JP4372653B2 - Method for producing rod-shaped conductive tin-containing indium oxide fine powder - Google Patents
Method for producing rod-shaped conductive tin-containing indium oxide fine powder Download PDFInfo
- Publication number
- JP4372653B2 JP4372653B2 JP2004289006A JP2004289006A JP4372653B2 JP 4372653 B2 JP4372653 B2 JP 4372653B2 JP 2004289006 A JP2004289006 A JP 2004289006A JP 2004289006 A JP2004289006 A JP 2004289006A JP 4372653 B2 JP4372653 B2 JP 4372653B2
- Authority
- JP
- Japan
- Prior art keywords
- fine powder
- tin
- indium
- hexamethylenetetramine
- rod
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Conductive Materials (AREA)
Description
本発明は、透明導電膜を形成するために用いる透明導電膜形成用塗料のフィラーとして最適な棒状導電性錫含有酸化インジウム微粉末の製造方法に関する。 The present invention relates to a method for producing a rod-shaped conductive tin-containing indium oxide fine powder that is most suitable as a filler for a transparent conductive film-forming coating used for forming a transparent conductive film.
太陽電池やフラットパネルディスプレイ等の透明電極あるいは透明導電膜として広く用いられる導電性錫含有酸化インジウム、なかでも錫ドープ酸化インジウム(以下、ITOと略記)膜は、通常はスパッタリング法、有機前駆体を用いるゾルゲル法や、微粉末塗布法で成膜されている。 Conductive tin-containing indium oxide, which is widely used as a transparent electrode or transparent conductive film for solar cells and flat panel displays, in particular, a tin-doped indium oxide (hereinafter abbreviated as ITO) film is usually formed by a sputtering method or an organic precursor. The film is formed by the sol-gel method used or the fine powder coating method.
前記成膜法の中で、スパッタリング法は大面積処理には大型装置が必要でコスト的に不利であり、ゾルゲル法は有機物の熱分解のために高温熱処理が必要であるためプラスチックフィルムに適用できない。このため、簡単な装置で低温処理のみで透明導電膜が作製できる微粉末塗布法が注目されている。 Among the film formation methods, the sputtering method is disadvantageous in terms of cost because it requires a large apparatus for large area processing, and the sol-gel method cannot be applied to a plastic film because high temperature heat treatment is necessary for thermal decomposition of organic matter. . For this reason, attention has been paid to a fine powder coating method in which a transparent conductive film can be produced only by low-temperature treatment with a simple apparatus.
微粉末塗布法では、ITO微粉末をフィラーとした透明導電性塗料が使用される。この方法で用いられるITO微粉末は光の散乱による透明性の低下を防止するために散乱光強度が最も大きくなるミー共鳴が生じる粒子径よりもかなり小さな粒子径、つまり可視光の波長の1/2よりもかなり小さな粒子径である。実際には実用的な透明性を得られるような散乱光強度に低下するためには、可視光の最低波長を380nmとすると100nm以下の粒子径のものを用いる必要がある。 In the fine powder coating method, a transparent conductive paint using ITO fine powder as a filler is used. The ITO fine powder used in this method has a particle diameter that is considerably smaller than the particle diameter at which Mie resonance where the scattered light intensity is maximized in order to prevent a decrease in transparency due to light scattering, that is, 1 / wavelength of visible light. The particle size is considerably smaller than 2. In practice, in order to reduce the scattered light intensity to obtain practical transparency, it is necessary to use a particle having a particle diameter of 100 nm or less when the minimum wavelength of visible light is 380 nm.
そして、このような粒子同士が接触することで導電性を維持するため、隣接する粒子同士が接触し易い棒状形状を有するものが望まれる。また、棒状粒子は接触し易いだけでなく重なり合うことで接触面積を大きくすることによっても導電性を向上させることができる。 And in order to maintain electroconductivity by such particles contacting, what has the rod-shaped shape which adjacent particles are easy to contact is desired. In addition, the rod-shaped particles are not only easily contacted but also can be improved in conductivity by increasing the contact area by overlapping.
しかしながら、ITO微粉末の棒状粒子としては、特許文献1には「長径が5μm以上、アスペクト比5以上のITO微粉末」が、特許文献2には「長径が1〜2μm、短径が0.1〜0.2μmで、アスペクト比5〜10のITO微粉末」が、特許文献3には「長径が0.2〜0.95μm、短径が0.02〜0.10μmのITO微粉末」が開示されているにすぎない。 However, as the rod-like particles of the ITO fine powder, Patent Document 1 discloses “ITO fine powder having a major axis of 5 μm or more and an aspect ratio of 5 or more”, and Patent Document 2 discloses “A major axis of 1 to 2 μm and a minor axis of 0. “ITO fine powder having an aspect ratio of 5 to 10 at 1 to 0.2 μm” is disclosed in Patent Document 3 as “ITO fine powder having a major axis of 0.2 to 0.95 μm and a minor axis of 0.02 to 0.10 μm”. Is only disclosed.
これらの粒子径はいずれも長径が200nm以上あり、透明性及び導電性の点で、透明導電性塗料のフィラーとしては不適当なものであり、長径がより短く、アスペスト比が大きいITO微粉末を工業的規模で廉価に製造することができるが製造方法が強く望まれていた。
本発明の目的は、透明導電性塗料のフィラーとして最適である、長径がより短く、アスペスト比が大きい導電性錫含有酸化インジウム微粉末の製造方法を提供することにある。 An object of the present invention is to provide a method for producing a conductive tin-containing indium oxide fine powder that is optimal as a filler for a transparent conductive paint and has a shorter major axis and a larger aspect ratio.
本発明者は、前記従来の事情に鑑み鋭意検討した結果、錫(Sn)とインジウム(In)を含有する水溶液に、所定量のヘキサメチレンテトラミンを添加し、析出した析出物を焼成すると、長径が小さく、アスペクト比が大きい棒状導電性錫含有酸化インジウム微粉末が得られることを知見した。 As a result of intensive studies in view of the above-described conventional circumstances, the inventor added a predetermined amount of hexamethylenetetramine to an aqueous solution containing tin (Sn) and indium (In), and calcined the deposited precipitate. It was found that a rod-shaped conductive tin-containing indium oxide fine powder having a small aspect ratio and a large aspect ratio can be obtained.
即ち、本発明の請求項1に係る棒状導電性錫含有酸化インジウム微粉末の製造方法は、錫塩及びインジウム塩を水に溶解して、錫(Sn)とインジウム(In)を合量で0.001mol/L〜0.05mol/L含有する水溶液を調製し、この水溶液に前記錫(Sn)とインジウム(In)の合計モル量の20〜100倍量に相当する量のヘキサメチレンテトラミンを添加し、析出した析出物を焼成することを特徴としている。 That is, in the method for producing a rod-shaped conductive tin-containing indium oxide fine powder according to claim 1 of the present invention, a tin salt and an indium salt are dissolved in water, and the total amount of tin (Sn) and indium (In) is 0. Prepare an aqueous solution containing 0.001 mol / L to 0.05 mol / L, and add hexamethylenetetramine in an amount corresponding to 20 to 100 times the total molar amount of tin (Sn) and indium (In). The deposited precipitate is fired.
前記ヘキサメチレンテトラミンを添加した後、前記焼成に先だって、前記水溶液を80℃以上に加熱することが好ましい。After the hexamethylenetetramine is added, the aqueous solution is preferably heated to 80 ° C. or higher prior to the baking.
前記焼成は、300℃〜800℃の温度にて行うことが好ましい。The firing is preferably performed at a temperature of 300 ° C to 800 ° C.
本発明によれば、透明性及び導電性に優れた透明導電膜形成用塗料のフィラーとして好適な、長径が50〜100nmで、アスペクト比が5以上である棒状導電性錫含有酸化インジウム微粉末を工業的規模で廉価に効率的に製造することができる。 According to the present invention, a rod-shaped conductive tin-containing indium oxide fine powder having a major axis of 50 to 100 nm and an aspect ratio of 5 or more, which is suitable as a filler for a transparent conductive film-forming coating material excellent in transparency and conductivity, is provided. It can be manufactured efficiently and inexpensively on an industrial scale.
本発明の棒状導電性錫含有酸化インジウム微粉末の製造方法に用いる錫塩およびインジウム塩は水溶性のものであればよく、塩化錫、硝酸錫、酢酸錫、塩化インジウム、硝酸インジウム、酢酸インジウムなどが例として挙げられる。 The tin salt and indium salt used in the method for producing the rod-shaped conductive tin-containing indium oxide fine powder of the present invention may be water-soluble, such as tin chloride, tin nitrate, tin acetate, indium chloride, indium nitrate, indium acetate, etc. Is given as an example.
このような錫塩およびインジウム塩を水に溶解させる。その際の水溶液濃度は錫とインジウムを合わせた濃度で0.001〜0.05mol/Lにしなくてはならない。
ここで濃度を0.001〜0.05mol/Lにした理由は、0.001mol/L未満では生産性に劣るためであり、0.05mol/Lを越える場合には生成する棒状粒子のアスペクト比が5未満になってしまうからである。
Such tin salts and indium salts are dissolved in water. In this case, the concentration of the aqueous solution should be 0.001 to 0.05 mol / L as the combined concentration of tin and indium.
The reason why the concentration is 0.001 to 0.05 mol / L is that the productivity is inferior when the concentration is less than 0.001 mol / L, and the aspect ratio of the rod-like particles that are generated when the concentration exceeds 0.05 mol / L. Is less than 5.
次に、錫塩およびインジウム塩を水に溶解させた水溶液に系内の錫とインジウムを合わせたモル数の20〜100倍に相当する量のヘキサメチレンテトラミンを添加する。
このヘキサメチレンテトラミンは、錫とインジウムの沈殿剤として作用するものである。本発明においては、沈殿剤としてヘキサメチレンテトラミンを用いることが重要であり、沈殿材として従来から使用されているアンモニア水、水酸化アルカリ、炭酸アルカリ、炭酸アンモニウム等を用いると、本発明の目的を達成できない。
Next, an amount of hexamethylenetetramine corresponding to 20 to 100 times the number of moles of tin and indium in the system is added to an aqueous solution in which a tin salt and an indium salt are dissolved in water.
This hexamethylenetetramine acts as a precipitant for tin and indium. In the present invention, it is important to use hexamethylenetetramine as a precipitating agent. If ammonia water, alkali hydroxide, alkali carbonate, ammonium carbonate or the like conventionally used as a precipitant is used, the object of the present invention is achieved. Cannot be achieved.
また、本発明において、ヘキサメチレンテトラミンの添加量は上記範囲内であることが重要である。ヘキサメチレンテトラミンの添加量を系内の錫とインジウムを合わせたモル数の20〜100倍モル量とした理由は、20倍モル量未満では生成する棒状粒子のアスペクト比が5未満になってしまうためであり、100倍モル量を越えて添加しても生成する棒状粒子に変化がみられなくなるからである。 In the present invention, it is important that the amount of hexamethylenetetramine added is within the above range. The reason why the amount of hexamethylenetetramine added is 20 to 100 times the molar number of tin and indium in the system is that the aspect ratio of the produced rod-like particles is less than 5 if the amount is less than 20 times the molar amount. This is because no change is observed in the formed rod-like particles even when added in a molar amount exceeding 100 times.
ヘキサメチレンテトラミンを添加すると、ヘキサメチレンテトラミンはアンモニアとホルムアルデヒドに加水分解して水溶液中のpHが上がるため、錫及びインジウムの水和物が析出してくる。
ヘキサメチレンテトラミンの加水分解により生成するホルムアルデヒドは、析出した沈殿物の表面に吸着されて結晶成長制御剤として作用するものと考えられる。
前記水溶液は、ヘキサメチレンテトラミンを添加した後に加熱すると、反応速度を高め、前記析出物を効率よく得ることができる。
加熱温度は効果的な反応速度を得るために80℃以上が好ましい。加熱時間は12〜24時間程度が好ましい。
When hexamethylenetetramine is added, hexamethylenetetramine is hydrolyzed into ammonia and formaldehyde to raise the pH in the aqueous solution, so that hydrates of tin and indium are precipitated.
Formaldehyde generated by hydrolysis of hexamethylenetetramine is considered to be adsorbed on the surface of the deposited precipitate and act as a crystal growth control agent.
When the aqueous solution is heated after adding hexamethylenetetramine, the reaction rate is increased and the precipitate can be obtained efficiently.
The heating temperature is preferably 80 ° C. or higher in order to obtain an effective reaction rate. The heating time is preferably about 12 to 24 hours.
以上のような条件で生成した錫及びインジウムの水和物(析出物)を、必要に応じて副生物を除去、乾燥した後、焼成することにより、長径が50〜100nmでアスペクト比が5以上の導電性錫含有酸化インジウムの棒状粒子からなる微粉末を得ることができる。
焼成温度は、低すぎれば水和物から酸化物への転換が不充分となり、高すぎれば長径またはアスペクト比が上記範囲を下回るおそれがあるため、300〜800℃、好ましくは400〜600℃が好適である。
焼成する際の雰囲気は、焼成温度で酸化反応が起る雰囲気であれば特に制限はなく、通常、大気下で焼成する。
また、焼成に引き続き、必要に応じてN2、Ar等の不活性ガス雰囲気下あるいはH2、NH3等の還元雰囲気下にて更に熱処理することが、導電性が更に向上するので好ましい。
The hydrates (precipitates) of tin and indium produced under the above conditions are baked after removing by-products as necessary and drying, so that the major axis is 50 to 100 nm and the aspect ratio is 5 or more. A fine powder composed of rod-like particles of conductive tin-containing indium oxide can be obtained.
If the calcination temperature is too low, the conversion from the hydrate to the oxide becomes insufficient, and if it is too high, the major axis or aspect ratio may fall below the above range, so 300 to 800 ° C, preferably 400 to 600 ° C. Is preferred.
The atmosphere for firing is not particularly limited as long as an oxidation reaction occurs at the firing temperature, and the firing is usually performed in the air.
In addition, it is preferable to further heat-treat in an inert gas atmosphere such as N 2 or Ar or a reducing atmosphere such as H 2 or NH 3 after firing, as the conductivity is further improved.
前記微粉末は、長径が小さすぎれば粒子同士の接触面積が小さくなるため導電性が低下しやすく、長径が大きすぎれば透明性が低下しやすい。また、アスペクト比が小さすぎれば粒子同士の接触面積が小さくなるため導電性が低下しやすい。
上記製造方法により得られた微粉末は、長径が50〜100nmでアスペクト比が5以上であるので、導電性および透明性がいずれも良好となる。
If the long diameter is too small, the contact area between the particles becomes small, so that the conductivity tends to decrease. If the long diameter is too large, the transparency tends to decrease. On the other hand, if the aspect ratio is too small, the contact area between the particles becomes small, and the conductivity tends to decrease.
Since the fine powder obtained by the above production method has a major axis of 50 to 100 nm and an aspect ratio of 5 or more, both conductivity and transparency are good.
以下、実施例と比較例を掲げ、本発明を更に詳細に説明する。
「実施例1」
塩化第2錫(SnCl4・5H2O)0.77g及び塩化インジウム(InCl3・4H2O)5.86gを純水に溶解した溶液に純水を加えて1Lにした後に93gのヘキサメチレンテトラミンを添加して均一な水溶液(In+Sn:0.02mol/L、ヘキサメチレンテトラミン:30倍モル量)とした。
この水溶液を加熱して沸騰させると、ヘキサメチレンテトラミンが分解して生成するアンモニアにより溶液のpHが上昇してインジウムと錫の水和物が析出した。この析出物を洗浄乾燥後、大気雰囲気下400℃にて3時間焼成し、微粉末を得た。
この微粉末は、X線回析(XRD)の結果、ITOの微粉末であることが判明した。また、図1の透過型電子顕微鏡写真が示すように長径60nmでアスペクト比が6の棒状粒子を多数有していた。
なお、長径およびアスペクト比は、次のように測定した。図1に示す透過型電子顕微鏡写真から20個の粒子を無作為に抽出し、粒子の最も長い部分の長さの平均値を長径とし、この最長方向に垂直な方向の長さが最も大きい部分の長さの平均値を短径とし、これらに基づいてアスペクト比を算出した。
Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples.
"Example 1"
After adding pure water to a solution of 0.77 g of stannic chloride (SnCl 4 .5H 2 O) and 5.86 g of indium chloride (InCl 3 .4H 2 O) in pure water to make 1 L, 93 g of hexamethylene Tetramine was added to make a uniform aqueous solution (In + Sn: 0.02 mol / L, hexamethylenetetramine: 30-fold molar amount).
When this aqueous solution was heated and boiled, the pH of the solution was raised by the ammonia produced by the decomposition of hexamethylenetetramine, and indium and tin hydrates were precipitated. This precipitate was washed and dried, and then calcined at 400 ° C. for 3 hours in an air atmosphere to obtain a fine powder.
As a result of X-ray diffraction (XRD), this fine powder was found to be an ITO fine powder. Further, as shown in the transmission electron micrograph of FIG. 1, it had a large number of rod-shaped particles having a major axis of 60 nm and an aspect ratio of 6.
The major axis and the aspect ratio were measured as follows. 20 particles are randomly extracted from the transmission electron micrograph shown in FIG. 1, and the average value of the length of the longest part of the particle is taken as the major axis, and the part having the longest length in the direction perpendicular to the longest direction The average value of the length was taken as the minor axis, and the aspect ratio was calculated based on these.
「実施例2」
塩化第2錫(SnCl4・5H2O)0.38g及び塩化インジウム(InCl3・4H2O)2.93gを純水に溶解した溶液に純水を加えて1Lにした後に93gのヘキサメチレンテトラミンを添加して均一な水溶液(In+Sn:0.01mol/L、ヘキサメチレンテトラミン:60倍モル量)とした。
この水溶液を加熱して沸騰させると、ヘキサメチレンテトラミンが分解して生成するアンモニアにより溶液のpHが上昇してインジウムと錫の水和物が析出した。この析出物を洗浄乾燥後、大気雰囲気下400℃にて3時間焼成しさらに窒素中600℃にて10時間焼成して、微粉末を得た。
この微粉末は、X線回析(XRD)の結果、ITOの微粉末であることが判明した。また、図2の透過型電子顕微鏡写真が示すように長径70nmでアスペクト比が6の棒状粒子を多数有していた。
長径およびアスペクト比の測定法は実施例1と同様である。
"Example 2"
After adding pure water to a solution of 0.38 g of stannic chloride (SnCl 4 .5H 2 O) and 2.93 g of indium chloride (InCl 3 .4H 2 O) in pure water to make 1 L, 93 g of hexamethylene Tetramine was added to form a uniform aqueous solution (In + Sn: 0.01 mol / L, hexamethylenetetramine: 60-fold molar amount).
When this aqueous solution was heated and boiled, the pH of the solution was raised by the ammonia produced by the decomposition of hexamethylenetetramine, and indium and tin hydrates were precipitated. This precipitate was washed and dried, then calcined at 400 ° C. for 3 hours in an air atmosphere, and further calcined at 600 ° C. for 10 hours in nitrogen to obtain fine powder.
As a result of X-ray diffraction (XRD), this fine powder was found to be an ITO fine powder. Further, as shown in the transmission electron micrograph of FIG. 2, it had many rod-like particles having a major axis of 70 nm and an aspect ratio of 6.
The measuring method of the major axis and the aspect ratio is the same as in Example 1.
「実施例3」
塩化第2錫(SnCl4・5H2O)0.77g及び塩化インジウム(InCl3・4H2O)5.86gを純水に溶解した溶液に純水を加えて1Lにした後に310gのヘキサメチレンテトラミンを添加して均一な水溶液(In+Sn:0.02mol/L、ヘキサメチレンテトラミン:100倍モル量)とした。
この水溶液を加熱して沸騰させると、ヘキサメチレンテトラミンが分解して生成するアンモニアにより溶液のpHが上昇してインジウムと錫の水和物が析出した。この析出物を洗浄乾燥後、大気雰囲気下400℃にて3時間焼成し、微粉末を得た。
この微粉末は、X線回析(XRD)の結果、ITOの微粉末であることが判明した。また、図3の透過型電子顕微鏡写真が示すように長径60nmでアスペクト比が5.5の棒状粒子を多数有していた。
長径およびアスペクト比の測定法は実施例1と同様である。
"Example 3"
After adding pure water to a solution of 0.77 g of stannic chloride (SnCl 4 .5H 2 O) and 5.86 g of indium chloride (InCl 3 .4H 2 O) in pure water to make 1 L, 310 g of hexamethylene Tetramine was added to obtain a uniform aqueous solution (In + Sn: 0.02 mol / L, hexamethylenetetramine: 100-fold molar amount).
When this aqueous solution was heated and boiled, the pH of the solution was raised by the ammonia produced by the decomposition of hexamethylenetetramine, and indium and tin hydrates were precipitated. This precipitate was washed and dried, and then calcined at 400 ° C. for 3 hours in an air atmosphere to obtain a fine powder.
As a result of X-ray diffraction (XRD), this fine powder was found to be an ITO fine powder. Further, as shown in the transmission electron micrograph of FIG. 3, it had a large number of rod-shaped particles having a major axis of 60 nm and an aspect ratio of 5.5.
The measuring method of the major axis and the aspect ratio is the same as in Example 1.
「比較例1」
塩化第2錫(SnCl4・5H2O)3.8g及び塩化インジウム(InCl3・4H2O)29.3gを純水に溶解した溶液に純水を加えて1Lにした後に466gのヘキサメチレンテトラミンを添加して均一な水溶液(In+Sn:0.1mol/L、ヘキサメチレンテトラミン:30倍モル量)とした。
この水溶液を加熱して沸騰させると、ヘキサメチレンテトラミンが分解して生成するアンモニアにより溶液のpHが上昇してインジウムと錫の水和物が析出した。この析出物を洗浄乾燥後400℃にて3時間焼成し、微粉末を得た。
この微粉末は、X線回析(XRD)の結果、ITOの微粉末であることが判明した。また、この微粉末は図4の透過型電子顕微鏡写真が示すように長径60nmであったがアスペクト比が5未満の粒子しかなかった。
長径およびアスペクト比の測定法は実施例1と同様である。
"Comparative Example 1"
Pure water was added to a solution of 3.8 g of stannic chloride (SnCl 4 .5H 2 O) and 29.3 g of indium chloride (InCl 3 .4H 2 O) in pure water to make 1 L, and then 466 g of hexamethylene. Tetramine was added to form a uniform aqueous solution (In + Sn: 0.1 mol / L, hexamethylenetetramine: 30-fold molar amount).
When this aqueous solution was heated and boiled, the pH of the solution was raised by the ammonia produced by the decomposition of hexamethylenetetramine, and indium and tin hydrates were precipitated. This precipitate was washed and dried and then calcined at 400 ° C. for 3 hours to obtain a fine powder.
As a result of X-ray diffraction (XRD), this fine powder was found to be an ITO fine powder. Further, this fine powder had a major axis of 60 nm as shown in the transmission electron micrograph of FIG. 4, but had only particles having an aspect ratio of less than 5.
The measuring method of the major axis and the aspect ratio is the same as in Example 1.
「比較例2」
塩化第2錫(SnCl4・5H2O)0.77g及び塩化インジウム(InCl3・4H2O)5.86gを純水に溶解した溶液に純水を加えて1Lにした後に31gのヘキサメチレンテトラミンを添加して均一な水溶液(In+Sn:0.02mol/L、ヘキサメチレンテトラミン:10倍モル量)とした。
この水溶液を加熱して沸騰させると、ヘキサメチレンテトラミンが分解して生成するアンモニアにより溶液のpHが上昇してインジウムと錫の水和物が析出した。この析出物を洗浄乾燥後400℃にて3時間焼成し、微粉末を得た。
この微粉末は、X線回析(XRD)の結果、ITOの微粉末であることが判明した。また、この微粉末は図5の透過型電子顕微鏡写真が示すように長径40nmでアスペクト比が5未満であった。
長径およびアスペクト比の測定法は実施例1と同様である。
"Comparative Example 2"
After adding pure water to a solution of 0.77 g of stannic chloride (SnCl 4 .5H 2 O) and 5.86 g of indium chloride (InCl 3 .4H 2 O) in pure water to make 1 L, 31 g of hexamethylene Tetramine was added to obtain a uniform aqueous solution (In + Sn: 0.02 mol / L, hexamethylenetetramine: 10-fold molar amount).
When this aqueous solution was heated and boiled, the pH of the solution was raised by the ammonia produced by the decomposition of hexamethylenetetramine, and indium and tin hydrates were precipitated. This precipitate was washed and dried and then calcined at 400 ° C. for 3 hours to obtain a fine powder.
As a result of X-ray diffraction (XRD), this fine powder was found to be an ITO fine powder. Further, this fine powder had a major axis of 40 nm and an aspect ratio of less than 5 as shown in the transmission electron micrograph of FIG.
The measuring method of the major axis and the aspect ratio is the same as in Example 1.
「試験例」
実施例1〜3で得られたITO微粉末30gを、テトラメトキシシラン10.5g、純水50g及びプロピレングリコールプロピレングリコール175gに混合し、60分間振とうして塗料を調製した。
この塗料を用いてガラス板上に厚みが0.5μmの膜を成膜したところ、透明性(可視光透過率が96%〜99%程度)と導電性(表面抵抗率が12kΩ/□〜50kΩ/□程度)に優れた透明導電膜を形成することができた。
`` Test example ''
30 g of the ITO fine powder obtained in Examples 1 to 3 was mixed with 10.5 g of tetramethoxysilane, 50 g of pure water and 175 g of propylene glycolpropylene glycol, and shaken for 60 minutes to prepare a coating material.
When a film having a thickness of 0.5 μm is formed on a glass plate using this paint, transparency (visible light transmittance is about 96% to 99%) and conductivity (surface resistivity is 12 kΩ / □ to 50 kΩ). A transparent conductive film excellent in (/ □) was able to be formed.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004289006A JP4372653B2 (en) | 2004-09-30 | 2004-09-30 | Method for producing rod-shaped conductive tin-containing indium oxide fine powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004289006A JP4372653B2 (en) | 2004-09-30 | 2004-09-30 | Method for producing rod-shaped conductive tin-containing indium oxide fine powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006103982A JP2006103982A (en) | 2006-04-20 |
JP4372653B2 true JP4372653B2 (en) | 2009-11-25 |
Family
ID=36374129
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004289006A Expired - Fee Related JP4372653B2 (en) | 2004-09-30 | 2004-09-30 | Method for producing rod-shaped conductive tin-containing indium oxide fine powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4372653B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8049333B2 (en) | 2005-08-12 | 2011-11-01 | Cambrios Technologies Corporation | Transparent conductors comprising metal nanowires |
US8018568B2 (en) | 2006-10-12 | 2011-09-13 | Cambrios Technologies Corporation | Nanowire-based transparent conductors and applications thereof |
TWI576866B (en) | 2006-10-12 | 2017-04-01 | 凱姆控股有限公司 | Transparent conductor based on nanowire and its application |
KR101456838B1 (en) | 2007-04-20 | 2014-11-04 | 캄브리오스 테크놀로지즈 코포레이션 | Composite transparent conductor and manufacturing method thereof |
JP5486751B2 (en) * | 2009-09-18 | 2014-05-07 | 三菱マテリアル株式会社 | Rod-shaped indium tin oxide powder and method for producing the same |
EP2531566B1 (en) | 2010-02-05 | 2018-09-12 | CAM Holding Corporation | Photosensitive ink compositions and transparent conductors and method of using the same |
JP6060733B2 (en) * | 2013-02-28 | 2017-01-18 | 三菱マテリアル株式会社 | Paint for forming ITO conductive film |
-
2004
- 2004-09-30 JP JP2004289006A patent/JP4372653B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2006103982A (en) | 2006-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Suwanboon | Structural and optical properties of nanocrystalline ZnO powder from sol-gel method | |
JP3357107B2 (en) | White conductive titanium dioxide powder and method for producing the same | |
CN101823691B (en) | Method for preparing palladium and/or antimony-doping tin oxide nano-powder | |
JP5835860B2 (en) | Heat ray shielding composition and method for producing the same | |
CN1295977A (en) | Simple method for preparing titanium dioxide collosol | |
JP4372653B2 (en) | Method for producing rod-shaped conductive tin-containing indium oxide fine powder | |
JP5472589B2 (en) | Production method of ITO particles | |
JP4372654B2 (en) | Method for producing rod-shaped conductive tin-containing indium oxide fine powder | |
JP2008066276A (en) | Oxide conductive material and manufacturing method thereof | |
JP5233007B2 (en) | Paint for transparent conductive material and method for producing transparent conductive film | |
JP4765051B2 (en) | Tin-doped indium oxide powder | |
CN103318949A (en) | Low temperature solid phase preparation method of indium tin oxide nano particle powder | |
JP3823520B2 (en) | Anhydrous zinc antimonate semiconductor gas sensor and method for manufacturing the same | |
Abraham et al. | (002) oriented ZnO and ZnO: S thin films by direct ultrasonic spray pyrolysis: A comparative analysis of structure, morphology and physical properties | |
CN101037224A (en) | Preparation process of antimony doped stannum oxide nano-crystal | |
JP5829386B2 (en) | Fine ITO powder with high crystallinity, its use and manufacturing method, etc. | |
JP2994020B2 (en) | Method for producing conductive titanium dioxide powder | |
JP4793537B2 (en) | Visible light transmission type particle-dispersed conductor, conductive particles, visible light transmission type conductive article, and manufacturing method thereof | |
AU2020359055A1 (en) | Titanium oxide particles, dispersion of titanium oxide particles, and method for producing dispersion of titanium oxide particles | |
JP6146715B2 (en) | Method for producing zinc oxide particles using ozone | |
JP2963296B2 (en) | Method for producing conductive fine powder | |
WO2014033753A2 (en) | "a process for the preparation of transparent conductive oxides". | |
JP3838615B2 (en) | Tin-doped indium oxide powder and method for producing the same | |
JPH07188593A (en) | Electrically-conductive coating material | |
JP2003040620A (en) | Method for producing ito powder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061206 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090113 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090519 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090716 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090825 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090902 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120911 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130911 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140911 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |