Sの面の傾きに基づいてフォーカス位置を予測し、このフォーカス位置に従ってZステージ13をZ方向に移動する機能を有する。
【0092】
このフォーカス位置補正部42を備えることにより、リアルタイムAFが出来ない範囲G内において、ピント位置に最も近いとされるZステージ13のZ位置を算出し、標本Sに対する観察位置の移動に伴って随時Z位置の補正を行い、再びリアルタイムAF動作が可能になる位置cまで、ピント位置のズレを極力抑えた標本像を取得可能になる。
【0093】
次に、上記の如く構成された装置のAF動作について説明する。
【0094】
フォーカス位置補正部42は、図13中の破線により示すようにXY軸に対する各長さΔX、ΔY(例えば1mm程度)により格子状の複数のエリアに区分けする。なお、これら長さΔX、ΔYは、操作部6により任意の値に設定可能である。
【0095】
観察者によってリアルタイムAF動作を標本S上の位置aから開始し、観察軌跡Kに沿って観察位置を移動させたとき、X方向の移動量がΔX以上となった場合、又はY方向の移動量がΔY以上となった場合に、フォーカス位置補正部42は、現在の観察位置の座標(X,Y)及びピント位置Zを取得すると共に、これら座標(X,Y)及びピント位置ZをRAM11に記憶する。例えば図13に示す標本S上においては、観察軌跡K上の各観察位置Q1〜Q7における各座標(X1,Y1)〜(X7,Y7)及びピント位置Z1〜Z7がRAM11に記憶される。
【0096】
標本傾き算出部40は、上記第2の実施の形態と同様に、RAM11に記憶されている少なくとも2箇所のAF位置、例えば図13中の各観察位置Q1〜Q7のXY座標(X1,Y1)〜(X7,Y7)及びピント位置Z1〜Z7に基づいて標本S面の傾きを算出する。
【0097】
これにより、観察位置が図13中の観察位置bを通過してリアルタイムAF動作が出来ない範囲G内に入るまでに、標本SのXY方向への移動に伴うピント位置Zの補正式、すなわち上記式(7)を演算してピント位置のずれΔZが求められることになる。
【0098】
従って、フォーカス位置補正部42は、XY平面の移動量ΔX、ΔYから上記式(7)を演算して観察位置の観察軌跡K上におけるピント位置のずれΔZを求め、このずれΔZに従ってZステージ13をZ方向に移動する制御信号を焦準用モータ駆動部17に送出する。これにより、Zステージ13は、Z方向にΔZだけ随時移動する。
【0099】
この結果、リアルタイムAF動作ができない範囲G内においてもピント位置の追従が可能になる。
【0100】
このように上記第3の実施の形態においては、リアルタイムAF動作を行う場合に、標本Sに対するフォーカス位置の追従ができなければ、このフォーカス位置の追従できない範囲G内において、標本Sの面の傾きに基づいてフォーカス位置を予測し、このフォーカス位置に従ってZステージ13をZ方向に移動するので、リアルタイムAF動作が出来ない範囲G内においても、標本Sの勾配によるピント位置のズレを回避したZステージ13のZ方向の制御ができ、かつ再びリアルタイムAF動作が可能になる位置cで、自動的に通常のリアルタイムAF動作に切り替わることができ、ピントボケにより検査不能、さらにはマニュアルによるピント調整、AF動作の再開などの余計な操作を回避でき、常にピントの合った標本像を取得できる。
【0101】
なお、本発明は、上記第1乃至第3の実施の形態に限定されるものでなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。
【0102】
さらに、上記実施形態には、種々の段階の発明が含まれており、開示されている複数の構成要件における適宜な組み合わせにより種々の発明が抽出できる。例えば、実施形態に示されている全構成要件から幾つかの構成要件が削除されても、発明が解決しようとする課題の欄で述べた課題が解決でき、発明の効果の欄で述べられている効果が得られる場合には、この構成要件が削除された構成が発明として抽出できる。
【0103】
例えば、上記第1乃至第3の実施の形態において、標本Sと対物レンズ2との距離は、Zステージ13を移動させているが、これに限らず例えば対物レンズ2を装着するレボルバ1をZ方向に移動させる方式に変更してもよく、又Zステージ13とレボルバ1とを相互にZ方向に移動させる方式にしてもよい。
【0104】
又、上記第1乃至第3の実施の形態では、レーザ光を標本Sに照射し、その反射光の状態に基づいてAF動作を行ういわゆるアクティブ型AFについて説明したが、標本Sの像をCCDラインセンサ等で検出し、これにより取得される画像データのコントラスト値に基づいてAF動作を行ういわゆるパッシブ型のAFに対しても適用でき、上記第1乃至第3の実施の形態と同様の作用効果を得ることができる。
【0105】
又、AF動作の可否判断、例えば図13中の位置b、cにおけるAF又はZ位置補正動作の切替えは、図6(a)(b)に示すような受光センサ31に入射されるレーザ光の強度(A+B)に対し、所定のしきい値を設けることで実現しているが、例えばコントラスト方式などのパッシブ型AFの場合には、CCDラインセンサ等で検出された標本Sの像のコントラストの総和値を使用すれば、アクティブ型AFと同様のAF可否判断ができる。
【0106】
又、AF機能を備えた顕微鏡システムであれば、落射型、透過型の顕微鏡やレーザ走査型などの各種顕微鏡に適用できる。
【0107】
さらに、上記第1乃至第3の実施の形態では、標本Sに傾きがある場合として説明したが、Zステージ13又はXYステージ14のいずれか一方又は両方に傾きがあって標本Sが傾いている場合であっても、標本Sに対するピントズレを極力抑えて、安定して標本の画像を得ることができる。この場合、Zステージ13又はXYステージ14の傾きは常に一定であるので、予め基準の標本Sを用いて複数箇所のフォーカス位置(XA,YA,ZA)をRAM11に記憶してデータベース化し、このデータベースを用いてピント位置のずれを補正してもよい。
【0108】
【発明の効果】
以上詳記したように本発明によれば、標本内に対してAFが動作しないところがあっても、標本に対するピントズレを極力抑えて、安定して標本の画像を得ることができる顕微鏡システムを提供できる。
【図面の簡単な説明】
【図1】本発明に係わる顕微鏡システムの第1の実施の形態を示す構成図。
【図2】本発明に係わる顕微鏡システムの第1の実施の形態におけるコントロール部の構成図。
【図3】 本発明に係わる顕微鏡システムの第1の実施の形態におけるフォーカス位置の場合の受光センサ上の光強度分布を示す図。
【図4】本発明に係わる顕微鏡システムの第1の実施の形態における前ピン位置の場合の受光センサ上の光強度分布を示す図。
【図5】本発明に係わる顕微鏡システムの第1の実施の形態における後ピン位置の場合の受光センサ上の光強度分布を示す図。
【図6】 本発明に係わる顕微鏡システムの第1の実施の形態におけるコントローラによるフォーカス動作を説明するための図。
【図7】本発明に係わる顕微鏡システムの第1の実施の形態におけるコントローラの機能を示すブロック図。
【図8】本発明に係わる顕微鏡システムの第1の実施の形態のAF動作を説明するための図。
【図9】本発明に係わる顕微鏡システムの第2の実施の形態におけるコントローラの機能を示すブロック図。
【図10】本発明に係わる顕微鏡システムの第2の実施の形態のAF動作を説明するための図。
【図11】本発明に係わる顕微鏡システムの第3の実施の形態におけるコントローラの機能を示すブロック図。
【図12】通常のリアルタイムAFの追従動作を説明するための図。
【図13】本発明に係わる顕微鏡システムの第3の実施の形態のAF動作を説明するための図。
【符号の説明】
1:レボルバ本体
2:対物レンズ
3:レボルバ用モータ
4:レボ穴位置検出部
5:コントロール部
6:操作部
7:レボルバ用モータ駆動部
8:CPU本体
9:データバス
10:ROM
11:RAM
12:I/Oポート
13:Zステージ
14:XYステージ
15:焦準用モータ
16:XYステージ用モータ
17:焦準用モータ駆動部
18:XYステージ用モータ駆動部
19:基準光源
20:レーザ駆動部
21:コリメータレンズ
22:投光側ストッパ
23:偏光ビームスプリッタ(PBS)
24:集光レンズ群
25:色収差レンズ群
26:色収差レンズ駆動部
27:色収差レンズ駆動用モータ
28:λ/4板
29:ダイクロイックミラー
30:集光レンズ群
31:受光センサ
32:信号処理部
33:照明用光源
34:レンズ
35:ハーフミラー
36:エンコーダ
37:パルスカウンタ
38:位置記憶部
39:フォーカス位置補正部
40:標本傾き算出部
41,42:フォーカス位置補正部
S:標本
Claims (4)
- 標本を載置するステージを対物レンズの光軸に対して垂直な平面方向に移動可能とし、かつ前記ステージと前記対物レンズとの間の距離を相対的に調整して前記標本に対するオートフォーカスを行う顕微鏡システムにおいて、
前記標本に対して前記オートフォーカスされたときの前記ステージの平面方向での座標を示す位置データと、前記標本と前記対物レンズとの間の距離のフォーカスデータとを記憶する位置記憶手段と、
前記標本に対して前記オートフォーカスがされない場合、このオートフォーカスされない前記座標から最も近い座標の前記位置データを前記位置記憶手段から検索し、この検索された前記位置データに対応する前記フォーカスデータを用いて前記ステージと前記対物レンズとの相対的な距離を変化させるフォーカス位置補正手段と、
を具備したことを特徴とする顕微鏡システム。 - 前記標本を載置するステージを対物レンズの光軸に対して垂直な平面方向に移動可能とし、かつ、前記ステージと前記対物レンズとの間の距離を相対的に調整して前記標本に対するオートフォーカスを行う顕微鏡システムにおいて、
前記標本に対して前記オートフォーカスされたときの前記ステージの平面方向での座標を示す位置データと、
前記標本と前記対物レンズとの間の距離のフォーカスデータを記憶する位置記憶手段と、
前記位置記憶手段に記憶されている少なくとも2箇所の座標における前記位置データ及び前記フォーカスデータに基づいて、前記標本面の傾きを算出する標本傾き算出手段と、
前記標本に対して前記オートフォーカスがされない場合、このオートフォーカスされない座標での前記位置データと、前記標本傾き算出手段によって算出された前記標本の傾きと、に基づいてフォーカス位置を予測し、このフォーカス位置に基づいて前記ステージと前記対物レンズとの相対的な距離を変化させるフォーカス位置補正手段と、
を具備したことを特徴とする顕微鏡システム。 - 前記標本について、前記各座標での前記オートフォーカスが可能であるか否かを判断するオートフォーカス実行可否判断手段を含むことを特徴とする請求項1又は2記載の顕微鏡システム。
- 標本を載置するステージを、対物レンズの光軸に対して垂直な平面方向に移動可能とし、かつ、前記ステージと前記対物レンズとの間の距離を相対的に調整して常に前記標本に対してフォーカス位置を追従するリアルタイムオートフォーカスを行う顕微鏡システムにおいて、
前記ステージの前記平面方向への移動量が予め設定された移動量に達する毎に、前記ステージの前記平面方向における位置データと、前記標本と前記対物レンズとの間の距離のフォーカスデータと、を記憶する位置記憶手段と、
前記位置記憶手段に記憶されている少なくとも2箇所の前記オートフォーカス位置の前記位置データ及び前記フォーカスデータに基づいて、前記標本面の傾きを算出する標本傾き算出手段と、
前記標本に対するフォーカス位置の追従ができない場合、このフォーカス位置の追従ができない範囲内において、前記標本傾き算出手段により算出された前記標本面の傾きに基づいてフォーカス位置を予測し、このフォーカス位置に従って前記ステージと前記対物レンズとを相対的に移動するフォーカス位置補正手段と、
を具備したことを特徴とする顕微鏡システム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003114682A JP4388298B2 (ja) | 2003-04-18 | 2003-04-18 | 顕微鏡システム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003114682A JP4388298B2 (ja) | 2003-04-18 | 2003-04-18 | 顕微鏡システム |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2004317970A JP2004317970A (ja) | 2004-11-11 |
JP2004317970A5 JP2004317970A5 (ja) | 2006-06-15 |
JP4388298B2 true JP4388298B2 (ja) | 2009-12-24 |
Family
ID=33474183
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003114682A Expired - Fee Related JP4388298B2 (ja) | 2003-04-18 | 2003-04-18 | 顕微鏡システム |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4388298B2 (ja) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4534740B2 (ja) * | 2004-12-07 | 2010-09-01 | 三菱電機株式会社 | 撮像装置 |
JP4974062B2 (ja) * | 2008-03-07 | 2012-07-11 | 横河電機株式会社 | 創薬スクリーニング方法 |
JP5394887B2 (ja) | 2009-10-29 | 2014-01-22 | オリンパス株式会社 | 顕微鏡装置および顕微鏡観察方法 |
JP5927973B2 (ja) * | 2012-02-16 | 2016-06-01 | ソニー株式会社 | 撮像装置、撮像制御プログラム及び撮像方法 |
JP2019008196A (ja) * | 2017-06-27 | 2019-01-17 | 株式会社オプティマ | 観察システム、制御装置、制御方法、及びプログラム |
EP3514594B1 (en) | 2018-01-19 | 2025-01-08 | Leica Instruments (Singapore) Pte. Ltd. | Method for automatedly aligning a stand for a microscope, stand for a microscope and microscope assembly |
JP7415929B2 (ja) * | 2018-08-30 | 2024-01-17 | ソニーグループ株式会社 | 信号処理装置、信号処理方法、信号処理プログラムおよび撮像装置 |
WO2023135702A1 (ja) * | 2022-01-13 | 2023-07-20 | 株式会社日立ハイテク | 観察方法及び観察装置 |
-
2003
- 2003-04-18 JP JP2003114682A patent/JP4388298B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004317970A (ja) | 2004-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4021183B2 (ja) | 合焦状態信号出力装置 | |
JP4097761B2 (ja) | 自動焦点顕微鏡及び自動合焦検出装置 | |
JP4121849B2 (ja) | 欠陥検査装置及び欠陥検査方法 | |
JP4553030B2 (ja) | 自動焦点制御ユニット、電子機器、自動焦点制御方法 | |
JP5064764B2 (ja) | 自動焦点検出装置、その制御方法、及び顕微鏡システム | |
JP2006184303A (ja) | 画像検査装置 | |
JP4388298B2 (ja) | 顕微鏡システム | |
JP2005241607A (ja) | 角度測定装置 | |
JP2002321080A (ja) | レーザ微細加工用オートフォーカス装置 | |
JPH1195091A (ja) | 自動焦点顕微鏡 | |
JP2001091821A (ja) | 顕微鏡用オートフォーカスシステム | |
JP2001004491A (ja) | 光ビームの検査装置 | |
JPH10239037A (ja) | 観察装置 | |
JP2002228421A (ja) | 走査型レーザ顕微鏡 | |
JP2001311866A (ja) | 顕微鏡のオートフォーカス方法及び装置 | |
JP5145698B2 (ja) | 顕微鏡用焦点検出装置と、これを具備する顕微鏡 | |
JP2002341234A (ja) | 顕微鏡用オートフォーカス装置 | |
JP4384446B2 (ja) | オートフォーカス方法及びその装置 | |
JP4712334B2 (ja) | 顕微鏡装置、顕微鏡ユニット、プログラム | |
JPH0545573A (ja) | 焦点検出装置 | |
JP2005010665A (ja) | 顕微鏡用オートフォーカス装置及び顕微鏡用オートフォーカス方法 | |
JP2002277729A (ja) | 顕微鏡用オートフォーカス装置および方法 | |
JP2005274609A (ja) | 自動合焦方法及びその装置 | |
JPH0588072A (ja) | 自動焦点装置 | |
JP4381687B2 (ja) | 全反射蛍光顕微測定装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060410 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060410 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090609 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090806 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090908 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091002 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121009 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131009 Year of fee payment: 4 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |