[go: up one dir, main page]

JP4362124B2 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP4362124B2
JP4362124B2 JP2006058361A JP2006058361A JP4362124B2 JP 4362124 B2 JP4362124 B2 JP 4362124B2 JP 2006058361 A JP2006058361 A JP 2006058361A JP 2006058361 A JP2006058361 A JP 2006058361A JP 4362124 B2 JP4362124 B2 JP 4362124B2
Authority
JP
Japan
Prior art keywords
ice
tray
cloudy
transparent
ice tray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006058361A
Other languages
Japanese (ja)
Other versions
JP2007232336A (en
Inventor
洋平 大本
洋一 田宮
周一 谷
拓真 和田
克正 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006058361A priority Critical patent/JP4362124B2/en
Publication of JP2007232336A publication Critical patent/JP2007232336A/en
Application granted granted Critical
Publication of JP4362124B2 publication Critical patent/JP4362124B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Description

この発明は冷蔵庫に関し、特に、高い透明度の氷を得る製氷装置を備えた冷蔵庫に関するものである。   The present invention relates to a refrigerator, and more particularly to a refrigerator provided with an ice making device that obtains ice with high transparency.

従来の冷蔵庫では、透明度の高い氷を生成する実現手段として、冷蔵庫等の自動製氷装置が、冷却器の一面に備えた排水口付の貯水槽の内面に重合される底面を開口した製氷皿と、この製氷皿を回転反転させる駆動装置を備えるとともに貯水槽及び排水口は断熱材で包囲した上でその外壁にはヒータを密着して設け、排水口には排水装置及び排水管を連結させ、これとは別に着脱自在の給水タンクと給水ポンプとを設け、貯水槽まで給水管を導くように構成したものがある。   In a conventional refrigerator, as a means of generating highly transparent ice, an automatic ice making device such as a refrigerator has an ice making tray with an open bottom that is superposed on the inner surface of a water storage tank with a drain port provided on one side of a cooler, and The ice tray is equipped with a drive device for rotating and reversing, and the water storage tank and the drain outlet are surrounded by a heat insulating material, and a heater is closely attached to the outer wall, and the drain outlet and the drain pipe are connected to the drain outlet, In addition to this, there is a configuration in which a detachable water supply tank and a water supply pump are provided and the water supply pipe is guided to the water storage tank.

そのように構成することにより、給水タンク内に満たされた水が給水ポンプによって給水管を介して貯水槽内に所定量給水されると、貯水槽の内面に重合した製氷皿は底面の開口部を介して所定水位まで浸水される。そして貯水槽の外周は断熱材で包囲、且つヒータで保温されるために冷却室内の冷気によって水表面から下方に向けて一方向の凍結作用が行われて水中の気体成分や不純物を下方の水中に排出しながら氷結晶が生成されていく。次に氷が適当な厚さになる時点で排水装置を作動させると気体成分や不純物の濃度が高くなった未凍結水が排水装置、排水管を通じて排水され、製氷皿には透明度及び純度の高い氷が残される。貯水槽と製氷皿との重合部はヒータの加熱作用で氷結は防止されており、駆動装置による回動作用で製氷皿は貯水槽より離脱して反転し離氷が行われる。   With such a configuration, when a predetermined amount of water filled in the water supply tank is supplied to the water storage tank through the water supply pipe by the water supply pump, the ice tray that is superposed on the inner surface of the water storage tank has an opening on the bottom surface. It is immersed in water to a predetermined water level. And since the outer periphery of the water storage tank is surrounded by a heat insulating material and kept warm by a heater, a freezing action in one direction is performed downward from the surface of the water by the cold air in the cooling chamber, so that gaseous components and impurities in the water are Ice crystals are produced while discharging. Next, when the drainage device is activated when the ice reaches an appropriate thickness, unfrozen water with high concentrations of gaseous components and impurities is drained through the drainage device and drainage pipe, and the ice tray has high transparency and purity. Ice is left. The overlapping portion between the water storage tank and the ice tray is prevented from freezing by the heating action of the heater, and the ice tray is detached from the water storage tank by the rotation action of the driving device and inverted to perform ice removal.

また、他の従来例として、底面が開口されていない製氷皿もある。この種の従来の製氷皿の一例として、製氷皿の各粒形状内に、連結部を残して氷粒を上下に分割するセパレート形状を設け、上方からの冷却により白濁部を製氷皿の下部に移動させて上部に透明氷を生成し、製氷完了後の離氷過程において連結部を切断して透明氷を離氷し、残りの白濁氷を新しく製氷皿に給水された水で融解して混ぜた後、再び製氷を行うものが提案されている(例えば、特許文献1参照)。   As another conventional example, there is an ice making tray whose bottom surface is not opened. As an example of this type of conventional ice tray, a separate shape that splits the ice particles up and down is provided in the shape of each ice tray, leaving the connection part, and the cloudy part is placed at the bottom of the ice tray by cooling from above. Clear ice is formed at the top, and the ice is removed after the ice making process is completed, and then the transparent ice is removed. The remaining cloudy ice is melted and mixed with water supplied to the ice tray. After that, the one that performs ice making again has been proposed (see, for example, Patent Document 1).

特開2004−245484号公報(請求項1、図3)Japanese Patent Laying-Open No. 2004-245484 (Claim 1, FIG. 3)

上述した2種類の従来の冷蔵庫の自動製氷装置にあっては、底面の開口の有無に関わらず、いずれの場合も、透明氷部と白濁氷部の連結部を切断して離氷を行う。切断する手段として、製氷駆動装置が回転動作を開始し製氷皿を回転させてねじることによって切断している。製氷皿をねじることで、製氷皿が変形すると、透明氷部分は製氷皿より離れる一方で白濁氷部は製氷皿に密着している状態となる。ねじりトルクを加えてゆくと、透明氷部は製氷皿から力を受けて透明氷部と白濁氷部が分断される。このように、製氷皿を単にねじることだけで、氷を分断しているため、分断するために大きな力が必要であるので、分断時に大きな騒音が発生していた。   In the above-described two types of conventional automatic ice making devices for refrigerators, the ice detachment is performed by cutting the connecting portion of the transparent ice portion and the cloudy ice portion in any case regardless of the presence or absence of the opening on the bottom surface. As a means for cutting, the ice making drive device starts to rotate, and the ice making tray is turned by rotating and twisting. When the ice tray is deformed by twisting the ice tray, the transparent ice portion is separated from the ice tray while the cloudy ice portion is in close contact with the ice tray. As the torsional torque is applied, the transparent ice part receives the force from the ice tray and the transparent ice part and the cloudy ice part are divided. As described above, since the ice is divided only by twisting the ice tray, a large force is required to divide the ice. Therefore, a large noise is generated at the time of the division.

この発明は、かかる問題点を解決するためになされたものであり、透明度の高い氷が得られるとともに、騒音レベルの低い冷蔵庫を得ることを目的としている。   The present invention has been made to solve such a problem, and an object of the present invention is to obtain a refrigerator having a low noise level as well as ice having high transparency.

この発明は、複数個の製氷ブロックが連結されてなる製氷皿と、前記製氷皿が配置され、上方から冷気が供給される製氷室と、前記製氷皿の軸を芯にして前記製氷皿にねじりを与える駆動機構と、前記製氷室に配置される前記製氷皿に給水する給水手段とを備え、前記製氷皿の製氷ブロックは、開口部を有する分離部材によって、上部が開放した第1氷生成部と底部が閉じた第2氷生成部とに分かれ、前記開口部の長手方向と前記製氷皿の軸は所定の角度を有している冷蔵庫である。   The present invention relates to an ice making tray in which a plurality of ice making blocks are connected, an ice making chamber in which the ice making tray is arranged and to which cold air is supplied from above, and the ice making tray is twisted about the axis of the ice making tray. And a water supply means for supplying water to the ice tray placed in the ice making chamber, wherein the ice making block of the ice tray has a first ice generating portion whose upper portion is opened by a separating member having an opening. And a second ice generating unit having a closed bottom, and the longitudinal direction of the opening and the axis of the ice tray are a refrigerator having a predetermined angle.

この発明は、複数個の製氷ブロックが連結されてなる製氷皿と、前記製氷皿が配置され、上方から冷気が供給される製氷室と、前記製氷皿の軸を芯にして前記製氷皿にねじりを与える駆動機構と、前記製氷室に配置される前記製氷皿に給水する給水手段とを備え、前記製氷皿の製氷ブロックは、開口部を有する分離部材によって、上部が開放した第1氷生成部と底部が閉じた第2氷生成部とに分かれ、前記開口部の長手方向と前記製氷皿の軸は所定の角度を有している冷蔵庫であるので、透明度の高い氷が得られるとともに、騒音レベルを低くすることができる。   The present invention relates to an ice making tray in which a plurality of ice making blocks are connected, an ice making chamber in which the ice making tray is arranged and to which cold air is supplied from above, and the ice making tray is twisted about the axis of the ice making tray. And a water supply means for supplying water to the ice tray placed in the ice making chamber, wherein the ice making block of the ice tray has a first ice generating portion whose upper portion is opened by a separating member having an opening. And a second ice generating part having a closed bottom, and the longitudinal direction of the opening and the axis of the ice tray are a predetermined angle, so that highly transparent ice can be obtained and noise can be obtained. The level can be lowered.

実施の形態1.
図1〜4はこの発明の実施の形態を示す図で、図1は冷蔵庫の構成説明図、図2は製氷システム説明図、図3及び図4は製氷皿構造説明図である。
Embodiment 1 FIG.
1 to 4 are diagrams showing an embodiment of the present invention. FIG. 1 is a diagram for explaining the configuration of a refrigerator, FIG. 2 is a diagram for explaining an ice making system, and FIGS.

まず、図1を用いて冷蔵庫の全体の構成について説明する。図1において、冷蔵庫本体1は、最上部に開閉ドアを備えて配置される冷蔵室100と、冷蔵室100の下方に設けられた、冷凍温度帯(−18℃)から冷蔵、野菜、チルドの各温度帯のいずれかに切り替えることの出来る引き出しドアを備える切替室400と、切替室400と並列に引き出しドアを備える製氷室500と、最下部に配置される引き出しドアを備えた冷凍室200と、冷凍室200と切替室400および製氷室500との間に引き出しドアを備える野菜室300とから構成される。   First, the whole structure of a refrigerator is demonstrated using FIG. In FIG. 1, the refrigerator body 1 includes a refrigerator compartment 100 arranged with an open / close door at the top, and a refrigerator temperature range (−18 ° C.) provided in the lower part of the refrigerator compartment 100 for refrigeration, vegetables, and chilled items. A switching chamber 400 having a drawer door that can be switched to any one of the temperature zones, an ice making chamber 500 having a drawer door in parallel with the switching chamber 400, and a freezing chamber 200 having a drawer door disposed at the bottom. The vegetable compartment 300 is provided with a drawer door between the freezer compartment 200, the switching compartment 400 and the ice making compartment 500.

また、図1に示すように、野菜室300と冷凍室200とにまたがる位置に、冷蔵庫本体1内を冷やすための冷気を生成する冷却器3が設置されている。冷却器3の上部には、冷却器3で生成された冷気を循環させるためのファン2が設けられている。また、冷却器3には、冷却器3と、冷蔵室100、切替室400、製氷室500および冷凍室200とをそれぞれ連結している冷気送風ダクト4と帰還ダクト5とが設けられている。冷気送風ダクト4は、冷却器3で生成された冷気を冷蔵室100、切替室400、製氷室500および冷凍室200まで送風するための送風管である。帰還ダクト5は、逆に、冷蔵室100、切替室400、製氷室500および冷凍室200から、それらの場所で冷却に使用した使用済みの冷気を冷却器3まで帰還させるための送風管である。   Moreover, as shown in FIG. 1, the cooler 3 which produces | generates the cool air for cooling the inside of the refrigerator main body 1 is installed in the position spanning the vegetable compartment 300 and the freezer compartment 200. As shown in FIG. A fan 2 for circulating the cold air generated by the cooler 3 is provided at the upper part of the cooler 3. Further, the cooler 3 is provided with a cool air blow duct 4 and a return duct 5 that connect the cooler 3, the refrigerator compartment 100, the switching chamber 400, the ice making chamber 500, and the freezer compartment 200. The cold air blowing duct 4 is a blower pipe for sending the cold air generated by the cooler 3 to the refrigerating room 100, the switching room 400, the ice making room 500, and the freezing room 200. Conversely, the return duct 5 is a blower pipe for returning the used cold air used for cooling in those places from the refrigerating room 100, the switching room 400, the ice making room 500, and the freezing room 200 to the cooler 3. .

冷却器3で冷却された冷気は、冷却器3の上部に設けられたファン2によって冷蔵庫本体1内を循環される。その冷却された冷気は、冷却器3から冷蔵室100、切替室400、製氷室500および冷凍室200に向かって各々設けられている冷気送風ダクト4により送風されて、それらの各部屋を冷却した後に、各部屋からの帰還ダクト5にて冷却器3に再び帰還して、再度熱交換され冷気循環される。また、野菜室300においては、冷蔵室100の戻り冷気で輻射冷却している。また各部屋の温度コントロールは各部屋に設置された温度センサ6により各冷気送風ダクト4内に設置された風量調整器7を制御し実施する。   The cold air cooled by the cooler 3 is circulated in the refrigerator main body 1 by the fan 2 provided at the upper part of the cooler 3. The cooled cold air is sent from the cooler 3 to the refrigerator compartment 100, the switching chamber 400, the ice making chamber 500, and the freezer compartment 200 through the cold air blowing ducts 4 provided to cool the rooms. Later, the air is returned again to the cooler 3 by the return duct 5 from each room, heat is exchanged again, and cold air is circulated. Moreover, in the vegetable compartment 300, it is radiatively cooled by the return cold air of the refrigerator compartment 100. Moreover, the temperature control of each room is performed by controlling the air volume regulator 7 installed in each cold air duct 4 by the temperature sensor 6 installed in each room.

ここでは、例として、製氷室500が、冷蔵室100と野菜室300との間で切替室400と並列に配置されたレイアウトを示したが、その構成に限定されるものではない。例えば、製氷室500が野菜室300と冷凍室200との間で切替室400と並列に配置されたレイアウトでも、製氷室500が冷凍室200の一部になっているものでもよい。図1の他の構成部分については、後述する。   Here, as an example, a layout in which the ice making chamber 500 is arranged in parallel with the switching chamber 400 between the refrigerator compartment 100 and the vegetable compartment 300 is shown, but the configuration is not limited thereto. For example, a layout in which the ice making chamber 500 is arranged in parallel with the switching chamber 400 between the vegetable chamber 300 and the freezing chamber 200, or the ice making chamber 500 may be a part of the freezing chamber 200. 1 will be described later.

次に、図2を用いて、製氷システムの構成について説明する。図2に示すように、冷蔵室100には、製氷室500内に置かれた製氷皿11に給水するための給水タンク8が設けられている。給水タンク8内には、給水タンク8内の水を汲み上げるための給水ポンプ9が設けられている。また、給水タンク8と製氷室500とを連通している給水パイプ10が設けられており、汲み上げられた水は給水パイプ10を介して製氷皿11に給水される。このように、給水タンク8、給水ポンプ9および給水パイプ10は、製氷室500に配置される製氷皿11に給水する給水手段を構成している。また、図2に示すように、製氷皿11の回転軸19(図3参照)を軸に、製氷皿11にねじりを与えるための製氷駆動装置12(駆動機構)が設けられ、製氷駆動装置12は枠体13により固定されている。回転軸19は、図3に示すように、製氷皿11の長手方向の略々全長にわたって中心部を貫通して設けられ、一方の端部が、製氷駆動装置12に係合するために外部に突出している。製氷皿11は回転軸19を軸として製氷皿駆動装置12により回転させられるが、その際に、製氷皿11の一箇所(例えば、回転軸19が突出していない側の一箇所)が固定されているため、回転により製氷皿11はねじられることになる。また、製氷皿11下部には、製氷完了を判断するための製氷サーミスタ14が設けられている。さらに、貯氷量を検知するための検氷レバー15が製氷駆動装置12に組み込まれている。   Next, the configuration of the ice making system will be described with reference to FIG. As shown in FIG. 2, the refrigerating chamber 100 is provided with a water supply tank 8 for supplying water to the ice tray 11 placed in the ice making chamber 500. In the water supply tank 8, a water supply pump 9 for pumping up water in the water supply tank 8 is provided. In addition, a water supply pipe 10 that connects the water supply tank 8 and the ice making chamber 500 is provided, and the pumped water is supplied to the ice tray 11 through the water supply pipe 10. As described above, the water supply tank 8, the water supply pump 9, and the water supply pipe 10 constitute water supply means for supplying water to the ice making tray 11 arranged in the ice making chamber 500. As shown in FIG. 2, an ice making drive device 12 (drive mechanism) for twisting the ice making plate 11 is provided around the rotation shaft 19 (see FIG. 3) of the ice making plate 11. Is fixed by a frame 13. As shown in FIG. 3, the rotary shaft 19 is provided so as to penetrate the central portion over substantially the entire length in the longitudinal direction of the ice tray 11, and one end portion is provided outside to engage with the ice making drive device 12. It protrudes. The ice tray 11 is rotated by the ice tray driving device 12 around the rotation shaft 19. At this time, one part of the ice tray 11 (for example, one part on the side where the rotation shaft 19 does not protrude) is fixed. Therefore, the ice tray 11 is twisted by the rotation. Further, an ice making thermistor 14 for determining completion of ice making is provided at the lower part of the ice making tray 11. Further, an ice detecting lever 15 for detecting the ice storage amount is incorporated in the ice making drive device 12.

図2に示す当該構成において、冷蔵室100に設置された給水タンク8から、給水タンク8内の給水ポンプ9により水が汲み上げられて、冷蔵室100と製氷室500とを連通させた給水パイプ10内を介して氷を生成する製氷皿11へ給水される。製氷室500用の冷気送風ダクト4を通過した冷気は、製氷皿11と製氷皿11をねじる製氷駆動装置12を固定する枠体13内に供給されて製氷を実施する。   In the configuration shown in FIG. 2, water is pumped up from a water supply tank 8 installed in the refrigerating room 100 by a water supply pump 9 in the water supply tank 8 so that the refrigerating room 100 and the ice making room 500 communicate with each other. Water is supplied to the ice tray 11 that generates ice through the inside. The cold air that has passed through the cold air blowing duct 4 for the ice making chamber 500 is supplied to the ice making tray 11 and the frame body 13 that fixes the ice making driving device 12 that twists the ice making tray 11 to perform ice making.

製氷完了の判断は製氷皿11下部に固定された製氷サーミスタ14がある設定温度以下になったことにより製氷完了と判断し、製氷完了と判断された場合には、製氷駆動装置12に組み込まれた貯氷量を検知する検氷レバー15を動作させて貯氷量を検知し、製氷皿11の回転軌跡よりも低い位置に設定された満氷量に達していない場合には、製氷駆動装置12が回転動作を開始し製氷皿11を回転させてねじることにより氷が製氷皿11から離氷される。   The determination of completion of ice making is determined to be ice making completion when the ice making thermistor 14 fixed to the lower part of the ice making tray 11 falls below a certain set temperature, and when it is determined that ice making is completed, it is incorporated into the ice making drive unit 12. The ice storage lever 15 for detecting the ice storage amount is operated to detect the ice storage amount. When the full ice amount set at a position lower than the rotation trajectory of the ice tray 11 has not been reached, the ice making drive device 12 rotates. The ice is released from the ice tray 11 by starting the operation and rotating and twisting the ice tray 11.

図3により、本発明の製氷皿11の構造の一例を説明する。図3(a)は製氷皿11の上から見た図であり、図3(b)は側面(縦)から見た図であり、図3(c)は側面(横)から見た図であり、図3(d)は下から見た図である。製氷皿11は、複数個の製氷ブロック(粒形状またはピット)が連結されて構成されている。各製氷ブロックは、開口部を有するセパレータ部材16(分離部材)によって、上部が開放されて、上部からの冷気を受けて製氷が促進される第1氷生成部(以下、透明氷部17)と、底部が閉じて、透明氷部17に続いてセパレータ部材16の開口部を通じて連続して製氷される第2氷生成部(以下、白濁氷部18)とに分かれている。製氷完了後には、透明氷部17に生成される透明度の高い氷のみを離氷し、その後新たに給水された水によりセパレータ部材16の開口部を介して下方にある白濁氷を融解して、氷中の空気成分を脱気し再び透明氷を生成する。このことにより排水機構が不要で安価な透明氷生成を実現している。   An example of the structure of the ice tray 11 of the present invention will be described with reference to FIG. 3A is a view as seen from the top of the ice tray 11, FIG. 3B is a view as seen from the side (vertical), and FIG. 3C is a view as seen from the side (horizontal). Yes, FIG. 3D is a view from below. The ice tray 11 is configured by connecting a plurality of ice making blocks (grain shape or pit). Each ice making block has a first ice generating part (hereinafter referred to as a transparent ice part 17) in which the upper part is opened by a separator member 16 (separating member) having an opening, and ice making is promoted by receiving cold air from the upper part. The bottom portion is closed, and the transparent ice portion 17 is divided into a second ice generating portion (hereinafter, cloudy ice portion 18) that is continuously made through the opening of the separator member 16. After the ice making is completed, only the ice with high transparency generated in the transparent ice part 17 is deiced, and then the cloudy ice below is melted through the opening of the separator member 16 with newly supplied water, Air components in the ice are degassed to produce transparent ice again. This realizes inexpensive transparent ice generation that does not require a drainage mechanism.

このように、製氷皿11の製氷部分においては、各粒形状毎に、透明氷部17と白濁氷部18との間に、セパレータ部材16(セパレータ形状)が形成されている。透明氷部17は、図3(b)および(c)に示すように、断面が略々矩形(または台形形状)となっていて、開口部に向かってややテーパ状になっている。セパレータ部材16は板状の部材であり、透明氷部17と白濁氷部18とを連通する貫通穴が設けられている。これにより、透明氷部17と白濁氷部18との間で水の往来が可能である。また、白濁氷部18は楕円管状をしており、内部は空洞であるが、底部は閉じている。白濁氷部18は、透明氷部17の下部に1個以上(図4の例では2個)設けられている。   Thus, in the ice making part of the ice tray 11, the separator member 16 (separator shape) is formed between the transparent ice part 17 and the cloudy ice part 18 for each grain shape. As shown in FIGS. 3B and 3C, the transparent ice portion 17 has a substantially rectangular cross section (or trapezoidal shape) and is slightly tapered toward the opening. The separator member 16 is a plate-like member, and is provided with a through hole that allows the transparent ice portion 17 and the cloudy ice portion 18 to communicate with each other. Thereby, water can be transferred between the transparent ice part 17 and the cloudy ice part 18. Moreover, the cloudy ice part 18 has an elliptical tubular shape, and the inside is hollow, but the bottom is closed. One or more cloudy ice portions 18 are provided below the transparent ice portion 17 (two in the example of FIG. 4).

氷の生成メカニズムは水周囲の温度の低い部分から凍っていくため白濁の要因となる気体成分は水が外郭から凍っていく際に中心部の未凍結部分に追われていき、それが白濁する。本発明の透明製氷システムにおいては製氷皿11の開口部すなわち上方から冷却を与えることにより白濁部を下方に追い込み、氷内の白濁部と透明部の分離を促進させる。   The ice formation mechanism freezes from the low temperature area around the water, so the gas components that cause white turbidity are chased by the unfrozen part in the center when water freezes from the outer shell, and it becomes cloudy . In the transparent ice making system of the present invention, the cloudy part is driven downward by cooling from the opening of the ice tray 11, that is, from above, to promote separation of the cloudy part and the transparent part in the ice.

上方からの冷却を行うためには、冷気の量を図2の製氷皿11上下の冷気送風ダクトの開口面積を製氷皿11下方よりも上方の比率を増やしたり、冷気送風用のファン2の回転数制御を実施したり、風量調整器7の開角度を調整して風向きを変えたりして行うようにする。   In order to perform cooling from above, the ratio of the amount of cold air to the opening area of the cold air blowing ducts at the top and bottom of the ice tray 11 in FIG. 2 is increased above the bottom of the ice tray 11 or the fan 2 for cooling air blow is rotated. The numerical control is performed, or the opening angle of the air volume adjuster 7 is adjusted to change the wind direction.

そして、製氷皿11内に設けられたセパレータ部材16により氷の白濁氷部18と透明氷部17とを分離させる。このセパレータ部材16には、上述したように、透明氷部17と白濁氷部18を連結させる貫通穴(開口部)が形成されている。当該貫通穴は少なくとも2ケ所以上設けることが望ましい。また、貫通穴の形状としては、丸穴形状でも、四角穴形状でもよく、あるいは、スリット形状でもよく、いずれかに限定されるものではない。   Then, the ice cloudy ice part 18 and the transparent ice part 17 are separated by the separator member 16 provided in the ice tray 11. As described above, the separator member 16 has a through hole (opening) for connecting the transparent ice portion 17 and the cloudy ice portion 18. It is desirable to provide at least two through holes. The shape of the through hole may be a round hole shape, a square hole shape, or a slit shape, and is not limited to any one.

また、このセパレータ部材16は製氷皿11底面からの深さ寸法が氷粒体積の5〜30%の容量を確保している寸法ならよい。寸法でいうと、例えば、2〜10mmである。これは、氷粒体積の約30%を超えると、透明部分として必要な大きさを確保した場合に、製氷皿11が大型化してしまうので30%以下が良い。   Moreover, this separator member 16 should just be the dimension which has ensured the capacity | capacitance of 5-30% of the ice-particle volume in the depth dimension from the ice-making tray 11 bottom face. For example, the dimension is 2 to 10 mm. If it exceeds about 30% of the ice particle volume, the ice tray 11 will be enlarged when the necessary size is secured as the transparent portion, so 30% or less is preferable.

そしてこのセパレータ部材16の上部の透明氷部17に完成した透明度の高い氷のみを離氷し、その後新しく製氷皿11に給水された水により、セパレータ部材16にある貫通穴を介して、下面の白濁氷部18にある白濁氷を融解して、氷中の空気成分を脱気して再び透明氷を生成するために用いる。このことにより排水機構が不要で安価な透明氷生成が実現できる。   Then, only the completed high-transparency ice in the transparent ice part 17 on the upper part of the separator member 16 is deiced, and then the water supplied to the ice tray 11 is newly supplied to the bottom surface through the through hole in the separator member 16. The cloudy ice in the cloudy ice part 18 is melted and the air component in the ice is degassed and used again to generate transparent ice. As a result, an inexpensive transparent ice can be produced without requiring a drainage mechanism.

ここで、発明者が注目して本発明を完成させるに至った、本発明の背景となる従来の冷蔵庫に内蔵される製氷皿における製氷皿と氷との離氷、および透明氷部と白濁氷部との切断のメカニズムについて説明する。   Here, the inventor paid attention to complete the present invention. The ice making tray and the ice are separated from the ice making tray in the conventional ice tray built in the refrigerator as the background of the present invention, and the transparent ice portion and the cloudy ice. The mechanism of cutting with the part will be described.

冷蔵庫の自動製氷装置においては、製氷駆動装置12が回転動作を開始し製氷皿11をねじることで氷を製氷皿11から離氷させる力を与えている。詳細には、製氷皿に比べ透明部・白濁部を含めた氷の部分の剛性が大きいために、トルクを加えていくと製氷皿の変形に氷の変形が追従できなくなり、製氷皿と氷とが離間する。特に製氷皿開口側に位置する透明氷部と製氷皿との離間が先行する。   In the automatic ice making device of the refrigerator, the ice making drive device 12 starts rotating and twists the ice making plate 11 to give the ice making force from the ice making plate 11. Specifically, because the rigidity of the ice part including the transparent part and the cloudy part is larger than that of the ice tray, when the torque is applied, the deformation of the ice tray cannot follow the deformation of the ice tray. Are separated. In particular, the transparent ice part located on the ice tray opening side and the ice tray are separated first.

一方、離氷時には透明氷のみを取り出す必要があることから、白濁氷部は製氷皿と離間することのない構造が採られている。例えば、抜きテーパ角を小さくする、あるいは、白濁氷部の内壁の壁面に三角リブを設ける、等の方策が考えられている。このようにすることにより、透明氷の離氷時に、白濁氷は、小さく構成された抜きテーパ角または内壁に形成された三角リブに引っかかって製氷皿から離脱しにくく、密着したままであり、透明氷のみが離脱する。   On the other hand, since it is necessary to take out only transparent ice at the time of deicing, the cloudy ice part is structured not to be separated from the ice tray. For example, measures such as reducing the draft taper angle or providing a triangular rib on the inner wall surface of the cloudy ice part are considered. In this way, when the transparent ice is deiced, the cloudy ice is not easily detached from the ice tray by being caught by a small draft taper angle or a triangular rib formed on the inner wall, and remains in close contact with the transparent ice. Only ice breaks away.

製氷皿と氷とが離間した透明氷部では製氷皿のみが大きく変形するといった製氷皿と氷との変形ミスマッチが生じ、透明氷部は製氷皿に押される格好となる。対して白濁氷部は製氷皿と密着しているため、透明氷部と白濁氷部との境界部に過大な応力が作用する。その結果、透明氷部と白濁氷部とが分断されることとなる。   In the transparent ice part where the ice tray and the ice are separated from each other, there is a deformation mismatch between the ice tray and the ice such that only the ice tray is greatly deformed, and the transparent ice part is pushed by the ice tray. On the other hand, since the cloudy ice part is in close contact with the ice tray, an excessive stress acts on the boundary between the transparent ice part and the cloudy ice part. As a result, the transparent ice part and the cloudy ice part are divided.

一般的な透明氷部と白濁氷部との分断時の騒音レベルを確認するために、透明氷用でない、白濁氷部のついていない通常の製氷皿と、透明氷用の白濁氷部のついている製氷皿について、同じように製氷皿をねじって氷が製氷皿から離れる際の騒音レベルを測定した。その結果、透明氷用でない通常の製氷皿の騒音レベルよりも、透明氷用の製氷皿騒音レベルは10dB以上高かった。また、透明氷用の製氷皿において、先に白濁氷部を手動で折って透明氷部から切断しておいたものの離氷時の騒音レベルは透明氷用でない通常の製氷皿の騒音レベルと同レベルであった。この結果から、製氷皿をねじって白濁氷部から透明氷部をひきちぎることで透明氷部と白濁氷部が分断する際に発生する騒音が離氷時の騒音に支配的な要素であり、透明氷をつくるために騒音レベルが高くなっているという問題点を発見した。   In order to check the noise level at the time of division between general clear ice and cloudy ice, it is equipped with a normal ice tray that is not for clear ice and without cloudy ice, and a cloudy ice for clear ice The ice tray was similarly twisted to measure the noise level when the ice leaves the ice tray. As a result, the ice tray noise level for transparent ice was 10 dB or more higher than the noise level of a normal ice tray not for transparent ice. In addition, in the ice tray for transparent ice, the cloudy ice part was first manually folded and cut from the transparent ice part, but the noise level at the time of deicing is the same as the noise level of a normal ice tray for non-clear ice. It was a level. From this result, the noise generated when the transparent ice part and the cloudy ice part are divided by twisting the ice tray and tearing the transparent ice part from the cloudy ice part is the dominant factor in the noise at the time of deicing, I discovered the problem that the noise level was high to make clear ice.

騒音レベルが高くなる理由を探るために上記の方法で透明氷を得た後の製氷皿を観察した結果を以下に説明する。製氷皿をねじって製氷皿を変形させることによって透明氷を取り出す際の製氷皿の変形と氷の移動を図10に示す。図10より、透明氷部17を上部、白濁氷部18(図11参照)を下部と考えた場合、透明氷部17には、図10に示す斜め上方向の力が生じて、製氷皿11から離脱しようとする。この力は白濁氷部18にも同様であるが、白濁氷部18は製氷皿11と摩擦が大きい構造で接触しているため、白濁氷部18は製氷皿11に留まった状態となり、結果として、透明氷部17が白濁氷部18から引きちぎられる形で離氷する。その結果、製氷皿11に残る氷の様子を図11に示す。図11に示すように、製氷皿11を回転させてねじることによって透明氷を白濁氷部18が分断した後、製氷皿11に残存氷40が残る。図11に示すように、氷は透明氷部と白濁氷部との境界のみが切断されるのではなく、透明氷部と白濁氷部との境界角部から発生した亀裂は透明氷部内を伝播し、透明氷自身も破壊され、その一部が残存氷40として製氷皿に残る。これに対して、白濁氷部にのみ荷重を加えて透明氷部と白濁氷部の境界部だけを破壊し、透明氷部と白濁氷部とを分断すると、製氷皿をねじって離氷させる場合に較べて騒音が小さくなることが実験的に確認された。したがって、製氷皿をねじって離氷させる従来構造においては透明氷自身を破壊する大きな力が発生していることがわかる。この大きな力が製氷皿に伝達して大きな騒音を発生すると考えられる。   In order to investigate the reason why the noise level becomes high, the result of observing the ice tray after obtaining transparent ice by the above method will be described below. FIG. 10 shows the deformation of the ice tray and the movement of the ice when the transparent ice is taken out by twisting the ice tray and deforming the ice tray. From FIG. 10, when the transparent ice part 17 is considered as the upper part and the cloudy ice part 18 (see FIG. 11) is considered as the lower part, the transparent ice part 17 generates a force in an obliquely upward direction as shown in FIG. Try to leave. This force is the same for the cloudy ice part 18, but the cloudy ice part 18 is in contact with the ice tray 11 with a structure having a large friction, so that the cloudy ice part 18 remains in the ice tray 11 as a result. The transparent ice part 17 is detached from the cloudy ice part 18 in such a form that it is torn off. As a result, the state of ice remaining in the ice tray 11 is shown in FIG. As shown in FIG. 11, after the ice making tray 11 is rotated and twisted, the cloudy ice portion 18 divides the transparent ice, and then the remaining ice 40 remains in the ice making tray 11. As shown in FIG. 11, the ice is not cut only at the boundary between the transparent ice part and the cloudy ice part, but the crack generated from the boundary corner between the transparent ice part and the cloudy ice part propagates through the transparent ice part. However, the transparent ice itself is also destroyed, and a part of it remains as residual ice 40 in the ice tray. In contrast, when only the cloudy ice part is loaded to destroy only the boundary between the transparent ice part and the cloudy ice part, and the transparent ice part and the cloudy ice part are divided, the ice tray is twisted to release the ice. It has been experimentally confirmed that the noise is smaller than that. Therefore, it can be seen that in the conventional structure in which the ice tray is twisted to release the ice, a large force is generated to destroy the transparent ice itself. It is considered that this large force is transmitted to the ice tray to generate a large noise.

このため、本発明においては、以下に説明するような構成にすることにより、大きな騒音を発生させずに透明氷生成を実現することを可能にしている。以下、本発明の実施の形態について説明する。   For this reason, in this invention, it becomes possible to implement | achieve transparent ice production | generation, without producing a big noise by setting it as the structure demonstrated below. Embodiments of the present invention will be described below.

図4は、本発明の実施の形態1に係る製氷皿構造の一例である。製氷皿11の透明氷部と白濁氷部とを分けるセパレータ部材16の開口部の形状は細長の形状を呈している。さらに、この開口部はその長手方向が、製氷皿の回転軸19に対して所定の角度θを持って配置されている。基本的な構成は、図1〜図3に示したものと同じであるが、本実施の形態においては図4に示すように、開口部の長手方向が、製氷皿の回転軸19に対して所定の角度θを持って配置されている点が異なる。   FIG. 4 is an example of the ice tray structure according to Embodiment 1 of the present invention. The shape of the opening of the separator member 16 that separates the transparent ice part and the cloudy ice part of the ice tray 11 is an elongated shape. Further, the opening is arranged with a predetermined angle θ with respect to the rotation axis 19 of the ice tray. The basic configuration is the same as that shown in FIGS. 1 to 3, but in the present embodiment, as shown in FIG. The difference is that they are arranged with a predetermined angle θ.

開口部の角度について説明する。先に説明したように、本発明の製氷機においては、製氷駆動装置12が回転動作を開始し製氷皿11をねじることで氷を製氷皿から離氷させる。その際、氷は製氷皿および氷に生じる引張応力が最大となる方向、すなわち主応力方向に沿って変形あるいは移動しようとする。   The angle of the opening will be described. As described above, in the ice making machine of the present invention, the ice making driving device 12 starts rotating and twists the ice making tray 11 to release the ice from the ice making tray. At that time, the ice tends to deform or move along the direction in which the tensile stress generated in the ice tray and the ice is maximized, that is, the principal stress direction.

したがって、この主応力方向と開口部の長手方向との間に所定の角度を設ける、あるいは、それらを直交させると、製氷皿をねじった際に氷の薄肉方向に対して荷重が負荷されることとなり、開口部のエッジに生じる曲げ応力を大きくすることが可能となる。このことから、離氷に要するトルクが小さく、かつ選択的に透明氷部と白濁氷部との境界部のみを破壊、切断することが可能になり、その結果離氷時に発生する騒音レベルを低減できるという効果が得られる。   Therefore, if a predetermined angle is provided between the main stress direction and the longitudinal direction of the opening, or if they are orthogonal to each other, a load is applied to the ice thin direction when the ice tray is twisted. Thus, the bending stress generated at the edge of the opening can be increased. As a result, the torque required for deicing is small, and it is possible to selectively break and cut only the boundary between transparent ice and cloudy ice, thus reducing the noise level generated during deicing. The effect that it can be obtained.

透明氷を生成するためにヒータを配する必要があることを始めとする種々の制約条件によって、この角度θは所望の角度を採り得ない場合もある。その場合についても、効果は減少するものの可能な限り直交方向に近づけて角度を持たせて配置することで低騒音化の効果が期待できる。   The angle θ may not be a desired angle due to various constraints including the need to arrange a heater to produce transparent ice. Even in such a case, although the effect is reduced, the effect of reducing noise can be expected by arranging as close to the orthogonal direction as possible with an angle.

さらには、主応力方向は、今のようなトルクのみを受ける場合には回転軸19に対して45°の方向となる。したがって開口部長手方向が製氷皿の回転軸方向に対して45°となる方向に配置することが最も効果的である。   Furthermore, the main stress direction is a direction of 45 ° with respect to the rotary shaft 19 when receiving only the torque as in the present. Therefore, it is most effective to arrange the opening in the direction in which the longitudinal direction of the opening is 45 ° with respect to the rotation axis direction of the ice tray.

以上のように、本実施の形態においては、製氷皿の各粒形状内に、冷気を受けて製氷が促進される透明氷部17と、開口部を通じて連続して製氷される白濁氷部18とを備え、上方からの冷却により白濁氷を製氷皿の下部にある白濁氷部18に移動させて上部に透明氷を生成し、製氷完了後の離氷過程において、透明氷と白濁氷との連結部を切断して透明氷を離氷し、残りの白濁氷を新しく製氷皿に給水された水で融解して混ぜた後、再び製氷を行う製氷装置を備えた冷蔵庫において、 透明氷部17と白濁氷部18を結ぶ開口部の長手方向が製氷皿の回転軸方向に対して所定の角度(例えば45°)を持つように白濁氷部18を設けるようにしたので、透明度の高い氷が得られるとともに、主応力方向(製氷皿をねじった場合のねじり負荷時の引っ張り方向)と開口部の長手方向との間に所定の角度が設けられているので、製氷皿をねじった際に氷の薄肉方向に対して荷重が負荷されることとなり、開口部のエッジに生じる曲げ応力を大きくすることが可能となり、透明氷と白濁氷との境界部のみを選択的に切断でき、低騒音化を実現できる。   As described above, in the present embodiment, in each grain shape of the ice tray, the transparent ice portion 17 that receives cold air and promotes ice making, and the cloudy ice portion 18 that is continuously made through the opening, And the cloudy ice is moved to the cloudy ice part 18 at the lower part of the ice tray by cooling from above to produce transparent ice at the upper part, and the connection between the transparent ice and the cloudy ice in the deicing process after the ice making is completed In a refrigerator equipped with an ice making device for making ice again after melting the remaining ice cubes by removing the transparent ice and mixing the remaining cloudy ice with water newly fed to the ice tray, the transparent ice portion 17 and Since the cloudy ice part 18 is provided so that the longitudinal direction of the opening connecting the cloudy ice part 18 has a predetermined angle (for example, 45 °) with respect to the rotation axis direction of the ice tray, highly transparent ice can be obtained. The main stress direction (when twisting when the ice tray is twisted) Since a predetermined angle is provided between the pulling direction and the longitudinal direction of the opening, when the ice tray is twisted, a load is applied in the thin direction of the ice, and the edge of the opening is It is possible to increase the generated bending stress, and it is possible to selectively cut only the boundary portion between the transparent ice and the cloudy ice, thereby realizing low noise.

実施の形態2.
さらには、この製氷皿の白濁氷部の剛性を上げることで、よりよい低騒音化の効果が得られる。例として、複数ある白濁氷部間を補強部材であるリブ31によって連結した例を図5に示す。他の構成は、実施の形態1と同じであるため、ここでは説明を省略する。
Embodiment 2. FIG.
Furthermore, a better noise reduction effect can be obtained by increasing the rigidity of the cloudy ice part of the ice tray. As an example, FIG. 5 shows an example in which a plurality of cloudy ice parts are connected by ribs 31 that are reinforcing members. Other configurations are the same as those of the first embodiment, and thus description thereof is omitted here.

本構造によれば、離氷時に製氷皿へトルクを加えたときに、白濁氷部間を連結しているリブ31の働きにより、白濁氷部の剛性が上がり、白濁氷部における氷と製氷皿の変形が小さくなることから、透明氷部と白濁氷部との境界部に応力集中を生じやすくなる。そのため、より低トルクで破断に至らしめることが可能となると共に、選択的に透明氷部と白濁氷部との境界部を破断しやすくなり、透明氷部への亀裂伝播を抑制し、低騒音化が実現できる。   According to this structure, when torque is applied to the ice tray at the time of deicing, the action of the rib 31 connecting the cloudy ice portions increases the rigidity of the cloudy ice portion, and the ice and ice tray in the cloudy ice portion are increased. Therefore, the stress concentration tends to occur at the boundary between the transparent ice part and the cloudy ice part. As a result, it becomes possible to cause breakage at a lower torque, and it becomes easier to selectively break the boundary between the transparent ice part and the cloudy ice part, suppressing crack propagation to the transparent ice part, and reducing noise. Can be realized.

あるいは、リブ31に代わり、別の補強部材を別途挿入し固定する方法によっても同様の効果が得られる。この場合、補強部材はインサートモールドや、接着によって固定される。   Alternatively, the same effect can be obtained by a method in which another reinforcing member is separately inserted and fixed instead of the rib 31. In this case, the reinforcing member is fixed by insert molding or adhesion.

以上のように、本実施の形態によれば、製氷皿の各粒形状内に、冷気を受けて製氷が促進される透明氷部17と、開口部を通じて連続して製氷される白濁氷部18とを備え、上方からの冷却により白濁氷を製氷皿の下部にある白濁氷部18内に移動させて上部に透明氷を生成し、製氷完了後の離氷過程において連結部を切断して透明氷を離氷し、残りの白濁氷を新しく製氷皿に給水された水で融解して混ぜた後、再び製氷を行う製氷装置を備えた冷蔵庫において、製氷皿の白濁氷部18間にリブ31等の補強部材を有するようにしたので、透明度の高い氷が得られるとともに、主応力方向と開口部の長手方向との間に所定の角度が設けられて、かつ、白濁氷部間をリブ31が連結しているので、製氷皿をねじった際に氷の薄肉方向に対して荷重が負荷されることとなり、開口部のエッジに生じる曲げ応力を大きくすることが可能となり、透明氷と白濁氷との境界部のみを選択的に切断でき、低騒音化を実現できる。   As described above, according to the present embodiment, the transparent ice portion 17 in which ice making is promoted by receiving cold air and the cloudy ice portion 18 in which ice making is continuously made through the opening are provided in each grain shape of the ice tray. And the cloudy ice is moved into the cloudy ice part 18 at the bottom of the ice tray by cooling from above to produce transparent ice at the top, and the connection part is cut and transparent in the deicing process after the ice making is completed. In a refrigerator equipped with an ice making device that melts and mixes the remaining cloudy ice with water newly supplied to the ice tray, and then mixes the remaining white ice in the refrigerator, the rib 31 is provided between the cloudy ice portions 18 of the ice tray. In addition to providing a highly transparent ice, a predetermined angle is provided between the main stress direction and the longitudinal direction of the opening, and ribs 31 are formed between the cloudy ice parts. Are connected to each other so that when the ice tray is twisted, Will be but is loaded, it is possible to increase the resulting bending stresses at the edge of the opening can only be selectively cut boundary portion between the transparent ice cloudy ice, can achieve low noise.

実施の形態3.
図6および図7は、本発明の実施の形態3に係る製氷皿構造の一例であり、図6は製氷皿11の断面図、図7は底面図である。製氷皿の白濁氷部18は、透明氷部17より製氷皿下方に設けられており、この白濁氷部18に対して製氷皿外側より補強部材32が接合されている構造を有する。補強部材32は、図6及び図7に示されるように、略々矩形の細長い板状部材であり、材質としては製氷皿と同じ材質から構成されることが望ましいが、製氷皿よりも剛性の高い材質から形成するようにしてもよい。補強部材32は、図7に示すように、白濁氷部18間に、白濁氷部18の長手方向に平行になるように配置されている。補強部材32は、図6に示すように、白濁氷部18の外壁に接合させて設けるようにしてもよく、あるいは、図7に示すように、白濁氷部18間の領域の透明氷部17の底部の外壁に接合させて設けるようにしてもよい。なお、本実施の形態においては、セパレータ部材16の開口部が製氷皿の回転軸方向に対して平行に配置されている例を示しているが、実施の形態1及び2のように、所定の角度を持たして配置するようにしてもよい。
Embodiment 3 FIG.
6 and 7 are examples of the ice tray structure according to Embodiment 3 of the present invention. FIG. 6 is a cross-sectional view of the ice tray 11 and FIG. 7 is a bottom view. The cloudy ice part 18 of the ice tray is provided below the ice tray from the transparent ice part 17 and has a structure in which a reinforcing member 32 is joined to the cloudy ice part 18 from the outside of the ice tray. As shown in FIGS. 6 and 7, the reinforcing member 32 is a substantially rectangular elongated plate-like member, and is preferably made of the same material as the ice tray, but is more rigid than the ice tray. You may make it form from a high material. As shown in FIG. 7, the reinforcing member 32 is disposed between the cloudy ice parts 18 so as to be parallel to the longitudinal direction of the cloudy ice part 18. The reinforcing member 32 may be provided to be joined to the outer wall of the cloudy ice part 18 as shown in FIG. 6, or the transparent ice part 17 in the region between the cloudy ice parts 18 as shown in FIG. It may be provided so as to be joined to the outer wall of the bottom portion. In the present embodiment, an example in which the opening of the separator member 16 is arranged in parallel to the rotation axis direction of the ice tray is shown. You may make it arrange | position with an angle.

本構造によれば、離氷時に製氷皿へトルクを加えたときに、補強部材32の働きにより、白濁氷部の氷および製氷皿の変形が小さくなることから、透明氷部と白濁氷部との境界部に応力集中を生じやすくなる。そのため、より低トルクで破断に至らしめることが可能となると共に、選択的に透明氷部と白濁氷部との境界部を破断しやすくなり、透明氷部へのき裂伝ぱを抑制し、低騒音化が実現できる。   According to this structure, when torque is applied to the ice tray at the time of deicing, the ice of the cloudy ice portion and the deformation of the ice tray are reduced by the function of the reinforcing member 32. Stress concentration is likely to occur at the boundary portion of. As a result, it is possible to break at a lower torque, and it becomes easier to selectively break the boundary between the transparent ice part and the cloudy ice part, suppressing the propagation of cracks to the transparent ice part, and reducing the Noise reduction can be realized.

上述の補強部材32は、種々の方法で製氷皿と一体化することができる。図6及び図7には、複数設けた白濁氷部18の間に挿入した様子を示したが、例えば製氷皿成形時にインサートモールドにより一体化することも可能である。あるいは、別途接着工程を経て接合することにより設置することも可能である。   The reinforcing member 32 described above can be integrated with the ice tray by various methods. FIGS. 6 and 7 show a state in which a plurality of clouded ice portions 18 are inserted, but they can be integrated with an insert mold at the time of forming an ice tray, for example. Or it is also possible to install by bonding through a separate bonding step.

以上のように、本実施の形態によれば、製氷皿の各粒形状内に、冷気を受けて製氷が促進される透明氷部17と、開口部を通じて連続して製氷される白濁氷部18とを備え、上方からの冷却により白濁氷を製氷皿の下部にある白濁氷部18内に移動させて上部に透明氷を生成し、製氷完了後の離氷過程において連結部を切断して透明氷を離氷し、残りの白濁氷を新しく製氷皿に給水された水で融解して混ぜた後、再び製氷を行う製氷装置を備えた冷蔵庫において、製氷皿の白濁氷部18間に補強部材32を有するようにしたので、透明度の高い氷が得られるとともに、主応力方向と開口部の長手方向との間に所定の角度が設けられているので、製氷皿をねじった際に氷の薄肉方向に対して荷重が負荷されることとなり、開口部のエッジに生じる曲げ応力を大きくすることが可能となり、透明氷と白濁氷との境界部のみを選択的に切断でき、低騒音化を実現できる。   As described above, according to the present embodiment, the transparent ice portion 17 in which ice making is promoted by receiving cold air and the cloudy ice portion 18 in which ice making is continuously made through the opening are provided in each grain shape of the ice tray. And the cloudy ice is moved into the cloudy ice part 18 at the bottom of the ice tray by cooling from above to produce transparent ice at the top, and the connection part is cut and transparent in the deicing process after the ice making is completed. In a refrigerator equipped with an ice making device for making ice again after thawing the ice and melting and mixing the remaining cloudy ice with water newly supplied to the ice tray, a reinforcing member is provided between the cloudy ice portions 18 of the ice tray. 32, it is possible to obtain ice with high transparency, and a predetermined angle is provided between the main stress direction and the longitudinal direction of the opening. A load is applied to the direction, which occurs at the edge of the opening. It can be the bending stress is increased and becomes only be selectively cut boundary portion between the transparent ice cloudy ice, can achieve low noise.

実施の形態4.
図8は、本発明の実施の形態4に係る製氷皿構造の一例であり、製氷皿11の氷一粒分を取り出し拡大して示した図である。本実施の形態における製氷皿は、透明氷一粒に対して複数の白濁氷部18を有しており、これらは製氷皿下方に位置している。透明氷部17の底面の位置に注目すると、複数ある白濁氷部18に挟まれた領域では、透明氷部底面は上方に突出し、他の領域に比べて浅くなっている。他の構成については、実施の形態1〜3のいずれかと同じにすればよいので、ここでは説明を省略する。
Embodiment 4 FIG.
FIG. 8 is an example of an ice making tray structure according to Embodiment 4 of the present invention, and is an enlarged view showing one piece of ice from the ice making tray 11. The ice tray in the present embodiment has a plurality of cloudy ice portions 18 for one piece of transparent ice, and these are located below the ice tray. When attention is paid to the position of the bottom surface of the transparent ice portion 17, the bottom surface of the transparent ice portion protrudes upward in a region sandwiched between a plurality of cloudy ice portions 18, and is shallower than the other regions. Other configurations may be the same as those in any one of the first to third embodiments, and thus description thereof is omitted here.

本構造を適用した場合の亀裂の進展パスを模式的に表示した図9を用いて説明する。本構造によれば、離氷時に製氷皿へトルクを加えたときにまず最も外側に位置する白濁氷部18が切断される。その過程としては、氷は製氷皿より矢印35で示す荷重を受け、破線34で示す領域は先だって製氷皿と氷とが離間する。その結果、透明氷部17と白濁氷部18との境界角部33を起点として亀裂が発生、進展するが、透明氷部17の底面が浅くなっていることでこの亀裂は隣接する白濁氷部18の壁面に達し、その界面を進む。この進展経路を矢印36で示している。その結果、透明氷内部への亀裂伝播を防ぎ、離氷時に発生する騒音レベルを低減できるという効果を得ることができる。   The crack propagation path when this structure is applied will be described with reference to FIG. According to this structure, when the torque is applied to the ice tray at the time of deicing, the cloudy ice part 18 located on the outermost side is first cut. In this process, the ice is subjected to a load indicated by an arrow 35 from the ice tray, and the ice tray and the ice are first separated from each other in the region indicated by the broken line 34. As a result, a crack is generated and propagates starting from the boundary corner portion 33 between the transparent ice portion 17 and the cloudy ice portion 18, but this crack is caused by the shallow bottom surface of the transparent ice portion 17. Reach 18 walls and proceed through the interface. This progress path is indicated by an arrow 36. As a result, it is possible to prevent crack propagation to the inside of the transparent ice and reduce the noise level generated at the time of deicing.

以上のように、本実施の形態によれば、製氷皿の各粒形状内に、冷気を受けて製氷が促進される透明氷部17と、開口部を通じて連続して製氷される白濁氷部18とを備え、上方からの冷却により白濁部を製氷皿の下部にある白濁氷部18内に移動させて上部に透明氷を生成し、製氷完了後の離氷過程において連結部を切断して透明氷を離氷し、残りの白濁氷を新しく製氷皿に給水された水で融解して混ぜた後、再び製氷を行う製氷装置を備えた冷蔵庫において、白濁氷部に挟まれた領域では透明氷部底面を上方に突出させ、他の部分に比べて透明氷部の深さを浅くするようにしたので、透明度の高い氷が得られるとともに、透明氷と白濁氷との境界部のみを選択的に切断でき、低騒音化を実現できる。   As described above, according to the present embodiment, the transparent ice portion 17 in which ice making is promoted by receiving cold air and the cloudy ice portion 18 in which ice making is continuously made through the opening are provided in each grain shape of the ice tray. And by cooling from above, the cloudy part is moved into the cloudy ice part 18 at the bottom of the ice tray to produce transparent ice at the top, and the connecting part is cut and transparent in the deicing process after ice making is completed. In a refrigerator equipped with an ice-making device that melts the remaining white ice and mixes the remaining white ice with water supplied to a new ice tray, and then makes ice again. The bottom of the head protrudes upwards, and the depth of the transparent ice part is made shallower than other parts, so that highly transparent ice can be obtained and only the boundary between transparent ice and cloudy ice is selected selectively Can be cut to a low noise level.

この発明の実施の形態1〜4に係る冷蔵庫の構成を示した構成図である。It is the block diagram which showed the structure of the refrigerator which concerns on Embodiment 1-4 of this invention. この発明の実施の形態1〜4に係る冷蔵庫における製氷システムの構成を示した構成図である。It is the block diagram which showed the structure of the ice making system in the refrigerator which concerns on Embodiment 1-4 of this invention. この発明の実施の形態1〜4に係る冷蔵庫における製氷皿の構成を示した構成図である。It is the block diagram which showed the structure of the ice tray in the refrigerator which concerns on Embodiment 1-4 of this invention. この発明の実施の形態1に係る冷蔵庫における製氷皿の構成を示した上面図である。It is the top view which showed the structure of the ice tray in the refrigerator which concerns on Embodiment 1 of this invention. この発明の実施の形態2に係る冷蔵庫における製氷皿の構成を示した上面図及び側面図である。It is the upper side figure and side view which showed the structure of the ice tray in the refrigerator which concerns on Embodiment 2 of this invention. この発明の実施の形態3に係る冷蔵庫における製氷皿の構成を示した側面図である。It is the side view which showed the structure of the ice tray in the refrigerator which concerns on Embodiment 3 of this invention. この発明の実施の形態3に係る冷蔵庫における製氷皿の構成を示した上面図である。It is the top view which showed the structure of the ice tray in the refrigerator which concerns on Embodiment 3 of this invention. この発明の実施の形態4に係る冷蔵庫における製氷皿の構成を示した側面図である。It is the side view which showed the structure of the ice tray in the refrigerator which concerns on Embodiment 4 of this invention. この発明の実施の形態4に係る冷蔵庫における製氷皿の離氷時の亀裂進展の様子を示した説明図である。It is explanatory drawing which showed the mode of the crack progress at the time of deicing of the ice tray in the refrigerator which concerns on Embodiment 4 of this invention. 離氷時の製氷皿と氷との相対運動を説明するための模式図である。It is a schematic diagram for demonstrating the relative motion of the ice tray and ice at the time of deicing. 従来構造の製氷装置における氷の分断の様子を説明するための模式図である。It is a schematic diagram for demonstrating the mode of the division of ice in the ice making apparatus of a conventional structure.

符号の説明Explanation of symbols

1 冷蔵庫本体、2 ファン、3 冷却器、4 冷気送風ダクト、5 帰還ダクト、6 温度センサ、7 風量調整器、8 給水タンク、9 給水ポンプ、10 給水パイプ、11 製氷皿、12 製氷駆動装置、13 枠体、14 製氷サーミスタ、15 検氷レバー、16 セパレータ部材、17 透明氷部、18 白濁氷部、19 回転軸、22 操作パネル、23 制御基板、24 マイコン、25 LED、31 リブ、32 補強部材、33 起点、34 破線、35,36 矢印、100 冷蔵庫、200 冷凍室、300 野菜室、400 切替室、500 製氷室。   DESCRIPTION OF SYMBOLS 1 Refrigerator main body, 2 fan, 3 cooler, 4 cold ventilation duct, 5 return duct, 6 temperature sensor, 7 air volume regulator, 8 water supply tank, 9 water supply pump, 10 water supply pipe, 11 ice tray, 12 ice making drive device, 13 Frame, 14 Ice making thermistor, 15 Ice detection lever, 16 Separator member, 17 Transparent ice part, 18 Cloudy ice part, 19 Rotating shaft, 22 Operation panel, 23 Control board, 24 Microcomputer, 25 LED, 31 Rib, 32 Reinforcement Member, 33 starting point, 34 broken line, 35, 36 arrow, 100 refrigerator, 200 freezer room, 300 vegetable room, 400 switching room, 500 ice making room.

Claims (2)

複数個の製氷ブロックが連結されてなる製氷皿と、
前記製氷皿が配置され、上方から冷気が供給される製氷室と、
前記製氷皿の軸を芯にして前記製氷皿にねじりを与える駆動機構と、
前記製氷室に配置される前記製氷皿に給水する給水手段と
を備え、
前記製氷皿の製氷ブロックは、開口部を有する分離部材によって、上部が開放した第1氷生成部と底部が閉じた第2氷生成部とに分かれ、前記開口部の長手方向と前記製氷皿の軸は所定の角度を有していることを特徴とする冷蔵庫。
An ice tray made by connecting a plurality of ice making blocks;
An ice making chamber in which the ice tray is arranged and cold air is supplied from above;
A drive mechanism for twisting the ice tray around the axis of the ice tray;
Water supply means for supplying water to the ice tray disposed in the ice making chamber,
The ice making block of the ice tray is divided into a first ice generating portion having an open top and a second ice generating portion having a closed bottom by a separating member having an opening, and the longitudinal direction of the opening and the ice tray The refrigerator characterized in that the shaft has a predetermined angle.
複数個の製氷ブロックが連結されてなる製氷皿と、
前記製氷皿が配置され、上方から冷気が供給される製氷室と、
前記製氷皿の軸を芯にして前記製氷皿にねじりを与える駆動機構と、
前記製氷室に配置される前記製氷皿に給水する給水手段と
を備え、
前記製氷皿の製氷ブロックは、開口部を有する分離部材によって、上部が開放した第1氷生成部と底部が閉じた第2氷生成部とに分かれ、
1つの前記第1氷生成部に対して複数の第2氷生成部が設けられており、前記第2氷生成部間の領域において前記第1氷生成部の底面を上方に突出させて、前記第1氷生成部の深さをその領域のみ他の領域に対して浅くしたことを特徴とする冷蔵庫。
An ice tray made by connecting a plurality of ice making blocks;
An ice making chamber in which the ice tray is arranged and cold air is supplied from above;
A drive mechanism for twisting the ice tray around the axis of the ice tray;
Water supply means for supplying water to the ice tray disposed in the ice making chamber,
The ice making block of the ice tray is divided into a first ice generating part with an open top and a second ice generating part with a closed bottom by a separating member having an opening,
A plurality of second ice generation units are provided for one first ice generation unit, and a bottom surface of the first ice generation unit protrudes upward in a region between the second ice generation units, The refrigerator characterized by making the depth of the 1st ice production | generation part shallow with respect to another area | region only in the area | region.
JP2006058361A 2006-03-03 2006-03-03 refrigerator Expired - Fee Related JP4362124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006058361A JP4362124B2 (en) 2006-03-03 2006-03-03 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006058361A JP4362124B2 (en) 2006-03-03 2006-03-03 refrigerator

Publications (2)

Publication Number Publication Date
JP2007232336A JP2007232336A (en) 2007-09-13
JP4362124B2 true JP4362124B2 (en) 2009-11-11

Family

ID=38553101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006058361A Expired - Fee Related JP4362124B2 (en) 2006-03-03 2006-03-03 refrigerator

Country Status (1)

Country Link
JP (1) JP4362124B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012124075A1 (en) 2011-03-16 2012-09-20 シャープ株式会社 Ice-making device for refrigerator/freezer
JP5749607B2 (en) * 2011-09-01 2015-07-15 シャープ株式会社 refrigerator
JP5261552B2 (en) * 2011-09-14 2013-08-14 シャープ株式会社 refrigerator
US9513045B2 (en) 2012-05-03 2016-12-06 Whirlpool Corporation Heater-less ice maker assembly with a twistable tray
US8925335B2 (en) 2012-11-16 2015-01-06 Whirlpool Corporation Ice cube release and rapid freeze using fluid exchange apparatus and methods
US9310115B2 (en) 2012-12-13 2016-04-12 Whirlpool Corporation Layering of low thermal conductive material on metal tray
US9518770B2 (en) 2012-12-13 2016-12-13 Whirlpool Corporation Multi-sheet spherical ice making
US9470448B2 (en) 2012-12-13 2016-10-18 Whirlpool Corporation Apparatus to warm plastic side of mold
US9273891B2 (en) 2012-12-13 2016-03-01 Whirlpool Corporation Rotational ice maker
US9518773B2 (en) 2012-12-13 2016-12-13 Whirlpool Corporation Clear ice maker
US9476629B2 (en) 2012-12-13 2016-10-25 Whirlpool Corporation Clear ice maker and method for forming clear ice
US9557087B2 (en) 2012-12-13 2017-01-31 Whirlpool Corporation Clear ice making apparatus having an oscillation frequency and angle
US9500398B2 (en) 2012-12-13 2016-11-22 Whirlpool Corporation Twist harvest ice geometry
US9410723B2 (en) 2012-12-13 2016-08-09 Whirlpool Corporation Ice maker with rocking cold plate
US9915458B2 (en) 2014-10-23 2018-03-13 Whirlpool Corporation Method and apparatus for increasing rate of ice production in an automatic ice maker
US10739053B2 (en) 2017-11-13 2020-08-11 Whirlpool Corporation Ice-making appliance
US10907874B2 (en) 2018-10-22 2021-02-02 Whirlpool Corporation Ice maker downspout
US11874045B2 (en) 2018-11-16 2024-01-16 Lg Electronics Inc. Ice maker and refrigerator
EP3653964A1 (en) * 2018-11-16 2020-05-20 LG Electronics Inc. Ice maker and refrigerator
CN111829227B (en) * 2019-04-15 2022-01-21 青岛海尔电冰箱有限公司 Ice making module

Also Published As

Publication number Publication date
JP2007232336A (en) 2007-09-13

Similar Documents

Publication Publication Date Title
JP4362124B2 (en) refrigerator
JP3852607B2 (en) Ice making device, freezer refrigerator, ice making method
JP5858678B2 (en) refrigerator
JPH09269172A (en) Ice making equipment
JP4140641B2 (en) Ice making equipment, refrigerator-freezer
JP2006275510A5 (en)
JP2006022980A (en) Ice making equipment
JP2003042612A (en) Ice making device and refrigerator-freezer equipped therewith
JP3852609B2 (en) Ice making equipment, refrigerator
KR20200111908A (en) Ice maker and refrigerator incuding the same
JP2008142017A (en) Ice cream maker, and refrigerator equipped with the same
JP2001041621A (en) Ice maker and deep freezer refrigerator having the same
JP2008157619A (en) Ice making device and refrigerator-freezer
JP2019095122A (en) Ice-maker and refrigerator
JP6370272B2 (en) Cell ice machine
JP4396767B2 (en) Freezer refrigerator
JP5380214B2 (en) refrigerator
JP4197012B2 (en) Freezer refrigerator
JP4455480B2 (en) refrigerator
JP2015004488A (en) Ice making device and refrigerator including the same
KR20080001004A (en) Refrigerator and ice making method using it
JP4461857B2 (en) Ice making equipment
JP2008196737A (en) Ice-making device and refrigerator-freezer comprising the same
JP2004108625A (en) Refrigerator
JP2002340455A (en) Refrigerator equipped with automatic ice machine and its control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090814

R150 Certificate of patent or registration of utility model

Ref document number: 4362124

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees