JPH11130936A - Epoxy resin composition and semiconductor device - Google Patents
Epoxy resin composition and semiconductor deviceInfo
- Publication number
- JPH11130936A JPH11130936A JP29441297A JP29441297A JPH11130936A JP H11130936 A JPH11130936 A JP H11130936A JP 29441297 A JP29441297 A JP 29441297A JP 29441297 A JP29441297 A JP 29441297A JP H11130936 A JPH11130936 A JP H11130936A
- Authority
- JP
- Japan
- Prior art keywords
- epoxy resin
- resin composition
- group
- formula
- carbon atoms
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003822 epoxy resin Substances 0.000 title claims abstract description 89
- 229920000647 polyepoxide Polymers 0.000 title claims abstract description 89
- 239000000203 mixture Substances 0.000 title claims abstract description 52
- 239000004065 semiconductor Substances 0.000 title claims abstract description 34
- 239000005011 phenolic resin Substances 0.000 claims abstract description 22
- 229920001296 polysiloxane Polymers 0.000 claims abstract description 21
- 125000005370 alkoxysilyl group Chemical group 0.000 claims abstract description 15
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 14
- 125000003545 alkoxy group Chemical group 0.000 claims abstract description 14
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 13
- 229920001568 phenolic resin Polymers 0.000 claims abstract description 13
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 claims abstract description 12
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 11
- 239000005350 fused silica glass Substances 0.000 claims abstract description 8
- 125000005843 halogen group Chemical group 0.000 claims abstract description 7
- 239000000843 powder Substances 0.000 claims abstract description 7
- 238000007789 sealing Methods 0.000 claims abstract description 7
- 125000000962 organic group Chemical group 0.000 claims abstract description 5
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 4
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 4
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 4
- 125000002947 alkylene group Chemical group 0.000 claims abstract description 3
- 125000003710 aryl alkyl group Chemical group 0.000 claims abstract description 3
- 125000003118 aryl group Chemical group 0.000 claims abstract description 3
- 125000004429 atom Chemical group 0.000 claims abstract description 3
- 238000002844 melting Methods 0.000 claims description 14
- 230000008018 melting Effects 0.000 claims description 14
- 125000004432 carbon atom Chemical group C* 0.000 claims description 12
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 claims description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- 238000005538 encapsulation Methods 0.000 claims description 6
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- 239000011593 sulfur Substances 0.000 claims description 3
- 238000002156 mixing Methods 0.000 abstract description 4
- 229910052736 halogen Inorganic materials 0.000 abstract 1
- 229910052739 hydrogen Inorganic materials 0.000 abstract 1
- 239000000758 substrate Substances 0.000 description 27
- 229910000679 solder Inorganic materials 0.000 description 23
- 239000011342 resin composition Substances 0.000 description 19
- 229920005989 resin Polymers 0.000 description 12
- 239000011347 resin Substances 0.000 description 12
- 239000002184 metal Substances 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 11
- 238000005476 soldering Methods 0.000 description 11
- 238000000465 moulding Methods 0.000 description 10
- 230000009477 glass transition Effects 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 238000011156 evaluation Methods 0.000 description 8
- 239000000853 adhesive Substances 0.000 description 7
- 230000001070 adhesive effect Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 239000004593 Epoxy Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- -1 amine compounds Chemical class 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000011889 copper foil Substances 0.000 description 4
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 4
- 125000003700 epoxy group Chemical group 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- 229920003986 novolac Polymers 0.000 description 4
- 238000001721 transfer moulding Methods 0.000 description 4
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- KJCVRFUGPWSIIH-UHFFFAOYSA-N 1-naphthol Chemical compound C1=CC=C2C(O)=CC=CC2=C1 KJCVRFUGPWSIIH-UHFFFAOYSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- 239000004721 Polyphenylene oxide Chemical group 0.000 description 2
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Chemical compound O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 2
- 239000004305 biphenyl Substances 0.000 description 2
- 235000010290 biphenyl Nutrition 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 239000011256 inorganic filler Substances 0.000 description 2
- 229910003475 inorganic filler Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- QWVGKYWNOKOFNN-UHFFFAOYSA-N o-cresol Chemical compound CC1=CC=CC=C1O QWVGKYWNOKOFNN-UHFFFAOYSA-N 0.000 description 2
- 229920000570 polyether Chemical group 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000009719 polyimide resin Substances 0.000 description 2
- 238000011417 postcuring Methods 0.000 description 2
- 239000001993 wax Substances 0.000 description 2
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 1
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 1
- XQUPVDVFXZDTLT-UHFFFAOYSA-N 1-[4-[[4-(2,5-dioxopyrrol-1-yl)phenyl]methyl]phenyl]pyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1C(C=C1)=CC=C1CC1=CC=C(N2C(C=CC2=O)=O)C=C1 XQUPVDVFXZDTLT-UHFFFAOYSA-N 0.000 description 1
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- LXBGSDVWAMZHDD-UHFFFAOYSA-N 2-methyl-1h-imidazole Chemical compound CC1=NC=CN1 LXBGSDVWAMZHDD-UHFFFAOYSA-N 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 150000007945 N-acyl ureas Chemical group 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- PJANXHGTPQOBST-VAWYXSNFSA-N Stilbene Natural products C=1C=CC=CC=1/C=C/C1=CC=CC=C1 PJANXHGTPQOBST-VAWYXSNFSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 239000004203 carnauba wax Substances 0.000 description 1
- 235000013869 carnauba wax Nutrition 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 150000002903 organophosphorus compounds Chemical class 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920003192 poly(bis maleimide) Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 125000005372 silanol group Chemical group 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical compound C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 1
- 235000021286 stilbenes Nutrition 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- USFPINLPPFWTJW-UHFFFAOYSA-N tetraphenylphosphonium Chemical compound C1=CC=CC=C1[P+](C=1C=CC=CC=1)(C=1C=CC=CC=1)C1=CC=CC=C1 USFPINLPPFWTJW-UHFFFAOYSA-N 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- IMFACGCPASFAPR-UHFFFAOYSA-N tributylamine Chemical compound CCCCN(CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-N 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Epoxy Resins (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は成形性、信頼性、実
装性に優れた半導体封止用エポキシ樹脂組成物及び樹脂
封止型半導体装置に関し、更に詳述すればプリント配線
板や金属リードフレームの片面に半導体素子を搭載し、
その搭載面側の実質的に片面のみを樹脂封止されたいわ
ゆるエリア実装型半導体装置において、樹脂封止後の反
りや基板実装時の半田付け工程での反りが小さく、また
温度サイクル試験での耐パッケージクラック性や半田付
け工程での耐パッケージクラック性や耐剥離性に優れ、
かつ成形性に優れる半導体封止用エポキシ樹脂組成物及
びその組成物により半導体素子が封止されてなる半導体
装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an epoxy resin composition for semiconductor encapsulation and a resin-encapsulated semiconductor device having excellent moldability, reliability, and mountability, and more particularly to a printed wiring board and a metal lead frame. The semiconductor element is mounted on one side of
In a so-called area mounting type semiconductor device in which substantially only one of its mounting surfaces is resin-sealed, the warpage after resin sealing and the warping in the soldering process at the time of board mounting are small, and in a temperature cycle test. Excellent package crack resistance and package crack resistance and peeling resistance in the soldering process,
The present invention relates to an epoxy resin composition for semiconductor encapsulation excellent in moldability and a semiconductor device in which a semiconductor element is encapsulated by the composition.
【0002】[0002]
【従来の技術】近年の電子機器の小型化、軽量化、高性
能化の市場動向において、半導体の高集積化が年々進
み、又半導体パッケージの表面実装化が促進されるなか
で、新規にエリア実装のパッケージが開発され、従来構
造のパッケージから移行し始めている。エリア実装パッ
ケージとしてはBGA(ボールグリッドアレイ)あるい
は更に小型化を追求したCSP(チップサイズパッケー
ジ)が代表的であるが、これらは従来QFP、SOPに
代表される表面実装パッケージでは限界に近づいている
多ピン化・高速化への要求に対応するために開発された
ものである。構造としては、BT樹脂/銅箔回路基板
(ビスマレイミド・トリアジン/ガラスクロス基板)に
代表される硬質回路基板、あるいはポリイミド樹脂フィ
ルム/銅箔回路基板に代表されるフレキシブル回路基板
の片面上に半導体素子を搭載し、その素子搭載面、即ち
基板の片面のみがエポキシ樹脂組成物などで成形・封止
されている。また、基板の素子搭載面の反対面には半田
ボールを2次元的に並列して形成し、パッケージを実装
する回路基板との接合を行う特徴を有している。更に、
素子を搭載する基板としては、上記有機回路基板以外に
もリードフレーム等の金属基板を用いる構造も考案され
ている。2. Description of the Related Art In recent years, in the market trend of miniaturization, weight reduction, and high performance of electronic equipment, high integration of semiconductors has been progressing year by year, and surface mounting of semiconductor packages has been promoted. Packaging packages have been developed and are beginning to move away from packages with traditional structures. Typical area mounting packages are BGA (ball grid array) or CSP (chip size package) pursuing further miniaturization, but these are approaching the limit in conventional surface mounting packages such as QFP and SOP. It has been developed to meet the demand for higher pin counts and higher speeds. The structure is as follows: a rigid circuit board represented by a BT resin / copper foil circuit board (bismaleimide / triazine / glass cloth board) or a flexible circuit board represented by a polyimide resin film / copper foil circuit board; An element is mounted, and only the element mounting surface, that is, one side of the substrate is molded and sealed with an epoxy resin composition or the like. In addition, a solder ball is formed two-dimensionally in parallel on the surface opposite to the element mounting surface of the substrate, and has a feature of joining with a circuit board on which a package is mounted. Furthermore,
As a substrate on which the element is mounted, a structure using a metal substrate such as a lead frame has been devised in addition to the organic circuit substrate.
【0003】これらエリア実装型半導体パッケージの構
造は基板の素子搭載面のみを樹脂組成物で封止し、半田
ボール形成面側は封止しないという片面封止の形態をと
っている。ごく希に、リードフレーム等の金属基板など
では、半田ボール形成面でも数十μm程度の封止樹脂層
が存在することもあるが、素子搭載面では数百μmから
数mm程度の封止樹脂層が形成されるため、実質的に片
面封止となっている。このため、有機基板や金属基板と
樹脂組成物の硬化物との間での熱膨張・熱収縮の不整
合、あるいは樹脂組成物の成形・硬化時の硬化収縮によ
る影響により、これらのパッケージでは成形直後から反
りが発生しやすい。また、これらのパッケージを実装す
る回路基板上に半田接合を行う場合、200℃以上の加
熱工程を経るが、この際にパッケージの反りが発生し、
多数の半田ボールが平坦とならず、パッケージを実装す
る回路基板から浮き上がってしまい、電気的接合信頼性
が低下する問題も起こる。基板上の実質的に片面のみを
樹脂組成物で封止したパッケージにおいて、反りを低減
するには、基板の線膨張係数と樹脂組成物硬化物の線膨
張係数を近付けること、及び樹脂組成物の硬化収縮を小
さくする二つの方法が重要である。基板としては有機基
板ではBT樹脂やポリイミド樹脂のような高ガラス転移
温度の樹脂が広く用いられており、これらはエポキシ樹
脂組成物の成形温度である170℃近辺よりも高いガラ
ス転移温度を有する。従って、成形温度から室温までの
冷却過程では有機基板のα1 の領域のみで収縮する。従
って、樹脂組成物もガラス転移温度が高くかつα1 が回
路基板と同じであり、さらに硬化収縮がゼロであれば反
りはほぼゼロであると考えられる。このため、多官能型
エポキシ樹脂と多官能型フェノール樹脂との組み合わせ
によりガラス転移温度を高くし、無機質充填材の配合量
でα1 を合わせる手法が既に提案されている。[0003] The structure of these area mounting type semiconductor packages adopts a single-sided sealing form in which only the element mounting surface of the substrate is sealed with a resin composition and the solder ball forming surface is not sealed. Very rarely, on a metal substrate such as a lead frame, a sealing resin layer of about several tens of μm may exist even on the solder ball forming surface, but a sealing resin layer of several hundred μm to several mm on the element mounting surface. Since the layer is formed, one-sided sealing is substantially achieved. For this reason, due to the mismatch of thermal expansion and thermal contraction between the organic substrate or metal substrate and the cured product of the resin composition, or the effect of curing shrinkage during molding and curing of the resin composition, these packages cannot be molded. Warpage tends to occur immediately after. In addition, when soldering is performed on a circuit board on which these packages are mounted, a heating step of 200 ° C. or more is performed. At this time, package warpage occurs.
A large number of solder balls are not flattened and rise from the circuit board on which the package is mounted, which causes a problem that electrical connection reliability is reduced. In a package in which substantially only one surface on a substrate is sealed with a resin composition, in order to reduce warpage, the linear expansion coefficient of the substrate and the linear expansion coefficient of the cured resin composition are brought close to each other, and the Two ways to reduce cure shrinkage are important. As the substrate, in the case of an organic substrate, a resin having a high glass transition temperature such as a BT resin or a polyimide resin is widely used, and these have a glass transition temperature higher than around 170 ° C. which is a molding temperature of the epoxy resin composition. Accordingly, in the cooling process from the molding temperature to room contracts only alpha 1 region of the organic substrate. Therefore, the resin composition is also the same as high and alpha 1 is a circuit board glass transition temperature, warpage is considered to be substantially zero when further curing shrinkage is zero. Therefore, the glass transition temperature higher by a combination of a polyfunctional epoxy resin and a polyfunctional phenol resin, methods to adjust the alpha 1 in the amount of the inorganic filler has been proposed.
【0004】また、赤外線リフロー、ベーパーフェイズ
ソルダリング、半田浸漬などの手段での半田処理による
半田接合を行う場合、樹脂組成物の硬化物並びに有機基
板からの吸湿によりパッケージ内部に存在する水分が高
温で急激に気化することによる応力でパッケージにクラ
ックが発生したり、基板の素子搭載面と樹脂組成物の硬
化物との界面で剥離が発生することもあり、硬化物の低
応力化・低吸湿化とともに、基板との密着性も求められ
る。さらに、基板と硬化物の熱膨張係数の不整合によ
り、信頼性テストの代表例である温度サイクル試験で
も、基板/硬化物界面の剥離やパッケージクラックが発
生する。従来のQFPやSOPなどの表面実装パッケー
ジでは、半田実装時のクラックや各素材界面での剥離の
防止のために、ビフェニル型エポキシ樹脂に代表される
ような結晶性エポキシ樹脂と可撓性骨格を有するフェノ
ール樹脂硬化剤とを組み合わせて用い、かつ無機質充填
材の配合量を増加することにより、低ガラス転移温度化
かつ低吸湿化を行う対策がとられてきた。しかし、この
手法では、片面封止パッケージにおける反りの問題は解
決できないのが現状であった。Further, when soldering is performed by soldering by means such as infrared reflow, vapor phase soldering, or solder immersion, moisture present inside the package due to moisture absorption from the cured product of the resin composition and the organic substrate is high. Cracks in the package due to stress caused by rapid vaporization in the package, and peeling at the interface between the device mounting surface of the substrate and the cured product of the resin composition, resulting in a low stress and low moisture absorption of the cured product. With the development, the adhesion to the substrate is also required. Furthermore, due to the mismatch between the thermal expansion coefficient of the substrate and the cured product, peeling of the substrate / cured product interface and package cracking occur even in a temperature cycle test, which is a typical example of a reliability test. Conventional surface mount packages such as QFP and SOP use a crystalline epoxy resin typified by a biphenyl-type epoxy resin and a flexible skeleton to prevent cracks at the time of solder mounting and peeling at each material interface. By using a phenolic resin curing agent in combination and increasing the blending amount of an inorganic filler, measures have been taken to lower the glass transition temperature and lower the moisture absorption. However, at present, this method cannot solve the problem of warpage in a single-sided sealed package.
【0005】[0005]
【発明が解決しようとする課題】本発明は、エリア実装
パッケージでの成形後や半田処理時の反りが小さく、ま
た基板との接着性に特に優れるため温度サイクル試験や
半田処理時などの信頼性に優れる半導体封止用エポキシ
樹脂組成物及びそれにより半導体素子が封止された半導
体装置の開発を目的としてなされたものである。DISCLOSURE OF THE INVENTION The present invention has low warpage after molding in an area mounting package or during soldering, and has particularly excellent adhesion to a substrate, so that reliability in a temperature cycle test, soldering, etc. The present invention has been made for the purpose of developing an epoxy resin composition for semiconductor encapsulation which is excellent in performance and a semiconductor device in which a semiconductor element is encapsulated thereby.
【0006】[0006]
【課題を解決するための手段】本発明は、(A)エポキ
シ樹脂、(B)一般式(1)で示されるフェノール樹脂
硬化剤、(C)硬化促進剤、(D)溶融シリカ粉末、及
び(E)総エポキシ樹脂組成物中に0.05〜2重量%
含まれ、一般式(2)で示されるアルコキシ基及び/又
はアルコキシシリル基含有オルガノポリシロキサンから
なることを特徴とする半導体封止用エポキシ樹脂組成物
及びそれにより半導体素子が封止された半導体装置であ
る。そして好ましくは、(A)一般式(3)、(4)で
示される多官能エポキシ樹脂及び/又は式(5)〜
(9)で示され、かつ融点が50〜150℃の結晶性エ
ポキシ樹脂の群から選択される少なくとも一つのエポキ
シ樹脂、(B)一般式(1)で示されるフェノール樹脂
硬化剤、(C)硬化促進剤、(D)溶融シリカ粉末、及
び(E)総エポキシ樹脂組成物中に0.05〜2重量%
含まれ、一般式(2)で示されるアルコキシ基及び/又
はアルコキシシリル基含有オルガノポリシロキサンから
なることを特徴とする半導体封止用エポキシ樹脂組成物
及びそれにより半導体素子が封止された半導体装置に関
するものである。The present invention provides (A) an epoxy resin, (B) a phenolic resin curing agent represented by the general formula (1), (C) a curing accelerator, (D) a fused silica powder, (E) 0.05 to 2% by weight in the total epoxy resin composition
An epoxy resin composition for encapsulating a semiconductor, comprising an organopolysiloxane containing an alkoxy group and / or an alkoxysilyl group represented by the general formula (2), and a semiconductor device in which a semiconductor element is encapsulated thereby. It is. And preferably, (A) the polyfunctional epoxy resin represented by the general formulas (3) and (4) and / or the formulas (5) to (5)
(9) at least one epoxy resin selected from the group of crystalline epoxy resins having a melting point of 50 to 150 ° C., (B) a phenolic resin curing agent represented by the general formula (1), (C) 0.05 to 2% by weight in the curing accelerator, (D) fused silica powder, and (E) the total epoxy resin composition
An epoxy resin composition for encapsulating a semiconductor, comprising an organopolysiloxane containing an alkoxy group and / or an alkoxysilyl group represented by the general formula (2), and a semiconductor device in which a semiconductor element is encapsulated thereby. It is about.
【0007】[0007]
【化5】 Embedded image
【0008】[0008]
【化6】 Embedded image
【0009】[0009]
【化7】 Embedded image
【0010】[0010]
【化8】 Embedded image
【0011】式(1)中のRはハロゲン原子又は炭素数
1〜12のアルキル基を示し、互いに同一であっても、
異なっていてもよい。lは1〜10の正の整数、mは0
もしくは1〜3の正の整数、及びnは0もしくは1〜4
の正の整数である。式(2)中のR1は炭素数1〜12
のアルキル基、アリール基、アラルキル基から選択され
る有機基を示し、互いに同一であっても、異なっていて
もよい。AはOR3(アルコキシ基)又はR2Si(R3)p
(OR3)3-p(アルコキシシリル基)を示し、R2は炭素
数1〜9のアルキレン基、R3は炭素数1〜9のアルキ
ル基をそれぞれ示し、それらは互いに同じであっても、
異なっていてもよい。pは0〜2までの整数を示す。B
は炭素、窒素、酸素、硫黄、水素原子から選択される原
子により構成される1価の有機基を示す。R4はA,B
又はR1を示す。また、l、m、nについては以下の関
係にある。 l+m+n≧5、l≧0、n≧0、m/(l+m+n)
=0.05〜0.8 式(3)、(4)及び(9)中のRはハロゲン原子又は
炭素数1〜12のアルキル基を示し、互いに同一であっ
ても、異なっていてもよい。lは1〜10以下の正の
数、mは0もしくは1〜3の正の整数、及びnは0もし
くは1〜4の正の整数である。式(5)〜(8)中のR
は水素原子、ハロゲン原子又は炭素数1〜12のアルキ
ル基を示し、互いに同一であっても、異なっていてもよ
い。In the formula (1), R represents a halogen atom or an alkyl group having 1 to 12 carbon atoms.
It may be different. l is a positive integer from 1 to 10, m is 0
Or a positive integer of 1 to 3 and n is 0 or 1 to 4
Is a positive integer. R 1 in the formula (2) has 1 to 12 carbon atoms.
Organic group selected from an alkyl group, an aryl group, and an aralkyl group, which may be the same or different from each other. A is OR 3 (alkoxy group) or R 2 Si (R 3 ) p
(OR 3 ) 3-p (alkoxysilyl group), R 2 represents an alkylene group having 1 to 9 carbon atoms, and R 3 represents an alkyl group having 1 to 9 carbon atoms. ,
It may be different. p shows the integer of 0-2. B
Represents a monovalent organic group composed of atoms selected from carbon, nitrogen, oxygen, sulfur and hydrogen atoms. R 4 is A, B
Or R 1 . Further, l, m, and n have the following relationship. l + m + n ≧ 5, l ≧ 0, n ≧ 0, m / (l + m + n)
= 0.05 to 0.8 R in the formulas (3), (4) and (9) represents a halogen atom or an alkyl group having 1 to 12 carbon atoms, and may be the same or different from each other. . l is a positive number of 1 to 10 or less, m is 0 or a positive integer of 1 to 3, and n is 0 or a positive integer of 1 to 4. R in formulas (5) to (8)
Represents a hydrogen atom, a halogen atom or an alkyl group having 1 to 12 carbon atoms, which may be the same or different.
【0012】[0012]
【発明の実施の形態】以下に本発明を詳細に説明する。
本発明に用いられる(A)成分のエポキシ樹脂は、エポ
キシ基を有するモノマー、オリゴマー、ポリマー全般を
指し、例えば、トリフェノールメタン型エポキシ樹脂、
ビフェニル型エポキシ樹脂、スチルベン型エポキシ樹
脂、ハイドロキノン型エポキシ樹脂、ビスフェノールF
型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、オ
ルソクレゾールノボラック型エポキシ樹脂、ナフトール
型エポキシ樹脂等が挙げられる。又、これらのエポキシ
樹脂は、単独もしくは混合して用いても差し支えない。
これらのエポキシ樹脂のうち式(3)で示される通常ト
リフェノールメタン型エポキシ樹脂と総称される樹脂ま
たは式(4)で示されるエポキシ樹脂は、式(1)のフ
ェノール樹脂硬化剤との組み合わせにより硬化物の架橋
密度が高く、高いガラス転移温度となり、また硬化収縮
率が小さい特徴を有するため、本エポキシ樹脂組成物の
用途であるエリア実装半導体パッケージの封止では反り
の低減に効果的である。式(3)及び式(4)の具体例
として以下のものが挙げられるが、これらに限定される
ものではない。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
The epoxy resin (A) used in the present invention refers to all monomers, oligomers, and polymers having an epoxy group, such as a triphenolmethane-type epoxy resin,
Biphenyl epoxy resin, stilbene epoxy resin, hydroquinone epoxy resin, bisphenol F
Type epoxy resin, bisphenol A type epoxy resin, orthocresol novolak type epoxy resin, naphthol type epoxy resin and the like. These epoxy resins may be used alone or as a mixture.
Among these epoxy resins, a resin generally referred to as a triphenolmethane epoxy resin represented by the formula (3) or an epoxy resin represented by the formula (4) is obtained by combining with a phenol resin curing agent of the formula (1). Since the crosslinked density of the cured product is high, the glass transition temperature is high, and the curing shrinkage is small, it is effective in reducing warpage in encapsulation of an area-mounted semiconductor package, which is an application of the epoxy resin composition. . Specific examples of the formulas (3) and (4) include the following, but are not limited thereto.
【0013】[0013]
【化9】 Embedded image
【0014】[0014]
【化10】 Embedded image
【0015】また、式(5)〜(9)で示され、かつ融
点が50〜150℃の結晶性エポキシ樹脂は、1分子中
にエポキシ基を2個有するジエポキシ化合物またはこれ
らのオリゴマーである。これらのエポキシ樹脂はいずれ
も結晶性を示すため、融点未満の温度では固体である
が、融点以上の温度で低粘度の液状物質となる。このた
めこれらを用いたエポキシ樹脂組成物は溶融状態で低粘
度を示すため成形時に樹脂組成物の流動性が高く、薄型
パッケージへの充填性に優れる。従って、溶融シリカ粉
末の配合量を増量して、得られるエポキシ樹脂組成物硬
化物の吸湿率を低減し、耐半田リフロー性を向上させる
手法をとるに際してはこれら結晶性エポキシ樹脂の使用
が好ましい。これらの結晶性エポキシ樹脂は1分子中の
エポキシ基の数が2個と少なく、一般的には架橋密度が
低く、耐熱性の低い硬化物しか得られない。しかし構造
として剛直な平面ないし棒状骨格を有しており、かつ結
晶化する性質、即ち分子同士が配向しやすいという特徴
を有するため、一般式(1)で示される多官能型フェノ
ール樹脂硬化剤と組み合わせて用いた場合、硬化後ガラ
ス転移温度などの耐熱性を低下させ難い。このため、こ
れら結晶性エポキシ樹脂と一般式(1)で示されるフェ
ノール樹脂硬化剤との組み合わせによるエポキシ樹脂組
成物で封止された半導体パッケージは反り量を小さくで
きる。さらに一旦ガラス転移温度を越えた温度領域では
低官能基数化合物の特徴である低弾性率を示すため、半
田処理温度での低応力化に効果的である。このため、半
田処理でのパッケージクラック発生や基板と樹脂組成物
界面の剥離発生を防止する効果がある。上記結晶性エポ
キシ樹脂は50℃未満の融点では、エポキシ樹脂組成物
の製造工程において融着を起こしやすく、作業性が著し
く低下する。また、150℃を越える融点を示す結晶性
エポキシ樹脂では、エポキシ樹脂組成物を加熱混練する
製造工程で充分に溶融しないため、材料の均一性に劣る
といった問題点を有する。融点の測定方法は、示差走査
熱量計[セイコー電子(株)SSC520、昇温速度5℃
/分]で吸熱ピーク温度から求められる。以下にこれら
結晶性エポキシ樹脂の具体例を示すがこれらに限定され
るものではない。The crystalline epoxy resin represented by the formulas (5) to (9) and having a melting point of 50 to 150 ° C. is a diepoxy compound having two epoxy groups in one molecule or an oligomer thereof. Since all of these epoxy resins show crystallinity, they are solid at a temperature lower than the melting point, but become a low-viscosity liquid material at a temperature higher than the melting point. For this reason, the epoxy resin composition using these has a low viscosity in a molten state, so that the fluidity of the resin composition at the time of molding is high, and the filling property into a thin package is excellent. Therefore, it is preferable to use these crystalline epoxy resins when increasing the amount of the fused silica powder to reduce the moisture absorption of the obtained cured epoxy resin composition and improving the solder reflow resistance. These crystalline epoxy resins have as few as two epoxy groups in one molecule, and generally have only a low crosslink density and a cured product with low heat resistance. However, since it has a rigid plane or rod-like skeleton as a structure and has the property of being crystallized, that is, the feature that molecules are easily oriented, the polyfunctional phenol resin curing agent represented by the general formula (1) is used. When used in combination, it is difficult to lower the heat resistance such as the glass transition temperature after curing. For this reason, the semiconductor package sealed with the epoxy resin composition by the combination of the crystalline epoxy resin and the phenol resin curing agent represented by the general formula (1) can reduce the amount of warpage. Further, in a temperature region once exceeding the glass transition temperature, the compound exhibits a low elasticity characteristic which is a characteristic of the compound having a low functional group, and thus is effective in reducing the stress at the solder processing temperature. This has the effect of preventing the occurrence of package cracks during the soldering process and the occurrence of separation at the interface between the substrate and the resin composition. If the crystalline epoxy resin has a melting point of less than 50 ° C., it tends to fuse in the production process of the epoxy resin composition, and the workability is significantly reduced. In addition, a crystalline epoxy resin having a melting point exceeding 150 ° C. has a problem that the uniformity of the material is poor because the epoxy resin composition is not sufficiently melted in a manufacturing process of kneading under heating. The melting point is measured by a differential scanning calorimeter [Seiko Electronics SSC520, heating rate 5 ° C.
/ Min] from the endothermic peak temperature. Specific examples of these crystalline epoxy resins are shown below, but the invention is not limited thereto.
【0016】[0016]
【化11】 Embedded image
【0017】[0017]
【化12】 Embedded image
【0018】[0018]
【化13】 Embedded image
【0019】[0019]
【化14】 Embedded image
【0020】また、パッケージの反りの低減と成形時の
高流動化、及び実装時の耐半田性の両立という観点から
は上記一般式(3)、(4)で示される多官能エポキシ
樹脂を総エポキシ樹脂中に20〜80重量%含み、さら
に式(5)〜(9)で示され、かつ融点50〜150℃
の結晶性エポキシ樹脂を総エポキシ樹脂中に20重量%
以上を含むことが特に好ましい。In addition, from the viewpoint of reducing package warpage, increasing fluidity during molding, and achieving solder resistance during mounting, the polyfunctional epoxy resins represented by the above general formulas (3) and (4) are all used. 20 to 80% by weight in the epoxy resin, further represented by the formulas (5) to (9), and having a melting point of 50 to 150 ° C.
20% by weight of crystalline epoxy resin in total epoxy resin
It is particularly preferable to include the above.
【0021】本発明で用いられるB成分の式(1)で示
されるフェノール樹脂硬化剤はいわゆるトリフェノール
メタン型フェノール樹脂と呼ばれるもので、具体例を以
下に示すがこれらに限定されるものではない。The phenolic resin curing agent represented by the formula (1) of the component B used in the present invention is a so-called triphenolmethane-type phenolic resin, and specific examples are shown below, but are not limited thereto. .
【化15】 Embedded image
【0022】これらフェノール樹脂を使用すると硬化物
の架橋密度が高くなり、高いガラス転移温度の硬化物が
得られる。このため、得られたエポキシ樹脂組成物によ
り封止されたパッケージの反りが低減できる。式(1)
のフェノール樹脂は他のフェノール樹脂と適宜併用可能
であり、特に限定されるものではないが、フェノールノ
ボラック樹脂、クレゾールノボラック樹脂、ナフトール
ノボラック樹脂等が挙げられる。When these phenolic resins are used, the crosslink density of the cured product is increased, and a cured product having a high glass transition temperature can be obtained. For this reason, the warpage of the package sealed with the obtained epoxy resin composition can be reduced. Equation (1)
The phenol resin can be used in combination with other phenol resins, and is not particularly limited. Examples thereof include a phenol novolak resin, a cresol novolak resin, and a naphthol novolak resin.
【0023】本発明で用いられる(C)成分の硬化促進
剤としては、前記エポキシ樹脂とフェノール樹脂硬化剤
との架橋反応の触媒となり得るものを指し、具体的には
トリブチルアミン等のアミン系化合物、トリフェニルホ
スフィン、テトラフェニルホスフォニウム・テトラフェ
ニルボレート塩等の有機リン系化合物、2−メチルイミ
ダゾール等のイミダゾール化合物等が例示できるがこれ
らに限定されるものではない。これらの硬化促進剤は単
独であっても混合して用いても差し支えない。The curing accelerator of the component (C) used in the present invention refers to those which can be a catalyst for a crosslinking reaction between the epoxy resin and the phenol resin curing agent, and specifically includes amine compounds such as tributylamine. And organic phosphorus compounds such as triphenylphosphine and tetraphenylphosphonium / tetraphenylborate, and imidazole compounds such as 2-methylimidazole, but are not limited thereto. These curing accelerators may be used alone or as a mixture.
【0024】本発明で用いられる(D)成分の溶融シリ
カ粉末は、破砕状、球状のいずれでも使用可能である
が、溶融シリカ粉末の配合量を高め、かつ樹脂組成物の
溶融粘度の上昇を抑えるためには、球状シリカを主に用
いる方が好ましい。更に球状シリカの配合量を高めるた
めには、球状シリカの粒度分布をより広くとるよう調整
することが望ましい。The fused silica powder of the component (D) used in the present invention can be used in any of a crushed form and a spherical form. However, the amount of the fused silica powder is increased, and the melt viscosity of the resin composition is increased. In order to suppress this, it is preferable to mainly use spherical silica. In order to further increase the content of the spherical silica, it is desirable to adjust the particle size distribution of the spherical silica to be wider.
【0025】本発明で用いられる(E)成分のオルガノ
ポリシロキサンは一般式(2)で表すことができ、その
分子中にアルコキシ基及び/又はアルコキシシリル基を
有することが必須である。一般的に、エポキシ樹脂組成
物にオルガノポリシロキサンを配合することにより、エ
ポキシ樹脂組成物の成形時の均一流動性が向上し、金型
への未充填を防止するとともに素子に張られた金線の変
形量を小さく抑える効果がある。一方、オルガノポリシ
ロキサンにアルコキシ基或いはアルコキシシリル基を導
入することにより、更に以下の効果がある。The organopolysiloxane of the component (E) used in the present invention can be represented by the general formula (2), and it is essential that the molecule has an alkoxy group and / or an alkoxysilyl group in the molecule. Generally, by blending an organopolysiloxane with an epoxy resin composition, uniform flowability during molding of the epoxy resin composition is improved, preventing unfilling in a mold and a gold wire attached to an element. This has the effect of reducing the amount of deformation of. On the other hand, the introduction of an alkoxy group or an alkoxysilyl group into the organopolysiloxane has the following effects.
【0026】本発明のエポキシ樹脂組成物の用途である
エリア実装用半導体パッケージでは基板の実質的に片面
(素子搭載面)のみにエポキシ樹脂組成物を成形して封
止するが、その基板の素子搭載面とエポキシ樹脂組成物
との間に各種の界面が存在する。基板が回路基板の場合
には銅箔回路及び一部回路上に金メッキ面が存在し、そ
れら金属との界面の接着力が低いと吸湿半田後に剥離が
生じ、電気的信頼性を著しく低下させる。ところが、一
般にオルガノポリシロキサンはこれら金属との接着力を
低下させるため、エポキシ樹脂組成物への添加量を少な
くしても封止されたパッケージの信頼性を損なう結果と
なる。ところが、オルガノポリシロキサンにアルコキシ
基あるいはアルコキシシリル基を導入すると、これら金
属との接着性が向上するため、エポキシ樹脂組成物の均
一流動性と金属への接着性の両立化が可能となる。In a semiconductor package for area mounting, which is an application of the epoxy resin composition of the present invention, the epoxy resin composition is molded and sealed on substantially only one surface (device mounting surface) of the substrate. Various interfaces exist between the mounting surface and the epoxy resin composition. When the board is a circuit board, a gold-plated surface exists on the copper foil circuit and a part of the circuit, and if the adhesive force at the interface with the metal is low, peeling occurs after moisture-absorbing solder, which significantly reduces electrical reliability. However, since organopolysiloxane generally lowers the adhesive strength to these metals, even if the amount of addition to the epoxy resin composition is reduced, the reliability of the sealed package is impaired. However, when an alkoxy group or an alkoxysilyl group is introduced into the organopolysiloxane, the adhesiveness to these metals is improved, so that both the uniform fluidity of the epoxy resin composition and the adhesiveness to the metal can be achieved.
【0027】さらに、基板上の銅箔回路には絶縁性確保
や回路保護のためにソルダーレジスト層が形成されるの
が一般的である。このためエポキシ樹脂組成物は銅、金
などの金属だけでなくソルダーレジスト界面との接着力
が重要である。ところがソルダーレジスト中にはその表
面平滑性の付与や脱泡効果の付与のためにシリコーン系
添加剤を含有しており、これがソルダーレジスト層の表
面にブリードアウトするため、エポキシ樹脂組成物の硬
化物界面での接着力が著しく低下する。接着力の低下は
パッケージの吸湿後半田処理において、同様にエポキシ
樹脂組成物の硬化物と基板界面の剥離発生原因となり、
信頼性が大きく低下する。これに対し、アルコキシ基あ
るいはアルコキシシリル基を含有するオルガノポリシロ
キサンを添加することにより、ソルダーレジスト表面と
エポキシ樹脂組成物との親和性が向上するため界面の接
着力が向上し、パッケージの信頼性が向上する。Furthermore, a solder resist layer is generally formed on a copper foil circuit on a substrate for securing insulation and protecting the circuit. For this reason, it is important for the epoxy resin composition to have an adhesive force not only with metals such as copper and gold but also with the solder resist interface. However, the solder resist contains a silicone-based additive for imparting its surface smoothness and defoaming effect, which bleeds out to the surface of the solder resist layer. Adhesion at the interface is significantly reduced. The lowering of the adhesive force causes the peeling of the interface between the cured product of the epoxy resin composition and the substrate in the soldering process after the package absorbs moisture,
The reliability is greatly reduced. On the other hand, by adding an organopolysiloxane containing an alkoxy group or an alkoxysilyl group, the affinity between the solder resist surface and the epoxy resin composition is improved, so that the adhesive force at the interface is improved, and the reliability of the package is improved. Is improved.
【0028】また、アルコキシ基或いはアルコキシシリ
ル基はエポキシ樹脂組成物の配合前にあらかじめ加水分
解処理を行い、シラノール基に変化させておくと、特に
金属との接着性が向上する。加水分解としてはオルガノ
ポリシロキサンをアルコール/水混合液に溶解し、室温
で数〜数十時間攪拌しておくだけで進行する。アルコキ
シ基或いはアルコキシシリル基数(m)はオルガノポリ
シロキサンの重合度(l+m+n)に対し0.05〜
0.8の範囲にあることが好ましい。0.05未満では
金属やソルダーレジストとの接着力向上効果が得られ
ず、また0,8を越えるとアルコキシ基或いはアルコキ
シシリル基同士の反応が起こり、オルガノポリシロキサ
ンの粘度が経時的に増大してしまい、エポキシ樹脂組成
物の成形時の流動性が低下するとともに、エポキシ樹脂
組成物の吸湿率が増大し耐半田性が低下する。If the alkoxy group or the alkoxysilyl group is subjected to a hydrolysis treatment before being compounded with the epoxy resin composition to be converted into a silanol group, the adhesion to a metal is particularly improved. Hydrolysis proceeds only by dissolving the organopolysiloxane in an alcohol / water mixture and stirring at room temperature for several to several tens of hours. The number of alkoxy groups or alkoxysilyl groups (m) is 0.05 to 0.05 with respect to the degree of polymerization (l + m + n) of the organopolysiloxane.
It is preferably in the range of 0.8. If it is less than 0.05, the effect of improving the adhesive strength to metal or solder resist cannot be obtained. If it exceeds 0.8, a reaction between alkoxy groups or alkoxysilyl groups occurs, and the viscosity of the organopolysiloxane increases with time. As a result, the fluidity of the epoxy resin composition during molding is reduced, and the moisture absorption of the epoxy resin composition is increased, and the solder resistance is reduced.
【0029】オルガノポリシロキサン分子中にはアルコ
キシ基及び/またはアルコキシシリル基以外にも炭素、
酸素、窒素、硫黄、水素原子からなる種々の官能基を有
していても差し支えがない。これらの官能基としてはエ
ポキシ基、水酸基、アミノ基、ウレイド基、メルカプト
基、ポリエーテル基等エポキシ樹脂やフェノール樹脂硬
化剤との反応性を有する基、或いは相溶性を向上させる
基が例示される。これらのなかでは特にポリエーテル基
がソルダーレジストとの密着性向上に効果的である。オ
ルガノポリシロキサンの添加量は総エポキシ樹脂組成物
の0,05〜2重量%の範囲内であることが好ましい。
0.05重量%未満ではエポキシ樹脂組成物の成形時の
流動性が低下し、金線の変形量が大きく、またソルダー
レジストとの接着力向上効果が得られない。また2重量
%を越えると、成形時に成形品や金型の表面を汚染させ
てしまうなど成形性の低下をきたす。In the organopolysiloxane molecule, besides the alkoxy group and / or the alkoxysilyl group, carbon,
It may have various functional groups consisting of oxygen, nitrogen, sulfur and hydrogen atoms. Examples of these functional groups include groups having reactivity with an epoxy resin or a phenol resin curing agent such as an epoxy group, a hydroxyl group, an amino group, a ureide group, a mercapto group, and a polyether group, or a group that improves compatibility. . Among them, polyether groups are particularly effective for improving the adhesion to the solder resist. The amount of organopolysiloxane added is preferably in the range of 0.05 to 2% by weight of the total epoxy resin composition.
If it is less than 0.05% by weight, the fluidity during molding of the epoxy resin composition is reduced, the amount of deformation of the gold wire is large, and the effect of improving the adhesive strength with the solder resist cannot be obtained. On the other hand, if the content exceeds 2% by weight, the moldability is deteriorated, such as contamination of the surface of a molded product or a mold during molding.
【0030】本発明の樹脂組成物は、(A)〜(E)ま
での必須成分以外にも必要に応じて臭素化エポキシ樹
脂、三酸化アンチモン等の難燃剤、カップリング剤、カ
ーボンブラックに代表される着色剤、天然ワックス及び
合成ワックス等の離型剤等が適宜配合可能である。樹脂
組成物とするには各成分を混合後、加熱ニーダや熱ロー
ルにより加熱混練し、続いて冷却、粉砕することで目的
とする樹脂組成物が得られる。本発明の半導体装置は、
上述の半導体封止用エポキシ樹脂組成物を用い、トラン
スファ−成形、圧縮成形、射出成形等により、半導体素
子を封止することにより得られる。The resin composition of the present invention is represented by a brominated epoxy resin, a flame retardant such as antimony trioxide, a coupling agent, and carbon black, if necessary, in addition to the essential components (A) to (E). Coloring agents, release agents such as natural waxes and synthetic waxes, etc., can be appropriately compounded. In order to obtain a resin composition, the components are mixed, heated and kneaded with a heating kneader or a hot roll, and then cooled and pulverized to obtain a desired resin composition. The semiconductor device of the present invention
It is obtained by encapsulating a semiconductor element by transfer molding, compression molding, injection molding or the like using the above-described epoxy resin composition for semiconductor encapsulation.
【0031】[0031]
【実施例】以下、本発明を実施例で具体的に説明する。 《実施例1》 ・式(10)で示される構造を主成分とするエポキシ樹脂: [油化シェルエポキシ(株)製、商品名エピコート1032H、軟化点60
℃、 エポキシ当量170] 6.1重量部 ・式(11)で示される構造を主成分とするビフェニルエポキシ樹脂: [油化シェルエポキシ(株)製、商品名YX−4000H、融点105℃、エポ キシ当量195] 3.0重量部 ・式(12)で示されるフェノール樹脂: [明和化成(株)製、商品名MEH−7500、軟化点107℃、水酸基当量9 7] 4.9重量部 ・式(13)で示されるオルガノポリシロキサン: 0.5重量部 ・トリフェニルホスフィン: 0.2重量部 ・球状溶融シリカ: 84.5重量部 ・カルナバワックス: 0.5重量部 ・カーボンブラック: 0.3重量部 上記の全成分をミキサーにより混合した後、表面温度が
90℃と45℃の2本ロールを用いて30回混練し、得
られた混練物シートを冷却後粉砕して、樹脂組成物とし
た。得られた樹脂組成物の特性を以下の方法で評価をし
た。評価結果を表1に示す。The present invention will be specifically described below with reference to examples. << Example 1 >> An epoxy resin having a structure represented by the formula (10) as a main component: [manufactured by Yuka Shell Epoxy Co., Ltd., trade name Epicoat 1032H, softening point 60]
Epoxy equivalent 170 ° C.] 6.1 parts by weight Biphenyl epoxy resin having a structure represented by formula (11) as a main component: [YX-4000H, manufactured by Yuka Shell Epoxy Co., Ltd., melting point 105 ° C., epo Xy equivalent 195] 3.0 parts by weight Phenol resin represented by formula (12): [Mehka Kasei Co., Ltd., trade name MEH-7500, softening point 107 ° C, hydroxyl equivalent 97] 4.9 parts by weight Organopolysiloxane represented by the formula (13): 0.5 parts by weight Triphenylphosphine: 0.2 parts by weight Spherical fused silica: 84.5 parts by weight Carnauba wax: 0.5 parts by weight Carbon black: 0 0.3 parts by weight After the above components were mixed by a mixer, the mixture was kneaded 30 times using two rolls having a surface temperature of 90 ° C. and 45 ° C., and the obtained kneaded material sheet was cooled and pulverized to obtain a resin. The composition was used. The properties of the obtained resin composition were evaluated by the following methods. Table 1 shows the evaluation results.
【0032】[0032]
【化16】 Embedded image
【0033】[0033]
【化17】 Embedded image
【0034】《実施例2〜8及び比較例1〜2》実施例
1を基本配合として、式(10)及び(11)のエポキ
シ樹脂及び式(12)のフェノール樹脂の種類並びにそ
れらの配合量を変えて、その他は基本配合と同じ割合で
各成分を配合し、実施例1と同様に混合、混練して樹脂
組成物を得た。実施例1と同様に評価を行った。配合処
方及び評価結果を表1及び表3に示す。<< Examples 2 to 8 and Comparative Examples 1 and 2 >> Based on Example 1, the types of the epoxy resins of the formulas (10) and (11) and the phenolic resin of the formula (12) and the amounts thereof were used. The other components were blended in the same proportions as in the basic blending, and mixed and kneaded in the same manner as in Example 1 to obtain a resin composition. Evaluation was performed in the same manner as in Example 1. The formulations and evaluation results are shown in Tables 1 and 3.
【0035】《実施例9〜13及び比較例3〜4》実施
例1を基本配合として、オルガノポリシロキサンの種類
を変えて、その他は基本配合と同じ割合で各成分を配合
し、実施例1と同様に混合、混練して樹脂組成物を得
た。実施例1と同様に評価を行った。配合処方及び評価
結果を表2及び表3に示す。<< Examples 9 to 13 and Comparative Examples 3 to 4 >> With reference to Example 1, the components were blended in the same proportions as in the basic blend except that the type of organopolysiloxane was changed. Was mixed and kneaded in the same manner as in the above to obtain a resin composition. Evaluation was performed in the same manner as in Example 1. Tables 2 and 3 show the formulation and evaluation results.
【0036】《実施例14〜15及び比較例5〜6》実
施例1を基本配合として、式(13)のオルガノポリシ
ロキサンの配合量を変え、それに伴いその他の成分の配
合割合を変えて配合し、実施例1と同様に混合、混練し
て樹脂組成物を得た。実施例1と同様に評価を行った。
配合処方及び評価結果を表2及び表3に示す。<< Examples 14 to 15 and Comparative Examples 5 to 6 >> Based on Example 1, the compounding amount of the organopolysiloxane of the formula (13) was changed and the compounding ratio of the other components was changed accordingly. Then, the mixture was mixed and kneaded in the same manner as in Example 1 to obtain a resin composition. Evaluation was performed in the same manner as in Example 1.
Tables 2 and 3 show the formulation and evaluation results.
【0037】上記実施例及び比較例で使用した式(1
4)〜(18)のエポキシ樹脂、式(19)、(20)
のフェノール樹脂及び式(21)〜(27)のオルガノ
ポリシロキサンの構造及び性状を以下に示す。The formula (1) used in the above Examples and Comparative Examples
4) epoxy resins of formulas (19) and (20)
The structures and properties of the phenolic resin and the organopolysiloxanes of the formulas (21) to (27) are shown below.
【化18】 Embedded image
【0038】[0038]
【化19】 Embedded image
【0039】[0039]
【化20】 Embedded image
【0040】[0040]
【化21】 Embedded image
【0041】[0041]
【化22】 Embedded image
【0042】[0042]
【化23】 Embedded image
【0043】・式(14)で示される構造を主成分とす
るエポキシ樹脂:融点144℃、エポキシ当量175 ・式(15)で示される構造を主成分とするエポキシ樹
脂:融点103℃、エポキシ当量225 ・式(16)で示される構造を主成分とするエポキシ樹
脂:融点133℃、エポキシ当量182 ・式(17)で示される構造を主成分とするエポキシ樹
脂:融点 82℃、エポキシ当量190 ・式(18)で示される構造を主成分とするエポキシ樹
脂:軟化点65℃、エポキシ当量210 ・式(19)のフェノール樹脂:軟化点80℃、水酸基
当量104 ・式(20)のフェノール樹脂:軟化点72℃、水酸基
当量171Epoxy resin having a structure represented by formula (14) as a main component: melting point 144 ° C., epoxy equivalent 175 ・ Epoxy resin having a structure represented by formula (15) as a main component: melting point 103 ° C., epoxy equivalent 225 ・ Epoxy resin having a structure represented by formula (16) as a main component: melting point 133 ° C., epoxy equivalent 182 ・ Epoxy resin having a structure represented by formula (17) as a main component: melting point 82 ° C., epoxy equivalent 190 ・Epoxy resin having a structure represented by the formula (18) as a main component: softening point of 65 ° C., epoxy equivalent of 210 ・ Phenolic resin of the formula (19): softening point of 80 ° C., hydroxyl equivalent of 104 ・ Phenolic resin of the formula (20): Softening point 72 ° C, hydroxyl equivalent 171
【0044】《評価方法》 ・スパイラルフロー:EMMI−1−66に準じたスパ
イラルフロー測定用の金型を用いて、金型温175℃、
注入圧力70kg/cm2 、硬化時間2分で測定した。 ・ガラス転移温度(Tg)及び線膨張係数(α1):1
75℃、2分間トランスファー成形したテストピースを
更に175℃、8時間後硬化し、熱機械分析装置[セイ
コー電子(株)製TMA−120、昇温速度5℃/分]に
より測定した。 ・熱時弾性率:240℃での曲げ弾性率をJIS−K6
911の試験条件により測定した。 ・硬化収縮率:テストピースを180℃の金型温度、7
5kg/cm2 の射出圧力で2分間トランスファー成形
し、更に175℃で8時間、後硬化した。180℃に加
熱された状態の金型のキャビティ寸法と180℃に加熱
された成形品の寸法をノギスにより測定し、成形品寸法
/金型キャビティ寸法の比率で硬化収縮率を表した。<< Evaluation Method >> Spiral flow: Using a mold for measuring spiral flow according to EMMI-1-66, using a mold temperature of 175 ° C.
The measurement was performed at an injection pressure of 70 kg / cm 2 and a curing time of 2 minutes. -Glass transition temperature (Tg) and coefficient of linear expansion (α 1 ): 1
The test piece obtained by transfer molding at 75 ° C. for 2 minutes was further cured at 175 ° C. for 8 hours, and measured by a thermomechanical analyzer [TMA-120 manufactured by Seiko Denshi Co., Ltd., heating rate 5 ° C./min].・ Heat elastic modulus: Flexural elastic modulus at 240 ° C is JIS-K6
It was measured under the test conditions of 911. Curing shrinkage: 180 ° C mold temperature of test piece, 7
Transfer molding was performed at an injection pressure of 5 kg / cm 2 for 2 minutes, and post-curing was further performed at 175 ° C. for 8 hours. The cavity dimensions of the mold heated to 180 ° C. and the dimensions of the molded article heated to 180 ° C. were measured with calipers, and the curing shrinkage was represented by the ratio of molded article dimension / mold cavity dimension.
【0045】・パッケージ反り量:225ピンBGAパ
ッケージ(基板は0.36mm厚BT樹脂基板、パッケ
ージサイズは24×24mm、厚み1.17mm、シリ
コンチップはサイズ9×9mm、厚み0.35mm、チ
ップと回路基板のボンディングパッドとを25μm径の
金線でボンディングしている)を180℃の金型温度、
75kg/cm2 の射出圧力で2分間トランスファー成
形を行い、更に175℃で8時間、後硬化した。室温に
冷却後パッケージのゲートから対角線方向に、表面粗さ
計を用いて高さ方向の変位を測定し、変異差の最も大き
い値を反り量とした。 ・耐半田性:パッケージ反り量測定に用いた成形品パッ
ケージを85℃、相対湿度60%の環境下で168時間
放置し、その後240℃の半田槽に10秒間浸漬した。
超音波探傷機を用いてパッケージを観察し、内部クラッ
ク数及び基板/樹脂組成物界面の剥離数を(発生パッケ
ージ数)/(全パッケージ数)の%表示で表した。 ・金線変形量:パッケージ反り量評価で成形した225
ピンBGAパッケージを軟X線透視装置で観察し、金線
の変形率を(流れ量)/(金線長)で%表示した。Package warpage: 225-pin BGA package (substrate: 0.36 mm thick BT resin substrate, package size: 24 × 24 mm, thickness: 1.17 mm, silicon chip: size 9 × 9 mm, thickness: 0.35 mm, chip The bonding pad of the circuit board is bonded with a gold wire having a diameter of 25 μm) at a mold temperature of 180 ° C.
Transfer molding was performed at an injection pressure of 75 kg / cm 2 for 2 minutes, and post-curing was further performed at 175 ° C. for 8 hours. After cooling to room temperature, the displacement in the height direction was measured diagonally from the gate of the package using a surface roughness meter, and the value with the largest variation difference was defined as the amount of warpage. Solder Resistance: The molded product package used for measuring the package warpage was left for 168 hours in an environment of 85 ° C. and 60% relative humidity, and then immersed in a 240 ° C. solder bath for 10 seconds.
The package was observed using an ultrasonic flaw detector, and the number of internal cracks and the number of peels at the interface between the substrate and the resin composition were represented by% of (number of generated packages) / (total number of packages). Gold wire deformation: 225 molded by evaluating package warpage
The pin BGA package was observed with a soft X-ray fluoroscope, and the deformation rate of the gold wire was represented by (flow amount) / (gold wire length) in%.
【0046】[0046]
【表1】 [Table 1]
【0047】[0047]
【表2】 [Table 2]
【0048】[0048]
【表3】 [Table 3]
【0049】[0049]
【発明の効果】本発明の半導体封止用エポキシ樹脂組成
物は、これを用いたエリア実装型半導体装置の室温及び
半田付け工程での反りが小さく、また特に基板上の金属
面やソルダーレジスト層との密着性に優れるため耐半田
性や耐温度サイクル性などの信頼性に優れるものであ
る。The epoxy resin composition for encapsulating a semiconductor according to the present invention has a small warpage in an area mounting type semiconductor device using the same at room temperature and in a soldering process. Because of its excellent adhesion to the solder, it has excellent reliability such as solder resistance and temperature cycle resistance.
フロントページの続き (51)Int.Cl.6 識別記号 FI C08G 59/62 C08G 59/62 C08K 3/36 C08K 3/36 C08L 83/06 C08L 83/06 H01L 23/29 H01L 23/30 R 23/31 Continued on the front page (51) Int.Cl. 6 Identification code FI C08G 59/62 C08G 59/62 C08K 3/36 C08K 3/36 C08L 83/06 C08L 83/06 H01L 23/29 H01L 23/30 R 23 / 31
Claims (3)
(1)で示されるフェノール樹脂硬化剤、(C)硬化促
進剤、(D)溶融シリカ粉末、及び(E)総エポキシ樹
脂組成物中に0.05〜2重量%含まれ、一般式(2)
で示されるアルコキシ基及び/又はアルコキシシリル基
含有オルガノポリシロキサンからなることを特徴とする
半導体封止用エポキシ樹脂組成物。 【化1】 式(1)中のRはハロゲン原子又は炭素数1〜12のア
ルキル基を示し、互いに同一であっても、異なっていて
もよい。lは1〜10の正の整数、mは0もしくは1〜
3の正の整数、及びnは0もしくは1〜4の正の整数で
ある。式(2)中のR1は炭素数1〜12のアルキル
基、アリール基、アラルキル基から選択される有機基を
示し、互いに同一であっても、異なっていてもよい。A
はOR3[アルコキシ基]又はR2Si(R3)p(OR3)3-p
[アルコキシシリル基]を示し、R2は炭素数1〜9の
アルキレン基、R3は炭素数1〜9のアルキル基をそれ
ぞれ示し、それらは互いに同じであっても、異なってい
てもよい。pは0〜2までの整数を示す。Bは炭素、窒
素、酸素、硫黄、水素原子から選択される原子により構
成される1価の有機基を示す。R4はA,B又はR1を示
す。また、l、m、nについては以下の関係にある。 l+m+n≧5、l≧0、n≧0、m/(l+m+n)
=0.05〜0.81. An epoxy resin, (A) an epoxy resin, (B) a phenolic resin curing agent represented by the general formula (1), (C) a curing accelerator, (D) a fused silica powder, and (E) a total epoxy resin composition. 0.05 to 2% by weight in general formula (2)
An epoxy resin composition for encapsulating a semiconductor, comprising an organopolysiloxane containing an alkoxy group and / or an alkoxysilyl group represented by the formula: Embedded image R in the formula (1) represents a halogen atom or an alkyl group having 1 to 12 carbon atoms, and may be the same or different. l is a positive integer of 1 to 10, m is 0 or 1
A positive integer of 3 and n is 0 or a positive integer of 1 to 4. R 1 in the formula (2) represents an organic group selected from an alkyl group having 1 to 12 carbon atoms, an aryl group, and an aralkyl group, and may be the same or different. A
Is OR 3 [alkoxy group] or R 2 Si (R 3 ) p (OR 3 ) 3-p
R 2 represents an alkylene group having 1 to 9 carbon atoms, and R 3 represents an alkyl group having 1 to 9 carbon atoms, which may be the same as or different from each other. p shows the integer of 0-2. B represents a monovalent organic group composed of atoms selected from carbon, nitrogen, oxygen, sulfur and hydrogen atoms. R 4 represents A, B or R 1 . Further, l, m, and n have the following relationship. l + m + n ≧ 5, l ≧ 0, n ≧ 0, m / (l + m + n)
= 0.05-0.8
で示される多官能エポキシ樹脂及び/又は式(5)〜
(9)で示され、かつ融点が50〜150℃の結晶性エ
ポキシ樹脂の群から選択される少なくとも一つのエポキ
シ樹脂である請求項1記載の半導体封止用エポキシ樹脂
組成物。 【化2】 【化3】 【化4】 式(3)、(4)及び(9)中のRはハロゲン原子又は
炭素数1〜12のアルキル基を示し、互いに同一であっ
ても、異なっていてもよい。lは1〜10の正の数、m
は0もしくは1〜3の正の整数、及びnは0もしくは1
〜4の正の整数である。式(5)〜(8)中のRは水素
原子、ハロゲン原子又は炭素数1〜12のアルキル基を
示し、互いに同一であっても、異なっていてもよい。2. The epoxy resin according to any one of the general formulas (3) and (4)
And / or a polyfunctional epoxy resin represented by the formula (5):
The epoxy resin composition for semiconductor encapsulation according to claim 1, which is at least one epoxy resin selected from the group of crystalline epoxy resins represented by (9) and having a melting point of 50 to 150 ° C. Embedded image Embedded image Embedded image R in the formulas (3), (4) and (9) represents a halogen atom or an alkyl group having 1 to 12 carbon atoms, and may be the same or different. l is a positive number from 1 to 10, m
Is 0 or a positive integer of 1 to 3, and n is 0 or 1.
Is a positive integer of 44. R in the formulas (5) to (8) represents a hydrogen atom, a halogen atom or an alkyl group having 1 to 12 carbon atoms, and may be the same or different.
キシ樹脂組成物によって、半導体素子が封止されている
ことを特徴とする半導体装置。3. A semiconductor device, wherein a semiconductor element is sealed with the epoxy resin composition for semiconductor sealing according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29441297A JPH11130936A (en) | 1997-10-27 | 1997-10-27 | Epoxy resin composition and semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29441297A JPH11130936A (en) | 1997-10-27 | 1997-10-27 | Epoxy resin composition and semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11130936A true JPH11130936A (en) | 1999-05-18 |
Family
ID=17807425
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29441297A Pending JPH11130936A (en) | 1997-10-27 | 1997-10-27 | Epoxy resin composition and semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11130936A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001261777A (en) * | 2000-03-23 | 2001-09-26 | Sumitomo Bakelite Co Ltd | Epoxy resin composition and semiconductor device |
JP2001270932A (en) * | 2000-03-28 | 2001-10-02 | Matsushita Electric Works Ltd | Epoxy resin composition and semiconductor device |
JP2001279056A (en) * | 2000-03-31 | 2001-10-10 | Toray Ind Inc | Epoxy resin composition for semiconductor encapsulation |
JP2002161128A (en) * | 2000-11-28 | 2002-06-04 | Sumitomo Bakelite Co Ltd | Epoxy resin composition and semiconductor device |
JP2009256475A (en) * | 2008-04-17 | 2009-11-05 | Nitto Denko Corp | Epoxy resin composition for sealing semiconductor and semiconductor device using the same |
JP2010080878A (en) * | 2008-09-29 | 2010-04-08 | Sony Chemical & Information Device Corp | Printed circuit board and method of manufacturing the same |
JP2012241151A (en) * | 2011-05-23 | 2012-12-10 | Nitto Denko Corp | Resin composition for sealing electronic part, and electronic part device using the same |
JP2021193158A (en) * | 2020-06-08 | 2021-12-23 | 信越化学工業株式会社 | Thermosetting epoxy resin composition, thermosetting epoxy resin sheet, and cured product of the same |
-
1997
- 1997-10-27 JP JP29441297A patent/JPH11130936A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001261777A (en) * | 2000-03-23 | 2001-09-26 | Sumitomo Bakelite Co Ltd | Epoxy resin composition and semiconductor device |
JP2001270932A (en) * | 2000-03-28 | 2001-10-02 | Matsushita Electric Works Ltd | Epoxy resin composition and semiconductor device |
JP2001279056A (en) * | 2000-03-31 | 2001-10-10 | Toray Ind Inc | Epoxy resin composition for semiconductor encapsulation |
JP2002161128A (en) * | 2000-11-28 | 2002-06-04 | Sumitomo Bakelite Co Ltd | Epoxy resin composition and semiconductor device |
JP2009256475A (en) * | 2008-04-17 | 2009-11-05 | Nitto Denko Corp | Epoxy resin composition for sealing semiconductor and semiconductor device using the same |
JP2010080878A (en) * | 2008-09-29 | 2010-04-08 | Sony Chemical & Information Device Corp | Printed circuit board and method of manufacturing the same |
JP2012241151A (en) * | 2011-05-23 | 2012-12-10 | Nitto Denko Corp | Resin composition for sealing electronic part, and electronic part device using the same |
JP2021193158A (en) * | 2020-06-08 | 2021-12-23 | 信越化学工業株式会社 | Thermosetting epoxy resin composition, thermosetting epoxy resin sheet, and cured product of the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH11147936A (en) | Epoxy resin composition for semiconductor sealing and semiconductor device | |
JP3292452B2 (en) | Epoxy resin composition and semiconductor device | |
JP3365725B2 (en) | Epoxy resin composition and semiconductor device | |
JP2768088B2 (en) | Thermosetting resin composition and semiconductor device | |
JPH11130936A (en) | Epoxy resin composition and semiconductor device | |
JP3240861B2 (en) | Epoxy resin composition and semiconductor device | |
JP3608930B2 (en) | Epoxy resin composition and semiconductor device | |
JP2000273280A (en) | Epoxy resin composition and semiconductor device | |
JP3844098B2 (en) | Epoxy resin composition and semiconductor device | |
JP3649554B2 (en) | Epoxy resin composition and semiconductor device | |
JP3390335B2 (en) | Semiconductor device | |
JPH1160901A (en) | Epoxy resin composition and semiconductor device | |
JPH11130937A (en) | Epoxy resin composition and semiconductor device | |
JP4370666B2 (en) | Semiconductor device | |
JPH11172075A (en) | Epoxy resin composition and semiconductor device | |
JP3292456B2 (en) | Epoxy resin composition and semiconductor device | |
JP2000169677A (en) | Epoxy resin composition and semiconductor apparatus | |
JP3206317B2 (en) | Method for producing epoxy resin composition and epoxy resin composition | |
JPH1192629A (en) | Epoxy resin composition and semiconductor device | |
JP2658752B2 (en) | Epoxy resin composition and semiconductor device | |
JPH1192631A (en) | Epoxy resin composition and semiconductor device | |
JP4513195B2 (en) | Epoxy resin composition and semiconductor device | |
JP4491884B2 (en) | Epoxy resin composition and semiconductor device | |
JPH11100491A (en) | Epoxy resin composition and semiconductor device | |
JPH1192630A (en) | Epoxy resin composition and semiconductor device |