[go: up one dir, main page]

JP4358395B2 - Method for producing chromium-zirconium-based copper alloy wire - Google Patents

Method for producing chromium-zirconium-based copper alloy wire Download PDF

Info

Publication number
JP4358395B2
JP4358395B2 JP36814499A JP36814499A JP4358395B2 JP 4358395 B2 JP4358395 B2 JP 4358395B2 JP 36814499 A JP36814499 A JP 36814499A JP 36814499 A JP36814499 A JP 36814499A JP 4358395 B2 JP4358395 B2 JP 4358395B2
Authority
JP
Japan
Prior art keywords
wire
conductivity
alloy wire
final
zirconium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36814499A
Other languages
Japanese (ja)
Other versions
JP2001181811A (en
Inventor
照一 本田
敬三 森本
雄一郎 須藤
健児 矢島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Cable Industries Ltd
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd, Mitsubishi Materials Corp filed Critical Mitsubishi Cable Industries Ltd
Priority to JP36814499A priority Critical patent/JP4358395B2/en
Publication of JP2001181811A publication Critical patent/JP2001181811A/en
Application granted granted Critical
Publication of JP4358395B2 publication Critical patent/JP4358395B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal Extraction Processes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はクロム・ジルコニウム系銅合金線の製造方法に関し、特に、ロボット、電子部品、医療機器、航空機等に使用されるクロム・ジルコニウム系銅合金線の製造方法に関する。
【0002】
【従来の技術】
従来、ロボット、電子部品、医療機器、航空機等に使用される線径(φ)が0.01〜4mm程度のクロム・ジルコニウム系銅合金線は、以下の▲1▼または▲2▼の方法で製造されてきた。
【0003】
▲1▼溶体化処理が施されたクロム・ジルコニウム系銅合金の素線を目的の最終線径となるまで冷間伸線した後、高温時効処理(以下、時効処理とも略称する)を行ってその導電率を目的の最終導電率まで上昇させる方法。
【0004】
▲2▼溶体化処理が施されたクロム・ジルコニウム系銅合金の素線を冷間伸線(1回目)し、次いで1回目の時効処理を行い、この後、目的の最終線径となるまでさらに冷間伸線(2回目)し、次いで2回目の時効処理を行ってその導電率を目的の最終導電率まで上昇させる方法。
【0005】
ところで、上記▲1▼▲2▼の方法は、いずれも、最終工程で目的の最終導電率を得るべく合金線の高温時効処理を行うが、かかる最終工程での時効処理時に最終線径にされた合金線の線同士が付着して、ボビンから合金線を繰り出す際に断線を生じるといった問題点を発生している。また、最終工程で時効処理したものを最終製品とするために、最終製品の合金線が変色したり、その表面性が低下するといった問題点も有している。
【0006】
また、▲2▼の方法は、時効処理を2度行うので、概ね▲1▼の方法よりも高い引張強さの合金線を得ることができるが、近年のこの種の合金線における高強度化の要求は止まるところを知らず、▲2▼の方法で得られる合金線の引張強さであっても十分でなく、引張強さのより向上した合金線が求められている。
【0007】
【発明が解決しようとする課題】
上記事情に鑑み、本発明は、最終工程で時効処理を行うことなく、従来よりも高い引張強さの合金線を製造し得るクロム・ジルコニウム系銅合金線の製造方法を提供することを目的としている。
【0008】
【課題を解決するための手段】
本発明者らは、上記目的を達成すべく鋭意研究した結果、合金線の導電率は冷間伸線によって低下するので、まず高温時効処理により合金線の導電率を一旦目的の最終導電率よりも高い導電率まで上昇させ、しかる後、冷間伸線して、線径を目的の最終線径に減少させるとともに導電率を目的の最終導電率まで低下させれば、最終工程で時効処理を行う必要がなくなり、しかも、このようにして得られる合金線が従来よりも高い引張強さが得られることを知見し、該知見に基づき、本発明を完成させた。
【0009】
すなわち、本発明は以下の特徴を有している。
(1)溶体化処理が施された、Crを0.1〜1.5質量%、Zrを0.001〜0.3質量%含有し、残部がCuからなるクロム・ジルコニウム系銅合金の素線を冷間伸線して最終線径よりも大きい線径の合金線を形成し、該合金線を高温時効処理してその導電率を最終導電率よりも高い導電率まで上昇させ、次いで、第2回目の冷間伸線を行って線径を最終線径まで減少させるとともに導電率を前記高温時効処理後のそれよりも5〜10%IACS低下させることを特徴とするクロム・ジルコニウム系銅合金線の製造方法
【0010】
【発明の実施の形態】
本発明のクロム・ジルコニウム系銅合金線の製造方法は、(A)溶体化処理が施されたクロム・ジルコニウム系銅合金の素線を冷間伸線して目的の最終線径よりも大きい線径の合金線を得、次に(B)合金線を時効処理してその導電率を目的の最終導電率よりも高い導電率まで上昇させ、次に(C)合金線を冷間伸線して線径を目的の最終線径となるまで減少させるとともに導電率を目的の最終導電率まで低下させる、方法である。
【0011】
本発明におけるクロム・ジルコニウム系銅合金には、従来からロボット、電子部品、医療機器、航空機等に使用されるクロム・ジルコニウム系銅合金線の原料として用いられている従来公知の組成のクロム・ジルコニウム系銅合金が使用されるが、特に、Crを0.1〜1.5量%、Zrを0.001〜0.3量%含有し、残部がCuからなる組成の合金が好ましい。
CrおよびZrは合金の耐磨耗性、耐熱性等を向上させる成分であり、Cu素地中に分散粒子として存在するが、Crが1.5量%より多くなったり、Zrが0.3量%より多くなると、分散粒子が大きくなって、加工して得られる最終製品の合金線における引張強さが低下する傾向を示し、また、Crが0.1量%より少なくなったり、Zrが0.001量%より少なくなると、これらを含有させる本来の効果(合金線の耐磨耗性、耐熱性等の向上効果)が得られにくくなる。
【0012】
原料に用いる合金の形態は特に限定されないが、通常のカソード銅を溶解して得られた溶銅に、所定量のCr及びZrを添加した後鋳造して得られた円柱状または角柱状のビレットを用いるか、連続鋳造法で得られたビレットを用いるのがが一般的である。
【0013】
本発明で製造するクロム・ジルコニウム系銅合金線の最終線径(φ)は、通常0.01〜4mm、好ましくは0.04〜2.6mmの範囲、また、最終導電率は通常60%IACS以上、好ましくは80%IACS以上で、合金線の使用形態等に応じて選択される。
【0014】
(A)工程での「溶体化処理が施されたクロム・ジルコニウム系銅合金の素線」は、例えば、上記ビレットを600〜1000℃に加熱して熱間伸線(熱間粗圧延)したのち放冷し、さらに700〜1000℃に加熱した後、水冷の溶体化処理を施して得られるものである。
【0015】
このようにして得られる素線の導電率は30〜60%IACS程度の範囲とするのが一般的である。
【0016】
(A)工程で冷間伸線して得る合金線の線径(最終線径よりも大きい線径)、(B)工程で行う時効処理の温度(最終導電率よりも高い導電率に上昇させる温度)及び(C)工程で行う冷間伸線での断面減少率(最終線径まで減少させる断面減少率)は、得るべき合金線の目的の最終線径および最終導電率から逆算して設定する。
【0017】
すなわち、時効処理によって上昇する合金線の導電率(上限値)はその処理温度によって決まり、また、冷間伸線の断面減少率によって合金線の導電率の低下量が決まるので、(B)工程で行う時効処理後の導電率の目的の最終導電率からの増加量と、(C)工程で行う目的の最終線径まで冷間伸線した際の断面減少率による導電率の低下量とが等しくなるように、目的の最終線径および最終導電率から、(C)工程の冷間伸線を行う前の合金線の線径と導電率((A)工程での冷間伸線後の合金線の線径と(B)工程で行う時効処理の温度(該温度で時効処理したときの合金線の導電率))を予め計算しておいて、その線径と導電率となるように、(A)工程および(B)工程を実行した後、(C)工程で目的の最終導電率となるように冷間伸線を行う。
なお、合金の組成によって、時効処理による導電率の上限値、冷間伸線の断面減少率による導電率の低下量が異なるので、予め、実験(時効処理、冷間伸線)を行ってこれらの関係を知っておく。
【0018】
例えば、前記のCrを0.1〜1.5量%、Zrを0.001〜0.3量%含有し、残部がCuからなるクロム・ジルコニウム系銅合金を500℃で時効処理した場合、合金の導電率は概ね85%IACSまで上昇し、また、断面減少率が約88%となる冷間伸線を行うとその導電率は概ね5%IACS低下する。従って、かかる組成のクロム・ジルコニウム系銅合金を原料に、最終線径(φ)が0.9mmで、最終導電率が80%IACSの合金線を製造する場合、例えば、(B)工程で時効処理の温度を500℃にして導電率を85%まで上昇させ、(C)工程で断面減少率が約88%の冷間伸線により導電率を5%IACS低下させて最終的に合金線の導電率を80%にする設計では、(A)工程での冷間伸線後の合金線の線径(φ)は、(C)工程での断面減少率が約88%の冷間伸線によって目的の最終線径0.9mmとなる線径の2.6mmに設定する。
【0019】
なお、冷間伸線による合金の導電率の低下量は略100%に近い断面減少率の冷間伸線を行った場合でもせいぜい45%IACS程度なので、(C)工程で目的の最終導電率を得るために、(B)工程では目的の最終導電率よりも概ね45%IACS以内の高い導電率となるように時効処理を行う必要がある。
【0020】
(B)工程の時効処理での温度は一般に400〜600℃の範囲から選択される。また、処理時間は5分〜5時間程度が適当であり、好ましくは1〜2時間である。
【0021】
本発明の製造方法では、合金線の線径が比較的大きい段階で時効処理を行った後、最終工程で冷間伸線して、合金線を細径にするので、細径の合金線を最終工程で時効処理するために起こっていた従来方法での線同士の付着による断線、最終製品(合金線)の変色や表面性の低下といった問題を生じない。また、2回の冷間伸線を行うのは、従来の▲2▼の方法と同じであるが、2回目の冷間伸線((C)工程の冷間伸線)後の合金線がそのまま最終製品になるので、冷間伸線による合金線の引張強さの増大効果が時効処理によって減衰せず、最終製品にそのまま反映し、従来よりも、引張強さの向上したクロム・ジルコニウム系銅合金線を得ることができる。
【0022】
【実施例】
以下の実施例及び比較例は最終線径(φ)が0.9mm、最終導電率が80%IACSのクロム・ジルコニウム系銅合金線を製造する例である。
なお、実施例及び比較例での合金線の導電率はJIS C 3001に準拠した四端子法により測定長1mで測定した値である。また、合金線の引張強さはJIS E 2101に示される方法で標点長さ250mmの引張強さを測定した値である。
【0023】
(実施例1)
クロム・ジルコニウム系銅合金(Cu:99.6量%、Cr:0.3量%、Zr:0.1量%)からなり、950℃で1時間の容体化処理を施した線径(φ)が45mmの素線を、線径(φ)が2.6mmとなるまで冷間伸線した(断面減少率:99.7%)。次に、この線径(φ)が2.6mmの合金線に500℃で90分の時効処理を施した後、断面減少率88.7%の冷間伸線を行って線径(φ)が0.9mm、導電率が80%IACSのクロム・ジルコニウム系銅合金線を得た。合金線の導電率は500℃の時効処理によって85%IACSまで上昇し、断面減少率88.7%の冷間伸線によって80%IACSに低下した。
得られた線径(φ)が0.9mm、導電率が80%IACSのクロム・ジルコニウム系銅合金線の引張強さは74kgf/mm2 であった。
また、製造工程中において線同士の付着による断線は生じず、また、得られた合金線の変色は認められず、表面性は良好であった。
【0024】
(実施例2)
上記実施例1と同じ素線を使用し、該素線を線径(φ)が5.2mmとなるまで冷間伸線した(断面減少率:98.7%)。次に、この線径(φ)が5.2mmの合金線に550℃で90分の時効処理を施した後、断面減少率97.0%の冷間伸線を行って線径(φ)が0.9mm、導電率が80%IACSのクロム・ジルコニウム系銅合金線を得た。合金線の導電率は550℃の時効処理によって90%IACSまで上昇し、断面減少率97.0%の冷間伸線によって80%IACSに低下した。
得られた線径(φ)が0.9mm、導電率が80%IACSのクロム・ジルコニウム系銅合金線の引張強さは75kgf/mm2 であった。
また、製造工程中において線同士の付着による断線は生じず、また、得られた最終製品(合金線)に変色は認められず、表面性は良好であった。
【0025】
(比較例1)
上記実施例1と同じ素線を使用し、該素線を線径(φ)が0.9mmとなるまで冷間伸線した(断面減少率:99.96%)。次に、この線径(φ)が0.9mmの合金線に450℃で90分の時効処理を施して、導電率が80%IACSのクロム・ジルコニウム系銅合金線を得た。
得られた線径(φ)が0.9mm、導電率が80%IACSのクロム・ジルコニウム系銅合金線の引張強さは62kgf/mm2 であった。
なお、時効処理において、ボビン内で線径(φ)が0.9mmの合金線は隣接する線同士が付着し、ボビンから繰り出される際に断線が認められた。また、得られた最終製品(合金線)は変色し、表面性が悪かった。
【0026】
(比較例2)
上記実施例1と同じ素線を使用し、該素線を線径(φ)が33.8mmとなるまで冷間伸線(断面減少率:43.6%)した後、該冷間伸線後の合金線に450℃で90分の時効処理(1回目)を施した。次に、合金線を線径(φ)が0.9mmとなるまで冷間伸線(断面減少率:99.93%)した後、450℃で90分の時効処理(2回目)を施した。
得られた線径(φ)が0.9mm、導電率が80%IACSのクロム・ジルコニウム系銅合金線の引張強さは68kgf/mm2 であった。
なお、時効処理において、ボビン内で線径(φ)が0.9mmの合金線は隣接する線同士が付着し、ボビンから繰り出される際に断線が認められた。また、得られた最終製品(合金線)は変色し、表面性が悪かった。
【0027】
【発明の効果】
以上の説明により明らかなように、本発明によれば、溶体化処理が施されたクロム・ジルコニウム系銅合金の素線を冷間伸線して最終線径よりも大きい線径の合金線を形成した後、該合金線を高温時効処理して導電率を最終導電率よりも高い導電率まで上昇させ、次いで第2回目の冷間伸線を行って線径を最終線径まで減少させるとともに導電率を最終導電率まで低下させることにより、所望の線径及び導電率を有するクロム・ジルコニウム系銅合金線を断線を生じることなく安定に製造することができ、しかも、得られる合金線は表面性が良好で、かつ、従来よりも引張強さが大きく向上したものとなる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a chromium / zirconium-based copper alloy wire, and more particularly, to a method for producing a chromium / zirconium-based copper alloy wire used in robots, electronic parts, medical equipment, aircraft, and the like.
[0002]
[Prior art]
Conventionally, a chromium-zirconium-based copper alloy wire having a wire diameter (φ) of about 0.01 to 4 mm used for robots, electronic parts, medical equipment, airplanes, etc. is obtained by the following method (1) or (2). Has been manufactured.
[0003]
(1) After cold drawing the solution-treated chromium-zirconium-based copper alloy wire to the final wire diameter, high-temperature aging treatment (hereinafter also referred to as aging treatment) is performed. A method of increasing the conductivity to the desired final conductivity.
[0004]
(2) Cold-draw the wire of the chromium-zirconium-based copper alloy that has undergone solution treatment (first time), then perform the first aging treatment, and then until the desired final wire diameter is reached A method of further performing cold wire drawing (second time) and then performing a second aging treatment to increase the conductivity to the desired final conductivity.
[0005]
By the way, in each of the above methods (1) and (2), the alloy wire is subjected to high temperature aging treatment in order to obtain the desired final conductivity in the final step, but the final wire diameter is set during the aging treatment in the final step. Further, there is a problem that the wires of the alloy wires adhere to each other and breakage occurs when the alloy wire is drawn out from the bobbin. In addition, since the aging treatment in the final process is used as a final product, there is a problem that the alloy wire of the final product is discolored or its surface property is deteriorated.
[0006]
In addition, since the method (2) is subjected to aging treatment twice, an alloy wire having a higher tensile strength than the method (1) can be obtained. However, the strength of this type of alloy wire has recently been increased. However, the tensile strength of the alloy wire obtained by the method (2) is not sufficient, and there is a demand for an alloy wire with improved tensile strength.
[0007]
[Problems to be solved by the invention]
In view of the above circumstances, an object of the present invention is to provide a method for producing a chromium-zirconium-based copper alloy wire capable of producing an alloy wire having a higher tensile strength than before without performing an aging treatment in the final step. Yes.
[0008]
[Means for Solving the Problems]
As a result of diligent research to achieve the above object, the inventors of the present invention decrease the electrical conductivity of the alloy wire by cold drawing. Therefore, first, the electrical conductivity of the alloy wire is temporarily set higher than the intended final electrical conductivity by high temperature aging treatment. If the wire diameter is reduced to the desired final wire diameter and the conductivity is lowered to the desired final conductivity, aging treatment is performed in the final process. It was found that the alloy wire thus obtained has higher tensile strength than the conventional one, and the present invention has been completed based on this finding.
[0009]
That is, the present invention has the following features.
(1) Element of chromium-zirconium-based copper alloy containing 0.1 to 1.5% by mass of Cr, 0.001 to 0.3% by mass of Zr, and the balance being Cu, which has undergone solution treatment The wire is cold drawn to form an alloy wire with a wire diameter larger than the final wire diameter, the alloy wire is subjected to high temperature aging to increase its conductivity to a conductivity higher than the final conductivity, and then Chromium-zirconium-based copper characterized in that the second cold wire drawing is performed to reduce the wire diameter to the final wire diameter and to lower the conductivity by 5-10% IACS than that after the high temperature aging treatment. Manufacturing method of alloy wire .
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The method for producing a chromium-zirconium-based copper alloy wire according to the present invention comprises: (A) a wire that is larger than the intended final wire diameter by cold-drawing the wire of the chromium-zirconium-based copper alloy that has undergone solution treatment; Diameter alloy wire, then (B) aging the alloy wire to increase its conductivity to a higher conductivity than the desired final conductivity, then (C) cold drawing the alloy wire In this method, the wire diameter is decreased to the target final wire diameter and the conductivity is decreased to the target final conductivity.
[0011]
The chromium-zirconium-based copper alloy in the present invention includes a conventionally known composition of chromium-zirconium that has been used as a raw material for chromium-zirconium-based copper alloy wires used in robots, electronic parts, medical equipment, aircraft, and the like. Although the system copper alloy is used, in particular, the Cr 0.1 to 1.5 mass%, a Zr containing 0.001-0.3 mass%, the alloy composition and the balance being Cu is preferable.
Cr and Zr wear resistance of the alloy, a component for improving the heat resistance and the like, is present as dispersed particles in the Cu matrix, or Cr becomes larger than 1.5 mass%, Zr 0.3 When many consisting mass%, the dispersed particles is increased, the tensile strength in the alloy wire of the final product obtained by processing a tendency to decrease, also or Cr becomes less than 0.1 mass%, When Zr is less than 0.001 mass%, inherent effect of containing them (wear resistance of the alloy wire, the effect of improving the heat resistance and the like) it is difficult to obtain.
[0012]
The form of the alloy used as a raw material is not particularly limited, but a cylindrical or prismatic billet obtained by casting after adding a predetermined amount of Cr and Zr to molten copper obtained by dissolving ordinary cathode copper It is common to use a billet obtained by a continuous casting method.
[0013]
The final wire diameter (φ) of the chromium-zirconium-based copper alloy wire produced in the present invention is usually in the range of 0.01 to 4 mm, preferably 0.04 to 2.6 mm, and the final conductivity is usually 60% IACS. As described above, preferably 80% IACS or more, and is selected according to the usage form of the alloy wire.
[0014]
In the (A) process, the “element wire of chromium / zirconium-based copper alloy subjected to solution treatment” is, for example, heated to 600 to 1000 ° C. and hot drawn (hot rough rolled). Thereafter, it is allowed to cool and further heated to 700 to 1000 ° C., and then subjected to a water cooling solution treatment.
[0015]
The conductivity of the strands obtained in this way is generally in the range of about 30 to 60% IACS.
[0016]
(A) The wire diameter of the alloy wire obtained by cold drawing in step (wire diameter larger than the final wire diameter), the temperature of the aging treatment performed in step (B) (increase the conductivity higher than the final conductivity) (Cross-section reduction rate in the cold wire drawing performed in the process (C)) and (C) (the cross-section reduction rate to be reduced to the final wire diameter) is set by calculating back from the desired final wire diameter and final conductivity of the alloy wire to be obtained. To do.
[0017]
That is, the electrical conductivity (upper limit value) of the alloy wire that rises due to the aging treatment is determined by the processing temperature, and the amount of decrease in the electrical conductivity of the alloy wire is determined by the cross-sectional reduction rate of the cold drawing, so that (B) step The amount of increase in conductivity after the aging treatment performed in step 1 from the target final conductivity and the amount of decrease in conductivity due to the cross-section reduction rate when cold drawn to the target final wire diameter performed in step (C). From the target final wire diameter and final conductivity, the wire diameter and electrical conductivity of the alloy wire before the cold drawing in the step (C) and the conductivity (after the cold drawing in the step (A)) The wire diameter of the alloy wire and the temperature of the aging treatment performed in the step (B) (the conductivity of the alloy wire when aging treatment is performed at the temperature) are calculated in advance so that the wire diameter and the conductivity are obtained. After the steps (A) and (B) are performed, the step (C) is performed so that the target final conductivity is obtained. Do the drawing.
Note that the upper limit value of the conductivity due to the aging treatment and the amount of decrease in the conductivity due to the cross-section reduction rate of the cold drawing differ depending on the composition of the alloy, so these were previously conducted through experiments (aging treatment, cold drawing). Know the relationship.
[0018]
For example, 0.1 to 1.5 mass% of said Cr, and Zr containing 0.001-0.3 mass%, and the balance was aged at 500 ° C. The chromium-zirconium copper alloy consisting of Cu In this case, the electrical conductivity of the alloy rises to about 85% IACS, and when the cold wire drawing is performed so that the cross-section reduction rate is about 88%, the electrical conductivity is lowered by about 5% IACS. Therefore, when producing an alloy wire having a final wire diameter (φ) of 0.9 mm and a final conductivity of 80% IACS using a chromium-zirconium-based copper alloy having such a composition as a raw material, for example, it is aged in the step (B). The temperature of the treatment is increased to 500 ° C. and the electrical conductivity is increased to 85%. In the step (C), the electrical conductivity is decreased by 5% IACS by cold drawing with a cross-section reduction rate of about 88%, and finally the alloy wire In the design where the electrical conductivity is 80%, the wire diameter (φ) of the alloy wire after the cold drawing in the step (A) is the cold drawing in which the cross-section reduction rate in the step (C) is about 88%. Is set to 2.6 mm which is the target wire diameter of 0.9 mm.
[0019]
Note that the amount of decrease in the electrical conductivity of the alloy due to cold drawing is at most about 45% IACS even when cold drawing with a cross-section reduction rate close to about 100% is performed. In order to obtain the above, in the step (B), it is necessary to perform an aging treatment so as to obtain a conductivity that is generally within 45% IACS of the target final conductivity.
[0020]
(B) Generally the temperature in the aging treatment of a process is selected from the range of 400-600 degreeC. The treatment time is suitably about 5 minutes to 5 hours, preferably 1 to 2 hours.
[0021]
In the production method of the present invention, after the aging treatment is performed at a stage where the wire diameter of the alloy wire is relatively large, the alloy wire is thinned by cold drawing in the final step. Problems such as disconnection due to adhesion of wires in the conventional method, discoloration of the final product (alloy wire), and deterioration of surface properties that have occurred for aging treatment in the final process are not caused. In addition, the second cold drawing is the same as in the conventional method (2), but the alloy wire after the second cold drawing (cold drawing in the step (C)) is Since it becomes the final product as it is, the effect of increasing the tensile strength of the alloy wire due to cold drawing is not attenuated by the aging treatment, but is reflected in the final product as it is, and the chromium-zirconium system with improved tensile strength than before A copper alloy wire can be obtained.
[0022]
【Example】
The following examples and comparative examples are examples of producing chromium-zirconium-based copper alloy wires having a final wire diameter (φ) of 0.9 mm and a final conductivity of 80% IACS.
In addition, the electrical conductivity of the alloy wire in an Example and a comparative example is the value measured by measurement length 1m by the four-terminal method based on JISC3001. Further, the tensile strength of the alloy wire is a value obtained by measuring the tensile strength of a gauge length of 250 mm by the method shown in JIS E2101.
[0023]
(Example 1)
Chromium-zirconium copper alloy (Cu: 99.6 mass%, Cr: 0.3 mass%, Zr: 0.1 mass%) a, a line subjected to 1 hour condition treatment at 950 ° C. An element wire having a diameter (φ) of 45 mm was cold-drawn until the wire diameter (φ) was 2.6 mm (cross-sectional reduction rate: 99.7%). Next, this alloy wire having a wire diameter (φ) of 2.6 mm was subjected to an aging treatment at 500 ° C. for 90 minutes, and then cold drawn with a cross-section reduction rate of 88.7% to obtain a wire diameter (φ) A chromium-zirconium-based copper alloy wire having an IACS of 0.9 mm and an electrical conductivity of 80% was obtained. The conductivity of the alloy wire increased to 85% IACS by aging treatment at 500 ° C., and decreased to 80% IACS by cold drawing with a cross-section reduction rate of 88.7%.
The tensile strength of the obtained chromium-zirconium-based copper alloy wire having a wire diameter (φ) of 0.9 mm and an electrical conductivity of 80% IACS was 74 kgf / mm 2 .
Moreover, the disconnection by adhesion | attachment of wires did not arise in a manufacturing process, and discoloration of the obtained alloy wire was not recognized, but the surface property was favorable.
[0024]
(Example 2)
The same wire as in Example 1 was used, and the wire was cold-drawn until the wire diameter (φ) was 5.2 mm (cross-sectional reduction rate: 98.7%). Next, after aging treatment was performed at 550 ° C. for 90 minutes on an alloy wire having a wire diameter (φ) of 5.2 mm, cold drawing was performed with a cross-section reduction rate of 97.0% to obtain a wire diameter (φ). A chromium-zirconium-based copper alloy wire having an IACS of 0.9 mm and an electrical conductivity of 80% was obtained. The electrical conductivity of the alloy wire increased to 90% IACS by aging at 550 ° C., and decreased to 80% IACS by cold drawing with a cross-section reduction rate of 97.0%.
The tensile strength of the obtained chromium-zirconium-based copper alloy wire having a wire diameter (φ) of 0.9 mm and an electrical conductivity of 80% IACS was 75 kgf / mm 2 .
Further, no disconnection due to adhesion between the wires occurred during the manufacturing process, and no discoloration was observed in the obtained final product (alloy wire), and the surface property was good.
[0025]
(Comparative Example 1)
The same wire as in Example 1 was used, and the wire was cold-drawn until the wire diameter (φ) became 0.9 mm (cross-sectional reduction rate: 99.96%). Next, the alloy wire having a wire diameter (φ) of 0.9 mm was subjected to aging treatment at 450 ° C. for 90 minutes to obtain a chromium-zirconium-based copper alloy wire having an electrical conductivity of 80% IACS.
The tensile strength of the obtained chromium-zirconium-based copper alloy wire having a wire diameter (φ) of 0.9 mm and an electrical conductivity of 80% IACS was 62 kgf / mm 2 .
In addition, in the aging treatment, adjacent wires adhered to the alloy wire having a wire diameter (φ) of 0.9 mm in the bobbin, and disconnection was recognized when the bobbin was drawn out. Further, the obtained final product (alloy wire) was discolored and the surface property was poor.
[0026]
(Comparative Example 2)
Using the same wire as in Example 1, the wire was cold-drawn (cross-sectional reduction rate: 43.6%) until the wire diameter (φ) was 33.8 mm, and then the cold-drawn wire The subsequent alloy wire was subjected to an aging treatment (first time) at 450 ° C. for 90 minutes. Next, the alloy wire was cold-drawn (cross section reduction rate: 99.93%) until the wire diameter (φ) became 0.9 mm, and then subjected to an aging treatment (second time) at 450 ° C. for 90 minutes. .
The tensile strength of the obtained chromium-zirconium-based copper alloy wire having a wire diameter (φ) of 0.9 mm and an electrical conductivity of 80% IACS was 68 kgf / mm 2 .
In addition, in the aging treatment, adjacent wires adhered to the alloy wire having a wire diameter (φ) of 0.9 mm in the bobbin, and disconnection was recognized when the bobbin was drawn out. Further, the obtained final product (alloy wire) was discolored and the surface property was poor.
[0027]
【The invention's effect】
As is clear from the above description, according to the present invention, the alloy wire having a wire diameter larger than the final wire diameter is obtained by cold-drawing the wire of the chromium-zirconium-based copper alloy that has undergone solution treatment. After forming, the alloy wire is subjected to high temperature aging treatment to increase the conductivity to a conductivity higher than the final conductivity, and then a second cold wire drawing is performed to reduce the wire diameter to the final wire diameter. By reducing the conductivity to the final conductivity, a chromium-zirconium-based copper alloy wire having a desired wire diameter and conductivity can be stably produced without causing breakage, and the obtained alloy wire has a surface The tensile strength is greatly improved as compared with the conventional one.

Claims (1)

溶体化処理が施された、Crを0.1〜1.5重量%、Zrを0.001〜0.3重量%含有し、残部がCuからなるクロム・ジルコニウム系銅合金の素線を冷間伸線して最終線径よりも大きい線径の合金線を形成し、該合金線を高温時効処理してその導電率を最終導電率よりも高い導電率まで上昇させ、次いで、第2回目の冷間伸線を行って線径を最終線径まで減少させるとともに導電率を前記高温時効処理後のそれよりも5〜10%IACS低下させることを特徴とするクロム・ジルコニウム系銅合金線の製造方法。Chromium-zirconium-based copper alloy strands containing 0.1 to 1.5 wt% Cr and 0.001 to 0.3 wt% Zr, with the balance being Cu, are subjected to solution treatment. Wire drawing is performed to form an alloy wire having a wire diameter larger than the final wire diameter, the alloy wire is subjected to high temperature aging treatment to increase its conductivity to a conductivity higher than the final conductivity, and then the second time Of the chromium-zirconium-based copper alloy wire, wherein the wire diameter is reduced to the final wire diameter and the conductivity is decreased by 5 to 10% IACS from that after the high temperature aging treatment . Production method.
JP36814499A 1999-12-24 1999-12-24 Method for producing chromium-zirconium-based copper alloy wire Expired - Fee Related JP4358395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36814499A JP4358395B2 (en) 1999-12-24 1999-12-24 Method for producing chromium-zirconium-based copper alloy wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36814499A JP4358395B2 (en) 1999-12-24 1999-12-24 Method for producing chromium-zirconium-based copper alloy wire

Publications (2)

Publication Number Publication Date
JP2001181811A JP2001181811A (en) 2001-07-03
JP4358395B2 true JP4358395B2 (en) 2009-11-04

Family

ID=18491071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36814499A Expired - Fee Related JP4358395B2 (en) 1999-12-24 1999-12-24 Method for producing chromium-zirconium-based copper alloy wire

Country Status (1)

Country Link
JP (1) JP4358395B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103540883B (en) * 2013-10-16 2015-07-22 河南科技大学 Aging treatment method for lowering residual stress of copper alloy wire
DE102015001293B4 (en) * 2015-02-02 2022-11-17 Isabellenhütte Heusler Gmbh & Co. Kg power rail arrangement
CN114682636A (en) * 2022-03-04 2022-07-01 江阴电工合金股份有限公司 Continuous extrusion production process and device for grain refining copper, chromium and zirconium
CN114850234A (en) * 2022-05-17 2022-08-05 宁波金田铜业(集团)股份有限公司 Forming process of chromium-zirconium-copper contact line
CN115612889A (en) * 2022-10-31 2023-01-17 安波福电气系统有限公司 A kind of copper alloy conductor and preparation method thereof

Also Published As

Publication number Publication date
JP2001181811A (en) 2001-07-03

Similar Documents

Publication Publication Date Title
JP4177266B2 (en) High strength and high conductivity copper alloy wire with excellent stress relaxation resistance
KR101521408B1 (en) Electrical wire conductor for wiring, method for producing electrical wire conductor for wiring, electrical wire for wiring, and copper alloy wire
KR101213801B1 (en) High strength and high conductivity copper alloy pipe, rod, or wire
EP3064604A1 (en) Copper alloy wire, copper alloy stranded wire, coated electric wire, wire harness and manufacturing method of copper alloy wire
EP3362581B1 (en) Aluminum-iron-zirconium alloys
JP4358395B2 (en) Method for producing chromium-zirconium-based copper alloy wire
JP5486870B2 (en) Manufacturing method of aluminum alloy wire
JP5534241B2 (en) Aluminum alloy wire and manufacturing method thereof
JP6635732B2 (en) Method for manufacturing aluminum alloy conductive wire, aluminum alloy conductive wire, electric wire and wire harness using the same
JPS63243247A (en) High-strength aluminum-based composite conductive wire and its production
JP6853872B2 (en) Manufacturing method of aluminum alloy conductive wire, aluminum alloy conductive wire, electric wire and wire harness using this
JPH06103809A (en) Manufacture of cu-ag alloy wire
JPH0314896B2 (en)
JPS63293146A (en) Manufacture of high strength heat resistant aluminum alloy for electric conduction
JPS6012421B2 (en) Manufacturing method of lead wire material
JP2001181772A5 (en)
JP6023901B2 (en) Electric wire or cable, wire harness, and aluminum alloy strand manufacturing method
JP2869617B2 (en) Manufacturing method of aluminum alloy wire
JPS63230220A (en) Manufacture of heat resistant aluminum coated steel wire for electric conduction
JPH11350093A (en) Manufacture of heat resistant aluminum alloy conducting wire
JPH0313302B2 (en)
JP2628235B2 (en) Method for producing high heat-resistant aluminum alloy wire for conductive use
JP4057162B2 (en) High strength, high conductivity, high Cr content copper alloy
JPH0689620A (en) Manufacture of high conductivity and high strength stranded wire
JPH0113170B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090806

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees