[go: up one dir, main page]

JP4360204B2 - Organic wastewater treatment method - Google Patents

Organic wastewater treatment method Download PDF

Info

Publication number
JP4360204B2
JP4360204B2 JP2004000128A JP2004000128A JP4360204B2 JP 4360204 B2 JP4360204 B2 JP 4360204B2 JP 2004000128 A JP2004000128 A JP 2004000128A JP 2004000128 A JP2004000128 A JP 2004000128A JP 4360204 B2 JP4360204 B2 JP 4360204B2
Authority
JP
Japan
Prior art keywords
tank
activated sludge
aerobic tank
membrane unit
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004000128A
Other languages
Japanese (ja)
Other versions
JP2005193102A (en
Inventor
清和 武村
真人 大西
一彦 能登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2004000128A priority Critical patent/JP4360204B2/en
Publication of JP2005193102A publication Critical patent/JP2005193102A/en
Application granted granted Critical
Publication of JP4360204B2 publication Critical patent/JP4360204B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は有機性廃水の処理方法に係り、特にリンや窒素を含有する有機性の廃水を活性汚泥によって生物学的に処理する方法に関する。   The present invention relates to a method for treating organic wastewater, and more particularly to a method for biologically treating organic wastewater containing phosphorus and nitrogen with activated sludge.

従来、有機性廃水中のBOD成分,窒素,リンを除去する生物学的な処理方法として、A2O法が周知である。この方法では廃水を嫌気槽,無酸素槽,好気槽,沈殿槽の順に通水し、沈殿槽で分離した汚泥を嫌気槽に返送するとともに、好気槽の処理液の一部を無酸素槽に循環させる。 Conventionally, the A 2 O method is well known as a biological treatment method for removing BOD components, nitrogen, and phosphorus in organic wastewater. In this method, wastewater is passed through an anaerobic tank, an oxygen-free tank, an aerobic tank, and a sedimentation tank in this order, the sludge separated in the sedimentation tank is returned to the anaerobic tank, and a part of the treatment liquid in the aerobic tank is anaerobic. Circulate in the tank.

嫌気槽では嫌気条件下で廃水中のBOD成分が沈殿槽から返送された活性汚泥に取り込まれるとともに、活性汚泥はリンを放出する。無酸素槽では無酸素条件下で活性汚泥中の脱窒菌によって脱窒処理が行われる。好気槽では好気条件下で活性汚泥にリンが取り込まれるとともに、活性汚泥中の硝化菌によって硝化処理が行われる。沈殿槽では好気槽からの被処理液が処理水と活性汚泥とに分離される。沈殿槽で分離した活性汚泥の大部分を上記各処理を行わせるために嫌気槽に返送し、残部のリンを高濃度に蓄積した活性汚泥を余剰汚泥として抜き出す。   In the anaerobic tank, the BOD component in the wastewater is taken into the activated sludge returned from the settling tank under anaerobic conditions, and the activated sludge releases phosphorus. In the anoxic tank, denitrification treatment is performed by denitrifying bacteria in activated sludge under anoxic conditions. In the aerobic tank, phosphorus is taken into activated sludge under aerobic conditions, and nitrification is performed by nitrifying bacteria in the activated sludge. In the settling tank, the liquid to be treated from the aerobic tank is separated into treated water and activated sludge. Most of the activated sludge separated in the settling tank is returned to the anaerobic tank to perform the above-mentioned treatments, and the activated sludge accumulating the remaining phosphorus in a high concentration is extracted as excess sludge.

一方、近年では反応槽内に浸漬した膜ユニットによって固液分離を行う膜分離式活性汚泥法が実用化されつつある。この膜分離式活性汚泥法は反応槽内の活性汚泥を含む処理液を膜ユニットで膜分離し、膜透過水を清澄な処理水として抜き出すとともに、活性汚泥を反応槽内に残存させる。この方法によれば沈殿槽が不要となり、装置のコンパクト化を図ることができる。また、活性汚泥を反応槽内に高濃度に保持できるため、活性汚泥による処理速度が速いという利点がある。   On the other hand, in recent years, a membrane separation type activated sludge method in which solid-liquid separation is performed by a membrane unit immersed in a reaction tank has been put into practical use. In the membrane-separated activated sludge method, the treatment liquid containing the activated sludge in the reaction tank is subjected to membrane separation by a membrane unit, and the membrane permeated water is extracted as a clear treated water, and the activated sludge is left in the reaction tank. This method eliminates the need for a settling tank and allows the apparatus to be made compact. Moreover, since activated sludge can be kept in the reaction tank at a high concentration, there is an advantage that the treatment speed by activated sludge is fast.

この膜分離式活性汚泥法の利点に着目し、従来のA2O法の好気槽に膜分離式活性汚泥法を適用する方法が提案されている(例えば、特許文献1参照)。この方法によれば、嫌気槽,無酸素槽,好気槽に循環させる活性汚泥の濃度を10,000mg/L程度に保持できるので、処理速度が飛躍的に向上し、嫌気槽,無酸素槽,好気槽の容量を小さくできる。また、沈殿槽が不要となるので、装置のコンパクト化を図ることができる。
特開平2001−314890号公報
Focusing on the advantages of this membrane separation type activated sludge method, a method of applying the membrane separation type activated sludge method to a conventional aerobic tank of the A 2 O method has been proposed (for example, see Patent Document 1). According to this method, since the concentration of activated sludge to be circulated in the anaerobic tank, anaerobic tank, and aerobic tank can be maintained at about 10,000 mg / L, the treatment speed is dramatically improved, and the anaerobic tank and anoxic tank are improved. , The capacity of the aerobic tank can be reduced. Moreover, since a sedimentation tank becomes unnecessary, the apparatus can be made compact.
JP-A-2001-314890

しかしながら、A2O法の好気槽に膜分離式活性汚泥法を適用する方法は、前記したように好気槽内では活性汚泥が高濃度に保持され、高負荷の処理が行われるため、反応に伴う溶存酸素の消費が激しい。このため、好気槽内を好気状態に維持するために散気する空気の量が不足すると溶存酸素が枯渇し、嫌気状態に移行しやすい。好気槽が嫌気状態になると前記した活性汚泥によるリンの取り込み反応や硝化反応が進行せず、処理性能が著しく低下する。 However, the method of applying the membrane separation type activated sludge method to the aerobic tank of the A 2 O method is because the activated sludge is kept at a high concentration in the aerobic tank as described above, and high load treatment is performed. The consumption of dissolved oxygen accompanying the reaction is intense. For this reason, if the amount of air diffused in order to maintain the inside of the aerobic tank in an aerobic state is insufficient, the dissolved oxygen is depleted and it is easy to shift to the anaerobic state. When the aerobic tank is in an anaerobic state, the phosphorus uptake reaction and nitrification reaction by the activated sludge described above do not proceed, and the treatment performance is significantly reduced.

また、好気槽内に浸漬した膜ユニットでは通常、分離膜の二次側を吸引ポンプによって吸引し、その吸引負圧力をエネルギとして膜分離を行うようにしている。吸引ポンプとしては定流量式のものが用いられる。このため、夜間など廃水の流入量が著しく減少するか、又は廃水の流入が停止した場合には吸引ポンプの稼動を一時的に止め、膜ユニットの運転を停止する。また、定常運転時においても吸引ポンプを間欠運転(例えば、18分間の吸引と2分間の吸引停止とを繰り返す)する場合があり、このような間欠運転でも膜ユニットの運転は、短い時間ではあるが停止する。この膜ユニットの運転を停止した時間帯では散気エネルギの節約を図るために好気槽内への散気を停止するか、又は散気を継続するか二通りの方法がある。   In the membrane unit immersed in the aerobic tank, the secondary side of the separation membrane is usually sucked by a suction pump, and membrane separation is performed using the suction negative pressure as energy. A constant flow type pump is used as the suction pump. For this reason, when the amount of inflow of wastewater decreases significantly, such as at night, or when the inflow of wastewater stops, the operation of the suction pump is temporarily stopped and the operation of the membrane unit is stopped. Further, even during steady operation, the suction pump may be intermittently operated (for example, 18 minutes of suction and 2 minutes of suction stop are repeated). Even in such intermittent operation, the operation of the membrane unit is a short time. Stops. In the time zone when the operation of the membrane unit is stopped, in order to save the aeration energy, there are two methods of stopping the aeration into the aerobic tank or continuing the aeration.

本発明者らの知見によれば、膜ユニットの運転を停止した時間帯に好気槽内への散気を停止すると、上記したように好気槽が嫌気状態になり易く、活性汚泥は蓄積したリンを好気槽内で再放出する。このため、膜ユニットの運転を再開した時の処理水中のリン濃度が高くなるという問題点がある。逆に、膜ユニットの運転を停止した時間帯に好気槽内への散気を継続すると、散気エネルギが嵩む。また、活性汚泥のフロックが空曝気によって微細化し、膜ユニットの運転を再開した時に分離膜の閉塞を助長するという問題点がある。   According to the knowledge of the present inventors, when the aeration into the aerobic tank is stopped in the time zone when the operation of the membrane unit is stopped, the aerobic tank tends to become anaerobic as described above, and activated sludge accumulates. The released phosphorus is re-released in the aerobic tank. For this reason, there exists a problem that the phosphorus concentration in treated water becomes high when the operation of the membrane unit is resumed. On the contrary, if the air diffusion into the aerobic tank is continued in the time zone when the operation of the membrane unit is stopped, the air diffusion energy increases. Further, there is a problem that activated sludge flocs are refined by air aeration, and clogging of the separation membrane is promoted when the operation of the membrane unit is resumed.

本発明の目的は、上記従来技術の問題点を改善し、膜ユニットの運転を停止した場合においても、活性汚泥からのリンの再放出を防止でき、また、活性汚泥のフロックの微細化を抑制することができる有機性廃水の処理方法を提供することにある。   The object of the present invention is to improve the above-mentioned problems of the prior art, prevent re-release of phosphorus from activated sludge even when the operation of the membrane unit is stopped, and suppress the flocs of activated sludge from being refined. An object of the present invention is to provide a method for treating organic wastewater.

上記目的を達成するために、本発明に係る有機性廃水の処理方法は、リンを含有する有機性廃水を嫌気槽,無酸素槽,好気槽の順に通水し、好気槽内に浸漬した膜ユニットによって処理水を分離する有機性廃水の処理方法において、前記好気槽では前記膜ユニットの運転が停止している時間帯に間欠的な散気を行うとともに、前記間欠的な散気の程度を前記好気槽内の被処理液のリン濃度に基づいて制御することを特徴とする。 In order to achieve the above object, the organic wastewater treatment method according to the present invention passes organic wastewater containing phosphorus in the order of an anaerobic tank, an oxygen-free tank, and an aerobic tank, and is immersed in the aerobic tank. In the organic wastewater treatment method for separating treated water by the membrane unit, the aerobic tank performs intermittent aeration in a time zone when the operation of the membrane unit is stopped, and the intermittent aeration Is controlled based on the phosphorus concentration of the liquid to be treated in the aerobic tank .

なお、上記の方法においては、前記膜ユニットの運転が停止している時間帯に対する前記間欠的な散気の時間比を0.02〜0.2とすることが好ましい。 In the above method, it is preferable that the time ratio of the intermittent aeration with respect to the time zone in which the operation of the membrane unit is stopped is 0.02 to 0.2 .

本発明によれば、膜ユニットの運転が停止している時間帯に間欠的な散気を行うようにしたので、膜ユニットの運転が停止している時間帯に好気槽を微好気の状態に維持することができる。このため、活性汚泥からのリンの再放出を防止でき、また、活性汚泥のフロックの微細化を抑制することができる。   According to the present invention, the intermittent aeration is performed during the time when the operation of the membrane unit is stopped, so that the aerobic tank is slightly aerobic during the time when the operation of the membrane unit is stopped. Can be maintained in a state. For this reason, it is possible to prevent re-release of phosphorus from the activated sludge and to suppress the flocs of the activated sludge from being refined.

図1は本発明に係る有機性廃水の処理方法を実施するための装置系統図である。当該装置10は嫌気槽12,無酸素槽14,好気槽16を備え、有機性廃水18がこの順序で通水される。無酸素槽14には第1の循環ポンプ20が配設され、無酸素槽14内の被処理液を管路22を介して嫌気槽12に循環させる。好気槽16には第2の循環ポンプ24が配設され、好気槽16内の被処理液を管路26を介して無酸素槽14に循環させる。好気槽16には膜ユニット28が浸漬されている。膜ユニット28の下方には粗大気泡散気手段30が配設されている。ブロア32によって昇圧された空気が管路34を介して粗大気泡散気手段30に供給され、粗大気泡散気手段30からの粗大気泡が膜ユニット28を構成する分離膜に向けて散気される。粗大気泡散気手段30から散気される粗大気泡は浮力によって浮上する過程で分離膜と接触し、分離膜の膜面を洗浄する。また、粗大気泡の浮上エネルギによって好気槽16内に被処理液の旋回流が生起され、活性汚泥と被処理水との混合攪拌が促進する。また、粗大気泡中の酸素が被処理液と接触することによって被処理液に溶存酸素として溶け込む。   FIG. 1 is a system diagram for implementing the organic wastewater treatment method according to the present invention. The said apparatus 10 is equipped with the anaerobic tank 12, the anoxic tank 14, and the aerobic tank 16, and the organic waste water 18 is passed in this order. A first circulation pump 20 is disposed in the anaerobic tank 14, and the liquid to be treated in the anoxic tank 14 is circulated to the anaerobic tank 12 via the conduit 22. A second circulation pump 24 is disposed in the aerobic tank 16 and circulates the liquid to be treated in the aerobic tank 16 to the anoxic tank 14 via a pipe line 26. A membrane unit 28 is immersed in the aerobic tank 16. A coarse bubble diffusing means 30 is disposed below the membrane unit 28. The air pressurized by the blower 32 is supplied to the coarse bubble diffusing means 30 through the pipe 34, and the coarse bubbles from the coarse bubble diffusing means 30 are diffused toward the separation membrane constituting the membrane unit 28. . The coarse bubbles diffused from the coarse bubble diffusing means 30 come into contact with the separation membrane in the process of rising by buoyancy, and the membrane surface of the separation membrane is washed. Further, the swirling flow of the liquid to be treated is generated in the aerobic tank 16 by the floating energy of the coarse bubbles, and the mixing and stirring of the activated sludge and the water to be treated is promoted. Further, oxygen in the coarse bubbles comes into contact with the liquid to be processed and dissolves as dissolved oxygen in the liquid to be processed.

ただし、粗大気泡はその比表面積が小さいので被処理液に対する酸素溶解効率が低い。このため、粗大気泡散気手段30とは別位置の膜ユニット28の側方に微細気泡散気手段36が配設されている。ブロア32によって昇圧された空気が管路38を介して微細気泡散気手段36に供給され、微細気泡散気手段36からの微細気泡が散気される。微細気泡は比表面積が大きいので被処理液に対する酸素溶解効率が高い。このため、被処理液への溶存酸素の供給源として有効である。   However, since coarse bubbles have a small specific surface area, the oxygen dissolution efficiency for the liquid to be treated is low. For this reason, the fine bubble diffusing means 36 is disposed on the side of the membrane unit 28 at a position different from the coarse bubble diffusing means 30. The air pressurized by the blower 32 is supplied to the fine bubble diffusing means 36 through the pipe line 38, and the fine bubbles from the fine bubble diffusing means 36 are diffused. Since the fine bubbles have a large specific surface area, the oxygen dissolution efficiency for the liquid to be treated is high. Therefore, it is effective as a supply source of dissolved oxygen to the liquid to be processed.

膜ユニット28の分離膜の二次側には管路40が接続し、管路40には吸引ポンプ42が接続している。吸引ポンプ42を稼動することによって、膜ユニット28の分離膜の二次側が負圧となり、その吸引負圧力をエネルギとして膜分離が行われる。分離膜の透過水は管路40を介して吸引ポンプ42によって吸引され、清澄な処理水として系外に排出される。   A conduit 40 is connected to the secondary side of the separation membrane of the membrane unit 28, and a suction pump 42 is connected to the conduit 40. By operating the suction pump 42, the secondary side of the separation membrane of the membrane unit 28 becomes negative pressure, and membrane separation is performed using the suction negative pressure as energy. The permeated water of the separation membrane is sucked by the suction pump 42 through the conduit 40 and discharged out of the system as clear treated water.

好気槽16には被処理液のリン濃度を検出可能なリン濃度計44が取り付けられている。リン濃度計44の検出信号が制御器46に送信され、制御器46は受信した被処理液のリン濃度に基づいてブロア32の駆動を制御する。また、好気槽16の下部には管路48が接続し、管路48には汚泥引抜ポンプ50が接続している。   A phosphorus concentration meter 44 capable of detecting the phosphorus concentration of the liquid to be treated is attached to the aerobic tank 16. The detection signal of the phosphorus concentration meter 44 is transmitted to the controller 46, and the controller 46 controls the drive of the blower 32 based on the received phosphorus concentration of the liquid to be processed. A pipe 48 is connected to the lower part of the aerobic tank 16, and a sludge extraction pump 50 is connected to the pipe 48.

上記構成の装置10において、通常運転時ではリンや窒素を含有する有機性の廃水18が嫌気槽12に流入する。また、嫌気槽12には無酸素槽14内の活性汚泥を高濃度に含む被処理液が第1の循環ポンプ20によって管路22を介し循環流入している。このため、嫌気槽12では嫌気条件下で廃水中のBOD成分が循環流入した活性汚泥に取り込まれるとともに、活性汚泥はリンを放出する。嫌気槽12を溢流した活性汚泥を含む被処理液は次段の無酸素槽14に流れ込む。また、無酸素槽14には好気槽16内の活性汚泥を高濃度に含む被処理液が第2の循環ポンプ24によって管路26を介し循環流入している。このため、無酸素槽14では無酸素条件下で活性汚泥中の脱窒菌によって脱窒処理が行われる。無酸素槽14を溢流した活性汚泥を含む被処理液は次段の好気槽16に流れ込む。好気槽16では好気条件下で活性汚泥にリンが取り込まれるとともに、活性汚泥中の硝化菌によって硝化処理が行われる。好気槽16内の被処理液は膜ユニット28によって膜分離される。膜ユニット28で分離された透過水は管路40を介して吸引ポンプ42によって吸引され、清澄な処理水として系外に排出される。また、好気槽16の下部に沈積した活性汚泥が汚泥引抜ポンプ50によって引き抜かれ、余剰汚泥として管路48から系外に排出される。   In the apparatus 10 having the above-described configuration, the organic waste water 18 containing phosphorus and nitrogen flows into the anaerobic tank 12 during normal operation. In addition, a liquid to be treated containing activated sludge in the anaerobic tank 14 at a high concentration is circulated into the anaerobic tank 12 through the conduit 22 by the first circulation pump 20. For this reason, in the anaerobic tank 12, the BOD component in the wastewater is taken into the activated sludge that circulates and flows under the anaerobic condition, and the activated sludge releases phosphorus. The liquid to be treated containing activated sludge overflowing the anaerobic tank 12 flows into the oxygen-free tank 14 at the next stage. In addition, the liquid to be treated containing activated sludge in the aerobic tank 16 at a high concentration is circulated into the anaerobic tank 14 through the pipeline 26 by the second circulation pump 24. For this reason, in the anaerobic tank 14, a denitrification process is performed by denitrifying bacteria in activated sludge under anaerobic conditions. The liquid to be treated containing activated sludge overflowing the anaerobic tank 14 flows into the aerobic tank 16 at the next stage. In the aerobic tank 16, phosphorus is taken into activated sludge under aerobic conditions, and nitrification is performed by nitrifying bacteria in the activated sludge. The liquid to be treated in the aerobic tank 16 is separated by the membrane unit 28. The permeated water separated by the membrane unit 28 is sucked by the suction pump 42 through the conduit 40 and discharged out of the system as clear treated water. Moreover, the activated sludge deposited in the lower part of the aerobic tank 16 is extracted by the sludge extraction pump 50 and discharged out of the system from the pipe 48 as surplus sludge.

好気槽16を好気状態に維持するためにブロア32によって昇圧された空気が管路34,38を介して粗大気泡散気手段30と微細気泡散気手段36とに供給される。好気槽16内では活性汚泥が10,000mg/L程度の高濃度に保持され、高負荷の処理が行われるため、反応に伴う溶存酸素の消費が激しい。このため、各散気手段から散気する空気の量が不足すると好気槽16内の一部領域が嫌気状態となる場合がある。好気槽16内の少なくとも一部が嫌気状態になると前記した活性汚泥によるリンの取り込み反応や硝化反応が進行せず、処理性能が著しく低下する。そこで本実施形態ではリン濃度計44で検出した被処理液のリン濃度に基づいてブロア32の駆動を制御する。すなわち、被処理液のリン濃度が基準値をオーバーした時にはブロア32の駆動を増強して散気する空気の量を増加させるように制御する。   In order to maintain the aerobic tank 16 in an aerobic state, the air pressurized by the blower 32 is supplied to the coarse bubble diffusing unit 30 and the fine bubble diffusing unit 36 through the pipes 34 and 38. In the aerobic tank 16, the activated sludge is maintained at a high concentration of about 10,000 mg / L and a high load treatment is performed, so that the consumption of dissolved oxygen accompanying the reaction is intense. For this reason, if the amount of air diffused from each air diffuser is insufficient, a partial region in the aerobic tank 16 may become anaerobic. When at least a part of the aerobic tank 16 is in an anaerobic state, the phosphorus uptake reaction or nitrification reaction by the activated sludge described above does not proceed, and the treatment performance is significantly reduced. Therefore, in the present embodiment, the drive of the blower 32 is controlled based on the phosphorus concentration of the liquid to be processed detected by the phosphorus concentration meter 44. That is, when the phosphorus concentration of the liquid to be treated exceeds the reference value, the drive of the blower 32 is enhanced to control the amount of air to be diffused.

以上の処理によって、処理対象である廃水中のBOD成分は主に嫌気槽12と無酸素槽14で除去され、窒素成分は無酸素槽14での脱窒処理と好気槽16での硝化処理によって除去される。また、廃水中のリン成分は主に好気槽16での活性汚泥によるリンの取り込み作用によって除去され、最終的に汚泥引抜ポンプ50によって引き抜かれた余剰汚泥中にリンが過剰に蓄積された状態で系外に排出される。   Through the above treatment, the BOD component in the wastewater to be treated is mainly removed in the anaerobic tank 12 and the anaerobic tank 14, and the nitrogen component is denitrified in the anaerobic tank 14 and the nitrification treatment in the aerobic tank 16. Removed by. Further, the phosphorus component in the wastewater is mainly removed by the action of taking up phosphorus by the activated sludge in the aerobic tank 16, and the phosphorus is excessively accumulated in the excess sludge finally extracted by the sludge extraction pump 50. Is discharged out of the system.

上述した処理方法において、夜間など廃水18の流入量が著しく減少するか、又は廃水18の流入が停止した場合、又は定常的な間欠運転の際には第1の循環ポンプ20,第2の循環ポンプ24及び吸引ポンプ42の稼動を一時的に止めることによって、実質的に処理を停止する。その結果、膜ユニット28の運転も停止することになる。本実施形態の処理方法においては、この膜ユニット28の運転を停止した時間帯に好気槽16では間欠的な散気を行う。間欠的な散気の方法としては大別して二通りの方法がある。   In the treatment method described above, the first circulation pump 20 and the second circulation are reduced when the inflow of the wastewater 18 is significantly reduced at night or when the inflow of the wastewater 18 is stopped, or during regular intermittent operation. The processing is substantially stopped by temporarily stopping the operation of the pump 24 and the suction pump 42. As a result, the operation of the membrane unit 28 is also stopped. In the processing method of the present embodiment, intermittent aeration is performed in the aerobic tank 16 during the time period when the operation of the membrane unit 28 is stopped. There are roughly two types of intermittent aeration methods.

第1の方法はタイマーを用いて例えば10分毎に1分間の割合で間欠的な散気を行う。この場合は膜ユニットの運転が停止している時間帯に対する間欠的な散気の時間比は0.1である。この際の散気はもっぱら微細気泡散気手段36によって行うことが好ましい。すなわち、膜ユニット28の運転を停止した時間帯では管路34に設けた開閉弁52を自動閉止し、管路38に設けた開閉弁54のみを開放する。するとブロア32の間欠駆動によって微細気泡散気手段36からの微細気泡のみが散気されることになり、粗大気泡散気手段30からの散気は停止される。微細気泡は前記したように被処理液に対する酸素溶解効率が高いので、被処理液への溶存酸素の供給源として有効であり、散気エネルギの節約に寄与する。   In the first method, intermittent aeration is performed at a rate of 1 minute every 10 minutes, for example, using a timer. In this case, the time ratio of intermittent aeration with respect to the time zone in which the operation of the membrane unit is stopped is 0.1. It is preferable that the aeration at this time be performed exclusively by the fine bubble aeration means 36. That is, in the time zone when the operation of the membrane unit 28 is stopped, the on-off valve 52 provided in the pipe line 34 is automatically closed, and only the on-off valve 54 provided in the pipe line 38 is opened. Then, only the fine bubbles from the fine bubble diffusing means 36 are diffused by the intermittent drive of the blower 32, and the diffusing from the coarse bubble diffusing means 30 is stopped. As described above, since the fine bubbles have high oxygen dissolution efficiency with respect to the liquid to be processed, they are effective as a supply source of dissolved oxygen to the liquid to be processed, and contribute to saving of aeration energy.

間欠散気の第2の方法は通常運転時と同様にリン濃度計44で検出した被処理液のリン濃度に基づいてブロア32の駆動を制御する。すなわち、被処理液のリン濃度が基準値をオーバーした時にはブロア32の間欠駆動の頻度又は1回当たりの散気時間を増加させるように制御する。この方法においても散気はもっぱら微細気泡散気手段36によって行うことが好ましい。   In the second method of intermittent aeration, the drive of the blower 32 is controlled based on the phosphorus concentration of the liquid to be treated detected by the phosphorus concentration meter 44 as in the normal operation. In other words, when the phosphorus concentration of the liquid to be processed exceeds the reference value, the frequency of intermittent drive of the blower 32 or the air diffusion time per control is controlled to increase. Also in this method, it is preferable that the aeration is performed exclusively by the fine bubble aeration means 36.

なお、上記第2の方法の場合、間欠散気の時間帯では好気槽16内の被処理液が十分に流動していないため、リン濃度にバラツキが発生する可能性が高い。このため、リン濃度計44で検出されるリン濃度が被処理液の平均的な値を示さない傾向があり、制御が不安定になることがある。したがって、間欠散気のより好ましい方法は、上記第1と第2の方法を組み合わせて行う。すなわち、第1の方法によってベースとなるタイマー制御を行い、リン濃度計44で検出した被処理液のリン濃度が基準値をオーバーした時にのみ、臨時措置として散気の増強を行うようにすればよい。このような方法を採用することによって、膜ユニット28の運転が停止している時間帯でも好気槽16を確実に微好気の状態に維持することができる。このため、活性汚泥からのリンの再放出を防止できる。また、散気エネルギを最小限に抑えることができ、活性汚泥のフロックが空曝気によって微細化することも抑制することができる。   In the case of the second method, since the liquid to be treated in the aerobic tank 16 does not flow sufficiently during the intermittent aeration time, there is a high possibility that the phosphorus concentration varies. For this reason, there is a tendency that the phosphorus concentration detected by the phosphorus concentration meter 44 does not show an average value of the liquid to be treated, and the control may become unstable. Therefore, a more preferable method of intermittent aeration is performed by combining the first and second methods. That is, if the timer control as a base is performed by the first method and the phosphorus concentration of the liquid to be treated detected by the phosphorus concentration meter 44 exceeds the reference value, the aeration is enhanced as a temporary measure. Good. By adopting such a method, the aerobic tank 16 can be reliably maintained in a slightly aerobic state even during a time period when the operation of the membrane unit 28 is stopped. For this reason, it is possible to prevent re-release of phosphorus from the activated sludge. Further, the aeration energy can be suppressed to a minimum, and the flocs of activated sludge can be suppressed from being refined by air aeration.

図2は間欠散気の時間比を変化させた時の実験結果の一例を示すグラフである。図2において、横軸は膜ユニット28の運転が停止している時間帯に対する間欠的な散気の時間比を示している。実験は膜ユニット28の運転が停止している時間帯に10分間に1回の頻度で微細気泡散気手段36によって間欠散気をし、1回当たりの散気時間を変化させることによって実施した。すなわち、1回当たりの散気時間を1分間とした時の間欠散気時間比は0.1であり、1回当たりの散気時間を2分間とした時の間欠散気時間比は0.2である。1回当たりの散気時間を12秒間と短くした時の間欠散気時間比は0.02である。このような間欠散気時間比をパラメータとして間欠散気時間比毎に、2時間の間欠散気の運転を行い、運転終了直後に好気槽16内の被処理液のリン濃度と汚泥のろ過性を調べた。なお、測定は好気槽16内の活性汚泥を高濃度に含む被処理液を各実験単位で50mLずつサンプリングし、この被処理液をNo.5cのろ紙で5分間ろ過して行った。すなわち、このときのろ液のリン濃度を被処理液のリン濃度とし、ろ液量を汚泥のろ過性の指標とした。   FIG. 2 is a graph showing an example of experimental results when the time ratio of intermittent aeration is changed. In FIG. 2, the horizontal axis indicates the time ratio of intermittent aeration with respect to the time zone in which the operation of the membrane unit 28 is stopped. The experiment was carried out by intermittently aeration with the fine bubble aeration means 36 at a frequency of once every 10 minutes during the time when the operation of the membrane unit 28 was stopped, and changing the aeration time per time. . That is, the intermittent aeration time ratio when the aeration time per time is 1 minute is 0.1, and the intermittent aeration time ratio when the aeration time per time is 2 minutes is 0.2. is there. The intermittent aeration time ratio when the aeration time per time is shortened to 12 seconds is 0.02. Using such an intermittent aeration time ratio as a parameter, an intermittent aeration operation for 2 hours is performed for each intermittent aeration time ratio, and immediately after the operation is finished, the phosphorus concentration of the liquid to be treated and the sludge filtration in the aerobic tank 16 I examined the sex. In the measurement, 50 mL of the liquid to be processed containing the activated sludge in the aerobic tank 16 at a high concentration was sampled for each experimental unit. It was filtered for 5 minutes with 5c filter paper. That is, the phosphorus concentration of the filtrate at this time was defined as the phosphorus concentration of the liquid to be treated, and the amount of the filtrate was used as an index for the filterability of sludge.

図2において左縦軸は被処理液のリン濃度を示し、右縦軸は汚泥のろ過性を示す。図2から明らかなように、間欠散気時間比が0.02未満の時には被処理液のリン濃度が急激に上昇する。このことは好気槽16内の少なくとも一部が嫌気状態となり、活性汚泥からのリンの再放出が行われていることを裏付けている。間欠散気時間比を0.02から上げていくと、被処理液のリン濃度が急激に低下し、間欠散気時間比が0.2になるとほぼ平衡に達する。このことは間欠散気を適正に選択すると好気槽16内を安定な微好気の状態に維持することができ、活性汚泥からのリンの再放出を防止できることを裏付けている。一方、汚泥のろ過性は間欠散気時間比が0.2を越えると徐々に低下する。このことは間欠散気時間比が過大であると活性汚泥のフロックが空曝気によって微細化し、ろ過性が低下することを裏付けている。汚泥のろ過性が低下すると膜ユニット28の運転再開時に分離膜の閉塞を助長するという新たな問題点が発生する。以上の実験結果から、間欠散気時間比を0.02〜0.2に選定すると好ましいことが判明した。すなわち、間欠散気時間比をこの範囲に選定すると、活性汚泥からのリンの放出を防止でき、かつ活性汚泥のフロックが空曝気によって微細化することも抑制することができる。また、散気エネルギを最小限に抑えることができる。   In FIG. 2, the left vertical axis indicates the phosphorus concentration of the liquid to be treated, and the right vertical axis indicates sludge filterability. As is clear from FIG. 2, when the intermittent aeration time ratio is less than 0.02, the phosphorus concentration of the liquid to be treated increases rapidly. This confirms that at least a part of the aerobic tank 16 is in an anaerobic state and phosphorus is re-released from the activated sludge. When the intermittent aeration time ratio is increased from 0.02, the phosphorus concentration of the liquid to be treated decreases rapidly, and when the intermittent aeration time ratio becomes 0.2, equilibrium is almost reached. This confirms that if the intermittent aeration is properly selected, the inside of the aerobic tank 16 can be maintained in a stable microaerobic state, and re-release of phosphorus from the activated sludge can be prevented. On the other hand, the filterability of sludge gradually decreases when the intermittent aeration time ratio exceeds 0.2. This confirms that if the intermittent aeration time ratio is excessive, the flocs of activated sludge are refined by air aeration and the filterability is lowered. When the sludge filterability is lowered, a new problem of promoting the blockage of the separation membrane occurs when the operation of the membrane unit 28 is resumed. From the above experimental results, it has been found that it is preferable to select an intermittent air diffusion time ratio of 0.02 to 0.2. That is, if the intermittent air diffusion time ratio is selected within this range, release of phosphorus from the activated sludge can be prevented, and the flocs of the activated sludge can be suppressed from being refined by air aeration. In addition, aeration energy can be minimized.

本発明に係る有機性廃水の処理方法を実施するための装置系統図である。It is an apparatus system diagram for enforcing the processing method of organic wastewater concerning the present invention. 間欠散気の時間比を変化させた時の実験結果を示すグラフである。It is a graph which shows the experimental result when changing the time ratio of intermittent aeration.

符号の説明Explanation of symbols

10………処理装置、12………嫌気槽、14………無酸素槽、16………好気槽、18………廃水、20………第1の循環ポンプ、24………第2の循環ポンプ、28………膜ユニット、30………粗大気泡散気手段、32………ブロア、36………微細気泡散気手段、42………吸引ポンプ、44………リン濃度計、46………制御器、50………汚泥引抜ポンプ。

10 ......... Processing device, 12 ......... Anaerobic tank, 14 ......... Anoxic tank, 16 ......... Aerobic tank, 18 ......... Waste water, 20 ......... First circulation pump, 24 ......... Second circulation pump, 28 ......... Membrane unit, 30 ... Coarse bubble diffuser, 32 ......... Blower, 36 ......... Fine bubble diffuser, 42 ......... Suction pump, 44 ......... Phosphor densitometer, 46 ... Controller, 50 ... Sludge extraction pump.

Claims (2)

リンを含有する有機性廃水を嫌気槽,無酸素槽,好気槽の順に通水し、好気槽内に浸漬した膜ユニットによって処理水を分離する有機性廃水の処理方法において、前記好気槽では前記膜ユニットの運転が停止している時間帯に間欠的な散気を行うとともに、前記間欠的な散気の程度を前記好気槽内の被処理液のリン濃度に基づいて制御することを特徴とする有機性廃水の処理方法。 In the organic wastewater treatment method, organic wastewater containing phosphorus is passed through an anaerobic tank, an oxygen-free tank, and an aerobic tank in this order, and the treated water is separated by a membrane unit immersed in the aerobic tank. In the tank, intermittent aeration is performed during a time period when the operation of the membrane unit is stopped, and the degree of the intermittent aeration is controlled based on the phosphorus concentration of the liquid to be treated in the aerobic tank. A method for treating organic wastewater. 前記膜ユニットの運転が停止している時間帯に対する前記間欠的な散気の時間比を0.02〜0.2とすることを特徴とする請求項1に記載の有機性廃水の処理方法。   The method for treating organic wastewater according to claim 1, wherein a time ratio of the intermittent aeration to a time zone in which the operation of the membrane unit is stopped is set to 0.02 to 0.2.
JP2004000128A 2004-01-05 2004-01-05 Organic wastewater treatment method Expired - Lifetime JP4360204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004000128A JP4360204B2 (en) 2004-01-05 2004-01-05 Organic wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004000128A JP4360204B2 (en) 2004-01-05 2004-01-05 Organic wastewater treatment method

Publications (2)

Publication Number Publication Date
JP2005193102A JP2005193102A (en) 2005-07-21
JP4360204B2 true JP4360204B2 (en) 2009-11-11

Family

ID=34816058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004000128A Expired - Lifetime JP4360204B2 (en) 2004-01-05 2004-01-05 Organic wastewater treatment method

Country Status (1)

Country Link
JP (1) JP4360204B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5105243B2 (en) * 2008-05-29 2012-12-26 株式会社日立プラントテクノロジー Membrane separation activated sludge treatment apparatus and method

Also Published As

Publication number Publication date
JP2005193102A (en) 2005-07-21

Similar Documents

Publication Publication Date Title
RU2181344C2 (en) Plant for and method of biological purification of impurities and sewage water
WO2001072643A1 (en) Method and apparatus for treating waste water
JP4059790B2 (en) Membrane separation activated sludge treatment apparatus and membrane separation activated sludge treatment method
JP5597002B2 (en) Waste water treatment apparatus and waste water treatment method
JP2003053363A (en) Method and apparatus for treating organic-containing water
JP2010012434A (en) Structure of mbr+ro system and operation method for the system
JP5307066B2 (en) Waste water treatment method and waste water treatment system
JP6941439B2 (en) Membrane separation activated sludge treatment equipment, membrane separation activated sludge treatment method and raw water supply equipment
JP7015117B2 (en) Organic wastewater treatment method and organic wastewater treatment system
JP6181003B2 (en) Membrane separation activated sludge treatment apparatus and operation method thereof
JP2009061349A (en) Sewage treatment method by membrane separation activated sludge process
JP2002307088A (en) Wastewater treatment equipment
KR101367229B1 (en) Operating method of advanced treatment process use of submerged membrane and advanced treatment apparatus thereof
JP3832232B2 (en) Membrane separator
JP4360204B2 (en) Organic wastewater treatment method
JP4101539B2 (en) Wastewater treatment equipment
JPH1034185A (en) Wastewater treatment method
JP4709792B2 (en) Wastewater treatment system
JP6243804B2 (en) Membrane separation activated sludge treatment apparatus and membrane separation activated sludge treatment method
JPH10296251A (en) Method for regulating sludge in sewage treatment tank
JPH07256294A (en) Living waste water treatment apparatus
RU2644904C1 (en) Method of biological purification of wastewater from nitrogen phosphoric and organic compounds
JP2008238042A (en) Reduction method of organic sludge
JP3807945B2 (en) Method and apparatus for treating organic wastewater
JP3666064B2 (en) Wastewater treatment equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090721

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090803

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4360204

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term