JP2003053363A - Method and apparatus for treating organic-containing water - Google Patents
Method and apparatus for treating organic-containing waterInfo
- Publication number
- JP2003053363A JP2003053363A JP2001242452A JP2001242452A JP2003053363A JP 2003053363 A JP2003053363 A JP 2003053363A JP 2001242452 A JP2001242452 A JP 2001242452A JP 2001242452 A JP2001242452 A JP 2001242452A JP 2003053363 A JP2003053363 A JP 2003053363A
- Authority
- JP
- Japan
- Prior art keywords
- membrane
- water
- tank
- aeration
- bod
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Biological Treatment Of Waste Water (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Activated Sludge Processes (AREA)
Abstract
(57)【要約】
【課題】 浸漬膜式活性汚泥法による有機物含有水の処
理において、膜浸漬槽におけるMLSS濃度を高くする
ことなく、従って、膜浸漬槽における曝気量の増大に起
因する膜寿命の劣化や曝気効率の低下を招くことなく、
汚泥負荷を高めることで曝気槽単位面積当たりのBOD
処理能力を向上させる。
【解決手段】 3槽以上の曝気槽51〜55を直列に配
置し、そのうちの少なくとも1槽を膜浸漬槽55とす
る。浸漬膜モジュール59の浸漬膜の公称分離孔径を
0.01〜0.4μmとし、曝気槽51〜55内液の水
温を20〜37℃、BOD汚泥負荷0.15〜0.40
kg−BOD/kg−VSS/day、膜浸漬槽55の
MLSS濃度5,000〜20,000mg/Lとす
る。
PROBLEM TO BE SOLVED: To increase the MLSS concentration in a membrane immersion tank in the treatment of water containing organic matter by a submerged membrane activated sludge method, and therefore, to increase the aeration time in the membrane immersion tank. Without causing deterioration of the aeration efficiency
BOD per unit area of aeration tank by increasing sludge load
Improve processing capacity. SOLUTION: Three or more aeration tanks 51 to 55 are arranged in series, and at least one of them is a membrane immersion tank 55. The nominal separation hole diameter of the immersion membrane of the immersion membrane module 59 is set to 0.01 to 0.4 μm, the water temperature of the liquid in the aeration tanks 51 to 55 is 20 to 37 ° C., and the BOD sludge load is 0.15 to 0.40.
kg-BOD / kg-VSS / day, and the MLSS concentration in the membrane immersion tank 55 is 5,000 to 20,000 mg / L.
Description
【0001】[0001]
【発明の属する技術分野】本発明は排水中の有機物を活
性汚泥の生物学的作用により除去する方法及び装置に係
り、特に小型の曝気槽で従来法と同等以上の有機物除去
効果を得ることができる有機物含有水の処理方法及び処
理装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for removing organic matter in wastewater by the biological action of activated sludge, and in particular, it is possible to obtain an organic matter removing effect equivalent to or better than that of the conventional method in a small aeration tank. The present invention relates to a method and an apparatus for treating organic matter-containing water.
【0002】[0002]
【従来の技術】従来、有機物含有水の活性汚泥処理法と
して、活性汚泥を収容する曝気槽中に膜モジュールを浸
漬配置し、この膜モジュール下部に曝気空気を供給する
散気管を配置し、膜面を曝気空気とそれに伴う上昇水流
で撹拌しながら槽内液の濾過を行うことで、活性汚泥か
ら処理水を取り出す、浸漬膜式活性汚泥法が適用されて
いる。この浸漬膜としては、精密濾過膜(MF膜)や限
外濾過膜(UF膜)が用いられ、膜の形状は中空糸膜、
平膜、チューブラ膜等が用いられる。また、膜の材質と
しては、ポリエチレンやポリスルフォン、ポリエーテル
スルフォン、ポリフッ化ビニリデン、酢酸セルロースや
これらの誘導体等、種々の材質が適用可能である。2. Description of the Related Art Conventionally, as a method for treating activated sludge containing organic matter-containing water, a membrane module is immersed in an aeration tank containing the activated sludge, and a diffusing pipe for supplying aeration air is arranged below the membrane module. A submerged membrane activated sludge method is applied in which treated water is taken out from the activated sludge by filtering the liquid in the tank while stirring the surface with aerated air and accompanying rising water flow. As the immersion membrane, a microfiltration membrane (MF membrane) or an ultrafiltration membrane (UF membrane) is used, and the shape of the membrane is a hollow fiber membrane,
A flat membrane, a tubular membrane or the like is used. As the material of the film, various materials such as polyethylene, polysulfone, polyether sulfone, polyvinylidene fluoride, cellulose acetate and derivatives thereof can be applied.
【0003】浸漬膜モジュールを浸漬する水槽(膜浸漬
槽)には、通常、曝気部と非曝気部を設けることで、エ
アリフト作用による旋回流を生じさせる。旋回流を促進
するために曝気部と非曝気部をバッフル板で仕切ること
も良く行われる。浸漬膜モジュールは曝気部の散気管の
上部に設置され、これにより気泡及び旋回流が効果的に
膜面に当たるようになり、膜面の撹拌が効率的に行われ
る。A water tank (membrane immersion tank) in which the immersion membrane module is immersed is usually provided with an aeration section and a non-aeration section to generate a swirling flow due to an air lift action. Baffle plates are often used to partition the aerated and non-aerated parts to promote swirling flow. The submerged membrane module is installed above the air diffusing tube of the aeration unit, whereby bubbles and swirling flow can effectively hit the membrane surface, and the membrane surface can be efficiently stirred.
【0004】このような浸漬膜式活性汚泥法の特徴とし
ては、処理水をMF膜やUF膜の浸漬膜を濾過して取り
出すために、懸濁物質(SS)濃度の少ない清澄な処理
水が得られる;従来の活性汚泥法のように重力沈降によ
る活性汚泥フロックと処理水との固液分離を行わないた
めに、従来問題であった汚泥の沈降性の変化に影響を受
けることなく安定に処理が行える;汚泥濃度(MLSS
濃度)を、従来法の2,000〜5,000mg/Lに
対して5,000〜30,000mg/Lに高めること
ができ、このため水槽の容積当たりの処理能力を高める
ことができる等が挙げられる。A feature of such a submerged membrane type activated sludge method is that, because the treated water is filtered out of the submerged membrane of the MF membrane or the UF membrane, clear treated water with a low concentration of suspended solids (SS) is used. Obtained; unlike the conventional activated sludge method, solid-liquid separation between activated sludge flocs and treated water by gravity settling is not performed, so it is stable without being affected by changes in sludge settling property, which was a conventional problem. Can be treated; sludge concentration (MLSS
(Concentration) can be increased to 5,000 to 30,000 mg / L as compared to the conventional method of 2,000 to 5,000 mg / L, and thus the treatment capacity per volume of the water tank can be increased. Can be mentioned.
【0005】一方、浸漬膜式活性汚泥法の欠点として、
浸漬膜が高価であり、また膜を定期的に交換する必要が
あるため、運転費用が嵩むことが挙げられる。即ち、膜
が汚染されて所定の濾過能力を発揮することができなく
なった場合には、物理洗浄や薬品洗浄により汚染物質を
剥離して膜を繰り返し使用するが、運転年数が経過した
膜の場合、これらの洗浄方法では所定の濾過能力を回復
することはできず、浸漬膜式活性汚泥処理装置の安定し
た連続運転が困難となるため、浸漬膜を交換する必要が
生ずる。このような膜の交換は通常3〜5年に1回の頻
度で行われる。On the other hand, as a drawback of the immersion membrane type activated sludge method,
The dip membrane is expensive and the membrane needs to be replaced regularly, which increases the operating cost. That is, when the membrane is contaminated and can no longer exhibit the predetermined filtration capacity, the contaminants are removed by physical cleaning or chemical cleaning and the membrane is repeatedly used. However, these cleaning methods cannot restore the predetermined filtering ability, and it becomes difficult to perform stable continuous operation of the submerged membrane type activated sludge treatment device. Therefore, it is necessary to replace the submerged membrane. Such membrane replacement is usually performed once every 3 to 5 years.
【0006】また、浸漬膜式活性汚泥法では、膜の薬品
洗浄頻度が多すぎると、洗浄薬品のコストが嵩んだり、
運転員の作業数が多くなる上に、膜の劣化も加速される
ため、通常は膜汚染が過度に生じない運転条件が選択さ
れる。具体的には、膜の透過流束(フラックス)を低く
設定したり、膜下部からの曝気空気量を増大させること
で、膜汚染を防止している。膜の汚染の程度は膜の濾過
抵抗を測定することで把握することができ、通常、設計
フラックスで通水したときに、新膜に比べて5〜40k
Pa程度濾過抵抗が上昇した時を目安として物理洗浄や
薬品洗浄が行われている。薬品洗浄の間隔は2ヶ月〜9
ヶ月に1回が一般的である。Further, in the immersion membrane type activated sludge method, if the frequency of cleaning the membrane with chemicals is too high, the cost of cleaning chemicals increases,
Since the number of operations of the operator is increased and the deterioration of the membrane is accelerated, the operating condition that does not cause excessive membrane fouling is usually selected. Specifically, the membrane fouling is prevented by setting the permeation flux (flux) of the membrane low or increasing the amount of aerated air from the lower portion of the membrane. The degree of contamination of the membrane can be understood by measuring the filtration resistance of the membrane, and normally, when water is passed with the design flux, it is 5 to 40 k compared to the new membrane.
Physical cleaning or chemical cleaning is performed when the filtration resistance increases by about Pa. Chemical cleaning interval is 2 months to 9 months
Once a month is common.
【0007】一方、生物処理の運転条件としては、汚泥
濃度としてMLSS濃度5,000〜20,000mg
/Lが多く採用されるが、汚泥濃度が高くなるほど、膜
面に汚泥が濃縮され、脱水ケーク状になって強固に付着
する現象(クロッギング)が生じやすくなる。クロッギ
ングが生ずると、必要な膜フラックスを得るための濾過
圧力が極度に上昇し、数日間の内に運転不可能になるケ
ースが多いため、極力回避する必要がある。クロッギン
グの回避のためには、MLSS濃度を低く保つことと、
膜下部からの曝気量を大きく保つことが重要である。こ
の曝気量としては、浸漬膜モジュールの底面積又は膜浸
漬槽曝気部底面積(m2)当たり30〜250Nm3/
hrが一般的に採用される。On the other hand, the operating condition for biological treatment is that the sludge concentration is MLSS concentration of 5,000 to 20,000 mg.
Although a large amount of / L is used, the higher the sludge concentration, the more easily the sludge is concentrated on the film surface and becomes a dehydrated cake, which is strongly adhered (clogging). When clogging occurs, the filtration pressure for obtaining the necessary membrane flux rises extremely, and in many cases it becomes impossible to operate within a few days, so it is necessary to avoid it as much as possible. To avoid crogging, keep the MLSS concentration low,
It is important to maintain a large amount of aeration from the lower part of the membrane. This aeration amount is 30 to 250 Nm 3 / bottom area of the submerged membrane module or per membrane immersion tank aeration section bottom area (m 2 ).
hr is commonly adopted.
【0008】[0008]
【発明が解決しようとする課題】このように、浸漬膜式
活性汚泥法では、膜汚染を防止するために、膜下部から
の曝気量を大きく保つことが望まれるが、本発明者の研
究によれば、膜下部からの曝気量の増大は、膜の揺動や
膜同士の擦れ合い、膜の支持体への接着部への繰り返し
応力の負荷、活性汚泥自体や活性汚泥中の夾雑物と膜と
の物理的接触等の現象を促進するものであり、このため
に、膜が支持体から剥離して所定のSS分離性能を発揮
できなくなる;膜の強度が劣化して膜が破断する;膜の
細孔を形成する構造が変形し、膜表面に開口する細孔の
数や面積が減少して濾過圧力が高くなったり、膜汚染物
質の影響を受けやすくなったりする;といった問題が助
長される。このようなことから曝気量の増大は膜寿命の
低下につながる。As described above, in the submerged membrane type activated sludge method, it is desired to maintain a large amount of aeration from the lower portion of the membrane in order to prevent membrane contamination. According to the results, the increase in the amount of aeration from the lower part of the membrane is caused by the fluctuation of the membrane, the rubbing of the membranes, the load of repeated stress on the adhesion part of the membrane to the support, the activated sludge itself and the contaminants in the activated sludge. It promotes a phenomenon such as physical contact with the membrane, which causes the membrane to peel from the support and fail to exhibit a predetermined SS separation performance; the strength of the membrane deteriorates and the membrane breaks; The structure that forms the pores of the membrane is deformed, the number and area of the pores that open on the membrane surface decrease, and the filtration pressure becomes high, and it becomes easy to be affected by membrane contaminants. To be done. From this, an increase in the amount of aeration leads to a decrease in film life.
【0009】従って、膜寿命の観点からは曝気量を極力
少なくすることが有効であるが、曝気量の低減は一方で
クロッギングの原因となる。Therefore, from the viewpoint of the life of the film, it is effective to reduce the aeration amount as much as possible, but the reduction of the aeration amount causes clogging.
【0010】また、MLSS濃度を高くするほど、活性
汚泥の粘度が上昇して流動性が低下し、曝気空気中の酸
素が汚泥中に溶解する効率(溶解効率)が悪化し、微生
物に酸素を供給するための曝気量も多く必要となるとい
う問題も生ずる。Further, as the MLSS concentration is increased, the viscosity of the activated sludge is increased and the fluidity is lowered, the efficiency of dissolving oxygen in the aerated air in the sludge (dissolution efficiency) is deteriorated, and oxygen is absorbed by the microorganisms. There is also a problem that a large amount of aeration is required to supply the gas.
【0011】クロッギングの防止及び酸素の溶解効率の
観点からは、MLSS濃度は低く保つことが望ましい
が、この場合には、下記式からも明らかなように同一の
BOD容積負荷に対して、汚泥当たりのBOD負荷(=
BOD汚泥負荷;ここではBODとVSSの比とし、B
OD/VSS負荷とも記す)は高くなる。
BOD汚泥負荷[kg−BOD/kg−VSS/da
y]=BOD容積負荷[kg−BOD/m3/day]
÷MLVSS濃度[mg/L]×1000From the viewpoints of preventing clogging and the efficiency of oxygen dissolution, it is desirable to keep the MLSS concentration low. In this case, however, it is clear from the following equation that the same BOD volume load is applied to the sludge. BOD load (=
BOD sludge load; here, the ratio of BOD and VSS, B
OD / VSS load) is also high. BOD sludge load [kg-BOD / kg-VSS / da
y] = BOD volume load [kg-BOD / m 3 / day]
÷ MLVSS concentration [mg / L] × 1000
【0012】このようなことから、従来の浸漬膜式活性
汚泥法では、BOD/VSS負荷条件としては0.03
〜0.1kg−BOD/kg−VSS/day、又はそ
れ以下が採用されることが多く、BOD汚泥負荷をこれ
以上高く取った事例は殆ど報告されていない。From the above, in the conventional submerged membrane type activated sludge method, the BOD / VSS load condition is 0.03.
.About.0.1 kg-BOD / kg-VSS / day or less is often adopted, and almost no case has been reported in which the BOD sludge load is taken higher than this.
【0013】なお、MLVSSとMLSSの比は廃水の
性状に応じて変化するが、通常0.6〜0.9[g−V
SS/g−SS]の比率である。従ってMLSS濃度を
高めることは、MLVSSを高めることと同義である。The ratio of MLVSS to MLSS varies depending on the property of wastewater, but is usually 0.6 to 0.9 [g-V].
SS / g-SS] ratio. Therefore, increasing the MLSS concentration is synonymous with increasing the MLVSS.
【0014】従来の浸漬膜式活性汚泥法では、BOD/
VSSの負荷条件は0.03〜0.1kg−BOD/k
g−VSS/dayまたはそれ以下が採用されることが
多く、BOD汚泥負荷をこれ以上高く取った事例はほと
んど報告されていない。容積負荷を高く取った事例があ
ったとしても、通常BOD/VSS負荷は上述の範囲に
とどめたまま、MLSS濃度を高めることで対応されて
いる。In the conventional submerged membrane type activated sludge method, BOD /
The VSS load condition is 0.03 to 0.1 kg-BOD / k
In most cases, g-VSS / day or lower is adopted, and few cases in which the BOD sludge load is higher than that have been reported. Even if there is a case where the volume load is taken high, it is usually dealt with by increasing the MLSS concentration while keeping the BOD / VSS load within the above range.
【0015】しかし、本発明者の考察によれば、MLS
S濃度を高めることには上述のようなデメリットがある
ため、MLSS濃度は極力低く保ちつつ、BOD/VS
S負荷を高めることで、容積あたりのBOD処理能力す
なわちBOD容積負荷を高める方が、効率的に反応槽を
小型化することが出来る。However, according to the inventor's consideration, MLS
Since increasing the S concentration has the above-mentioned disadvantages, keeping the MLSS concentration as low as possible while maintaining the BOD / VS
Increasing the S load increases the BOD processing capacity per volume, that is, the BOD volume load, and thus the reaction tank can be efficiently downsized.
【0016】しかしながら、本発明者の検討によれば、
不適切な条件でBOD/VSS負荷を高くすると、上述
のクロッギングとは異なった形態の膜の汚染が急速に進
行し、薬品洗浄間隔を1ヶ月以内、条件によっては1週
間以内とする必要が生じ、実用的ではないことが知見さ
れた。However, according to the study by the present inventor,
If the BOD / VSS load is increased under inappropriate conditions, the contamination of the film with a different form from the above-mentioned clogging will progress rapidly, and it will be necessary to set the chemical cleaning interval within one month, and within one week depending on the conditions. It was found that it was not practical.
【0017】本発明は上記の問題点を解決し、浸漬膜式
活性汚泥法による有機物含有水の処理において、BOD
汚泥負荷を高くとった上で、浸漬膜の汚染を防止して薬
品洗浄頻度を低減することができる有機物含有水の処理
方法及び処理装置を提供することを目的とする。The present invention solves the above problems, and in the treatment of organic matter-containing water by the immersion membrane type activated sludge method, BOD
An object of the present invention is to provide a method and apparatus for treating organic matter-containing water, which can prevent contamination of a submerged film and reduce the frequency of chemical cleaning while taking a high sludge load.
【0018】[0018]
【課題を解決するための手段】本発明の有機物含有水の
処理方法は、有機物を含む原水を活性汚泥と混合し混合
液とする生物処理工程と、該混合液から浸漬膜にて処理
水を分離する浸漬膜分離工程とを有する有機物含有水の
処理方法において、前記生物処理工程において、原水を
直列に配置された少なくとも3つの処理槽に通水すると
共に、該混合液の水温を20〜37℃に調節して活性汚
泥処理を行うことを特徴とする。The method for treating organic matter-containing water according to the present invention comprises a biological treatment step of mixing raw water containing organic matter with activated sludge to form a mixed solution, and treating the treated water from the mixed solution with an immersion membrane. In the method for treating organic matter-containing water, which comprises a separation membrane separation step for separating, in the biological treatment step, raw water is passed through at least three treatment tanks arranged in series, and the water temperature of the mixed solution is 20 to 37. It is characterized in that activated sludge treatment is performed by adjusting the temperature to ℃.
【0019】請求項2の有機物含有水の処理方法は、請
求項1において、浸漬膜の公称分離孔径が0.01〜
0.4マイクロメートルであることを特徴とする。According to a second aspect of the present invention, in the method for treating organic matter-containing water according to the first aspect, the immersion membrane has a nominal separation pore diameter of 0.01 to.
It is characterized by being 0.4 micrometer.
【0020】請求項3の有機物含有水の処理方法は、請
求項1又は2において、活性汚泥処理のBOD汚泥負荷
を0.15〜0.40kg−BOD/kg−VSS/d
ayとすることを特徴とする。The method for treating water containing organic matter according to claim 3 is the method according to claim 1 or 2, wherein the BOD sludge load of the activated sludge treatment is 0.15 to 0.40 kg-BOD / kg-VSS / d.
It is characterized as ay.
【0021】請求項4の有機物含有水の処理方法は、請
求項1〜3において、浸漬膜分離工程におけるMLSS
濃度が5,000〜20,000mg/Lであることを
特徴とする。The method for treating organic matter-containing water according to claim 4 is the method according to any one of claims 1 to 3, wherein the MLSS in the submerged membrane separation step is performed.
The concentration is 5,000 to 20,000 mg / L.
【0022】請求項5の有機物含有水の処理方法は、請
求項1〜4において、処理槽の少なくとも1つに消泡剤
を添加することを特徴とする。The method for treating organic matter-containing water according to claim 5 is characterized in that, in any one of claims 1 to 4, an antifoaming agent is added to at least one of the treatment tanks.
【0023】請求項6の有機物含有水の処理方法は、請
求項1〜5において、処理水のアンモニア性窒素濃度が
0〜3mg/Lであることを特徴とする。A method for treating organic matter-containing water according to a sixth aspect is characterized in that, in the first to fifth aspects, the concentration of ammonia nitrogen in the treated water is 0 to 3 mg / L.
【0024】請求項7の有機物含有水の処理方法は、請
求項1〜6において、原水のSS濃度とBOD濃度の比
(SS/BOD)が0〜0.5であることを特徴とす
る。The method for treating organic matter-containing water according to claim 7 is characterized in that, in claims 1 to 6, the ratio of the SS concentration to the BOD concentration of the raw water (SS / BOD) is 0 to 0.5.
【0025】請求項8の有機物含有水の処理方法は、請
求項1〜7において、少なくとも1つの処理槽は、微生
物付着担体を保持していることを特徴とする。The method for treating organic matter-containing water according to claim 8 is the method according to any one of claims 1 to 7, characterized in that at least one treatment tank holds a microorganism-attached carrier.
【0026】請求項9の有機物含有水の処理装置は、直
列に配置された少なくとも3つの、活性汚泥を保持する
処理槽と、該処理槽の少なくとも1つの槽内に浸漬され
た、処理水を分離する浸漬膜モジュールと、前記処理槽
に有機物を含む原水を供給する原水供給手段とを備えた
有機物含有水の処理装置であって、該浸漬膜モジュール
に組み込む浸漬膜の少なくとも一部は公称分離孔径が
0.01〜0.4マイクロメートルであり、前記処理槽
の有効総容積が、供給される原水のBOD(計画値)に
対して1.3〜4kg−BOD/m3/dayを満足す
る容積であることを特徴とする。According to a ninth aspect of the present invention, there is provided an apparatus for treating organic matter-containing water, comprising at least three treatment tanks for retaining activated sludge arranged in series, and treated water immersed in at least one of the treatment tanks. What is claimed is: 1. A treatment apparatus for organic substance-containing water, comprising a submerged membrane module for separation and raw water supply means for supplying raw water containing organic matter to the treatment tank, wherein at least a part of the submerged membrane incorporated in the submerged membrane module is nominally separated. The pore size is 0.01 to 0.4 μm, and the effective total volume of the treatment tank satisfies 1.3 to 4 kg-BOD / m 3 / day with respect to the BOD (planned value) of the raw water supplied. It is characterized in that it is a volume.
【0027】請求項10の有機物含有水の処理装置は、
請求項9において、原水又は処理槽内の液の温度調節を
行う手段を有することを特徴とする。A treatment apparatus for organic matter-containing water according to claim 10 is:
In Claim 9, it has a means for adjusting the temperature of the raw water or the liquid in the treatment tank.
【0028】請求項11の有機物含有水の処理装置は、
請求項9又は10において、少なくとも1つの処理槽
は、微生物付着担体を保持していることを特徴とする。An apparatus for treating water containing organic matter according to claim 11 is:
Claim 9 or 10 is characterized in that at least one treatment tank holds a microorganism-attached carrier.
【0029】本発明者が、浸漬膜式活性汚泥法におい
て、汚泥濃度を極力上げずに多くのBODを処理するた
めに、BOD/VSS負荷を0.15〜0.40kg−
BOD/kg−VSS/dayと高く設定し、種々の条
件で連続試験を行ったところ、条件によっては膜の汚染
が急速に進行し、薬品洗浄間隔が1ヶ月以内、更には1
週間以内にする必要が生じた。そして、このときに、膜
汚染が生じた膜の表面を観察すると、前述のようなクロ
ッギングは殆ど生じていなかったが、膜面にわずかなヌ
メリが観察された。即ち、膜面には一見汚染物質が見あ
たらないにも関わらず、濾過差圧が増大したり、膜面を
ゲル状の汚染物質が覆って濾過差圧が増大する現象が観
察された。In order to treat a large amount of BOD without increasing the sludge concentration as much as possible in the submerged membrane activated sludge method, the present inventor applied a BOD / VSS load of 0.15 to 0.40 kg-
BOD / kg-VSS / day was set to a high value, and continuous tests were conducted under various conditions. Depending on the conditions, film contamination rapidly progressed, and the chemical cleaning interval was within 1 month, and even 1
Needed to be within a week. Then, at this time, when the surface of the film where the film was contaminated was observed, the above-mentioned clogging was hardly generated, but a slight slime was observed on the film surface. That is, there was observed a phenomenon that the filtration differential pressure was increased, or the filtration differential pressure was increased by covering the membrane surface with a gel-like contaminant, although the contaminant was not found on the membrane surface.
【0030】これらの現象は、活性汚泥からコロイド様
の有機物が発生したり、活性汚泥フロックにはならず分
散状態で増殖する分散菌が発生したときに多いことか
ら、これらの物質が膜の表面で濃縮され、ゲル状になる
ことで膜の濾過抵抗が増大し、膜汚染が進行するものと
推定された。そして、生じたゲルは一部は剥離し易く、
濾過を停止して空曝気したり、膜を取り出して水洗いす
ることなどで濾過抵抗の一部が回復するが、一部は剥離
し難く、膜の細孔の内部に入り込み、膜の細孔構造の内
側に捕捉されて濾過抵抗を増大させているものと考えら
れた。These phenomena often occur when colloid-like organic matter is generated from the activated sludge, or when dispersed bacteria which do not become activated sludge flocs and grow in a dispersed state are generated. It was presumed that the filtration resistance of the membrane was increased by condensing in the form of a gel and that the membrane was contaminated. And part of the resulting gel is easy to peel off,
Part of the filtration resistance is recovered by stopping filtration and performing air aeration, or by taking out the membrane and washing it with water, but part of it is difficult to peel off and penetrates inside the pores of the membrane, resulting in a pore structure of the membrane. It was thought that they were trapped inside the and increased the filtration resistance.
【0031】このようなゲル汚染を回避する方法とし
て、上述の空曝気や水洗い、又は逆洗などを行うことが
考えられるが、これらの回復操作を行っている間は濾過
処理を行うことができず、また逆洗の場合は逆洗に用い
た水が活性汚泥と混合し、被処理水量が増大するという
問題があり、この結果、処理に必要な膜面積が多くな
り、膜のコストが増大するため、現実的ではなかった。
特に、ゲル汚染が激しくなると、空曝気や逆洗等の頻度
は非常に多く必要となり、より一層必要な膜面積が増大
し、またこれらの手段で回復しない汚染の進行が激しく
なるという問題が生じた。更に、水洗いという手段は、
膜を取り出してスプレーやスポンジで洗浄する必要があ
ることから、現実的ではなく、また剥離が困難な汚染は
このような水洗いでもやはり回復できないという問題が
あった。As a method for avoiding such gel contamination, it is conceivable to carry out the above-mentioned air aeration, washing with water, or backwashing, but a filtration treatment can be carried out during these recovery operations. However, in the case of backwashing, there is a problem that the water used for backwashing is mixed with activated sludge and the amount of water to be treated increases, resulting in an increase in the membrane area required for treatment and an increase in membrane cost. Because it was not realistic.
In particular, when gel contamination becomes severe, air aeration and backwashing are required very frequently, the required membrane area further increases, and there is a problem that the progress of contamination that cannot be recovered by these means becomes severe. It was Furthermore, the means of washing with water is
Since it is necessary to take out the film and wash it with a spray or a sponge, there is a problem that contamination that is not realistic and difficult to remove cannot be recovered even by such water washing.
【0032】本発明では、次のような作用機構でこのよ
うなコロイド様物質や分散菌の生成そのものを抑制し、
さらには一度生成したコロイド様物質の分解を促進する
ことで、上述のゲル汚染や細孔内汚染を防止する。In the present invention, the production itself of such colloidal substances and dispersed bacteria is suppressed by the following action mechanism,
Further, by promoting the decomposition of the colloid-like substance once produced, the above-mentioned gel contamination and pore contamination are prevented.
【0033】 3つ以上の処理槽(曝気槽)を直列に
配置することによる効果
曝気槽を多段に直列に設けることで、基質を摂取する槽
と、摂取した基質を菌体内で代謝する槽とを明確に区分
することができる。そして、これらの槽を活性汚泥が順
次通過するために、活性汚泥が基質を摂取する時間帯
と、摂取した基質を代謝しながら菌体合成を行って増殖
する時間帯が交互に作られることになる。そして、この
ような増殖サイクルを経た場合には、菌体外に産出され
るコロイド様物質の量が少なくなり、コロイド様物質に
よる膜汚染が抑制されることが、本発明による膜汚染防
止の作用機構として考えられる。ただし、この代謝機構
の詳細は明らかにされていない。Effect of arranging three or more treatment tanks (aeration tanks) in series By providing aeration tanks in multiple stages in series, a tank for ingesting a substrate and a tank for metabolizing the ingested substrate in the microbial cells Can be clearly divided. Then, because the activated sludge sequentially passes through these tanks, the time period when the activated sludge ingests the substrate and the time period when the ingested substrate metabolizes and proliferates by microbial cell synthesis are alternately created. Become. Further, when such a growth cycle is passed, the amount of colloid-like substance produced outside the bacterial cells is reduced, and the membrane contamination by the colloid-like substance is suppressed. Considered as a mechanism. However, the details of this metabolic mechanism have not been clarified.
【0034】曝気槽を多段に直列に設けた場合、各段に
おいて平均の滞留時間より短い時間で通過する活性汚泥
と比較的長く留まる活性汚泥が存在するため、直列に並
べる曝気槽の段数は極力多くした方が、より確実にこの
サイクルを作り出せることができ好ましいが、曝気槽の
数が増加するほど構造も複雑となりコストが嵩むため
に、本発明では曝気槽は4〜6槽とすることが最も好ま
しい。When aeration tanks are provided in multiple stages in series, each stage has activated sludge that passes in a time shorter than the average residence time and activated sludge that stays for a relatively long time. The more the number of aeration tanks, the more preferable it is because this cycle can be produced more reliably. However, since the structure becomes more complicated and the cost increases as the number of aeration tanks increases, it is most preferable that the number of aeration tanks is 4 to 6 in the present invention. preferable.
【0035】曝気槽を多段に設けることによる基質摂取
工程と基質代謝工程の繰り返しは、分散菌の抑制にも効
果がある。これは、分散菌は汚泥負荷が高く、液中に溶
解性BODが豊富に存在する場合に多く増殖するが、本
発明のように、基質を豊富に与える環境と基質を与えな
い環境を繰り返すと、分散菌よりも通常の活性汚泥フロ
ックの増殖に有利になるメカニズムが存在することによ
るものと推定される。この理由としては、例えば、分散
菌同士の凝集性の向上や、活性汚泥フロックが分散菌を
取り込みやすい性状に変化している可能性などが考えら
れる。このような分散菌の抑制効果も、直列に並べる曝
気槽の段数が多いほど高いが、上記と同様の理由から、
曝気槽は4〜6槽とするのが好ましい。The repetition of the substrate intake step and the substrate metabolism step by providing the aeration tanks in multiple stages is also effective in suppressing dispersed bacteria. This is because the disperse bacteria have a high sludge load and grow a lot when soluble BOD is abundant in the liquid, but when an environment in which a substrate is abundant and an environment in which a substrate is not abundant are repeated as in the present invention, It is presumed that this is due to the existence of a mechanism that is more advantageous for the growth of ordinary activated sludge flocs than the dispersed bacteria. The reason for this may be, for example, an improvement in the cohesiveness between the disperse bacteria, and a possibility that the activated sludge flocs are changed to a property in which the disperse bacteria are easily taken in. The effect of suppressing such dispersed bacteria is also higher as the number of aeration tanks arranged in series is larger, but for the same reason as above,
The aeration tank is preferably 4 to 6 tanks.
【0036】 水温を20〜37℃とすることによる
効果
活性汚泥がコロイド様物質を産出したり、また分散状態
で増殖するのは水温と密接な関係があり、特に低水温ほ
どコロイド様物質の産出は増加し、また分散菌も増加す
る。これに対して水温を20〜37℃と比較的高く設定
することにより、コロイド様物質の産出、分散状態での
増殖を防止して、膜汚染を防止することができる。The effect of setting the water temperature to 20 to 37 ° C. The activated sludge produces a colloid-like substance, and the fact that it grows in a dispersed state is closely related to the water temperature. Particularly, the lower the water temperature, the more the colloid-like substance is produced. , And dispersal bacteria also increase. On the other hand, by setting the water temperature to a relatively high value of 20 to 37 ° C., it is possible to prevent the production of the colloidal substance and the growth in the dispersed state, and to prevent the membrane contamination.
【0037】 浸漬膜の公称分離孔径(以下、単に
「孔径」と称す。)を0.01〜0.4マイクロメート
ル(μm)とすることによる効果
膜濾過により懸濁物質を除去する作用には、膜表面の細
孔径よりも粗大なSSが膜表面で篩い分けられる作用
と、膜の細孔径と同程度の大きさの微細粒子が膜内部の
入り組んだ流路内で捕捉される作用とがあり、特に後者
の膜内部で生ずる汚染が回復不可能な汚染の主原因であ
ると考えられる。また、比較的孔径の大きなMF膜の場
合には、分散状態で増殖した細菌類も膜の内部まで侵入
して捕捉され、回復不可能な汚染になっていると推定さ
れる。Effect of setting the nominal separation pore size (hereinafter, simply referred to as “pore size”) of the submerged membrane to 0.01 to 0.4 micrometer (μm) has an effect of removing suspended matter by membrane filtration. , The action of sieving SS that is coarser than the pore size of the membrane surface on the membrane surface, and the action of trapping fine particles of the same size as the pore size of the membrane in the intricate channel inside the membrane In particular, it is considered that the contamination generated inside the latter film is the main cause of irrecoverable contamination. Further, in the case of an MF membrane having a relatively large pore size, it is presumed that bacteria that have proliferated in a dispersed state also invade the inside of the membrane and are captured, resulting in irrecoverable contamination.
【0038】このように膜の内部に侵入して回復不可能
な汚染を引き起こす物質は、孔径が大きい膜に対して、
より深部まで侵入すると考えられる。膜の深部で目詰ま
りが生ずると、それまで膜の細孔を透過して処理水側へ
流出していた比較的分子量の小さいコロイド様物質も、
細孔内の流路が目詰まり物質により狭められたことで、
膜の細孔を透過できなくなり、やはり細孔内に捕捉され
て新たな目詰まり物質となる。浸漬膜下部からの曝気に
よる膜表面の撹拌流も、このような細孔の内部には到達
しないために、細孔内部ではいわゆるデッドエンド濾過
の状態となり、細孔内で閉塞した物質は剥離されること
なく蓄積し、急速に回復不可能な膜汚染を進行させる。As described above, the substance that enters the inside of the membrane and causes irrecoverable contamination is
It is considered that it penetrates deeper. When clogging occurs in the deep part of the membrane, colloidal substances with a relatively small molecular weight that had permeated through the pores of the membrane and flowed out to the treated water side,
Since the flow path inside the pores is narrowed by the clogging substance,
It will not be able to permeate through the pores of the membrane and will also be trapped within the pores and become a new clogging material. The agitated flow on the membrane surface due to aeration from the lower part of the submerged membrane does not reach the inside of such pores, so a so-called dead-end filtration state occurs inside the pores, and the substances clogged in the pores are separated. It accumulates without any action and rapidly progresses to irrecoverable membrane fouling.
【0039】膜孔径を0.4μm以下、好ましくは0.
3μm以下、より好ましくは0.2μm以下とすること
で、このようなコロイド様物質を比較的膜の表層に近い
部分で阻止し、細孔の内部へ侵入することを防止するこ
とができる。このため、一度目詰まりしたコロイド様物
質や分散菌も膜表面の撹拌流によって剥離される確率が
高まる。また上述のように細孔の内部でデッドエンド濾
過の状態になったとしても、比較的膜の表層に近いとこ
ろで生ずるために、目詰まり物質が入り込める領域は膜
の表層に制限されることにより、これらの目詰まり物質
による濾過圧力の増大を少なく抑えることができるよう
になる。The membrane pore size is 0.4 μm or less, preferably 0.
By setting the thickness to 3 μm or less, and more preferably 0.2 μm or less, it is possible to prevent such a colloidal substance in a portion relatively close to the surface layer of the film and prevent it from entering the inside of the pores. For this reason, the probability that even once clogged colloidal substances and dispersed bacteria are separated by the agitation flow on the membrane surface is increased. Further, as described above, even if the dead-end filtration occurs inside the pores, since it occurs relatively close to the surface layer of the membrane, the area where the clogging substance can enter is limited to the surface layer of the membrane. It becomes possible to suppress an increase in filtration pressure due to these clogging substances to a small extent.
【0040】 処理槽(曝気槽)に微生物付着担体を
保持させることによる効果
本発明で問題となるコロイド様物質の一部はSRT(汚
泥滞留時間)の長い環境で成育する微生物によって分解
される。流入する有機物の処理を主に行う活性汚泥は、
高い汚泥負荷をかけているために、SRTは通常5〜2
0日となる。一方、担体表面に付着して成育する微生物
は、浮遊している活性汚泥と共に引き抜かれることがな
いため、増殖速度の遅い微生物も増殖することができ
る。このように増殖速度の遅い微生物を担体表面で増殖
させることで、浮遊している活性汚泥では分解できない
コロイド様物質を分解できる微生物を成育させることが
できるようになり、コロイド様物質による膜汚染を低減
することができる。Effect of Retaining Carrier for Adhering Microorganisms in Treatment Tank (Aeration Tank) A part of the colloid-like substance which is a problem in the present invention is decomposed by microorganisms grown in an environment having a long SRT (sludge retention time). Activated sludge, which mainly treats inflowing organic matter,
SRT is usually 5 to 2 due to high sludge load
It will be 0th day. On the other hand, the microorganisms that adhere to the surface of the carrier and grow are not extracted together with the suspended activated sludge, and thus microorganisms having a slow growth rate can also grow. By growing microorganisms with a slow growth rate on the carrier surface in this way, it becomes possible to grow microorganisms capable of decomposing colloidal substances that cannot be decomposed by suspended activated sludge, and to prevent membrane contamination by colloidal substances. It can be reduced.
【0041】なお、担体が投入されている槽に多量のB
ODが常時流入すると、担体表面でBODを分解する菌
が多量に増殖し、一定以上増殖した菌は担体表面から剥
離していく。従って、増殖速度の遅い微生物も同時に担
体表面から剥離させることになり、担体を添加している
効果は薄れてしまう。このような事態を避けるために、
担体を添加している水槽に流入する溶解性BODの負荷
は、この水槽中に保持しているVSS量に対して0〜
0.1kg−BOD/kg−VSS/day、より好ま
しくは0〜0.05kg−BOD/kg−VSS/da
yとするのが良い。ただし、複数の水槽に担体が投入さ
れている場合は、少なくとも一部の担体がこの役割を担
えば良いわけであるから、負荷の高い他の水槽に投入さ
れている担体が存在することは構わない。A large amount of B is added to the tank in which the carrier is put.
When OD constantly flows in, a large amount of BOD-degrading bacteria grow on the surface of the carrier, and bacteria that grow above a certain level are separated from the surface of the carrier. Therefore, microorganisms having a slow growth rate are also peeled off from the carrier surface at the same time, and the effect of adding the carrier is diminished. To avoid this situation,
The load of soluble BOD flowing into the water tank containing the carrier is 0 to the amount of VSS retained in this water tank.
0.1 kg-BOD / kg-VSS / day, more preferably 0-0.05 kg-BOD / kg-VSS / da.
It is good to say y. However, when the carriers are loaded in a plurality of aquariums, at least a part of the carriers only need to play this role, so it is acceptable that there are carriers loaded in other aquariums with a high load. Absent.
【0042】また、このような担体は分散菌を抑制する
効果もある。この効果は、担体の構造内や担体表面の生
物膜で分散菌を吸着することによるものと考えられる。
従って、担体はこのような分散菌を担体構造の内部で捕
捉することができるように、多孔質であることがより好
ましい。Further, such a carrier also has an effect of suppressing dispersed bacteria. This effect is considered to be due to the fact that the dispersed bacteria are adsorbed in the structure of the carrier or in the biofilm on the surface of the carrier.
Therefore, the carrier is more preferably porous so that such dispersed bacteria can be trapped inside the carrier structure.
【0043】[0043]
【発明の実施の形態】以下に本発明の有機物含有水の処
理方法及び処理装置の実施の形態を詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the method and apparatus for treating organic matter-containing water of the present invention will be described in detail below.
【0044】本発明においては、活性汚泥を保持する処
理槽(曝気槽)を3槽以上直列に配置して原水の処理を
行うが、この直列に配置される曝気槽の数は3〜8段と
するのが良く、特に4〜6段とすることが好ましい。な
お、本発明において、直列n段目の曝気槽の上流には、
直列に並んだ(n−1)槽の曝気槽があり、n段目の曝
気槽は複数槽並列に設けられていても良い。各段の曝気
槽容積(並列に曝気槽が配置されている段はその段に並
列配置された曝気槽の合計容積)は、均等に近いことが
好ましく、各段の曝気槽容積の平均値と比べたときに、
各段の曝気槽容積は平均値の0.6〜1.4倍、特に
0.8〜1.2倍の間にあることが好ましい。但し、p
H調整やポンプピット、分配槽等の目的で設けられる小
さな水槽は考慮しない。In the present invention, three or more treatment tanks (aeration tanks) for holding activated sludge are arranged in series to treat raw water. The number of aeration tanks arranged in series is 3 to 8 stages. Is preferable, and it is particularly preferable that the number of stages is 4 to 6. In the present invention, upstream of the n-th stage aeration tank in series,
There are (n-1) aeration tanks arranged in series, and a plurality of n-th aeration tanks may be provided in parallel. It is preferable that the aeration tank volume of each stage (the total volume of the aeration tanks arranged in parallel in the stage where the aeration tanks are arranged in parallel is close to) is equal to the average value of the aeration tank volume of each stage. When compared,
The volume of the aeration tank in each stage is preferably 0.6 to 1.4 times, particularly 0.8 to 1.2 times the average value. However, p
Small water tanks provided for the purpose of H adjustment, pump pits, distribution tanks, etc. are not considered.
【0045】これらの曝気槽のうち、膜を浸漬する膜浸
漬槽は最後段にある必要はなく、何段目に浸漬膜を設置
しても良いが、原水が主に流入する水槽以外の水槽が好
ましく、原水が主に流入する水槽の2段目以降下流の水
槽、即ち、原水が流入する水槽から少なくとも1槽空け
た後段の水槽に設けることがより好ましい。また、脱窒
や脱リンなどを目的とする嫌気槽が設けてあっても良
い。Of these aeration tanks, the membrane immersion tank for immersing the membrane does not have to be at the last stage, and the immersion membrane may be installed at any stage, but a water tank other than the water tank into which raw water mainly flows. Is preferable, and it is more preferable to provide the water tank downstream of the second and subsequent stages of the water tank into which the raw water mainly flows, that is, to the water tank at the stage subsequent to the water tank into which the raw water flows. Further, an anaerobic tank for the purpose of denitrification or dephosphorization may be provided.
【0046】曝気槽の水温は20〜37℃とするのが好
ましく、特に、25〜35℃とするのが好ましい。この
温度範囲は、活性汚泥に対して従来よりも高い汚泥負荷
をかけたときに、分散菌が増殖したり、コロイド様有機
物が増加して膜が目詰まりする問題を解決するために極
めて重要である。The water temperature in the aeration tank is preferably 20 to 37 ° C, and more preferably 25 to 35 ° C. This temperature range is extremely important for solving the problem that when the sludge load applied to the activated sludge is higher than before, dispersal bacteria grow and the colloid-like organic matter increases and the membrane becomes clogged. is there.
【0047】一般に、処理する有機物含有水の水温は変
動することがあるため、第1段目の曝気槽の前段に適切
な容量の調整槽を設けて、水温の変動を緩和するのが好
ましい。また、この結果得られる水温が20℃を下回る
場合には、蒸気やヒーターや熱交換器などを用いて加温
し、37℃を上回る場合には冷却塔や熱交換器などを用
いて冷却する。これらの加温や冷却は原水に対して行っ
ても良く、曝気槽内の活性汚泥に対して行っても良い。Generally, the water temperature of the organic substance-containing water to be treated may fluctuate, so it is preferable to provide an adjusting tank of an appropriate capacity in front of the first aeration tank to mitigate the fluctuation of the water temperature. When the resulting water temperature is lower than 20 ° C, it is heated by using steam, a heater or a heat exchanger, and when it exceeds 37 ° C, it is cooled by using a cooling tower or a heat exchanger. . These heating and cooling may be performed on the raw water or the activated sludge in the aeration tank.
【0048】上記範囲外の水温も一時的には許容され、
特に流入するBOD負荷が低いときには、より低水温が
許容されるが、設計能力の例えば75%以上を処理する
ような場合には、本発明の水温から逸脱する期間は1ヶ
月の内30%以内、より好ましくは15%以内にするべ
きであり、また連続して本発明の水温を逸脱する期間は
7日以内、より好ましくは3日以内にするのが好適であ
る。A water temperature outside the above range is temporarily allowed,
In particular, when the inflowing BOD load is low, a lower water temperature is allowed, but in the case where, for example, 75% or more of the design capacity is processed, the period of deviation from the water temperature of the present invention is within 30% of one month. More preferably, it should be within 15%, and the period of continuously deviating from the water temperature of the present invention is within 7 days, and more preferably within 3 days.
【0049】各曝気槽では溶存酸素(DO)が過不足無
く検出されるよう、曝気量を調整する手段が必要であ
り、流量調整バルブ及び流量計が通常用いられる。この
とき、運転状況によって各段で必要とされる酸素量が変
化するため、定期的に各段の曝気槽のDOを測定し、曝
気量を調整する必要がある。従って、各段の曝気槽にお
ける散気装置は容量に余裕を持って設置することが好ま
しく、各段の曝気槽の散気装置の最大酸素供給能力の合
計が本発明を用いない場合に比べて10〜80%大きい
容量、より好ましくは20〜50%大きい容量となるよ
うに設計することが好ましい。但し、必要空気の総量は
変わらず、分配比だけが変わるため、ブロワの容量は本
来必要とされる送気能力に比べて、特別に大きくする必
要はない。In each aeration tank, a means for adjusting the amount of aeration is required so that dissolved oxygen (DO) can be detected without excess or deficiency, and a flow rate adjusting valve and a flow meter are usually used. At this time, the amount of oxygen required at each stage changes depending on the operating conditions, so it is necessary to periodically measure the DO of each stage of the aeration tank and adjust the amount of aeration. Therefore, it is preferable to install the air diffuser in each stage of the aeration tank with a sufficient capacity, and the total maximum oxygen supply capacity of the air diffusers in each stage of the aeration tank is more than that in the case where the present invention is not used. It is preferable to design so that the capacity is 10 to 80% larger, and more preferably 20 to 50% larger. However, since the total amount of required air does not change and only the distribution ratio changes, the capacity of the blower does not need to be particularly larger than the originally required air supply capacity.
【0050】処理する有機物含有水は、直列に配置され
た曝気槽のどの段に流入するように構成しても良いが、
通常は最上流の曝気槽に流入させる。但し、原水の一部
を2段目以降の曝気槽に分割注入することで、1段目に
配置する散気装置の容量を減らし、溶解効率上、また施
工上最適な容量の散気装置とすることもできる。The organic substance-containing water to be treated may be configured to flow into any stage of the aeration tanks arranged in series.
Usually, it is made to flow into the uppermost aeration tank. However, by partially injecting part of the raw water into the aeration tanks of the second and subsequent stages, the capacity of the air diffuser placed in the first stage is reduced, and the air diffuser with the optimal capacity for dissolution efficiency and construction is installed. You can also do it.
【0051】このような分割注入を行った場合には、後
述の如く、膜浸漬槽で濃縮分離されて返送される汚泥
が、原水と混合して完全に希釈される前の状態で曝気槽
に保持しておくことができるようになるため、1段目の
曝気槽に原水の全量を流入させた場合と比べると、膜浸
漬槽での汚泥濃度は同一に保ちつつ、系全体での汚泥保
持量を高く保つことができるようになる。そして、この
結果、BOD汚泥負荷を高めることなく、系全体に対す
るBOD容積負荷を高める効果もある。When such a split injection is carried out, as will be described later, the sludge concentrated and separated in the membrane dipping tank and returned to the aeration tank in a state before being mixed with the raw water and completely diluted. Since it becomes possible to retain the sludge, compared to the case where the entire amount of raw water is flown into the first aeration tank, the sludge concentration in the membrane immersion tank is kept the same while the sludge retention in the entire system is maintained. The amount can be kept high. As a result, there is also an effect of increasing the BOD volume load on the entire system without increasing the BOD sludge load.
【0052】このような原水の分割注入を行う場合は、
2段目以降の曝気槽への原水供給手段と共に、その流量
の調整手段、及び流量計等を設けることが望ましい。When performing such split injection of raw water,
It is desirable to provide raw water supply means to the aeration tank of the second and subsequent stages, as well as means for adjusting the flow rate, a flow meter, and the like.
【0053】また、最後段の曝気槽からは通常1段目の
曝気槽に汚泥が返送されるが、返送汚泥は2段目以降の
曝気槽に分割して返送されても良い。汚泥の返送手段
は、ポンプによるものや水位差を利用するもの等、いず
れの手段でも良い。汚泥返送量は従来から行われている
ように流入原水量の0.5〜10倍程度が採用される
が、各段の曝気槽における汚泥濃度を極力均一化し、一
方で汚泥返送に要する動力を節約する観点から、流入原
水量の2〜5倍の汚泥返送量とすることが好ましい。The sludge is usually returned from the last stage aeration tank to the first stage aeration tank, but the returned sludge may be divided and returned to the second and subsequent aeration tanks. The sludge returning means may be any means such as using a pump or utilizing a water level difference. The amount of sludge returned is about 0.5 to 10 times that of the inflowing raw water as is conventionally done, but the sludge concentration in each aeration tank is made as uniform as possible, while the power required for sludge return is increased. From the viewpoint of saving, it is preferable that the sludge return amount is 2 to 5 times the inflowing raw water amount.
【0054】本発明では、BOD汚泥負荷を0.15〜
0.40kg−BOD/kg−VSS/dayとするの
が好ましく、特に0.20〜0.35kg−BOD/k
g−VSS/dayとするのが好ましい。この範囲より
も低い負荷の場合には、本発明を採用しなくても従来の
浸漬膜式活性汚泥法で対応可能である。また、この範囲
を超える負荷に対しては、本発明の効果を超えて、分散
菌やコロイド様物質が発生し、膜汚染を引き起こすこと
となる。In the present invention, the BOD sludge load is 0.15
It is preferably 0.40 kg-BOD / kg-VSS / day, particularly 0.20 to 0.35 kg-BOD / k.
It is preferably g-VSS / day. When the load is lower than this range, the conventional immersion membrane type activated sludge method can be used without adopting the present invention. If the load exceeds this range, the effects of the present invention will be exceeded, and dispersal bacteria or colloidal substances will be generated, causing membrane contamination.
【0055】上記BOD汚泥負荷の範囲外のBOD汚泥
負荷も一時的であれば許容され、特に低いBOD汚泥負
荷は何ら悪影響を及ぼさない。但し低いBOD汚泥負荷
が長期間続く場合は汚泥発生量が減少し、また活性汚泥
の自己消化の進行により、汚泥濃度が低下しがちにな
る。このような場合には汚泥の引抜きを停止し、また間
欠曝気を行うことで自己消化を抑制するなどして、汚泥
濃度を極力維持することが好ましい。A BOD sludge load outside the range of the BOD sludge load is also allowed if it is temporary, and a particularly low BOD sludge load has no adverse effect. However, when the low BOD sludge load continues for a long period of time, the sludge generation amount decreases, and the sludge concentration tends to decrease due to the progress of self-extinguishing of the activated sludge. In such a case, it is preferable to maintain the sludge concentration as much as possible, for example, by stopping the extraction of sludge and performing intermittent aeration to suppress self-extinguishing.
【0056】一方、上記BOD汚泥負荷の範囲を超える
汚泥負荷は10日以上を超えないことが好ましく、特に
4日以上を超えないことが望ましい。高い汚泥負荷にお
いて発生する分散菌やコロイド様物質は、汚泥負荷が高
まった後数日を経てから発生量が多くなり、その後も高
い汚泥負荷が継続した場合にますます発生量が増大する
傾向にある。従って、これらの膜汚染物質が発生し始め
た初期の内に本発明の汚泥負荷の範囲に戻せば、深刻な
膜汚染は防止される場合が多い。On the other hand, it is preferable that the sludge load exceeding the BOD sludge load range does not exceed 10 days or more, particularly preferably 4 days or more. Dispersed bacteria and colloid-like substances generated under high sludge load increase in quantity a few days after the sludge load increases, and when the high sludge load continues thereafter, the amount of generation tends to increase even more. is there. Therefore, if the sludge load of the present invention is returned to the range of the sludge load in the early stage when these membrane contaminants start to be generated, serious membrane contamination is often prevented.
【0057】本発明では膜浸漬槽におけるMLSS濃度
を5,000〜20,000mg/Lとすることが好ま
しく、特に8,000〜15,000mg/Lとするの
が好ましい。In the present invention, the MLSS concentration in the membrane dipping tank is preferably 5,000 to 20,000 mg / L, and particularly preferably 8,000 to 15,000 mg / L.
【0058】前述の如く、浸漬膜下方からの曝気量を増
大させることで膜面における活性汚泥の濃縮を防止し、
より高い汚泥濃度を達成することも可能であるが、この
場合には前述のように膜の揺動や膜同士の擦れ合い、膜
の接着部への繰り返し応力の負荷、活性汚泥自体や活性
汚泥中の夾雑物と膜との物理的接触等の現象が促進さ
れ、膜が支持体から剥離して所定のSS分離性能を発揮
できなくなったり、膜の強度が劣化して膜が破断した
り、膜の細孔を形成する構造が変形することで表面に開
口する細孔の数や面積が減少して濾過圧力が高くなった
り膜汚染物質の影響を受けやすくなったりする問題が促
進され、膜寿命が短くなる。As described above, the concentration of activated sludge on the membrane surface is prevented by increasing the amount of aeration from below the submerged membrane,
It is possible to achieve a higher sludge concentration, but in this case, as described above, the membrane swings or the membranes rub against each other, repeated stress is applied to the adhesive part of the membrane, the activated sludge itself or the activated sludge. Phenomena such as physical contact between the foreign matter and the film are promoted, the film cannot be separated from the support to exhibit the predetermined SS separation performance, or the strength of the film deteriorates and the film breaks, Deformation of the structure that forms the pores of the membrane reduces the number and area of pores that open on the surface, increasing the filtration pressure and increasing the sensitivity to the effects of membrane contaminants. The life is shortened.
【0059】これに対して、本発明では、より高負荷で
建設コストの安価な装置を指向するために、MLSS濃
度を高める方法を取った場合に生ずるこのような問題を
回避し、MLSS濃度を上げることなく高負荷を達成す
る方法を提供するものである。この結果、従来よりも小
型の装置を達成しつつ、上述のような膜寿命の低下を防
止することができる。On the other hand, in the present invention, such a problem that occurs when a method of increasing the MLSS concentration is adopted in order to aim at a device having a higher load and a lower construction cost, and the MLSS concentration is reduced. It provides a way to achieve high loads without raising. As a result, it is possible to prevent a reduction in the film life as described above, while achieving a device smaller than the conventional one.
【0060】なお、上記範囲よりもMLSS濃度が低い
場合には直接膜汚染の原因とはならないため、上述の範
囲を下回るMLSS濃度も許容されるが、この場合、系
全体で保持するVSSの量が減少し、汚泥負荷が高くな
りがちである。汚泥負荷が上述の範囲にある限り、一時
的にMLSS濃度が低いことは何ら不都合を生じない。When the MLSS concentration is lower than the above range, it does not directly cause the membrane fouling, so that the MLSS concentration below the above range is acceptable, but in this case, the amount of VSS retained in the entire system. And the sludge load tends to increase. As long as the sludge load is within the above range, a temporary low MLSS concentration does not cause any inconvenience.
【0061】また、MLSS濃度が上記範囲を超えて高
くなった場合にも、曝気ブロワに余裕がある場合には一
時的に浸漬膜下部から曝気量を増大させたり、薬品洗浄
頻度を高めることなどにより対処することが可能である
が、長期間このような操作を継続すると膜寿命が短くな
り、本発明の効果が失われるため、上記範囲を超えたM
LSS濃度で運転する期間は1年間のうち好ましくは2
ヶ月以内、より好ましくは3週間以内とすることがよ
い。Even when the MLSS concentration exceeds the above range, if the aeration blower has a margin, temporarily increase the amount of aeration from the lower part of the submerged film or increase the frequency of chemical cleaning. However, if such an operation is continued for a long time, the life of the membrane is shortened and the effect of the present invention is lost.
The period of operation at LSS concentration is preferably 2 in one year.
Within a month, more preferably within 3 weeks.
【0062】本発明はこのように膜浸漬槽のMLSS濃
度を低く維持しつつ、汚泥負荷を高く保つことで効果を
発揮するが、原水より流入するSSが多い場合には、有
機物の除去に有効な微生物以外のSSが系内に留まり、
膜浸漬槽におけるMLSS濃度を高めることになる。こ
のように蓄積するSSには無機のSSとVSSがあり、
特にこのように不活性なVSSが流入した場合には、本
来の処理に有効な微生物由来のVSSと、分析による判
別を行うことが難しくなる。このように、処理に対して
有効ではないVSSが系内に蓄積している場合、曝気槽
内のVSSとして測定される物質のうち、処理に有効な
微生物の割合は低下することになる。従って、上記の汚
泥負荷の範囲内で運転したとしても、処理に有効なVS
Sに対しての汚泥負荷は高くなるため、汚泥負荷の限界
は低下する。The present invention is effective by keeping the MLSS concentration in the membrane dipping tank low while keeping the sludge load high, but it is effective for removing organic matter when a large amount of SS flows in from the raw water. SS other than simple microorganisms stay in the system,
It will increase the MLSS concentration in the membrane immersion tank. There are inorganic SS and VSS in the SS that accumulates like this,
In particular, when such an inactive VSS flows in, it becomes difficult to distinguish the VSS derived from the microorganism effective for the original treatment by analysis. As described above, when VSS that is not effective for treatment is accumulated in the system, the proportion of microorganisms effective for treatment in the substances measured as VSS in the aeration tank decreases. Therefore, even if operated within the above sludge load range, VS that is effective for treatment
Since the sludge load on S is high, the sludge load limit is low.
【0063】また、流入するSSが無機性のSSであっ
た場合にも、膜浸漬槽におけるMLSS濃度の限界はや
や高い値が許容される傾向があるもののほぼ同等であ
り、一方、汚泥のVSS/SS比は低下するため、この
ようなSSが流入しない場合に比べて同等の汚泥負荷を
保つためには、流入するBOD負荷を低くせざるを得
ず、この場合には、本発明による装置の小型化は達成し
得ない。Further, even when the inflowing SS is an inorganic SS, the limit of the MLSS concentration in the membrane dipping tank is almost the same although there is a tendency that a slightly higher value is allowed, while the sludge VSS is increased. Since the / SS ratio decreases, in order to maintain the same sludge load as compared with the case where such SS does not flow, the inflowing BOD load must be lowered, and in this case, the device according to the present invention is used. The miniaturization of can not be achieved.
【0064】このような現象を回避し、小型の装置を実
現するためには、原水由来のSSを極力流入させないこ
とが望ましく、原水中の溶解性BODに対するSSの割
合を0〜0.5g−SS/g−BOD、より好ましくは
0〜0.2g−SS/g−BODとするのが好ましい。
このような原水SS/BOD比を達成するためには、活
性汚泥処理に先立ち、必要に応じて凝集処理等を行った
後、原水中のSSを沈殿や加圧浮上等の手段で分離除去
するのが好ましい。In order to avoid such a phenomenon and to realize a small-sized apparatus, it is desirable that SS derived from raw water is not allowed to flow in as much as possible, and the ratio of SS to soluble BOD in raw water is 0 to 0.5 g-. It is preferably SS / g-BOD, more preferably 0 to 0.2 g-SS / g-BOD.
In order to achieve such a raw water SS / BOD ratio, prior to the activated sludge treatment, if necessary, coagulation treatment or the like is performed, and then SS in the raw water is separated and removed by means such as sedimentation or pressure floating. Is preferred.
【0065】本発明において、膜浸漬槽に用いる浸漬膜
の材質には特に制限はなく、従来公知のポリエチレンや
ポリスルフォン、ポリエーテルスルフォン、ポリフッ化
ビニリデン、酢酸セルロースやこれらの誘導体等種々の
材質が適用可能である。これらのうち、膜分離性能や膜
汚染防止効果の観点から、ポリエチレンや塩素化ポリエ
チレン、ポリオレフィンのいずれも親水化処理を施した
ものが特に好ましい。膜の形状は中空糸膜、管状(チュ
ーブラー)膜、平膜など従来公知のいずれの形状でも良
い。In the present invention, the material of the dipping membrane used in the membrane dipping tank is not particularly limited, and various materials such as conventionally known polyethylene, polysulfone, polyether sulfone, polyvinylidene fluoride, cellulose acetate and derivatives thereof can be used. Applicable. Among these, from the viewpoint of the membrane separation performance and the effect of preventing membrane contamination, polyethylene, chlorinated polyethylene, and polyolefin that are hydrophilized are particularly preferable. The shape of the membrane may be any conventionally known shape such as a hollow fiber membrane, a tubular (tubular) membrane, or a flat membrane.
【0066】分離膜の分画性能(孔径)は前述の理由か
ら、0.01〜0.4μmとするのが好ましく、更に好
ましいのは0.02〜0.2μmである。The separation performance (pore size) of the separation membrane is preferably 0.01 to 0.4 μm, more preferably 0.02 to 0.2 μm for the above-mentioned reason.
【0067】浸漬膜の有効膜面積は、使用膜に適したフ
ラックスに基づいて算出されるが、フラックスとしては
0.1〜1.5m3/m2/dayが一般的であり、特
に0.2〜0.7m3/m2/dayが良い。The effective film area of the dipping film is calculated based on the flux suitable for the film to be used, but the flux is generally 0.1 to 1.5 m 3 / m 2 / day, and particularly, 2 to 0.7 m 3 / m 2 / day is good.
【0068】このような浸漬膜の曝気空気量は従来と同
様、膜モジュールの底面積又は膜浸漬槽曝気部底面積
(m2)当たり、30〜250Nm3/hrとするのが
良く、特に40〜100Nm3/hrが好適である。浸
漬膜下部に設ける散気管は孔明きパイプや微細気泡の散
気管、その他従来公知のいずれの散気管でも良いが、通
常3〜10mmφの孔を明けた10〜50mmφのパイ
プが用いられ、また散気孔目詰まり防止のために適当な
散気管洗浄機構が設けられる。As in the conventional case, the amount of aerated air in such a submerged membrane is preferably 30 to 250 Nm 3 / hr per bottom area of the membrane module or bottom area (m 2 ) of the aeration section of the membrane immersion tank, and particularly 40. -100 Nm < 3 > / hr is suitable. The air diffusing tube provided in the lower part of the immersion membrane may be a perforated pipe, a fine air bubble diffusing tube, or any other conventionally known diffusing tube, but normally a 10 to 50 mmφ pipe with a 3 to 10 mmφ hole is used, and a diffusing tube is also used. A suitable air diffuser cleaning mechanism is provided to prevent pore clogging.
【0069】膜浸漬槽は従来と同様、曝気部と非曝気部
を設けることで、エアリフト作用による旋回流を生じさ
せる方式とするのが好ましく、特に旋回流を促進するた
めに曝気部と非曝気部をバッフル板で仕切ることが好ま
しい。As in the conventional case, the membrane dipping tank is preferably of a type in which a swirl flow is generated by an air lift action by providing an aeration part and a non-aeration part. Particularly, in order to promote the swirl flow, the aeration part and the non-aeration part are preferably used. It is preferable to partition the part with a baffle plate.
【0070】本発明では、このような浸漬膜の膜透過水
が処理水として取り出される。この処理水の取出方式に
は特に制限はなく、ポンプで引き出しても良く、また、
膜浸漬槽内の水圧を利用して取り出しても良い。膜透過
水を取り出す際には、連続的に取り出す方法、間欠的に
取り出す方法、また膜濾過の間に間欠的に清水又は薬液
を逆流させて逆洗を行う方法等のいずれでも良いが、特
に、5〜30分の濾過を継続する毎に1〜3分の濾過停
止時間を設ける間欠濾過方式が好ましい。In the present invention, the permeated water of such an immersion membrane is taken out as treated water. There is no particular limitation on the method of taking out the treated water, and it may be withdrawn by a pump.
You may take out using the water pressure in a membrane immersion tank. When taking out the membrane-permeated water, any of a continuous taking-out method, an intermittent taking-out method, a method of intermittently back-flowing fresh water or a chemical solution during membrane filtration and back-washing, etc. may be used. The intermittent filtration method in which a filtration stop time of 1 to 3 minutes is provided every time filtration is continued for 5 to 30 minutes is preferable.
【0071】浸漬膜の洗浄方法は、膜モジュールを膜浸
漬槽から吊り上げて薬品洗浄水槽に移動し、薬品洗浄を
行う方法、特開平11−28468号公報に記載される
ように膜浸漬槽内の汚泥を抜き出した後、膜浸漬槽に洗
浄薬液を投入して薬品洗浄を行う方法、膜モジュールを
活性汚泥中に浸漬したまま、洗浄薬液を透過水側から逆
流させて膜洗浄を行う方法等、公知のいずれの方法も用
いることができる。The method for cleaning the immersion membrane is as follows: the membrane module is lifted from the membrane immersion tank and moved to a chemical cleaning water tank to perform chemical cleaning, as described in JP-A No. 11-28468. After extracting the sludge, a method of introducing a cleaning chemical solution into the membrane dipping tank for chemical cleaning, a method of performing a membrane cleaning by allowing the cleaning chemical solution to flow backward from the permeate side while the membrane module is immersed in the activated sludge, etc. Any known method can be used.
【0072】本発明においては、膜汚染の防止により、
このような膜の薬品洗浄は通常の場合2〜6ヶ月に1回
程度で安定な処理を行える。In the present invention, the prevention of film contamination results in
In general, the chemical cleaning of such a membrane can be performed once every 2 to 6 months for stable treatment.
【0073】本発明では、複数の曝気槽のうちの少なく
とも1槽に微生物付着担体を保持させることが、前述の
微生物の増殖、分散菌の抑制の面で好ましい。In the present invention, it is preferable that at least one of the plurality of aeration tanks holds the microorganism-attached carrier in terms of the growth of the above-mentioned microorganisms and the suppression of dispersed bacteria.
【0074】ここで使用される担体としては、立方体、
筒状、球状、歯車状等の形状を問わず、材質もナイロ
ン、ウレタン、PVA(ポリビニルアルコール)、PE
G(ポリエチレングリコール)、セルロース等公知のい
ずれのもので良い。担体の比重は曝気槽内での撹拌を良
好にするため、1.0〜1.1程度が好適であるが、特
に限定しない。担体の大きさは、長辺又は直径が1〜2
0mmのものを用いることができ、特に2〜6mmのも
のが好適に用いられる。The carrier used here is a cube,
Regardless of the shape such as cylindrical, spherical, gear, etc., the material is nylon, urethane, PVA (polyvinyl alcohol), PE
Any known material such as G (polyethylene glycol) and cellulose may be used. The specific gravity of the carrier is preferably about 1.0 to 1.1 in order to improve the stirring in the aeration tank, but is not particularly limited. As for the size of the carrier, the long side or the diameter is 1-2.
Those having a diameter of 0 mm can be used, and those having a diameter of 2 to 6 mm are particularly preferably used.
【0075】担体が投入される曝気槽には、原水が極力
流入しないことが望ましいが、原水の投入を完全に禁止
する必要はないため、原水の流入手段が設けてあっても
良い。It is desirable that the raw water does not flow into the aeration tank into which the carrier is fed as much as possible, but it is not necessary to completely prohibit the introduction of the raw water, and therefore a raw water inflow means may be provided.
【0076】担体の投入量は、曝気槽の全体に対して、
見掛け容積で1〜50%とするのが好ましく、2〜20
%とするのがより好ましい。The amount of the carrier to be charged is based on the total amount of the aeration tank.
The apparent volume is preferably 1 to 50%, 2 to 20
% Is more preferable.
【0077】担体を投入した曝気槽には、担体の流出を
防止するために、担体の分離手段を設ける。The aeration tank containing the carrier is provided with a carrier separating means in order to prevent the carrier from flowing out.
【0078】この担体の分離手段としては、担体より小
さな目開きのウェッジワイヤースクリーンを用いるのが
効果的である。担体がウェッジワイヤースクリーンを閉
塞するのを防止するために、このスクリーンは旋回流の
上部等の流れの激しい場所に設置するか、スクリーンの
下部から曝気を行うことが好ましい。このスクリーンを
通して担体が除かれた活性汚泥は次の段の曝気槽へ送ら
れる。As a means for separating the carrier, it is effective to use a wedge wire screen having an opening smaller than that of the carrier. In order to prevent the carrier from blocking the wedge wire screen, this screen is preferably installed at a place where the flow is strong such as the upper part of the swirling flow, or aeration is performed from the lower part of the screen. The activated sludge from which the carrier has been removed through this screen is sent to the aeration tank of the next stage.
【0079】なお、前述の如く、この担体を添加してい
る曝気槽に流入する溶解性BODの負荷は、この曝気槽
中に保持しているVSS量に対して0〜0.1kg−B
OD/kg−VSS/day、より好ましくは0〜0.
05kg−BOD/kg−VSS/dayとするのが好
ましい。As described above, the load of soluble BOD flowing into the aeration tank to which this carrier is added is 0 to 0.1 kg-B with respect to the VSS amount held in this aeration tank.
OD / kg-VSS / day, more preferably 0 to 0.
It is preferably set to 05 kg-BOD / kg-VSS / day.
【0080】本発明では、従来法に比べて発泡しやすい
傾向にあり、これは特に汚泥負荷が従来法より高いこ
と、また原水が主に流入する水槽で特に平均よりも高い
負荷がかかるために生ずる微生物的作用によるものと思
われる。また、多段の曝気槽における発泡量が異なる場
合が多い。このため、いずれの曝気槽から発泡しても効
率的に消泡できる手段を備えることが望ましい。例え
ば、曝気槽に消泡剤の注入手段を設けたり、曝気槽上部
に蓋をしてすべての曝気槽の排気部を一区画に集中し、
その排気部に消泡羽根やスプレー、熱線等の機械的な消
泡手段を設けることが望ましい。消泡剤の注入手段を設
ける場合は、各曝気槽に対して消泡剤を添加する曝気槽
を容易に選択し、発泡の激しい曝気槽に消泡剤を集中で
きる構造とするのが望ましく、例えば、ビニールホース
などの柔軟性のある配管で消泡剤を注入したり、消泡剤
の注入先をバルブで容易に切り替えられるようにするな
どの手段とすることが好ましい。In the present invention, foaming tends to occur more easily than in the conventional method. This is because the sludge load is higher than that in the conventional method, and the load is higher than average in the water tank into which raw water mainly flows. It is likely due to the microbial effects that occur. Further, the foaming amount in the multistage aeration tank is often different. For this reason, it is desirable to provide means for efficiently defoaming any aeration tank. For example, a defoaming agent injection means is provided in the aeration tank, or the upper part of the aeration tank is covered with the exhaust parts of all the aeration tanks concentrated in one section.
It is desirable to provide a mechanical defoaming means such as a defoaming blade, a spray, or a heat ray in the exhaust portion. When providing an antifoaming agent injection means, it is desirable to easily select an aeration tank to which an antifoaming agent is added to each aeration tank, and to have a structure in which the antifoaming agent can be concentrated in an aeration tank with severe foaming, For example, it is preferable to use a means such as injecting an antifoaming agent through a flexible pipe such as a vinyl hose, or making it possible to easily switch the injection destination of the antifoaming agent with a valve.
【0081】但し、発泡の程度は原水の水質により異な
るため、本発明では消泡手段は必ずしも必要とされず不
要な場合もある。消泡を必要とする廃水種の例として
は、タンパク質や油分を含む廃水、特に食品工場廃水な
どが挙げられる。However, since the degree of foaming differs depending on the water quality of the raw water, the defoaming means is not always necessary and may be unnecessary in the present invention. Examples of wastewater species that require defoaming include wastewater containing proteins and oils, especially food factory wastewater.
【0082】このような本発明で得られる処理水、即
ち、浸漬膜から取り出される膜透過水の水質としては、
アンモニア性窒素濃度が0〜3mg−N/Lであること
が好ましい。The quality of the treated water obtained in the present invention, that is, the water quality of the membrane permeated water taken out from the immersion membrane, is as follows.
The ammoniacal nitrogen concentration is preferably 0 to 3 mg-N / L.
【0083】従来の浸漬膜式活性汚泥法では、比較的低
い汚泥負荷で運転するために汚泥滞留時間が例えば15
日以上と長く、また曝気槽内で増殖した菌体は処理水へ
流出することがないために、増殖速度の遅い硝化細菌が
成育しやすい環境となる。このため、原水中の有機態窒
素やアンモニア性窒素は硝酸性窒素まで酸化されている
ことが多かった。In the conventional submerged membrane activated sludge method, the sludge retention time is, for example, 15 in order to operate with a relatively low sludge load.
Since the cells that have been grown for a long time or more in the aeration tank do not flow out into the treated water, an environment in which nitrifying bacteria having a slow growth rate can easily grow is provided. For this reason, organic nitrogen and ammonia nitrogen in raw water were often oxidized to nitrate nitrogen.
【0084】本発明では汚泥負荷を高めて運転するため
に、SRTが減少し、硝化菌が十分に増殖できなくな
り、アンモニア性窒素が残留する現象が生ずることがあ
る。このようにアンモニア性窒素が残留すると、処理水
のBODを測定する際に、いわゆるN−BODとしてB
ODに検出され、処理水のBOD値が上昇することがあ
る。通常、アンモニア性窒素1mg−N/Lに対して、
BODは最大4.6mg/L検出される。In the present invention, since the sludge load is increased and the operation is performed, the SRT may decrease, nitrifying bacteria may not grow sufficiently, and ammonia nitrogen may remain. If ammonia nitrogen remains in this way, when measuring the BOD of the treated water, B as so-called N-BOD is obtained.
The BOD value of the treated water may increase due to detection in the OD. Usually, for 1 mg-N / L of ammonia nitrogen,
BOD is detected up to 4.6 mg / L.
【0085】一方、通常の活性汚泥法よりも高価な浸漬
膜式活性汚泥法を採用している場合には、より高度な処
理水質が要求される場合が多く、処理水BODの保証値
は通常20mg/L以下であり、更には10mg/L以
下、或いは5mg/L以下というような通常の活性汚泥
法では対応できない水質が求められていることが多い。On the other hand, when the immersion membrane type activated sludge method, which is more expensive than the ordinary activated sludge method, is adopted, a higher quality of treated water is often required, and the guaranteed value of the treated water BOD is usually It is often 20 mg / L or less, and further 10 mg / L or less, or 5 mg / L or less, which is a water quality that cannot be handled by the ordinary activated sludge method.
【0086】このため、処理水中にアンモニア性窒素が
残留することは、処理水BODが保証値をオーバーする
危険があり、好ましくない。Therefore, residual ammoniacal nitrogen in the treated water is not preferable because there is a risk that the treated water BOD will exceed the guaranteed value.
【0087】このようなことから、本発明では、硝化反
応を良好に進行させることにより処理水のアンモニア性
窒素濃度を0〜3mg−N/Lとすることが好ましく、
このためにpHを7〜8.5の範囲に調整したり、水温
を本発明の範囲内で高く保ったり、曝気槽各部のDOを
1mg/L以上、好ましくは2mg/L以上としたり、
SRTを5日以上、より好ましくは8日以上に保つとい
う操作を必要に応じて取り入れ、硝化反応を促進するこ
とが好ましい。但し、SRTを長くすると曝気槽内のM
LSS濃度が上昇するため、MLSS濃度が本発明の範
囲を超えないように注意する必要がある。From the above, in the present invention, it is preferable that the concentration of ammonia nitrogen in the treated water is adjusted to 0 to 3 mg-N / L by favorably promoting the nitrification reaction.
Therefore, the pH is adjusted to the range of 7 to 8.5, the water temperature is kept high within the range of the present invention, and the DO of each part of the aeration tank is set to 1 mg / L or more, preferably 2 mg / L or more,
It is preferable to promote the nitrification reaction by incorporating an operation of keeping the SRT for 5 days or longer, more preferably 8 days or longer, if necessary. However, if SRT is lengthened, M in the aeration tank
Care must be taken that the MLSS concentration does not exceed the scope of the present invention as the LSS concentration increases.
【0088】本発明において、処理対象となる有機物含
有水は産業排水、下水、屎尿等、活性汚泥で処理するこ
とができる有機性排水の全てであり、本発明によれば、
このような有機物含有水を高負荷にて効率的に処理する
ことができる。In the present invention, the organic substance-containing water to be treated is all industrial effluent that can be treated with activated sludge, such as industrial effluent, sewage, and human waste. According to the present invention,
Such organic substance-containing water can be efficiently treated under a high load.
【0089】以下に図面を参照して本発明の有機物含有
水の処理装置を説明する。The apparatus for treating organic matter-containing water of the present invention will be described below with reference to the drawings.
【0090】図1は本発明の有機物含有水の処理装置の
実施の形態を示す系統図である。FIG. 1 is a system diagram showing an embodiment of the organic substance-containing water treatment apparatus of the present invention.
【0091】図1の処理装置では、原水は、配管31よ
り導入され、熱交換器50で所定の水温に加温された
後、最上流段の曝気槽(第1曝気槽)51に投入され
る。図1では、熱交換器50にて配管32からの加温用
蒸気と熱交換することにより原水を加温するが、原水導
入配管31に直接蒸気を吹き込んで加温しても良い。ま
た、図1では原水配管31及び第1曝気槽51に、温度
計31T,51Tが設けられており、加温後の原水及び
第1曝気槽51の水温が測定されるが、いずれか一方の
みの測温でも良い。31Fは流量計、32V1は流量調
整弁、32V2は自動弁である。In the treatment apparatus of FIG. 1, raw water is introduced through a pipe 31, heated to a predetermined water temperature by a heat exchanger 50, and then fed into an aeration tank (first aeration tank) 51 at the most upstream stage. It In FIG. 1, the raw water is heated by exchanging heat with the heating steam from the pipe 32 in the heat exchanger 50, but the steam may be blown directly into the raw water introducing pipe 31 to heat the raw water. Further, in FIG. 1, the raw water pipe 31 and the first aeration tank 51 are provided with thermometers 31T and 51T, and the raw water after heating and the water temperature of the first aeration tank 51 are measured, but only one of them is measured. It may be a temperature measurement. 31F is a flow meter, 32V 1 is a flow rate adjusting valve, and 32V 2 is an automatic valve.
【0092】曝気槽は5段で構成され、最後段の曝気槽
(第5曝気槽)55が膜浸漬槽とされている。膜浸漬槽
55は、薬品洗浄時に切り換えるように、4槽並列で設
けられている。即ち、図示しない膜浸漬槽が更に3槽、
膜浸漬槽55に並列して設けられている。The aeration tank is composed of five stages, and the last stage aeration tank (fifth aeration tank) 55 is a membrane dipping tank. The membrane dipping tanks 55 are provided in parallel in four tanks so that they can be switched during chemical cleaning. That is, there are three more membrane dipping tanks not shown,
It is provided in parallel with the membrane immersion tank 55.
【0093】第1曝気槽51から2段目の曝気槽(第2
曝気槽)52、3段目の曝気槽(第3曝気槽)53、4
段目の曝気槽(第4曝気槽)54までは、水位差50〜
500mm程度の落差でオーバーフローにより汚泥を移
送し、汚泥の逆流を防止している。各曝気槽51〜55
には各々散気管51S,52S,53S,54S,55
Sが設けられているが、第1曝気槽〜第4曝気槽51〜
54の散気管51S〜54Sは、水深を略同一とするこ
とにより、散気量の配分を容易にしている。各散気管5
1S,52S,53S,54S,55Sには、配管40
及び41,42,43,44,45を経て曝気用空気が
送給される。41V,42V,43V,44V,45V
は流量調整弁、41F,42F,43F,44F,45
Fは流量計である。From the first aeration tank 51 to the second aeration tank (second
Aeration tank) 52, third aeration tank (third aeration tank) 53, 4
Up to the aeration tank (fourth aeration tank) 54 of the stage, the water level difference is 50 to
Sludge is transferred by overflow at a drop of about 500 mm to prevent backflow of sludge. Each aeration tank 51-55
The air diffusers 51S, 52S, 53S, 54S, 55 respectively.
S is provided, but the first aeration tank to the fourth aeration tank 51 to
The diffuser tubes 51S to 54S of 54 facilitate the distribution of the diffused air amount by making the water depths substantially the same. Each air diffuser 5
1S, 52S, 53S, 54S, 55S, pipe 40
And 41, 42, 43, 44, 45 for supplying aeration air. 41V, 42V, 43V, 44V, 45V
Is a flow control valve, 41F, 42F, 43F, 44F, 45
F is a flow meter.
【0094】第1曝気槽51にはpH計51Pが設けら
れ、必要に応じて酸又はアルカリが手動又は自動で投入
され、pHを例えば7〜8.5に保つように構成されて
いる。A pH meter 51P is provided in the first aeration tank 51, and an acid or alkali is manually or automatically added as necessary to keep the pH at 7 to 8.5, for example.
【0095】第3曝気槽53には3mm角のスポンジ担
体56が投入され、この第3曝気槽53の流出口には目
開き1mmのウェッジワイヤースクリーン57を設ける
ことで担体56の流出を防止している。このスクリーン
57の下部には、担体56がスクリーン57に目詰まり
して水が流れなくなることを防止するため、専用の散気
管57Sが設けられ、常にスクリーン57を曝気する構
造としている。また、万一のスクリーン閉塞時に対応す
るため、この水槽にはレベルスイッチ53Lが設けら
れ、水位が異常に上昇した際には原水と返送汚泥の流入
を非常停止するインターロックが組み込まれている。A 3 mm square sponge carrier 56 is put into the third aeration tank 53, and a wedge wire screen 57 having a 1 mm opening is provided at the outlet of the third aeration tank 53 to prevent the carrier 56 from flowing out. ing. In order to prevent the carrier 56 from clogging the screen 57 and preventing water from flowing under the screen 57, a dedicated diffuser pipe 57S is provided so that the screen 57 is constantly aerated. In addition, a level switch 53L is provided in this water tank in order to cope with the case where the screen is blocked, and an interlock is incorporated to emergencyly stop the inflow of the raw water and the returned sludge when the water level rises abnormally.
【0096】第4曝気槽54には、余剰汚泥引き抜きの
ための、ポンプ33P、流量計33F及び自動弁33V
を備える、汚泥引き抜き用配管33が設けられている。
これは第1、第2曝気槽51,52の汚泥を引き抜く
と、菌体内部に十分に酸化分解されていない基質が蓄積
していることが多く、汚泥貯留槽等で腐敗が進行しやす
いためである。一方、膜浸漬槽55で引き抜くと、膜を
薬品洗浄している際には汚泥引抜きを行えないため、膜
浸漬槽55の直前の第4曝気槽54から余剰汚泥を引き
抜く。引き抜かれた余剰汚泥は、汚泥貯槽又は脱水機へ
移送される。In the fourth aeration tank 54, a pump 33P, a flow meter 33F and an automatic valve 33V for withdrawing excess sludge.
The sludge extraction pipe 33 is provided.
This is because when the sludge in the first and second aeration tanks 51 and 52 is drawn out, the substrate that has not been sufficiently oxidized and decomposed is often accumulated inside the bacterial cells, and thus the decomposition easily progresses in the sludge storage tank or the like. Is. On the other hand, when the membrane is soaked in the membrane dipping tank 55, the sludge cannot be drawn out while the membrane is being cleaned with chemicals. Therefore, the excess sludge is drawn out from the fourth aeration tank 54 immediately before the membrane soaking tank 55. The extracted excess sludge is transferred to a sludge storage tank or dehydrator.
【0097】この第4曝気槽54には、汚泥を膜浸漬槽
55に移送するための水中ポンプ54Pやエアリフトポ
ンプが設けられ、第4曝気槽54からの汚泥は、配管3
4、分配槽58を経て配管35A,35B,35C,3
5Dより各膜浸漬槽55に所定の流量で分配されて移送
される。35VA,35VB,35VC,35VDは自
動弁である。The fourth aeration tank 54 is provided with an underwater pump 54P and an air lift pump for transferring the sludge to the membrane immersion tank 55, and the sludge from the fourth aeration tank 54 is connected to the pipe 3
4, pipes 35A, 35B, 35C, 3 through the distribution tank 58
From 5D, it is distributed and transferred to each film immersion tank 55 at a predetermined flow rate. 35V A , 35V B , 35V C and 35V D are automatic valves.
【0098】膜浸漬槽55には、浸漬膜モジュール59
が浸漬され、この浸漬膜モジュール59の下方に散気管
55Sが設けられている。また、この浸漬膜モジュール
59の周囲にはバッフル板60が設けられ、槽内が曝気
部と非曝気部に仕切られている。In the membrane dipping tank 55, the dipping membrane module 59 is provided.
Is dipped, and an air diffuser 55S is provided below the dipped membrane module 59. Further, a baffle plate 60 is provided around the submerged membrane module 59, and the inside of the tank is partitioned into an aeration part and a non-aeration part.
【0099】膜浸漬槽55では所定量の膜透過水が処理
水として取り出され、配管36より排出される。第4曝
気槽54から移送される汚泥量は、この排出される処理
水量よりも多く、処理水として排出されなかった汚泥は
濃縮され、オーバーフローにより配管39を経て第1曝
気槽51に返送される。このように膜浸漬槽55の水位
はほぼ一定となるため、系全体の水量が増減した場合に
は、主に第4曝気槽54の水位が変動する。このため、
第4曝気槽54にはレベルスイッチ54Lが設けられ、
第4曝気槽54の水位が低下したときには、水位が回復
するまで膜濾過を停止し、水位が上昇したときには水位
が回復するまで原水の投入を停止するような制御が行わ
れるように構成されている。In the membrane immersion tank 55, a predetermined amount of membrane permeated water is taken out as treated water and discharged from the pipe 36. The amount of sludge transferred from the fourth aeration tank 54 is larger than the amount of discharged treated water, and the sludge not discharged as treated water is concentrated and returned to the first aeration tank 51 through the pipe 39 due to overflow. . Since the water level in the membrane immersion tank 55 is almost constant in this way, the water level in the fourth aeration tank 54 changes mainly when the amount of water in the entire system increases or decreases. For this reason,
The fourth aeration tank 54 is provided with a level switch 54L,
When the water level in the fourth aeration tank 54 is lowered, the membrane filtration is stopped until the water level is restored, and when the water level is raised, the raw water input is stopped until the water level is restored. There is.
【0100】膜処理水を排出するポンプ36Pには自吸
式の渦巻きポンプなどが用いられる。ポンプの吸い込み
側に空気などが混入すると所定の能力を発揮できないた
めに、ポンプが停止しているときには空気などが逆流し
ないよう、吸い込み側の自動弁36V2が閉じられる。
36PIは圧力計、36V1は流量調整弁、36Fは流
量計である。As the pump 36P for discharging the membrane-treated water, a self-priming spiral pump or the like is used. When air or the like is mixed into the suction side of the pump, a predetermined capability cannot be exhibited, so that the automatic valve 36V 2 on the suction side is closed so that the air or the like does not flow backward when the pump is stopped.
36PI is a pressure gauge, 36V 1 is a flow rate adjusting valve, and 36F is a flow meter.
【0101】膜浸漬槽55の浸漬膜モジュール59を洗
浄する際は、分配槽58からの汚泥の流入を停止し、そ
の後該当する膜浸漬槽55の汚泥を引き抜き、必要に応
じてリンスした後に配管37より薬液を投入し、必要に
応じて曝気を併用しながら洗浄を行う。洗浄終了後は配
管38より膜浸漬槽55から薬液を引き抜き、必要に応
じてリンスした後、分配槽58からの汚泥の流入を再開
し、所定の水位に達した後に膜濾過を再開する。37
V,38Vは自動弁である。When cleaning the immersed membrane module 59 of the membrane immersion tank 55, the inflow of sludge from the distribution tank 58 is stopped, and then the sludge in the corresponding membrane immersion tank 55 is drawn out, and rinsed if necessary, and then piped. A chemical solution is added from 37, and cleaning is performed while aeration is also used as necessary. After the cleaning is completed, the chemical solution is drawn out from the membrane immersion tank 55 through the pipe 38, rinsed if necessary, and then the inflow of sludge from the distribution tank 58 is restarted, and after reaching a predetermined water level, the membrane filtration is restarted. 37
V and 38V are automatic valves.
【0102】[0102]
【実施例】以下に実施例、比較例及び実験例を挙げて本
発明をより具体的に説明する。EXAMPLES The present invention will be described more specifically with reference to Examples, Comparative Examples and Experimental Examples below.
【0103】実施例1
図1に示す如く、曝気槽を3槽直列に設け、最後段の曝
気槽(膜浸漬槽)5に浸漬膜モジュール6を浸漬した処
理装置を用いて有機物含有水の処理を行った。各曝気槽
1〜3の容積は表1に示す通りであり、浸漬膜モジュー
ル6の分離膜の孔径は表1に示す通りである。Example 1 As shown in FIG. 1, three aeration tanks were provided in series, and the treatment apparatus in which the immersion membrane module 6 was immersed in the last-stage aeration tank (membrane immersion tank) 5 was used to treat organic substance-containing water. I went. The volumes of the aeration tanks 1 to 3 are as shown in Table 1, and the pore size of the separation membrane of the submerged membrane module 6 is as shown in Table 1.
【0104】この処理装置では、原水は配管11より最
前段の曝気槽(第1曝気槽)1に導入されて曝気下、活
性汚泥処理された後、第2曝気槽2に流入し更に曝気下
活性汚泥処理され、配管12より膜浸漬槽5に移送され
る。膜浸漬槽5において浸漬膜モジュール6で膜分離さ
れた透過水は配管13より処理水として取り出され、分
離濃縮された汚泥は配管14より第1曝気槽1に返送さ
れる。第2曝気槽2からは、配管15より必要に応じて
余剰汚泥が引き抜かれる。In this treatment apparatus, raw water is introduced from the pipe 11 into the aeration tank (first aeration tank) 1 at the front stage and aerated, and after being treated with activated sludge, it flows into the second aeration tank 2 and further aerated. The activated sludge is treated and transferred to the membrane immersion tank 5 through the pipe 12. The permeated water that has undergone membrane separation in the membrane immersion tank 5 in the immersion membrane module 6 is taken out as treated water from the pipe 13, and the sludge separated and concentrated is returned to the first aeration tank 1 via the pipe 14. Excess sludge is extracted from the second aeration tank 2 through the pipe 15 as needed.
【0105】第1曝気槽1,第2曝気槽2及び膜浸漬槽
5はそれぞれ空気曝気用の散気管1S,2S,5Sが設
けられており、散気管1S,2Sには、配管16,1
7,18より空気が送給される。また、散気管5Sには
配管21より空気が送給される。The first aeration tank 1, the second aeration tank 2 and the membrane immersion tank 5 are provided with air diffusion tubes 1S, 2S, 5S for air aeration, respectively, and the air diffusion tubes 1S, 2S are provided with pipes 16, 1 respectively.
Air is sent from 7,18. Further, air is supplied from the pipe 21 to the air diffuser 5S.
【0106】膜浸漬槽5では、浸漬膜モジュール6の下
方に散気管5Sを設け、また、浸漬膜モジュール6の周
囲にバッフル板7を設けて、槽内を曝気部と非曝気部と
に仕切っている。この曝気部と非曝気部の底面積は同等
とした。また、曝気部と非曝気部を循環する旋回流の流
れを妨げないよう、バッフル板7の上下の開口面積は、
曝気部の底面積と同等とした。In the membrane immersion tank 5, an air diffuser 5S is provided below the immersion membrane module 6, and a baffle plate 7 is provided around the immersion membrane module 6 to partition the inside of the tank into an aeration part and a non-aeration part. ing. The bottom areas of the aerated part and non-aerated part were made equal. Further, the opening areas above and below the baffle plate 7 are set so as not to disturb the flow of the swirling flow circulating in the aeration section and the non-aeration section.
It was made equal to the bottom area of the aeration section.
【0107】図2中、P1は原水ポンプ、P2は処理水
ポンプ(自給ポンプ)、P3は汚泥返送ポンプ、P4は
汚泥引き抜きポンプである。また、13F,17F,1
8F,21Fは流量計、13Pは圧力計、17V,18
V,21Vは流量調整弁である。In FIG. 2, P 1 is a raw water pump, P 2 is a treated water pump (self-contained pump), P 3 is a sludge return pump, and P 4 is a sludge drawing pump. Also, 13F, 17F, 1
8F and 21F are flow meters, 13P is pressure gauges, 17V and 18
V and 21V are flow rate adjusting valves.
【0108】原水としては魚肉エキスと液糖を主体とす
る合成廃水を用いた。この合成廃水の水質はBOD1,
000〜1,500mg/Lであり、SS/BOD濃度
比は0〜0.05である。水温は20〜25℃、汚泥負
荷は表1に示す通り0.3kg−BOD/kg−VSS
/day付近、膜浸漬槽のMLSS濃度は表1に示す通
り11,000mg/L付近とした。膜浸漬槽5から第
1曝気槽1へ原水量の4倍の汚泥を返送したため、膜浸
漬槽5以外のMLSS濃度は膜浸漬槽5のMLSS濃度
の約80%となった。汚泥引き抜きは第2曝気槽2より
行い、膜浸漬槽5における汚泥濃度が14,000mg
/L以下となるようにした。また、膜浸漬槽5の曝気部
における曝気は、曝気部底面積当たり75〜100Nm
3−air/m2−底面/hrとした。As raw water, a synthetic wastewater mainly containing fish meat extract and liquid sugar was used. The quality of this synthetic wastewater is BOD1,
000-1,500 mg / L, and the SS / BOD concentration ratio is 0-0.05. The water temperature is 20 to 25 ° C, and the sludge load is 0.3 kg-BOD / kg-VSS as shown in Table 1.
/ Day, and the MLSS concentration in the membrane dipping tank was set to around 11,000 mg / L as shown in Table 1. Since the sludge of 4 times the amount of raw water was returned from the membrane immersion tank 5 to the first aeration tank 1, the MLSS concentration other than the membrane immersion tank 5 was about 80% of the MLSS concentration of the membrane immersion tank 5. Sludge removal is performed from the second aeration tank 2 and the sludge concentration in the membrane immersion tank 5 is 14,000 mg.
/ L or less. Further, the aeration in the aeration section of the membrane dipping tank 5 is 75 to 100 Nm per aeration section bottom area.
3 -air / m 2 - and the bottom surface / hr.
【0109】浸漬膜の透過水側を自給ポンプP2で吸引
し、8分濾過を行った後に2分間停止する間欠濾過とし
た。処理水配管13には圧力計13Pを設け、濾過を行
っている時と停止している時の圧力差を膜の濾過差圧と
して測定した。平均フラックスは0.4m3/m2/d
ayとし、得られた濾過抵抗はフラックス0.4m3/
m2/day、水温25℃に補正した。The permeated water side of the immersed membrane was sucked by a self-contained pump P 2 , and after performing filtration for 8 minutes, intermittent filtration was performed in which it was stopped for 2 minutes. A pressure gauge 13P was provided in the treated water pipe 13, and the pressure difference between when the filtration was performed and when the filtration was stopped was measured as the filtration differential pressure of the membrane. The average flux is 0.4 m 3 / m 2 / d
ay and the obtained filtration resistance is flux 0.4 m 3 /
It was corrected to m 2 / day and a water temperature of 25 ° C.
【0110】濾過差圧はほぼ直線的に上昇した。濾過差
圧の上昇速度(kPa/day)を膜汚染速度として求
め、結果を表1に示した。また、濾過差圧が15kPa
上昇した時点で薬品洗浄を行うものとし、薬品洗浄間隔
を予測し、表1に示した。The filtration pressure difference increased almost linearly. The increase rate (kPa / day) of the filtration differential pressure was determined as the membrane fouling rate, and the results are shown in Table 1. Moreover, the filtration differential pressure is 15 kPa.
It is assumed that the chemical cleaning is performed when the temperature rises, and the chemical cleaning interval is predicted and shown in Table 1.
【0111】得られた処理水の平均水質は表1に示す通
りであった。The average water quality of the obtained treated water was as shown in Table 1.
【0112】なお、この合成廃水を0.1kg−BOD
/kg−VSS/day程度の汚泥負荷で同様の処理を
行った場合には特に発泡は生じないのに対して、今回の
試験では発泡が観察されたため、高級アルコール系の消
泡剤を原水に対して1〜10ppm添加することで発泡
を抑制した。The synthetic wastewater was mixed with 0.1 kg-BOD.
Foaming does not occur particularly when the same treatment is carried out with a sludge load of about / kg-VSS / day, whereas foaming was observed in this test, so a higher alcohol antifoamer was added to the raw water. In contrast, foaming was suppressed by adding 1 to 10 ppm.
【0113】実施例2
図3に示す如く、曝気槽を5槽直列に設け、最後段の曝
気槽(浸漬槽)5に浸漬膜モジュール6を浸漬した処理
装置を用いて、表1に示す条件で、実施例1で処理した
ものと同様の合成廃水の処理を行い、膜汚染速度及び薬
品洗浄間隔と処理水水質を調べ、結果を表1に示した。
なお、表1に示す条件以外の処理条件は実施例1と同様
である。Example 2 As shown in FIG. 3, five aeration tanks were provided in series, and the treatment apparatus in which the immersion membrane module 6 was immersed in the last aeration tank (immersion tank) 5 was used and the conditions shown in Table 1 were used. Then, the same synthetic wastewater treatment as in Example 1 was performed, and the membrane fouling rate, chemical cleaning interval, and treated water quality were examined, and the results are shown in Table 1.
The processing conditions other than those shown in Table 1 are the same as those in the first embodiment.
【0114】本実施例では、原水は第1曝気槽1,第2
曝気槽2,第3曝気槽3及び第4曝気槽4で順次処理さ
れた後、膜浸漬槽5で膜分離され、透過水が取り出され
ると共に、濃縮分離汚泥は第1曝気槽1へ返送される。
また、余剰汚泥は第4曝気槽4から引き出される。In this embodiment, the raw water is the first aeration tank 1 and the second aeration tank.
After being sequentially treated in the aeration tank 2, the third aeration tank 3 and the fourth aeration tank 4, the membrane separation tank 5 performs membrane separation, the permeated water is taken out, and the concentrated separation sludge is returned to the first aeration tank 1. It
Moreover, the excess sludge is drawn out from the fourth aeration tank 4.
【0115】図3において、図2に示す部材と同一機能
を奏する部材には同一符号を付してその説明を省略す
る。3S,4Sは散気管、19,20はこの散気管3
S,4Sに空気を送給する配管であり、19F,20F
は流量計、19V,20Vは流量調整弁である。In FIG. 3, members having the same functions as those shown in FIG. 2 are designated by the same reference numerals, and their description will be omitted. 3S and 4S are air diffusers, 19 and 20 are these air diffusers 3
It is a pipe for sending air to S, 4S, 19F, 20F
Is a flow meter, and 19V and 20V are flow rate adjusting valves.
【0116】比較例1
図4に示す如く、膜浸漬槽5のみを設け、1槽の曝気槽
で活性汚泥処理と膜分離を行う処理装置を用いて表1に
示す条件で、実施例1で処理したものと同様の合成廃水
の処理を行い、膜汚染速度及び薬品洗浄間隔と処理水水
質を調べ、結果を表1に示した。なお、表1に示す条件
以外の処理条件は実施例1と同様である。COMPARATIVE EXAMPLE 1 As shown in FIG. 4, only the membrane dipping tank 5 was provided, and the treatment apparatus for performing activated sludge treatment and membrane separation in one aeration tank was used under the conditions shown in Table 1 in Example 1. The same synthetic wastewater treatment as the treated one was conducted, and the membrane fouling rate, chemical cleaning interval and treated water quality were examined, and the results are shown in Table 1. The processing conditions other than those shown in Table 1 are the same as those in the first embodiment.
【0117】図4において、図2に示す部材と同一機能
を奏する部材には同一符号を付してその説明を省略す
る。In FIG. 4, members having the same functions as those shown in FIG. 2 are designated by the same reference numerals, and their description will be omitted.
【0118】[0118]
【表1】 [Table 1]
【0119】表1より明らかなように、曝気槽が1槽の
比較例1では、約2ヶ月に1回の頻度で薬品洗浄が必要
であるが、曝気槽を3槽設けた実施例1では約3.5ヶ
月に1回の頻度で良く、更に曝気槽を5槽設けた実施例
2では、約5.5ヶ月に1回の薬品洗浄で良く、膜の汚
染を防止して薬品洗浄頻度を大幅に低減することができ
る。As is clear from Table 1, in Comparative Example 1 in which the aeration tank is one tank, chemical cleaning is required once every two months, but in Example 1 in which three aeration tanks are provided, In Example 2 in which five aeration tanks are provided, the cleaning may be performed once every about 3.5 months, and the chemical cleaning may be performed once every about 5.5 months to prevent the membrane from being contaminated. Can be significantly reduced.
【0120】比較例2
実施例1において、水温を15℃〜20℃未満として、
汚泥負荷0.17〜0.23kg−BOD/kg−VS
S/day、容積負荷1.5〜2.0kg−BOD/m
3/day、膜浸漬槽のMLSS濃度10,000〜1
2,000mg/Lの条件で通水を行ったこと以外は実
施例1と同様にして原水の処理を行ったところ、運転開
始から2〜4週間後には膜汚染が激しく進行し、1週間
に1回以上の洗浄が必要な速度となった。膜汚染速度は
2.7kPa/dayで薬品洗浄間隔は6日と予想され
た。このため、20℃未満の水温でこの汚泥負荷を適用
することは実用的ではないと判断された。Comparative Example 2 In Example 1, the water temperature was set to 15 ° C. to less than 20 ° C.
Sludge load 0.17 to 0.23 kg-BOD / kg-VS
S / day, volume load 1.5-2.0 kg-BOD / m
3 / day, MLSS concentration of membrane dipping tank 10,000 to 1
When the raw water was treated in the same manner as in Example 1 except that the water was passed under the condition of 2,000 mg / L, the membrane fouling progressed violently after 2 to 4 weeks from the start of the operation, and after 1 week. The required speed was one or more washes. The membrane fouling rate was 2.7 kPa / day and the chemical cleaning interval was expected to be 6 days. Therefore, it was judged that it is not practical to apply this sludge load at a water temperature of less than 20 ° C.
【0121】実施例4
実施例2において、第3曝気槽3に微生物付着担体とし
て3mm角のナイロン製スポンジを見掛け容積40L投
入し、実施例2の汚泥負荷よりも高負荷の0.33〜
0.38kg−BOD/kg−VSS/day、容積負
荷2.8〜3.5kg−BOD/m3/day、膜浸漬
槽MLSS濃度10,000〜14,000mg/Lの
条件で通水したこと以外は、実施例2と同様にして原水
の処理を行った。なお、投入した担体の容積は曝気槽の
全容積に対して約6%である。担体を投入した第3曝気
槽の出口には、担体の流出を防止するために目開き1m
mのウェッジワイヤースクリーンを設け、このスクリー
ンの下方に散気管を設けて曝気することにより、スポン
ジが濃縮してこのスクリーンを閉塞させることを防止し
た。Example 4 In Example 2, an apparent volume of 40 L of 3 mm square nylon sponge was added to the third aeration tank 3 as a carrier for adhering microorganisms, and a load of 0.33 to 3 which was higher than the sludge load of Example 2 was added.
Water was passed under the conditions of 0.38 kg-BOD / kg-VSS / day, volume load 2.8-3.5 kg-BOD / m 3 / day, and membrane immersion tank MLSS concentration of 10,000-14,000 mg / L. Raw water was treated in the same manner as in Example 2 except for the above. The volume of the charged carrier is about 6% of the total volume of the aeration tank. At the outlet of the 3rd aeration tank where the carrier is put, a 1m opening is provided to prevent the carrier from flowing out.
A wedge wire screen of m was provided, and a diffusing tube was provided below the screen to aerate, thereby preventing the sponge from condensing and clogging the screen.
【0122】その結果、実施例2の場合よりも高い汚泥
負荷で運転したにもかかわらず、膜汚染は効果的に抑制
され、膜汚染速度は0.1kPa/dayで薬品洗浄間
隔は150日(5ヶ月に1回)と予想された。As a result, the membrane fouling is effectively suppressed, the membrane fouling rate is 0.1 kPa / day, and the chemical cleaning interval is 150 days ( Once every 5 months).
【0123】実験例1
浸漬膜の孔径による影響を調べるために、曝気槽を1槽
とした比較例1において、それぞれ孔径0.03μm,
0.1μm,0.4μmの浸漬膜を用い、汚泥負荷0.
24〜0.42kg−BOD/kg−VSS/day、
容積負荷1.9〜4.7kg−BOD/m3/day、
膜浸漬槽MLSS濃度9,400〜13,000mg/
Lとして比較例1と同様に原水の処理を行ったところ、
膜汚染速度及び予想される薬品洗浄頻度は表2に示す通
りであり、孔径0.4μmの浸漬膜は、孔径0.1μm
の浸漬膜の8倍以上の速度で汚染が進行し、2週間に1
回以上の薬品洗浄が必要であった。一方、孔径0.03
μmの浸漬膜では、孔径0.1μmの浸漬膜とほぼ同様
の結果が得られ、このように高い汚泥負荷の条件で適用
可能な膜孔径は0.4μm付近が限界であることが確認
された。Experimental Example 1 In order to investigate the effect of the pore size of the immersion membrane, in Comparative Example 1 in which the aeration tank was one, the pore size was 0.03 μm,
Sludge load of 0.1 μm and 0.4 μm was used.
24-0.42 kg-BOD / kg-VSS / day,
Volume load 1.9 to 4.7 kg-BOD / m 3 / day,
Membrane immersion tank MLSS concentration 9,400 to 13,000 mg /
When raw water was treated as L in the same manner as in Comparative Example 1,
The membrane fouling rate and expected chemical cleaning frequency are as shown in Table 2, and the immersion membrane with a pore size of 0.4 μm has a pore size of 0.1 μm.
Contamination progresses at a rate 8 times faster than the immersion film of
It was necessary to wash the chemical more than once. On the other hand, pore size 0.03
In the case of the submerged membrane of μm, almost the same result as that of the submerged membrane of 0.1 μm in pore size was obtained, and it was confirmed that the limit of the membrane pore size applicable to such a high sludge load condition is around 0.4 μm. .
【0124】[0124]
【表2】 [Table 2]
【0125】[0125]
【発明の効果】以上詳述した通り、本発明の有機物含有
水の処理方法及び処理装置によれば、浸漬膜式活性汚泥
法による有機物含有水の処理において、膜浸漬槽におけ
るMLSS濃度を高くすることなく、従って、膜浸漬槽
における曝気量の増大に起因する膜寿命の劣化や曝気効
率の低下を招くことなく、汚泥負荷を高めることで曝気
槽単位面積当たりのBOD処理能力を向上させることが
できる。このため、曝気槽を小型化することが可能とな
り、これにより建設費や運転費を低減し、また設置面積
を削減することができる。As described above in detail, according to the method and apparatus for treating organic matter-containing water of the present invention, in treating organic matter-containing water by the submerged membrane type activated sludge method, the MLSS concentration in the membrane submerged tank is increased. Therefore, it is possible to improve the BOD treatment capacity per unit area of the aeration tank by increasing the sludge load without causing deterioration of the membrane life and reduction of the aeration efficiency due to the increase of the aeration amount in the membrane immersion tank. it can. Therefore, the aeration tank can be downsized, which can reduce the construction cost and the operating cost, and can reduce the installation area.
【図1】本発明の有機物含有水の処理装置の実施の形態
を示す系統図である。FIG. 1 is a system diagram showing an embodiment of a treatment apparatus for organic matter-containing water of the present invention.
【図2】実施例1で用いた処理装置を示す系統図であ
る。2 is a system diagram showing a processing apparatus used in Example 1. FIG.
【図3】実施例2で用いた処理装置を示す系統図であ
る。FIG. 3 is a system diagram showing a processing apparatus used in Example 2.
【図4】比較例1で用いた処理装置を示す系統図であ
る。FIG. 4 is a system diagram showing a processing apparatus used in Comparative Example 1.
1 第1曝気槽 2 第2曝気槽 3 第3曝気槽 4 第4曝気槽 5 膜浸漬槽 6 浸漬膜モジュール 7 バッフル板 1S,2S,3S,4S,5S 散気管 51 第1曝気槽 52 第2曝気槽 53 第3曝気槽 54 第4曝気槽 55 膜浸漬槽 56 担体 57 スクリーン 58 分配槽 59 浸漬膜モジュール 60 バッフル板 1st aeration tank 2 Second aeration tank 3rd aeration tank 4th aeration tank 5 membrane immersion tank 6 Immersion membrane module 7 baffle board 1S, 2S, 3S, 4S, 5S Air diffuser 51 First Aeration Tank 52 Second aeration tank 53 Third aeration tank 54 Fourth Aeration Tank 55 Membrane immersion tank 56 carrier 57 screen 58 distribution tanks 59 Immersion Membrane Module 60 baffle board
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D003 AA12 AB02 BA02 CA07 CA10 EA14 EA19 4D006 GA07 HA93 KA01 KA12 KA44 KB22 KE12R KE13R MA01 MA02 MA03 MA22 MC18 MC22 MC26 MC29 MC63 PB08 PC62 4D028 AA04 AA07 AA08 AC03 BB02 BC14 BC17 BC26 BD10 BD11 CA01 CA05 CA06 CA07 CB02 CC01 CC07 CC09 CD01 ─────────────────────────────────────────────────── ─── Continued front page F-term (reference) 4D003 AA12 AB02 BA02 CA07 CA10 EA14 EA19 4D006 GA07 HA93 KA01 KA12 KA44 KB22 KE12R KE13R MA01 MA02 MA03 MA22 MC18 MC22 MC26 MC29 MC63 PB08 PC62 4D028 AA04 AA07 AA08 AC03 BB02 BC14 BC17 BC26 BD10 BD11 CA01 CA05 CA06 CA07 CB02 CC01 CC07 CC09 CD01
Claims (11)
合液とする生物処理工程と、 該混合液から浸漬膜にて処理水を分離する浸漬膜分離工
程とを有する有機物含有水の処理方法において、 前記生物処理工程において、原水を直列に配置された少
なくとも3つの処理槽に通水すると共に、該混合液の水
温を20〜37℃に調節して活性汚泥処理を行うことを
特徴とする有機物含有水の処理方法。1. A method for treating water containing organic matter, comprising: a biological treatment step of mixing raw water containing organic matter with activated sludge to form a mixed solution; and a submerged membrane separation step of separating treated water from the mixed solution with an immersion membrane. In the biological treatment step, the raw water is passed through at least three treatment tanks arranged in series, and the activated sludge treatment is performed by adjusting the water temperature of the mixed solution to 20 to 37 ° C. A method for treating organic matter-containing water.
4マイクロメートルであることを特徴とする請求項1に
記載の有機物含有水の処理方法。2. The submerged membrane has a nominal separation pore size of 0.01-0.
It is 4 micrometers, The processing method of the organic substance containing water of Claim 1 characterized by the above-mentioned.
5〜0.40kg−BOD/kg−VSS/dayとす
ることを特徴とする請求項1又は2に記載の有機物含有
水の処理方法。3. The BOD sludge load of activated sludge treatment is 0.1.
5 to 0.40 kg-BOD / kg-VSS / day is set, The organic substance containing water treatment method of Claim 1 or 2 characterized by the above-mentioned.
5,000〜20,000mg/Lであることを特徴と
する請求項1ないし3のいずれか1項に記載の有機物含
有水の処理方法。4. The method for treating water containing organic matter according to claim 1, wherein the MLSS concentration in the immersion membrane separation step is 5,000 to 20,000 mg / L.
することを特徴とする請求項1ないし4のいずれか1項
に記載の有機物含有水の処理方法。5. The method for treating organic matter-containing water according to claim 1, wherein a defoaming agent is added to at least one of the treatment tanks.
mg/Lであることを特徴とする請求項1ないし5のい
ずれか1項に記載の有機物含有水の処理方法。6. Ammonia nitrogen concentration of treated water is 0 to 3
It is mg / L, The processing method of the organic substance containing water of any one of Claim 1 thru | or 5 characterized by the above-mentioned.
/BOD)が0〜0.5であることを特徴とする請求項
1ないし6のいずれか1項に記載の有機物含有水の処理
方法。7. The ratio of SS concentration to BOD concentration of raw water (SS
/ BOD) is 0 to 0.5, The method for treating organic matter-containing water according to any one of claims 1 to 6, wherein.
担体を保持していることを特徴とする請求項1ないし7
のいずれか1項に記載の有機物含有水の処理方法。8. The method according to any one of claims 1 to 7, wherein at least one treatment tank holds a microorganism-attached carrier.
The method for treating organic matter-containing water according to any one of 1.
性汚泥を保持する処理槽と、 該処理槽の少なくとも1つの槽内に浸漬された、処理水
を分離する浸漬膜モジュールと、 前記処理槽に有機物を含む原水を供給する原水供給手段
とを備えた有機物含有水の処理装置であって、 該浸漬膜モジュールに組み込む浸漬膜の少なくとも一部
は公称分離孔径が0.01〜0.4マイクロメートルで
あり、 前記処理槽の有効総容積が、供給される原水のBODに
対して1.3〜4kg−BOD/m3/dayを満足す
る容積であることを特徴とする有機物含有水の処理装
置。9. A treatment tank holding at least three activated sludges arranged in series, a submerged membrane module for separating treated water immersed in at least one of the treatment tanks, and the treatment tank An apparatus for treating water containing organic matter, comprising: raw water supply means for supplying raw water containing organic matter to at least a part of the submerged membrane incorporated in the submerged membrane module, which has a nominal separation pore diameter of 0.01 to 0.4 micrometer. And the effective total volume of the treatment tank is a volume satisfying 1.3 to 4 kg-BOD / m 3 / day with respect to the BOD of the raw water supplied, treatment of water containing organic matter. apparatus.
う手段を有することを特徴とする請求項9に記載の有機
物含有水の処理装置。10. The treatment apparatus for organic matter-containing water according to claim 9, further comprising means for controlling the temperature of the raw water or the liquid in the treatment tank.
着担体を保持していることを特徴とする請求項9又は1
0に記載の有機物含有水の処理装置。11. The method according to claim 9 or 1, wherein at least one treatment tank holds a microorganism-attached carrier.
The organic substance-containing water treatment device according to 0.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001242452A JP2003053363A (en) | 2001-08-09 | 2001-08-09 | Method and apparatus for treating organic-containing water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001242452A JP2003053363A (en) | 2001-08-09 | 2001-08-09 | Method and apparatus for treating organic-containing water |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003053363A true JP2003053363A (en) | 2003-02-25 |
Family
ID=19072722
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001242452A Pending JP2003053363A (en) | 2001-08-09 | 2001-08-09 | Method and apparatus for treating organic-containing water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003053363A (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005342612A (en) * | 2004-06-02 | 2005-12-15 | Asahi Organic Chem Ind Co Ltd | Organic waste water treatment method |
JP2006082024A (en) * | 2004-09-16 | 2006-03-30 | Kurita Water Ind Ltd | Biological treatment equipment |
JP2006167550A (en) * | 2004-12-14 | 2006-06-29 | Kurita Water Ind Ltd | Biological treatment equipment |
JP2006167551A (en) * | 2004-12-14 | 2006-06-29 | Kurita Water Ind Ltd | Biological treatment equipment |
JP2007160229A (en) * | 2005-12-14 | 2007-06-28 | Toyota Central Res & Dev Lab Inc | Method and apparatus for treating wastewater containing ethylene glycol |
US7288197B2 (en) * | 2004-12-22 | 2007-10-30 | Industrial Technology Research Institute | Biological membrane filtration system for water treatment and a water treatment process |
WO2008035710A1 (en) * | 2006-09-21 | 2008-03-27 | Asahi Kasei Chemicals Corporation | Method of wastewater disposal |
JP2008200639A (en) * | 2007-02-22 | 2008-09-04 | Kurita Water Ind Ltd | Biological treatment method of water containing organic matter |
JP2008200577A (en) * | 2007-02-19 | 2008-09-04 | Marsima Aqua System Corp | Waste liquid treatment system |
JP2008264772A (en) * | 2007-03-27 | 2008-11-06 | Asahi Kasei Chemicals Corp | Membrane separation activated sludge apparatus and method for treating water containing organic matter |
WO2010110085A1 (en) | 2009-03-25 | 2010-09-30 | イビデン株式会社 | Method for treating organic matter-containing liquid |
JP2012170895A (en) * | 2011-02-22 | 2012-09-10 | Mitsubishi Rayon Co Ltd | Membrane separation activated sludge treatment apparatus and membrane separation activated sludge treatment method |
JP2012529990A (en) * | 2009-06-15 | 2012-11-29 | サウジ アラビアン オイル カンパニー | Suspension medium membrane biological reactor system and process including multiple biological reactor zones |
JP2013215663A (en) * | 2012-04-06 | 2013-10-24 | Kazumi Tani | Apparatus and method for treating sludge wastewater |
KR101336875B1 (en) | 2012-01-06 | 2013-12-04 | (주)한라산업개발 | Advanced treatment system of wastewater |
JP2015127027A (en) * | 2013-12-27 | 2015-07-09 | 川崎重工業株式会社 | Operation mode calculating device and water treatment system comprising it |
JP2019181334A (en) * | 2018-04-04 | 2019-10-24 | 栗田工業株式会社 | Foaming suppression method |
WO2021199371A1 (en) * | 2020-04-01 | 2021-10-07 | 三菱電機株式会社 | Water treatment device and water treatment method |
-
2001
- 2001-08-09 JP JP2001242452A patent/JP2003053363A/en active Pending
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005342612A (en) * | 2004-06-02 | 2005-12-15 | Asahi Organic Chem Ind Co Ltd | Organic waste water treatment method |
JP2006082024A (en) * | 2004-09-16 | 2006-03-30 | Kurita Water Ind Ltd | Biological treatment equipment |
JP2006167550A (en) * | 2004-12-14 | 2006-06-29 | Kurita Water Ind Ltd | Biological treatment equipment |
JP2006167551A (en) * | 2004-12-14 | 2006-06-29 | Kurita Water Ind Ltd | Biological treatment equipment |
US7288197B2 (en) * | 2004-12-22 | 2007-10-30 | Industrial Technology Research Institute | Biological membrane filtration system for water treatment and a water treatment process |
JP2007160229A (en) * | 2005-12-14 | 2007-06-28 | Toyota Central Res & Dev Lab Inc | Method and apparatus for treating wastewater containing ethylene glycol |
WO2008035710A1 (en) * | 2006-09-21 | 2008-03-27 | Asahi Kasei Chemicals Corporation | Method of wastewater disposal |
US8097161B2 (en) | 2006-09-21 | 2012-01-17 | Asahi Kasei Chemicals Corporation | Wastewater treatment method |
JP5208750B2 (en) * | 2006-09-21 | 2013-06-12 | 旭化成ケミカルズ株式会社 | Wastewater treatment method |
AU2007298198B2 (en) * | 2006-09-21 | 2010-06-10 | Asahi Kasei Chemicals Corporation | Method of wastewater disposal |
CN101516790B (en) * | 2006-09-21 | 2012-07-25 | 旭化成化学株式会社 | Method of wastewater disposal |
RU2426697C2 (en) * | 2006-09-21 | 2011-08-20 | Асахи Касеи Кемикалз Корпорейшн | Method of effluents treatment |
JP2008200577A (en) * | 2007-02-19 | 2008-09-04 | Marsima Aqua System Corp | Waste liquid treatment system |
JP2008200639A (en) * | 2007-02-22 | 2008-09-04 | Kurita Water Ind Ltd | Biological treatment method of water containing organic matter |
JP2008264772A (en) * | 2007-03-27 | 2008-11-06 | Asahi Kasei Chemicals Corp | Membrane separation activated sludge apparatus and method for treating water containing organic matter |
WO2010110085A1 (en) | 2009-03-25 | 2010-09-30 | イビデン株式会社 | Method for treating organic matter-containing liquid |
KR101761949B1 (en) * | 2009-06-15 | 2017-08-04 | 사우디 아라비안 오일 컴퍼니 | Suspended media membrane biological reactor system and process including suspension system |
JP2012529990A (en) * | 2009-06-15 | 2012-11-29 | サウジ アラビアン オイル カンパニー | Suspension medium membrane biological reactor system and process including multiple biological reactor zones |
JP2012170895A (en) * | 2011-02-22 | 2012-09-10 | Mitsubishi Rayon Co Ltd | Membrane separation activated sludge treatment apparatus and membrane separation activated sludge treatment method |
KR101336875B1 (en) | 2012-01-06 | 2013-12-04 | (주)한라산업개발 | Advanced treatment system of wastewater |
JP2013215663A (en) * | 2012-04-06 | 2013-10-24 | Kazumi Tani | Apparatus and method for treating sludge wastewater |
JP2015127027A (en) * | 2013-12-27 | 2015-07-09 | 川崎重工業株式会社 | Operation mode calculating device and water treatment system comprising it |
JP2019181334A (en) * | 2018-04-04 | 2019-10-24 | 栗田工業株式会社 | Foaming suppression method |
JP7119512B2 (en) | 2018-04-04 | 2022-08-17 | 栗田工業株式会社 | Foam suppression method |
WO2021199371A1 (en) * | 2020-04-01 | 2021-10-07 | 三菱電機株式会社 | Water treatment device and water treatment method |
JP6952930B1 (en) * | 2020-04-01 | 2021-10-27 | 三菱電機株式会社 | Water treatment equipment and water treatment method |
CN115335138A (en) * | 2020-04-01 | 2022-11-11 | 三菱电机株式会社 | Water treatment device and water treatment method |
CN115335138B (en) * | 2020-04-01 | 2023-05-02 | 三菱电机株式会社 | Water treatment device and water treatment method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7510655B2 (en) | Process to improve the efficiency of a membrane filter activated sludge system | |
JP2003053363A (en) | Method and apparatus for treating organic-containing water | |
CN101274800B (en) | Membrane Separation Activated Sludge Plant | |
US7481933B2 (en) | Process to improve the efficiency of a membrane filter activated sludge system | |
US7713413B2 (en) | Aerated anoxic membrane bioreactor | |
JP4059790B2 (en) | Membrane separation activated sludge treatment apparatus and membrane separation activated sludge treatment method | |
JP5034778B2 (en) | Membrane separation wastewater treatment method and apparatus | |
JP2003024985A (en) | Denitrification apparatus and denitrification method | |
JPWO2003043941A1 (en) | Organic wastewater treatment apparatus and method | |
JP6613323B2 (en) | Water treatment apparatus and water treatment method | |
JP4793635B2 (en) | Recycling method of organic wastewater | |
JP6184541B2 (en) | Sewage treatment apparatus and sewage treatment method using the same | |
JP4666902B2 (en) | MLSS control method | |
JP7015117B2 (en) | Organic wastewater treatment method and organic wastewater treatment system | |
JP2014000495A (en) | Sewage treatment apparatus, and sewage treatment method using the same | |
JP5743448B2 (en) | Sewage treatment equipment | |
KR101150335B1 (en) | Wastewater treatment apparatus combined sbr with mbr | |
JPH0957289A (en) | Biological treating device of fluidized bed type | |
JP2004188329A (en) | Livestock wastewater treatment equipment | |
JP4293529B2 (en) | Organic wastewater treatment method | |
RU2644904C1 (en) | Method of biological purification of wastewater from nitrogen phosphoric and organic compounds | |
JP2003266096A (en) | Wastewater treatment apparatus | |
US20150368130A1 (en) | Process for purification treatment of wastewater and apparatus for purification treatment of wastewater | |
JP2016190203A (en) | Waste water treatment method and waste water treatment equipment | |
JP2008194649A (en) | Sludge blockage detection method and wastewater treatment method using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050224 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061205 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070131 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080304 |