[go: up one dir, main page]

JP4379977B2 - Epoxy resin composition and semiconductor device - Google Patents

Epoxy resin composition and semiconductor device Download PDF

Info

Publication number
JP4379977B2
JP4379977B2 JP30677399A JP30677399A JP4379977B2 JP 4379977 B2 JP4379977 B2 JP 4379977B2 JP 30677399 A JP30677399 A JP 30677399A JP 30677399 A JP30677399 A JP 30677399A JP 4379977 B2 JP4379977 B2 JP 4379977B2
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
general formula
semiconductor
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30677399A
Other languages
Japanese (ja)
Other versions
JP2001122944A (en
Inventor
文広 海賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP30677399A priority Critical patent/JP4379977B2/en
Publication of JP2001122944A publication Critical patent/JP2001122944A/en
Application granted granted Critical
Publication of JP4379977B2 publication Critical patent/JP4379977B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、成形性、耐半田クラック性、耐熱性に優れる半導体封止用エポキシ樹脂組成物及び半導体装置に関するものである。
【0002】
【従来の技術】
従来、ダイオード、トランジスタ、集積回路等の電子部品を、熱硬化性樹脂で封止しているが、特に集積回路では、耐熱性、耐湿性に優れたエポキシ樹脂、フェノール樹脂、溶融シリカ、結晶シリカ等の無機充填材を配合したエポキシ樹脂組成物が用いられている。ところが近年、集積回路の高集積化に伴いチップが徐々に大型化し、かつ半導体装置は従来のDIPタイプから表面実装化された小型、薄型のQFP、SOP、SOJ、TSOP、TQFP、PLCC、BGAタイプに変わってきている。即ち、大型の半導体素子を小型で薄いパッケージに封入することになり、熱応力によりクラックが発生し、これらのクラックによる耐湿性低下等の問題が大きくクローズアップされている。特に、半田付け工程において、急激に200℃以上の高温にさらされることにより、半導体装置の割れや樹脂組成物の硬化物と半導体素子の界面での剥離により耐湿性が劣化してしまうといった問題点がでてきている。従ってこれらの大型の半導体素子を封止するのに適した、信頼性の高いエポキシ樹脂組成物の開発が望まれている。耐半田クラック性に優れるエポキシ樹脂組成物の開発のために、一般には無機充填材を増量して樹脂組成物の硬化物の吸水率を低下させる方法が採られてきたが、無機充填材を増やしすぎると樹脂組成物の粘度が高くなりすぎ、充填性が悪くなる等の成形性の問題があり、無機充填材の増量には限界がある。又、無機充填材を増やした場合、成形性を考慮に入れ、一般的に低粘度樹脂を使用する。しかし、硬化性が悪くなり、成形時の成形時間が長くなる等の不都合が生ずるため、現実的にはコストが合わない等の問題が出てきて、実用化できないのが実状である。
【0003】
【発明が解決しようとする課題】
本発明は、このような問題に対して、成形時の硬化性に優れ、耐半田クラック性、耐熱性に著しく優れた半導体封止用エポキシ樹脂組成物及びこれを用いて半導体素子を封止してなる半導体装置を提供するものである。
【0004】
【課題を解決するための手段】
本発明は、(A)一般式(1)で示されるエポキシ樹脂、(B)一般式(2)で示されるフェノール樹脂、(C)硬化促進剤、及び(D)無機充填材からなり、特に一般式(2)で示されるフェノール樹脂が、式(3)であることを特徴とする半導体封止エポキシ樹脂組成物、及びこの樹脂組成物を用いて半導体素子を封止してなることを特徴とする半導体装置である。
【化4】

Figure 0004379977
(式中のR1は、炭素数1〜4のアルキル基の中から選択される同一もしくは異なる基、aは0〜3の整数、nは平均値で、1〜10の正数)
【0005】
【化5】
Figure 0004379977
(式中のR1、R2は、炭素数1〜4のアルキル基の中から選択される同一もしくは異なる基、aは0〜3の整数、bは0〜4の整数、m、nは平均値で、いずれもm、nは1〜10の正数)
【0006】
【化6】
Figure 0004379977
(式中のm、nは平均値で、いずれもm、nは1〜10の正数)
【0007】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明で用いられる一般式(1)で示されエポキシ樹脂は、1分子中に3個以上のエポキシ基を有する多官能性エポキシ樹脂であり、クレゾールノボラック型エポキシ樹脂等の多官能エポキシ樹脂に比較し、硬化物の架橋密度が高くなることによりガラス転移温度(以下、Tgという)が高く、耐熱性に優れたエポキシ樹脂組成物を得ることができる。一般式(1)で示されるエポキシ樹脂には、種々の構造の樹脂が包含されるが、これらは単独でも混合して用いてもよい。一般式(1)のnは平均値であり、10を越えると流動性が劣り好ましくない。
【0008】
一般式(1)で示されるエポキシ樹脂は、その特性が損なわれない範囲で他のエポキシ樹脂と併用してもかまわないが、このエポキシ樹脂の配合量を調節することにより、耐熱性を最大限に引き出すことができる。耐熱性の効果を引き出すためには、一般式(1)で示されるエポキシ樹脂を総エポキシ樹脂量に対して30重量%以上、好ましくは50重量%以上の使用が望ましい。30重量%未満だと高温時の耐熱性が不十分となるおそれがある。
併用する場合のエポキシ樹脂としては、分子内にエポキシ基を有するモノマー、オリゴマー、ポリマー全般を指す。例えば、ビスフェノールA型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂等が挙げられるが、これらに限定されるものではない。
【0009】
本発明に用いられる一般式(2)で示されるフェノール樹脂は、例えばビス(メトキシメチル)ビフェニル及びビス(メトキシメチル)ベンゼンとフェノール類をフリーデル・クラフツ・アルキル化反応により重合させて得られる。
一般式(2)で示されるフェノール樹脂を用いた樹脂組成物の硬化物は、Tgを越えた高温域での弾性率が低く、低吸湿性であるため表面実装の半田付け時における熱ストレスを低減させることができ耐半田クラック性、半田処理後の基材との密着性に優れるという特徴を有している。この樹脂は、一般式(4)のジフェニレン骨格のみを含むフェノールアラルキル樹脂に比べ、樹脂組成物の硬化性が向上し成形性に優れている。又、一般式(5)のフェニレン骨格のみを含むフェノールアラルキル樹脂に比べ、樹脂組成物の硬化物は低吸湿性、熱時低弾性の特徴を有し、接着強度、耐半田クラック性に優れている。
又、一般式(4)のジフェニレン骨格を含むフェノールアラルキル樹脂と一般式(5)のフェニレン骨格を含むフェノールアラルキル樹脂を単に混合した場合は、硬化性の高い一般式(5)のフェノールアラルキル樹脂が硬化網目構造を先に形成し、硬化性の低い一般式(4)のフェノールアラルキル樹脂が硬化時に取り残されるため、成形品表面と金型との界面に一般式(4)のフェノールアラルキル樹脂がブリードし、金型や成形品表面に汚れを発生したり、硬化網目構造が不均一なため曲げ強度等の機械的特性が低下する。これに対し1分子中にジフェニレン構造とフェニレン構造の両者を有する一般式(2)で示されるフェノール樹脂は、両方の樹脂の特徴をバランス良く有しており、均一な硬化挙動と均一な硬化物構造を形成する。
【0010】
【化7】
Figure 0004379977
【0011】
【化8】
Figure 0004379977
一般式(2)中のR1、R2は、炭素数1〜4のアルキル基の中から選択される同一もしくは異なる基、aは0〜3の整数、bは0〜4の整数、m、nは平均値で、いずれもm、nは1〜10の正数である。いずれかが10を越えると流動性が劣り好ましくない。より好ましいm、nは1〜5である。
mとnの合計に対するmの割合は、0.1〜0.9が好ましい。0.1未満だと高温時の弾性率の低下が小さくなり、硬化性が悪く、0.9を越えると硬化性が悪くなる傾向にある。更に、一般式(2)の内では、硬化性、流動性、高温時の弾性率等のバランスから式(3)で示される樹脂が好ましい。
【0012】
一般式(2)で示されるフェノール樹脂の150℃での溶融粘度としては、0.1〜1.5ポイズが好ましい。1.5ポイズを越えると、溶融時の流動性が低下することになる。本発明のフェノール樹脂の150℃での溶融粘度は、ICI粘度計(コーン&プレート型)を用いて測定したものである。
一般式(2)で示されるフェノール樹脂は、その特性が損なわれない範囲で他のフェノール樹脂と併用してもかまわないが、このフェノール樹脂の配合量を調節することにより、耐半田クラック性を最大限に引き出すことができる。耐半田クラック性の効果を引き出すためには、一般式(2)で示されるフェノール樹脂を総フェノール樹脂量に対して30重量%以上、好ましくは50重量%以上の使用が望ましい。30重量%未満だと高温時の低弾性化及び接着性が十分に得られず、耐半田クラック性が不十分となるおそれがある。
併用する場合のフェノール樹脂としては、分子内にフェノール性水酸基を有するモノマー、オリゴマー、ポリマー全般を指し、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂、トリフェノールメタン型樹脂等が挙げられる。又、これらのフェノール樹脂は、単独もしくは混合して用いても差し支えない。
エポキシ樹脂のエポキシ基とフェノール樹脂のフェノール性水酸基の当量比については0.5〜2で使用し、当量比が0.5未満であっても、2を越えても、樹脂組成物の硬化性の低下、或いは硬化物のTgの低下等が生じるので好ましくない。
【0013】
本発明で用いられる硬化促進剤としては、エポキシ基とフェノール性水酸基との硬化反応を促進させるものであればよく、一般に封止用材料に用いられるものを広く用いることができる。例えば、1,8−ジアザビシクロ(5,4,0)ウンデセン−7、テトラフェニルホスホニウム・テトラナフトイックアシッドボレート、トリフェニルホスフィン、ベンジルジメチルアミン、2−メチルイミダゾール等である。
これらの内では、特に1,8−ジアザビシクロ(5,4,0)ウンデセン−7が、各種基材に対する密着性の向上のために有効であり、更にテトラフェニルホスホニウム・テトラナフトイックアシッドボレートは、樹脂組成物の常温保管特性を大幅に向上させる効果がある。これらの硬化促進剤は、単独でも混合して用いても差し支えない。
【0014】
本発明で用いられる無機充填材は、例えば、溶融シリカ、球状シリカ、結晶シリカ、2次凝集シリカ、多孔質シリカ、2次凝集シリカ又は多孔質シリカを粉砕したシリカ、アルミナ、窒化珪素等が挙げられる。又、無機充填材の形状としては、破砕状でも球状でもかまわないが、流動特性、機械強度及び熱的特性のバランスを考慮すると球状溶融シリカ粉末が好ましい。これらの無機充填材は単独でも混合して用いてもよい。更に、シランカップリング剤等で予め表面処理をしたものを用いてもよい。無機充填材の配合量としては、成形性と信頼性のバランスから、全樹脂組成物中に70〜95重量%が好ましい。
【0015】
本発明の樹脂組成物は、(A)〜(D)成分の他、必要に応じてカップリング剤、カーボンブラック等の着色剤、臭素化エポキシ樹脂、酸化アンチモン等の難燃剤、天然ワックス、合成ワックス等の離型剤、シリコーンオイル、ゴム等の低応力添加剤等の種々の添加剤を適宜配合しても差し支えない。
特に、カップリング剤では、無機充填材と有機物の両者に反応性を有しているカップリング剤は、半導体素子を搭載する基板と樹脂組成物の硬化物との接着界面に作用し、接着力を向上させ、耐半田クラック性等の信頼性を向上させるので好ましい。
【0016】
本発明の樹脂組成物を成形材料として製造するには、(A)〜(D)成分、その他の添加剤をミキサー等を用いて十分に均一に常温混合した後、更に熱ロール又はニーダー等で溶融混合し、冷却後粉砕して封止材料とすることができる。これらの成形材料は、電気部品あるいは電子部品であるトランジスタ、集積回路等の被覆、絶縁、封止等に適用することができる
本発明のエポキシ樹脂組成物を用いて、半導体等の電子部品を封止し、半導体装置を製造するには、トランスファーモールド、コンプレッションモールド、インジェクションモールド等の従来からの成形方法で硬化成形をすればよい。
【0017】
【実施例】
以下に本発明を実施例を挙げて本発明を、更に詳細に説明するが、本発明はこれら実施例によりなんら限定されるものでない。
Figure 0004379977
をミキサーを用いて常温で混合し、50〜130℃で二軸ロールを用いて混練し、冷却後粉砕し、タブレット化して樹脂組成物を得た。この樹脂組成物を以下の方法で評価した。結果を表1に示す。
【0018】
評価方法
・吸湿率:得られた材料をタブレット化し、低圧トランスファー成形機にて金型温度175℃、注入圧力100kg/cm2、硬化時間120秒の条件で直径50mm、高さ3mmの円盤状試験片を成形した。ポストキュアとして175℃で8時間処理した試験片の吸湿処理前の重量と85℃、相対湿度85%の環境下で168時間処理した後の重量を測定し、試験片の吸湿率を求めた。
・耐半田クラック性:タブレット化した材料を用いて、低圧トランスファー成形機にて金型温度175℃、注入圧力100kg/cm2、硬化時間120秒の条件で80pQFP(厚さ2.0mm、チップサイズ6×6mm)を成形した。ポストキュアとして175℃で8時間処理したパッケージ8個を、85℃、相対湿度60%の環境下で168時間処理した後、IRリフロー処理(240℃)を行った。処理後の内部の剥離、及びクラックの有無を超音波探傷装置で観察し、不良パッケージの個数を数えた。不良パッケージの個数がn個であるとき、n/8と表示する。
・ガラス転移温度:タブレット化した材料を用いて、低圧トランスファー成形機にて金型温度175℃、注入圧力70kg/cm2、硬化時間120秒で試験片(15mm×4mm×3mm)を成形し、ポストキュアとして175℃で8時間処理した。熱機械分析装置を用いて、試験片を30℃から320℃まで昇温速度5℃/分で加熱し、温度上昇に伴う寸法変化を測定し、寸法変化の50℃から70℃での接線と230℃から250℃の接線の交点からガラス転移温度(Tg)を求めた。
・硬化性:タブレット化した材料を用いて、キュラスト試験用金型にて、金型温度175℃の条件で測定開始から60秒後、90秒後のトルク値を測定した。値の大きい方が硬化が速い。
【0019】
《実施例2〜4、比較例1〜8》
表1、2に示した配合(カーボンブラック0.3重量部、臭素化フェノールノボラック型エポキシ樹脂1.0重量部、三酸化アンチモン1.0重量部、カルナバワックス0.5重量部は表では省略した)で、実施例1と同様に樹脂組成物を作成し、実施例1と同様にして評価した。
実施例及び比較例で用いたエポキシ樹脂、フェノール樹脂の構造を以下に示す。
なお、式(H−2)のフェノール樹脂の150℃の溶融粘度は、0.8ポイズ。
【化9】
Figure 0004379977
【0020】
【化10】
Figure 0004379977
【0021】
【化11】
Figure 0004379977
【0022】
【表1】
Figure 0004379977
【0023】
【表2】
Figure 0004379977
【0024】
【発明の効果】
本発明のエポキシ樹脂組成物は、成形時の硬化性に優れ、これを用いて封止された半導体装置は、耐半田クラック性及び耐熱性に著しく優れている。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an epoxy resin composition for semiconductor encapsulation and a semiconductor device which are excellent in moldability, solder crack resistance and heat resistance.
[0002]
[Prior art]
Conventionally, electronic parts such as diodes, transistors, and integrated circuits are sealed with thermosetting resin. Especially in integrated circuits, epoxy resin, phenol resin, fused silica, crystalline silica with excellent heat resistance and moisture resistance are used. An epoxy resin composition containing an inorganic filler such as is used. However, in recent years, as the integrated circuit is highly integrated, the size of the chip gradually increases, and the semiconductor device is a small, thin QFP, SOP, SOJ, TSOP, TQFP, PLCC, BGA type surface-mounted from the conventional DIP type. It has changed to. That is, a large semiconductor element is encapsulated in a small and thin package, cracks are generated due to thermal stress, and problems such as a decrease in moisture resistance due to these cracks are greatly highlighted. In particular, in the soldering process, when exposed to a high temperature of 200 ° C. or higher, moisture resistance deteriorates due to cracks in the semiconductor device or peeling at the interface between the cured resin composition and the semiconductor element. Is coming out. Therefore, development of a highly reliable epoxy resin composition suitable for sealing these large semiconductor elements is desired. In order to develop an epoxy resin composition with excellent solder crack resistance, a method of reducing the water absorption rate of the cured resin composition by increasing the amount of inorganic filler has been generally adopted. If it is too high, the viscosity of the resin composition becomes too high and there is a problem of moldability such as poor fillability, and there is a limit to the amount of inorganic filler that can be increased. When the inorganic filler is increased, a low viscosity resin is generally used in consideration of moldability. However, inconveniences such as poor curability and long molding time occur, and in reality, problems such as incompatibility with costs arise and it is impossible to put it to practical use.
[0003]
[Problems to be solved by the invention]
In view of such a problem, the present invention provides an epoxy resin composition for semiconductor encapsulation that has excellent curability at the time of molding, remarkably excellent resistance to solder cracking, and heat resistance, and encapsulates a semiconductor element using the same. A semiconductor device is provided.
[0004]
[Means for Solving the Problems]
The present invention comprises (A) an epoxy resin represented by the general formula (1), (B) a phenol resin represented by the general formula (2), (C) a curing accelerator, and (D) an inorganic filler. The phenol resin represented by the general formula (2) is a semiconductor encapsulated epoxy resin composition characterized by the formula (3), and a semiconductor element is encapsulated using the resin composition. This is a semiconductor device.
[Formula 4]
Figure 0004379977
(Wherein R 1 is the same or different group selected from alkyl groups having 1 to 4 carbon atoms, a is an integer of 0 to 3, n is an average value, and a positive number of 1 to 10)
[0005]
[Chemical formula 5]
Figure 0004379977
(R 1 and R 2 in the formula are the same or different groups selected from alkyl groups having 1 to 4 carbon atoms, a is an integer of 0 to 3, b is an integer of 0 to 4, m and n are Average values, both m and n are positive numbers from 1 to 10)
[0006]
[Chemical 6]
Figure 0004379977
(M and n in the formula are average values, both m and n are positive numbers from 1 to 10)
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The epoxy resin represented by the general formula (1) used in the present invention is a polyfunctional epoxy resin having three or more epoxy groups in one molecule, and is compared with a polyfunctional epoxy resin such as a cresol novolac type epoxy resin. And since the crosslinking density of hardened | cured material becomes high, the glass transition temperature (henceforth Tg) is high, and the epoxy resin composition excellent in heat resistance can be obtained. The epoxy resin represented by the general formula (1) includes resins having various structures, and these may be used alone or in combination. N in the general formula (1) is an average value, and if it exceeds 10, the fluidity is inferior, which is not preferable.
[0008]
The epoxy resin represented by the general formula (1) may be used in combination with other epoxy resins as long as the characteristics are not impaired. However, by adjusting the amount of the epoxy resin, the heat resistance is maximized. Can be pulled out. In order to bring out the effect of heat resistance, it is desirable to use the epoxy resin represented by the general formula (1) in an amount of 30% by weight or more, preferably 50% by weight or more based on the total amount of the epoxy resin. If it is less than 30% by weight, the heat resistance at high temperatures may be insufficient.
When used in combination, the epoxy resin refers to monomers, oligomers and polymers generally having an epoxy group in the molecule. For example, bisphenol A type epoxy resin, phenol novolak type epoxy resin, orthocresol novolak type epoxy resin, naphthol novolak type epoxy resin, dicyclopentadiene modified phenol type epoxy resin, biphenyl type epoxy resin, and the like can be mentioned. It is not something.
[0009]
The phenol resin represented by the general formula (2) used in the present invention is obtained, for example, by polymerizing bis (methoxymethyl) biphenyl and bis (methoxymethyl) benzene and phenols by Friedel-Crafts alkylation reaction.
The cured product of the resin composition using the phenolic resin represented by the general formula (2) has a low elastic modulus in a high temperature range exceeding Tg and low hygroscopicity, and therefore, heat stress at the time of surface mounting soldering is reduced. It has a feature that it can be reduced and has excellent solder crack resistance and excellent adhesion to the substrate after soldering. This resin improves the curability of the resin composition and is excellent in moldability as compared with the phenol aralkyl resin containing only the diphenylene skeleton of the general formula (4). Compared with the phenol aralkyl resin containing only the phenylene skeleton of the general formula (5), the cured product of the resin composition has characteristics of low hygroscopicity and low elasticity when heated, and has excellent adhesive strength and solder crack resistance. Yes.
Moreover, when the phenol aralkyl resin containing the diphenylene skeleton of the general formula (4) and the phenol aralkyl resin containing the phenylene skeleton of the general formula (5) are simply mixed, the phenol aralkyl resin of the general formula (5) having high curability is obtained. Since the cured network structure is formed first and the phenol aralkyl resin of general formula (4) having low curability is left behind during curing, the phenol aralkyl resin of general formula (4) bleeds at the interface between the molded product surface and the mold. However, the surface of the mold or the molded product is soiled, and the cured network structure is not uniform, so that mechanical properties such as bending strength are deteriorated. On the other hand, the phenol resin represented by the general formula (2) having both diphenylene structure and phenylene structure in one molecule has the characteristics of both resins in a well-balanced manner, uniform curing behavior and uniform cured product. Form a structure.
[0010]
[Chemical 7]
Figure 0004379977
[0011]
[Chemical 8]
Figure 0004379977
R 1, R 2 in the general formula (2) are the same or different groups selected from among alkyl groups having 1 to 4 carbon atoms, a is an integer of 0 to 3, b is an integer of 0 to 4, m , N is an average value, both m and n are positive numbers from 1 to 10. If either exceeds 10, fluidity is inferior, which is not preferable. More preferable m and n are 1-5.
The ratio of m to the total of m and n is preferably 0.1 to 0.9. If it is less than 0.1, the decrease in elastic modulus at high temperature is small and the curability is poor, and if it exceeds 0.9, the curability tends to be poor. Further, in the general formula (2), the resin represented by the formula (3) is preferable from the balance of curability, fluidity, elastic modulus at high temperature, and the like.
[0012]
The melt viscosity at 150 ° C. of the phenol resin represented by the general formula (2) is preferably 0.1 to 1.5 poise. If it exceeds 1.5 poise, the fluidity at the time of melting will decrease. The melt viscosity at 150 ° C. of the phenol resin of the present invention is measured using an ICI viscometer (cone and plate type).
The phenolic resin represented by the general formula (2) may be used in combination with other phenolic resins as long as the characteristics are not impaired. However, by adjusting the amount of the phenolic resin, solder crack resistance can be improved. It can be pulled out to the maximum. In order to bring out the effect of resistance to solder cracking, it is desirable to use the phenol resin represented by the general formula (2) in an amount of 30% by weight or more, preferably 50% by weight or more based on the total phenol resin amount. If it is less than 30% by weight, low elasticity at high temperatures and sufficient adhesion cannot be obtained, and solder crack resistance may be insufficient.
When used in combination, the phenol resin refers to monomers, oligomers and polymers generally having a phenolic hydroxyl group in the molecule. For example, phenol novolak resin, cresol novolak resin, terpene modified phenol resin, dicyclopentadiene modified phenol resin, triphenol Examples include methane type resins. These phenol resins may be used alone or in combination.
The equivalent ratio between the epoxy group of the epoxy resin and the phenolic hydroxyl group of the phenol resin is 0.5 to 2, and even if the equivalent ratio is less than 0.5 or exceeds 2, the curability of the resin composition This is not preferable because a decrease in Tg or a decrease in Tg of the cured product occurs.
[0013]
As a hardening accelerator used by this invention, what is necessary is just to accelerate | stimulate the hardening reaction of an epoxy group and a phenolic hydroxyl group, and what is generally used for the sealing material can be used widely. For example, 1,8-diazabicyclo (5,4,0) undecene-7, tetraphenylphosphonium / tetranaphthoic acid borate, triphenylphosphine, benzyldimethylamine, 2-methylimidazole and the like.
Among these, 1,8-diazabicyclo (5,4,0) undecene-7 is particularly effective for improving adhesion to various substrates, and tetraphenylphosphonium tetranaphthoic acid borate is This has the effect of greatly improving the room temperature storage characteristics of the resin composition. These curing accelerators may be used alone or in combination.
[0014]
Examples of the inorganic filler used in the present invention include fused silica, spherical silica, crystalline silica, secondary agglomerated silica, porous silica, secondary agglomerated silica or silica obtained by pulverizing porous silica, alumina, silicon nitride, and the like. It is done. The shape of the inorganic filler may be crushed or spherical, but spherical fused silica powder is preferred in consideration of the balance of flow characteristics, mechanical strength, and thermal characteristics. These inorganic fillers may be used alone or in combination. Further, a surface treated beforehand with a silane coupling agent or the like may be used. As a compounding quantity of an inorganic filler, 70 to 95 weight% is preferable in the whole resin composition from the balance of a moldability and reliability.
[0015]
In addition to the components (A) to (D), the resin composition of the present invention includes a coupling agent, a colorant such as carbon black, a flame retardant such as brominated epoxy resin and antimony oxide, a natural wax, and a synthesis as necessary. Various additives such as a release agent such as wax, and a low stress additive such as silicone oil and rubber may be appropriately blended.
In particular, in the coupling agent, the coupling agent having reactivity with both the inorganic filler and the organic substance acts on the adhesive interface between the substrate on which the semiconductor element is mounted and the cured product of the resin composition, and the adhesive strength. And reliability such as solder crack resistance is improved.
[0016]
In order to produce the resin composition of the present invention as a molding material, components (A) to (D) and other additives are sufficiently uniformly mixed at room temperature using a mixer or the like, and then further heated by a roll or kneader. It can be melt-mixed, pulverized after cooling, and used as a sealing material. These molding materials encapsulate electronic components such as semiconductors using the epoxy resin composition of the present invention that can be applied to coating, insulation, sealing, etc. of transistors and integrated circuits that are electrical or electronic components. In order to stop and manufacture the semiconductor device, curing molding may be performed by a conventional molding method such as a transfer mold, a compression mold, or an injection mold.
[0017]
【Example】
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.
Figure 0004379977
Were mixed at room temperature using a mixer, kneaded using a biaxial roll at 50 to 130 ° C., crushed after cooling, and tableted to obtain a resin composition. This resin composition was evaluated by the following method. The results are shown in Table 1.
[0018]
Evaluation method / Hygroscopic rate: The obtained material was tableted, and a disk-shaped test with a diameter of 50 mm and a height of 3 mm under the conditions of a mold temperature of 175 ° C., an injection pressure of 100 kg / cm 2 , and a curing time of 120 seconds using a low-pressure transfer molding machine. A piece was molded. The weight before the moisture absorption treatment of the test piece treated at 175 ° C. for 8 hours as post-cure and the weight after the treatment for 168 hours in an environment of 85 ° C. and 85% relative humidity were measured to obtain the moisture absorption rate of the test piece.
Solder crack resistance: 80 pQFP (thickness 2.0 mm, chip size) using a tableted material, using a low-pressure transfer molding machine with a mold temperature of 175 ° C., an injection pressure of 100 kg / cm 2 , and a curing time of 120 seconds. 6 × 6 mm). Eight packages treated as post-cure at 175 ° C. for 8 hours were treated in an environment of 85 ° C. and a relative humidity of 60% for 168 hours, and then subjected to IR reflow treatment (240 ° C.). The internal peeling after the treatment and the presence or absence of cracks were observed with an ultrasonic flaw detector, and the number of defective packages was counted. When the number of defective packages is n, n / 8 is displayed.
Glass transition temperature: Using a tableted material, a test piece (15 mm × 4 mm × 3 mm) was molded with a mold temperature of 175 ° C., an injection pressure of 70 kg / cm 2 and a curing time of 120 seconds using a low-pressure transfer molding machine. The post-cure was treated at 175 ° C. for 8 hours. Using a thermomechanical analyzer, the test piece was heated from 30 ° C. to 320 ° C. at a heating rate of 5 ° C./min, and the dimensional change accompanying the temperature increase was measured. The glass transition temperature (Tg) was determined from the intersection of tangent lines from 230 ° C to 250 ° C.
Curability: Torque values were measured 60 seconds and 90 seconds after the start of measurement under the conditions of a mold temperature of 175 ° C. using a tableted material, using a mold for curast test. The higher the value, the faster the curing.
[0019]
<< Examples 2-4, Comparative Examples 1-8 >>
Formulas shown in Tables 1 and 2 (0.3 parts by weight of carbon black, 1.0 part by weight of brominated phenol novolac type epoxy resin, 1.0 part by weight of antimony trioxide, and 0.5 parts by weight of carnauba wax are omitted in the table. Thus, a resin composition was prepared in the same manner as in Example 1 and evaluated in the same manner as in Example 1.
The structures of the epoxy resin and the phenol resin used in Examples and Comparative Examples are shown below.
In addition, 150 degreeC melt viscosity of the phenol resin of Formula (H-2) is 0.8 poise.
[Chemical 9]
Figure 0004379977
[0020]
[Chemical Formula 10]
Figure 0004379977
[0021]
Embedded image
Figure 0004379977
[0022]
[Table 1]
Figure 0004379977
[0023]
[Table 2]
Figure 0004379977
[0024]
【The invention's effect】
The epoxy resin composition of the present invention is excellent in curability at the time of molding, and a semiconductor device sealed using the epoxy resin composition is remarkably excellent in solder crack resistance and heat resistance.

Claims (4)

(A)一般式(1)で示されるエポキシ樹脂、(B)一般式(2)で示されるフェノール樹脂、(C)硬化促進剤、及び(D)無機充填材からなることを特徴とする半導体封止エポキシ樹脂組成物。
Figure 0004379977
(式中のR1は、炭素数1〜4のアルキル基の中から選択される同一もしくは異なる基、aは0〜3の整数、nは平均値で、1〜10の正数)
Figure 0004379977
(式中のR1、R2は、炭素数1〜4のアルキル基の中から選択される同一もしくは異なる基、aは0〜3の整数、bは0〜4の整数、m、nは平均値で、いずれもm、nは1〜10の正数)
A semiconductor comprising (A) an epoxy resin represented by the general formula (1), (B) a phenol resin represented by the general formula (2), (C) a curing accelerator, and (D) an inorganic filler. Sealing epoxy resin composition.
Figure 0004379977
(Wherein R 1 is the same or different group selected from alkyl groups having 1 to 4 carbon atoms, a is an integer of 0 to 3, n is an average value, and a positive number of 1 to 10)
Figure 0004379977
(R 1 and R 2 in the formula are the same or different groups selected from alkyl groups having 1 to 4 carbon atoms, a is an integer of 0 to 3, b is an integer of 0 to 4, m and n are Average values, both m and n are positive numbers from 1 to 10)
一般式(2)で示されるフェノール樹脂が、式(3)である請求項1記載の半導体封止用エポキシ樹脂組成物。
Figure 0004379977
(式中のm、nは平均値で、いずれもm、nは1〜10の正数)
The epoxy resin composition for semiconductor encapsulation according to claim 1, wherein the phenol resin represented by the general formula (2) is the formula (3).
Figure 0004379977
(M and n in the formula are average values, both m and n are positive numbers from 1 to 10)
一般式(2)で示されるフェノール樹脂が、150℃における溶融粘度0.1〜1.5ポイズである請求項1又は2記載の半導体封止用エポキシ樹脂組成物。The epoxy resin composition for semiconductor encapsulation according to claim 1 or 2, wherein the phenol resin represented by the general formula (2) has a melt viscosity at 150 ° C of 0.1 to 1.5 poise. 請求項1、2又は3記載の半導体封止用エポキシ樹脂組成物を用いて半導体素子を封止してなることを特徴とする半導体装置。A semiconductor device comprising a semiconductor element sealed with the epoxy resin composition for semiconductor sealing according to claim 1, 2 or 3.
JP30677399A 1999-10-28 1999-10-28 Epoxy resin composition and semiconductor device Expired - Fee Related JP4379977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30677399A JP4379977B2 (en) 1999-10-28 1999-10-28 Epoxy resin composition and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30677399A JP4379977B2 (en) 1999-10-28 1999-10-28 Epoxy resin composition and semiconductor device

Publications (2)

Publication Number Publication Date
JP2001122944A JP2001122944A (en) 2001-05-08
JP4379977B2 true JP4379977B2 (en) 2009-12-09

Family

ID=17961116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30677399A Expired - Fee Related JP4379977B2 (en) 1999-10-28 1999-10-28 Epoxy resin composition and semiconductor device

Country Status (1)

Country Link
JP (1) JP4379977B2 (en)

Also Published As

Publication number Publication date
JP2001122944A (en) 2001-05-08

Similar Documents

Publication Publication Date Title
JP4692885B2 (en) Epoxy resin composition and semiconductor device
JP2002012742A (en) Epoxy resin composition and semiconductor device
JP2000281751A (en) Epoxy resin composition and semiconductor device
JP3003887B2 (en) Resin composition for semiconductor encapsulation
JPH11130936A (en) Epoxy resin composition and semiconductor device
JP4379977B2 (en) Epoxy resin composition and semiconductor device
JPH07118366A (en) Epoxy resin composition
JPH05299537A (en) Epoxy resin composition
JPH09143345A (en) Epoxy resin composition
JP3206317B2 (en) Method for producing epoxy resin composition and epoxy resin composition
JP3675571B2 (en) Epoxy resin composition for semiconductor encapsulation
JP2862777B2 (en) Epoxy resin composition
JP3359445B2 (en) Resin composition
JPH0940748A (en) Epoxy resin composition for semiconductor sealing
JP3093051B2 (en) Epoxy resin composition
JP3235798B2 (en) Epoxy resin composition
JP3011807B2 (en) Epoxy resin composition
JP3305097B2 (en) Epoxy resin composition
JPH07173253A (en) Epoxy resin composition
JP3235799B2 (en) Epoxy resin composition
JP2954413B2 (en) Epoxy resin composition
JP2985706B2 (en) Epoxy resin composition for sealing and semiconductor device using the same
JP3568654B2 (en) Epoxy resin composition
JP3093050B2 (en) Epoxy resin composition
JPH08311169A (en) Epoxy resin composition for sealing semiconductor and resin-sealed type semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4379977

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees