[go: up one dir, main page]

JP4357191B2 - Sealed nickel zinc primary battery and manufacturing method thereof - Google Patents

Sealed nickel zinc primary battery and manufacturing method thereof Download PDF

Info

Publication number
JP4357191B2
JP4357191B2 JP2003069247A JP2003069247A JP4357191B2 JP 4357191 B2 JP4357191 B2 JP 4357191B2 JP 2003069247 A JP2003069247 A JP 2003069247A JP 2003069247 A JP2003069247 A JP 2003069247A JP 4357191 B2 JP4357191 B2 JP 4357191B2
Authority
JP
Japan
Prior art keywords
positive electrode
molded body
nickel
battery
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003069247A
Other languages
Japanese (ja)
Other versions
JP2004281160A (en
Inventor
夏樹 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP2003069247A priority Critical patent/JP4357191B2/en
Publication of JP2004281160A publication Critical patent/JP2004281160A/en
Application granted granted Critical
Publication of JP4357191B2 publication Critical patent/JP4357191B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • Y02E60/12

Landscapes

  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はニッケル高次酸化物を正極活物質とする密閉形ニッケル亜鉛一次電池及びその製造方法に関する。
【0002】
【従来の技術】
最近、携帯電子機器の普及に伴い、電池の高容量化及び高率放電特性改善の要請が強く、アルカリ亜鉛一次電池の正極活物質については、従来より放電持続時間の向上を目的として、正極合剤中の黒鉛など、発電要素とはならない炭素系導電材の含有量を減少させて正極活物質の含有量を増加させることが検討されてきた。また、高率放電特性を改善するために、従来正極活物質として広く用いられてきた二酸化マンガンに代えて、水酸化ニッケル系化合物のようなニッケル高次酸化物を正極活物質として用いることが検討されている(特許文献1参照)。
しかしながら、この電池においては、最近の携帯電子機器に用いる際に要求される高負荷特性が十分ではなく、この点の改善が望まれている。近年、この特性を改善した電池として、ニッケル高次酸化物を正極活物質とした密閉形ニッケル亜鉛電池の開発が進められている。
【0003】
このニッケル高次酸化物を正極活物質とする密閉形アルカリ亜鉛一次電池は、中空円筒状に成型された正極材料を、正極となる容器に収容し、正極合剤の内部にセパレータを介してゲル状負極材料を配置して電池として構成している。
【0004】
この電池について、図1を用いて詳細に説明する。図1がいわゆるインサイドアウト構造(電池缶体が正極側、電池蓋側が負極側となっている構造)と呼ばれているJIS規格のLR6形(単3形)の電池の断面図である。
図1において1は、正極端子を兼ねる有底円筒形の金属缶であり、この金属缶1の内部に、正極活物質を含有する正極合剤を、正極成形体成形用金型を用いて中空円筒状に成形された正極成形体2が金属缶1の内面に接触するように収容されている。この正極成形体2の中空内部には不織布などからなる有底円筒状のセパレータ3を介して、すでに一般に公知のゲル状亜鉛負極材料4が充填されている。そして、この負極材料4には金属棒からなる負極集電棒5が挿着され、この負極集電棒5の一端は負極材料4の表面から突出してリング状金属板7及び陰極端子を兼ねる金属封口板8に電気的に接続されている。そして、正極となる金属缶1内面と、負極集電棒5の突出部外周面には、二重環状のポリアミド樹脂からなる絶縁ガスケット6が配設され、これらは絶縁されている。また、金属缶1の開口部はかしめられて液密に封止されている。
前記正極成形体2は、通常3個を重ねて電池容器に収容されている。
【0005】
ところで、ニッケル高次酸化物を正極活物質とする合剤を中空円筒形状の正極成形体に成形し、筒状の正極となる金属缶に挿入すると、ニッケル高次酸化物を正極活物質とする正極合剤は、正極成形体の成形時に金型への合剤の付着が多く、成形体の寸法変動が大きい。その為、密閉形ニッケル亜鉛一次電池においては、筒型金属缶内の所定の位置に成形体を収める為、金属缶と成形体の密着性を高めるために、筒型金属缶に成形体を挿入後、再加圧工程を必要としている。挿入後の再加圧工程では、成形体の中空部にコア棒を挿入後、上杵で成形体を高さ方向に圧縮している。結果として成形体は径方向に膨張するので、正極缶内壁およびコア棒に密着する。その後上杵およびコア棒を引き抜き所定寸法としている。
【0006】
この工程で、かかる密閉形ニッケル亜鉛一次電池においては、成形高さの変動により再加圧前の高さ寸法が高くなる、すなわち再加圧時の高さ方向の圧縮量が大きくなると、合剤の高さ方向での粗密差が大きくなり、コア棒引き抜き時の金型への食いつきが大きくなる。それによって、再加圧後の合剤に亀裂が入りやすくなり、最悪の場合、合剤の欠損が生じる。合剤の欠損が生じると、合剤重量が狙い値よりも小さくなる為、電解液量および負極容量とのバランスが崩れるため、電池性能低下を引き起こす原因となっていた。
【0007】
【特許文献1】
特開2000−048827号公報
【0008】
【発明が解決しようとする課題】
本発明は、前記ニッケル高次酸化物を正極活物質とする密閉形ニッケル亜鉛一次電池において、電池組み立て時の正極成形体の破損に基づく電池性能の低下を防止することのできる密閉形ニッケル亜鉛一次電池、および、電池性能に優れ、かつ、製造効率に優れた製造方法を実現するものである。
【0009】
【課題を解決するための手段】
第1の本発明はニッケル高次酸化物を正極活物質とする合剤を中空円筒形状の正極成形体に成形し、筒状の金属缶に挿入した密閉型ニッケル亜鉛一次電池において、
前記正極活物質に対し、3〜7質量%の粒径範囲が10〜80μmの二酸化マンガンを添加したことを特徴とする密閉型ニッケル亜鉛一次電池である。
【0010】
第2の本発明はニッケル高次酸化物を正極活物質とする合剤を中空円筒形状の正極成形体に成形し、筒状の金属缶に挿入する密閉型ニッケル亜鉛一次電池の製造方法において、
ニッケル高次酸化物、および前記ニッケル高次酸化物に対して3〜7質量%の粒径範囲が10〜80μmの二酸化マンガンを含む合剤を正極成形体成形金型に充填し、加圧成形して中空円筒状の正極成形体を製作する工程、
前記正極成形体を前記金属缶内部に挿入し、加圧することなく、正極成形体を前記容器内に配置させる工程、
および、前記正極成形体の中空内部にセパレータ、及びゲル状負極を充填し、負極集電棒を前記ゲル状負極に挿入して電池を組み立てる工程を少なくとも備えたことを特徴とする密閉型ニッケル亜鉛一次電池の製造方法である。
【0011】
【発明の実施の形態】
以下本発明の実施の形態について詳細に説明する。
本発明の密閉形ニッケル亜鉛一次電池において、正極として用いられる正極合剤は、オキシ水酸化ニッケル系化合物あるいは表面にコバルト系化合物を被着したオキシ水酸化ニッケル系化合物粒子に、二酸化マンガン粒子および必要に応じて炭素粒子のような導電剤、バインダー、潤滑剤等の添加成分を配合したものであり、これを金型を用いて加圧して中空円筒状の正極成形体に成形する。
この際にニッケル高次酸化物からなる正極活物質に二酸化マンガン粒子を添加することにより、正極成形体の製造時に成形寸法の変動を抑止することができる。これは正極合剤を金型に充填し、加圧成形した場合、ニッケル高次酸化物を含有する正極合剤が加圧によって金型内面に付着して、正極成形体を金型から取り出した後、金型内部に残留する現象が発生するが、二酸化マンガン粒子を添加すると、金型に付着した正極合剤がこの二酸化マンガン粒子によって削り取られ、その結果、金型内部に正極合剤が付着残留する現象が防止される為と考えられる。
【0012】
このように、二酸化マンガン粒子を配合した正極合剤を用いて成形した正極成形体は、成形時の材料減耗が少なく、成形寸法の変動が少ないため、この正極成形体を金属缶に収容し再加圧した場合の圧縮率変動も小さくなり、再加圧後の合剤の高さ方向での粗密差が減少し、その結果、正極成形体の破損率が減少する。上記正極合剤の減耗防止には、ニッケル高次酸化物に対して、二酸化マンガン粒子を少なくとも0.5質量%配合することが必要であり、3質量%以上添加することがさらに好ましい。
一方、二酸化マンガンを添加することによって、ニッケル高次酸化物を正極活物質とした密閉型ニッケル亜鉛一次電池の特徴であるハイレートパルス特性が低下することも確認している。具体的には1200mAの電流を3秒間放電させた後7秒間開放する過程を開路電圧が0.9Vに低下するまでのパルス放電持続時間で比較すると、20%以上添加したもので、4%以上の性能ダウンが認められる。従って、二酸化マンガン粒子の正極合剤への添加量は、20質量%以下、より好ましくは、7質量%以下である。
【0013】
以上に説明したように、本発明においては、ニッケル高次酸化物を含有する正極活物質に、0.5〜20質量%の二酸化マンガン粒子を配合することにより、正極成形体の破損を効果的に防止するものである。
【0014】
また、本発明において、正極活物質に二酸化マンガン粒子を添加することにより、成形寸法の変動が小さくなり成形工程での寸法管理が容易になる為、あらかじめ金属缶に適合するように合剤寸法に成形し、筒型の金属缶に挿入するだけで金属缶と正極成形体とが十分接触し狙った電池特性を得ることが出来る。これによって前記金属缶に収容した正極成形体の再加圧成形工程が不要となり、製造設備の設置スペースの縮小、消費電力削減、管理工数の削減が可能となる.さらに再成形後の合剤の欠損は事実上皆無となり、製造した電池の電池性能不良を低減できる。
【0015】
以下、本発明を適用した電池の実施の形態について、図面を参照しながら詳細に説明する。
(正極合剤及び正極成形体)
本発明の正極成形体は、ニッケル高次酸化物からなる正極活物質、二酸化マンガン粒子、及び必要に応じて導電性付与剤としての炭素系導電材、ポリオレフィン等のバインダー、及びその他の添加剤成分からなる正極合剤材料を顆粒状に成形し、その表面に必要に応じて潤滑剤を被覆し、所要形状に成形したものである。
【0016】
本実施の形態において用いる二酸化マンガン粒子としては、例えば電解によって製造された電解二酸化マンガンを破砕して得られる二酸化マンガン粒子を用いることができる。この二酸化マンガンとしては、粒径範囲が、10〜80μmの範囲のものが適切である。この粒径範囲が上記範囲を下回った場合、正極成形体成形時の金型への原料残留を防止することが困難になり、成形体破損の可能性が大きくなる。一方、粒径範囲が上記範囲を上回った場合、金型への原料残留防止に必要な添加量が増加し性能低下の問題が発生して好ましくない、
【0017】
本発明において用いられる前記正極活物質であるニッケル高次酸化物としては、水酸化ニッケル系化合物、すなわち、水酸化ニッケル、およびオキシ水酸化ニッケルがあげられる。これらの内、オキシ水酸化ニッケルが高濃度である程、電池電圧が高く、放電容量も増すという点で望ましい。
【0018】
さらに、正極活物質である水酸化ニッケル系化合物自体が、亜鉛もしくはコバルト単独あるいはその両方と共晶しているものであることが、低電解液比率でも安定した放電が行えることから好ましい。水酸化ニッケル系化合物に共晶させる亜鉛もしくはコバルトの量としては、4.0〜12.0%の範囲が好ましい。亜鉛の量がこの範囲を下回ると、利用率低下の問題が発生し、またこの範囲を上回ると、比重低下により容量密度が低下する問題があるからである。
【0019】
また、かかる水酸化ニッケル系化合物粒子の表面には、オキシ水酸化コバルト、三酸化二コバルト、一酸化コバルト、水酸化コバルト、金属ニッケル、金属コバルトより選ばれる少なくとも一つの物質により被覆されていることが望ましい。電気伝導度の高い物質によりオキシ水酸化ニッケルの表面が被覆されることで、正極全体の電気伝導性が高まり、放電容量、高率放電特性が向上するので好ましい。これらの物質の内でも、オキシ水酸化コバルト、金属ニッケル、金属コバルトを用いることが、より導電性が高いという理由で好ましい。
【0020】
かかる被覆層の量は、正極活物質に対して、2.0〜6.0質量%の範囲が望ましい。被覆層の量がこの範囲を上回ると、コスト高の問題が生じ、またこの範囲を下回ると、集電性低下の問題が生じて好ましくない。
【0021】
また、上記水酸化ニッケル系化合物からなる正極活物質に、Y、Er、Yb、Caの化合物を添加することにより、貯蔵時の容量維持率を改善することができる。本発明において用いられる上記化合物としては、例えばY、Er、Yb、などの金属酸化物、およびCaFなどの金属フッ化物があげられる。これらの金属酸化物および金属フッ化物は、正極活物質であるニッケル水酸化物に対して、0.1〜2質量%の範囲で用いることができる。金属酸化物もしくは金属フッ化物の配合量が上記範囲を下回った場合、貯蔵特性の改善効果が得られず、一方配合量が上記範囲を上回った場合、相対的に正極活物質の量が減るので高容量化に適さなくなるため好ましくない。
【0022】
上記本発明で用いる水酸化ニッケル系化合物の製造方法は、本出願人の出願である特願2001−310323号に詳細に説明されており、本発明においても、この出願に記載されている水酸化ニッケル系化合物を用いることが好ましい。
【0023】
また、本発明において用いられる炭素系導電材としては、黒鉛、カーボンブラックなど公知の電池用炭素系導電材を用いることができるが、特に黒鉛が好ましい。
さらに、本発明において用いるバインダーとしては、電池の正極合剤用バインダーとして公知の物質を用いることができるが、そのうちでポリオレフィンが好ましい。本発明において、ポリオレフィンを添加する理由は、正極合剤において黒鉛を減量した場合、正極合剤の結着性が低下し、正極合剤の保形性が低下するのを防止するものであり、黒鉛より少量で正極合剤成分を結着することができる。本発明においては、ポリオレフィンとして、ポリエチレン及びポリプロピレンが挙げられる。これらのポリオレフィンは、正極合剤に粒子状で添加される。その平均粒径は、およそ5〜500μmの範囲が好ましい。
また、正極合剤には、正極合剤成型時に電解液を混合することにより成形性及び導電性を改善することができる。
【0024】
上記正極合剤において用いられる正極合剤材料の成分の配合比率は、正極合剤:炭素系導電材:バインダーが、質量比にして100:3〜12:0.05〜0.5の範囲が好ましい。
炭素系導電材の量がこの範囲を下回った場合、放電容量は向上するが、正極活物質の導電性が低下し、起電力が低下するとともに重負荷放電特性が低下する。一方、上記範囲を上回った場合、成形性、成形作業性は良好となるが、正極活物質の量が制限されるため、放電容量が低下する。
また、バインダーの量がこの範囲を下回った場合、成形体の強度が低く電池制作時に歩留まりが低下する。一方、バインダーの量がこの範囲を上回った場合、正極活物質の量が制限されるため、放電容量が低下する。
【0025】
(正極合剤の製造)
以下、本発明の正極合剤の製造について、そのプロセスを示す図2を用いて、より詳細に説明する。
図1中、21ないし24が、本発明において用いる原材料であり、S21ないしS27が製造過程の工程であり、25が得られる正極合剤である。以下これらの工程を順次説明する。
【0026】
(S21:ドライ攪拌)
正極活物質であるニッケル高次酸化物に、二酸化マンガン粒子及び炭素系導電材粉末を加え万能攪拌ミキサーにてドライ攪拌する。
【0027】
(S22:ウェット攪拌)
上記ドライ攪拌によって得られた混合粉末100質量部に対し、電解液を添加して万能攪拌ミキサーにてウェット攪拌する。この工程により、上記ドライ攪拌で混合した正極合剤成分粉末が、相互に凝着し成形可能となる。この工程において用いる電解液の量は、正極合剤成分100質量部に対して、2〜7質量部程度である。
【0028】
(S23:圧縮)
上記工程において配合された正極合剤は、次いで、ローラコンパクタと呼ばれるロール状プレス機によって圧縮加圧され、造粒のために充填密度を高められる。このローラコンパクタは、双ロール間に正極合剤を供給し、加圧して充填密度を高めるものであり、圧縮応力は、印加力をローラ幅で割った0.5×104〜5×104N/cmの範囲のものが好ましく、1.5×104〜3.5×104N/cmの範囲がより好ましい。これによって、1mm以下の厚さの板状の被圧縮物が得られる。
【0029】
(S24:破砕)
上記工程によって処理された正極合剤は、圧縮塊状となっている。これを用いて成形体を作製するためには一旦粒状に造粒する必要がある。そのためにロール表面に互いに嵌合する突起を有する双ロールを用いたグラニュレータによる破砕処理を行う。圧縮塊状に成形された正極合剤はこのグラニュレータに通すことによって、粒状に破砕される。
【0030】
(S25:篩い分け)
次に、14〜60メッシュの自動篩分機にて分級して、粒径250〜1180μm程度の顆粒状正極合剤を選別し分級する。
【0031】
(S26:混合攪拌)
上記工程によって得られた顆粒状合剤に、所望に応じてエチレンビス飽和脂肪族アミド粉末のような潤滑剤を所定量添加し、混合攪拌する。これまでの工程によって、エチレンビス飽和脂肪酸アミド粉末を顆粒状正極合剤表面に付着させた顆粒状合剤が製造される。
【0032】
(S27:成形)
上記工程で造粒された顆粒状正極合剤粒子は、次いで、金型を用いて正極合剤に成形される。
インサイドアウト型電池の正極合剤は、中空円筒状をしており、中央のマンドレルを有し、所要の体積を有する円筒形状の金型中に上記正極合剤粒子を充填して、雄型を圧入することにより成形が行われる。このときの成形圧力は、0.5×108〜9.8×108Paの圧力が好ましい。成形圧力が上記範囲を下回った場合、必要な正極合剤の充填密度が得られず、また、粒子同士の接触も確保しにくくなるので、電池とした場合、所定の放電容量が得られない。一方、成形圧力が上記範囲を上回った場合、正極合剤中に電解液が浸透しにくくなり、その利用率を下げてしまう。
【0033】
(S28:電池組み立て工程)
次いで、上記工程までで得られた正極成形体を用いて、密閉形電池を製造する。まず、金属缶に正極成形体を収納する。この際、正極成形体に圧力を加えて、正極缶と正極成形体との密着性を高めてもよいが、上記工程で製造された正極成形体は、寸法精度が向上しているため、強いて加圧することなく金属缶に挿着しても、金属缶と正極成形体とが十分密着し、必要な電気的接続が得られる。さらに、この加圧によって、正極成形体の破損が生じる可能性が高まり、かえって加圧によって電池性能が低下することが考えれられるので、正極成形体を金属缶に収容する際に加圧する必要はない。
次いで、図1に見られるように、正極成形体の中央の空所に、有底円筒状のセパレータ紙を配置し、その内部にゲル状負極を充填する。そして、このゲル状負極内部に負極集電棒を挿着し、以降、リング状金属板、金属封口板、絶縁ガスケット等を所定の位置に配置し、金属缶の開口端部をかしめ封口して電池を組み立てることができる。
【0034】
【実施例】
(試験例1)
まず、ニッケル高次酸化物であるオキシ水酸化ニッケルに対して、表1に示す量の二酸化マンガン粒子及び7質量%の黒鉛を配合し、顆粒状合剤を造粒した。これをJIS規格LR6形(単3形)用のサイズの円筒状の成形型に充填し、加圧成形して正極成形体を得た。この工程を複数回繰り返し、得られる正極成形体の高さを測定し、成型工程の実施回数と正極成形体の高さの関係を調べた。その結果を図3に示す。
【0035】
図3の結果から、二酸化マンガン粒子を0.5質量%以上添加した正極合剤を使用した正極成形体においては、成形体高さの変化率が顕著に低下していることが明かとなった。
【0036】
また、正極端子を兼ねるJIS規格LR6形(単3形)用の有底円筒形の金属缶1内に上述した正極成形体を収納して、正極成形体の中空部にコア棒を挿入し、上杵によって加圧して正極成形体を金属缶1の缶壁に密着させて正極成形合剤2とした。更に正極成形合剤2の中空部にアセタール化ポリビニルアルコール繊維の不織布からなる有底円筒状セパレータ3を挿入した。このセパレータ3内にゲル状負極を充填し、図1に示したJIS規格LR6形(単3形)アルカリ電池を組み立てた。
【0037】
上記工程によって得られた電池について、正極成形体の欠損の発生率を調査した。その結果を表1に併せて示す。
【0038】
【表1】

Figure 0004357191
【0039】
表1の結果から、正極活物質に二酸化マンガンを0.5質量%添加した正極成形合剤の欠損発生率が、低下し、実用的であることが明かとなった。
【0040】
(試験例2)
上記試験例1の電池の組み立て方法において、正極成形体を金属缶に収容する際に加圧せずに行ったこと以外試験例1と同様にして、電池を作成した。試験例1及び試験例2によって得られた電池について、1200mAの電流を3秒間放電させた後7秒間開放する過程を開路電圧が0.9Vに低下するまでのパルス放電持続時間を調べた。その結果を表2に示す。
【0041】
【表2】
Figure 0004357191
【0042】
表2に見られるように、二酸化マンガン粒子を50.0質量%添加した正極合剤を用いた電池においては、高負荷パルス放電特性が悪化していることが判明した。
【0043】
【発明の効果】
以上に説明した本発明の密閉形ニッケル亜鉛一次電池によれば、電池組み立て時の正極成形体の破損に基づく電池性能の低下を防止することができる。
また、本発明の密閉形ニッケル亜鉛一次電池の製造方法によれば、電池性能に優れ、かつ、製造効率の改善された方法を実現することができる。
【図面の簡単な説明】
【図1】 本発明により製造された密閉形アルカリ亜鉛一次電池をJIS規格LR6形(単3形)に応用した電池の断面図。
【図2】 本発明の正極成形体の製造工程を示すプロセスフロー図。
【図3】 本発明の製造方法の効果を示すグラフ。
【符号の説明】
1・・・正極缶
2・・・正極合剤
3・・・セパレータ
4・・・ゲル状亜鉛負極
5・・・負極集電棒
6・・・絶縁ガスケット
7・・・リング状金属板
8・・・金属封口板[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sealed nickel zinc primary battery using a nickel high-order oxide as a positive electrode active material and a method for manufacturing the same.
[0002]
[Prior art]
Recently, with the widespread use of portable electronic devices, there is a strong demand for higher battery capacity and improved high-rate discharge characteristics. For positive electrode active materials for alkaline zinc primary batteries, the positive electrode It has been studied to increase the content of the positive electrode active material by reducing the content of carbon-based conductive material that does not serve as a power generation element, such as graphite in the agent. In addition, in order to improve the high rate discharge characteristics, it is considered to use a nickel high-order oxide such as a nickel hydroxide compound as the positive electrode active material instead of manganese dioxide which has been widely used as a positive electrode active material. (See Patent Document 1).
However, in this battery, the high load characteristics required for use in recent portable electronic devices are not sufficient, and improvement of this point is desired. In recent years, as a battery with improved characteristics, a sealed nickel zinc battery using a nickel higher-order oxide as a positive electrode active material has been developed.
[0003]
This sealed alkaline zinc primary battery using a nickel high-order oxide as a positive electrode active material contains a positive electrode material molded in a hollow cylindrical shape in a container serving as a positive electrode, and gels the positive electrode mixture through a separator. A negative electrode material is arranged to constitute a battery.
[0004]
This battery will be described in detail with reference to FIG. FIG. 1 is a sectional view of a JIS standard LR6 type (AA) battery called a so-called inside-out structure (a structure in which the battery can body is on the positive electrode side and the battery lid side is on the negative electrode side).
In FIG. 1, reference numeral 1 denotes a bottomed cylindrical metal can also serving as a positive electrode terminal. A positive electrode mixture containing a positive electrode active material is hollowed inside the metal can 1 using a positive electrode molding die. A positive electrode molded body 2 formed into a cylindrical shape is accommodated so as to contact the inner surface of the metal can 1. A generally known gel-like zinc negative electrode material 4 is already filled in the hollow inside of the positive electrode molded body 2 via a bottomed cylindrical separator 3 made of a nonwoven fabric or the like. A negative electrode current collector rod 5 made of a metal rod is inserted into the negative electrode material 4, and one end of the negative electrode current collector rod 5 protrudes from the surface of the negative electrode material 4 to serve as a ring-shaped metal plate 7 and a cathode terminal. 8 is electrically connected. An insulating gasket 6 made of a double annular polyamide resin is disposed on the inner surface of the metal can 1 serving as the positive electrode and the outer peripheral surface of the protruding portion of the negative electrode current collecting rod 5, and these are insulated. The opening of the metal can 1 is caulked and sealed in a liquid-tight manner.
The positive electrode molded body 2 is usually accommodated in a battery container in a stack of three.
[0005]
By the way, when a mixture containing nickel high-order oxide as a positive electrode active material is formed into a hollow cylindrical positive electrode molded body and inserted into a metal can serving as a cylindrical positive electrode, nickel high-order oxide is used as the positive electrode active material. The positive electrode mixture has a large amount of mixture adhering to the mold when the positive electrode molded body is molded, and the dimensional variation of the molded body is large. Therefore, in a sealed nickel zinc primary battery, the molded body is inserted into the cylindrical metal can in order to increase the adhesion between the metal can and the molded body in order to store the molded body in a predetermined position in the cylindrical metal can. Later, a re-pressurization step is required. In the re-pressurization step after insertion, the core is inserted into the hollow portion of the molded body, and then the molded body is compressed in the height direction with an upper collar. As a result, since the molded body expands in the radial direction, it is in close contact with the inner wall of the positive electrode can and the core rod. Thereafter, the upper collar and the core bar are pulled out to have predetermined dimensions.
[0006]
In this process, in such a sealed nickel-zinc primary battery, when the height dimension before re-pressurization increases due to variation in the molding height, that is, the amount of compression in the height direction during re-pressurization increases, The difference in density in the height direction increases, and the bite to the mold when the core bar is pulled out increases. Thereby, the mixture after re-pressurization is easily cracked, and in the worst case, the mixture is lost. When the defect of the mixture occurs, the weight of the mixture becomes smaller than the target value, and the balance between the amount of the electrolyte and the negative electrode capacity is lost, which causes a decrease in battery performance.
[0007]
[Patent Document 1]
Japanese Patent Laid-Open No. 2000-048827
[Problems to be solved by the invention]
The present invention provides a sealed nickel-zinc primary battery using the nickel high-order oxide as a positive electrode active material, and can prevent deterioration in battery performance due to damage to the molded positive electrode during battery assembly. A battery and a manufacturing method excellent in battery performance and manufacturing efficiency are realized.
[0009]
[Means for Solving the Problems]
The first aspect of the present invention is a sealed nickel zinc primary battery in which a mixture containing a nickel high-order oxide as a positive electrode active material is formed into a hollow cylindrical positive electrode molded body and inserted into a cylindrical metal can.
It is a sealed nickel-zinc primary battery characterized by adding manganese dioxide having a particle size range of 3 to 7% by mass to 10 to 80 μm with respect to the positive electrode active material.
[0010]
According to a second aspect of the present invention, there is provided a method for producing a sealed nickel zinc primary battery in which a mixture containing a nickel high-order oxide as a positive electrode active material is formed into a hollow cylindrical positive electrode molded body and inserted into a cylindrical metal can.
A positive electrode molding die is filled with a nickel high-order oxide and a mixture containing manganese dioxide having a particle size range of 10 to 80 μm with respect to the nickel high-order oxide and a particle size range of 3 to 7% by mass. A process for producing a hollow cylindrical positive electrode molded body,
Inserting the positive electrode molded body into the metal can and placing the positive electrode molded body in the container without applying pressure;
And a sealed nickel-zinc primary comprising at least a step of assembling a battery by filling a separator and a gel-like negative electrode into a hollow interior of the positive electrode compact, and inserting a negative electrode current collector rod into the gel-like negative electrode It is a manufacturing method of a battery.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
In the sealed nickel zinc primary battery of the present invention, the positive electrode mixture used as the positive electrode is a nickel oxyhydroxide compound or nickel oxyhydroxide compound particles having a cobalt compound deposited on the surface, manganese dioxide particles and necessary In accordance with the above, additive components such as a conductive agent such as carbon particles, a binder, and a lubricant are blended, and this is pressed using a mold and formed into a hollow cylindrical positive electrode molded body.
At this time, by adding manganese dioxide particles to the positive electrode active material made of a nickel higher-order oxide, it is possible to suppress variation in the molding dimensions during the production of the positive electrode molded body. In this case, when the positive electrode mixture is filled in a mold and press-molded, the positive electrode mixture containing a nickel higher-order oxide adheres to the inner surface of the mold by pressurization, and the positive-electrode molded body is taken out from the mold. Later, a phenomenon that remains inside the mold occurs, but when manganese dioxide particles are added, the positive electrode mixture adhering to the mold is scraped off by the manganese dioxide particles, and as a result, the positive electrode mixture adheres to the inside of the mold This is probably because the remaining phenomenon is prevented.
[0012]
Thus, a positive electrode molded body molded using a positive electrode mixture containing manganese dioxide particles has little material loss during molding and little variation in molding dimensions. Therefore, the positive electrode molded body is accommodated in a metal can and reused. When the pressure is applied, the change in the compression ratio is also reduced, and the difference in density in the height direction of the mixture after re-pressurization is reduced. As a result, the failure rate of the positive electrode compact is reduced. In order to prevent depletion of the positive electrode mixture, it is necessary to blend at least 0.5 mass% of manganese dioxide particles with respect to the nickel high-order oxide, and it is more preferable to add 3 mass% or more.
On the other hand, it has also been confirmed that the addition of manganese dioxide reduces the high rate pulse characteristics that are characteristic of a sealed nickel zinc primary battery using a nickel high-order oxide as a positive electrode active material. Specifically, when the current of 1200 mA was discharged for 3 seconds and then opened for 7 seconds, the pulse discharge duration until the open circuit voltage dropped to 0.9 V was compared. Performance down is recognized. Accordingly, the amount of manganese dioxide particles added to the positive electrode mixture is 20% by mass or less, more preferably 7% by mass or less.
[0013]
As described above, in the present invention, the positive electrode active material containing a nickel higher-order oxide is blended with 0.5 to 20% by mass of manganese dioxide particles to effectively damage the positive electrode compact. It is something to prevent.
[0014]
In addition, in the present invention, by adding manganese dioxide particles to the positive electrode active material, the variation in the molding dimension is reduced and the dimensional control in the molding process is facilitated. By simply forming and inserting it into a cylindrical metal can, the metal can and the positive electrode molded body can be sufficiently brought into contact with each other to obtain the targeted battery characteristics. This eliminates the need for a re-pressing process of the positive electrode molded body housed in the metal can, thereby reducing the installation space of the manufacturing facility, reducing power consumption, and reducing the number of management steps. Furthermore, there is virtually no loss of the mixture after re-molding, and it is possible to reduce defective battery performance of the manufactured battery.
[0015]
Hereinafter, embodiments of a battery to which the present invention is applied will be described in detail with reference to the drawings.
(Positive electrode mixture and positive electrode molded body)
The positive electrode molded body of the present invention includes a positive electrode active material composed of a nickel higher-order oxide, manganese dioxide particles, and optionally a carbon-based conductive material as a conductivity-imparting agent, a binder such as polyolefin, and other additive components A positive electrode mixture material made of is formed into granules, and the surface thereof is coated with a lubricant as necessary, and formed into a required shape.
[0016]
As the manganese dioxide particles used in the present embodiment, for example, manganese dioxide particles obtained by crushing electrolytic manganese dioxide produced by electrolysis can be used. As this manganese dioxide, those having a particle size range of 10 to 80 μm are suitable. When this particle size range is less than the above range, it becomes difficult to prevent the raw material from remaining in the mold during the molding of the positive electrode molded body, and the possibility of the molded body being damaged increases. On the other hand, when the particle size range exceeds the above range, the amount of addition necessary for preventing the raw material from remaining in the mold is increased, which is not preferable due to the problem of performance degradation.
[0017]
Examples of the nickel high-order oxide that is the positive electrode active material used in the present invention include nickel hydroxide compounds, that is, nickel hydroxide and nickel oxyhydroxide. Of these, the higher the concentration of nickel oxyhydroxide, the higher the battery voltage and the higher the discharge capacity.
[0018]
Furthermore, it is preferable that the nickel hydroxide-based compound itself as the positive electrode active material is eutectic with zinc or cobalt alone or both because stable discharge can be performed even at a low electrolyte ratio. The amount of zinc or cobalt to be eutectic in the nickel hydroxide compound is preferably in the range of 4.0 to 12.0%. This is because if the amount of zinc is below this range, there will be a problem of lowering the utilization factor, and if it exceeds this range, there will be a problem that the capacity density will decrease due to a decrease in specific gravity.
[0019]
The surface of the nickel hydroxide compound particles is coated with at least one substance selected from cobalt oxyhydroxide, dicobalt trioxide, cobalt monoxide, cobalt hydroxide, metallic nickel, and metallic cobalt. Is desirable. Covering the surface of nickel oxyhydroxide with a substance having high electrical conductivity is preferable because the electrical conductivity of the entire positive electrode is increased, and the discharge capacity and high-rate discharge characteristics are improved. Among these substances, it is preferable to use cobalt oxyhydroxide, metallic nickel, and metallic cobalt because of higher conductivity.
[0020]
The amount of the coating layer is desirably in the range of 2.0 to 6.0 mass% with respect to the positive electrode active material. If the amount of the coating layer exceeds this range, a problem of high cost arises, and if it falls below this range, a problem of reduced current collection arises, which is not preferable.
[0021]
Moreover, the capacity maintenance rate at the time of storage can be improved by adding the compound of Y, Er, Yb, Ca to the positive electrode active material which consists of the said nickel hydroxide type compound. Examples of the compound used in the present invention include metal oxides such as Y 2 O 3 , Er 2 O 3 , Yb 2 O 3 , and metal fluorides such as CaF 2 . These metal oxides and metal fluorides can be used in the range of 0.1 to 2% by mass with respect to nickel hydroxide as the positive electrode active material. When the compounding amount of the metal oxide or metal fluoride is below the above range, the effect of improving the storage characteristics is not obtained. On the other hand, when the compounding amount exceeds the above range, the amount of the positive electrode active material is relatively reduced. This is not preferable because it is not suitable for high capacity.
[0022]
The method for producing a nickel hydroxide-based compound used in the present invention is described in detail in Japanese Patent Application No. 2001-310323, which is an application of the present applicant, and also in the present invention, the hydroxylation described in this application. It is preferable to use a nickel-based compound.
[0023]
In addition, as the carbon-based conductive material used in the present invention, known carbon-based conductive materials for batteries such as graphite and carbon black can be used, and graphite is particularly preferable.
Furthermore, as the binder used in the present invention, known materials can be used as the binder for the positive electrode mixture of the battery, and among them, polyolefin is preferable. In the present invention, the reason for adding polyolefin is to prevent the binding property of the positive electrode mixture from decreasing and the shape retention of the positive electrode mixture from decreasing when the graphite is reduced in the positive electrode mixture. The positive electrode mixture component can be bound in a smaller amount than graphite. In the present invention, examples of the polyolefin include polyethylene and polypropylene. These polyolefins are added to the positive electrode mixture in the form of particles. The average particle size is preferably in the range of about 5 to 500 μm.
Moreover, a moldability and electroconductivity can be improved by mixing electrolyte solution with a positive electrode mixture at the time of positive electrode mixture shaping | molding.
[0024]
The compounding ratio of the components of the positive electrode mixture material used in the positive electrode mixture is such that the positive electrode mixture: carbon-based conductive material: binder has a mass ratio of 100: 3 to 12: 0.05 to 0.5. preferable.
When the amount of the carbon-based conductive material falls below this range, the discharge capacity is improved, but the conductivity of the positive electrode active material is lowered, the electromotive force is lowered, and the heavy load discharge characteristics are lowered. On the other hand, when it exceeds the above range, the moldability and the molding workability are good, but the discharge capacity is reduced because the amount of the positive electrode active material is limited.
Moreover, when the amount of the binder is below this range, the strength of the molded body is low and the yield is reduced during battery production. On the other hand, when the amount of the binder exceeds this range, the amount of the positive electrode active material is limited, so that the discharge capacity decreases.
[0025]
(Manufacture of cathode mix)
Hereinafter, the production of the positive electrode mixture of the present invention will be described in more detail with reference to FIG. 2 showing the process.
In FIG. 1, 21 to 24 are raw materials used in the present invention, S21 to S27 are steps in the production process, and 25 is a positive electrode mixture obtained. Hereinafter, these steps will be described sequentially.
[0026]
(S21: Dry stirring)
Manganese dioxide particles and carbon-based conductive material powder are added to the nickel high-order oxide, which is the positive electrode active material, and dry-stirred with a universal stirring mixer.
[0027]
(S22: Wet stirring)
An electrolyte solution is added to 100 parts by mass of the mixed powder obtained by the dry agitation, and wet agitation is performed with a universal agitation mixer. By this step, the positive electrode mixture component powders mixed by the dry stirring are adhered to each other and can be molded. The amount of the electrolyte used in this step is about 2 to 7 parts by mass with respect to 100 parts by mass of the positive electrode mixture component.
[0028]
(S23: Compression)
The positive electrode mixture blended in the above process is then compressed and pressed by a roll press called a roller compactor to increase the packing density for granulation. This roller compactor supplies a positive electrode mixture between twin rolls and pressurizes it to increase the packing density. The compressive stress is 0.5 × 10 4 to 5 × 10 4 N / cm obtained by dividing the applied force by the roller width. In the range of 1.5 × 10 4 to 3.5 × 10 4 N / cm is more preferable. Thereby, a plate-like object to be compressed having a thickness of 1 mm or less is obtained.
[0029]
(S24: Crushing)
The positive electrode mixture treated by the above process is in the form of a compressed mass. In order to produce a molded body using this, it is necessary to granulate once into a granule. Therefore, the crushing process by the granulator using the twin roll which has the processus | protrusion mutually fitted on the roll surface is performed. The positive electrode mixture formed into a compacted mass is crushed into granules by passing through this granulator.
[0030]
(S25: sieving)
Next, it classifies with a 14-60 mesh automatic sieving machine, and selects and classifies the granular positive electrode mixture having a particle size of about 250-1180 μm.
[0031]
(S26: mixing and stirring)
A predetermined amount of a lubricant such as ethylene bis-saturated aliphatic amide powder is added to the granular mixture obtained by the above process, if desired, and mixed and stirred. Through the steps so far, a granular mixture in which ethylenebis saturated fatty acid amide powder is adhered to the surface of the granular positive electrode mixture is produced.
[0032]
(S27: Molding)
The granular positive electrode mixture particles granulated in the above process are then formed into a positive electrode mixture using a mold.
The positive electrode mixture of the inside-out type battery has a hollow cylindrical shape, has a central mandrel, fills the positive electrode mixture particles in a cylindrical mold having a required volume, and forms a male mold. Molding is performed by press-fitting. The molding pressure at this time is preferably a pressure of 0.5 × 10 8 to 9.8 × 10 8 Pa. When the molding pressure falls below the above range, the required filling density of the positive electrode mixture cannot be obtained, and it becomes difficult to ensure the contact between the particles. Therefore, when the battery is used, a predetermined discharge capacity cannot be obtained. On the other hand, when the molding pressure exceeds the above range, the electrolytic solution hardly penetrates into the positive electrode mixture, and the utilization rate is lowered.
[0033]
(S28: Battery assembly process)
Next, a sealed battery is manufactured using the positive electrode molded body obtained through the above steps. First, the positive electrode molded body is stored in a metal can. At this time, pressure may be applied to the positive electrode molded body to improve the adhesion between the positive electrode can and the positive electrode molded body. However, the positive electrode molded body manufactured in the above process has improved dimensional accuracy, so Even if it is inserted into a metal can without applying pressure, the metal can and the positive electrode molded body are sufficiently adhered, and the necessary electrical connection can be obtained. Furthermore, the possibility that the positive electrode molded body is damaged by this pressurization increases, and it is considered that the battery performance is lowered by the pressurization. Therefore, it is not necessary to pressurize when the positive electrode molded body is accommodated in the metal can. .
Next, as seen in FIG. 1, a bottomed cylindrical separator paper is placed in the central space of the positive electrode molded body, and a gelled negative electrode is filled therein. Then, a negative electrode current collector rod is inserted into the gel negative electrode, and thereafter, a ring-shaped metal plate, a metal sealing plate, an insulating gasket, etc. are arranged at predetermined positions, and the opening end of the metal can is caulked and sealed to provide a battery. Can be assembled.
[0034]
【Example】
(Test Example 1)
First, manganese dioxide particles in an amount shown in Table 1 and 7% by mass of graphite were blended with nickel oxyhydroxide, which is a nickel higher-order oxide, to granulate a granular mixture. This was filled into a cylindrical mold having a size for JIS standard LR6 type (AA size) and pressure molded to obtain a positive electrode molded body. This process was repeated a plurality of times, the height of the positive electrode molded body obtained was measured, and the relationship between the number of times the molding process was performed and the height of the positive electrode molded body was examined. The result is shown in FIG.
[0035]
From the results of FIG. 3, it was revealed that the rate of change in the height of the molded body was significantly reduced in the positive electrode molded body using the positive electrode mixture to which 0.5% by mass or more of manganese dioxide particles were added.
[0036]
Moreover, the positive electrode molded body described above is accommodated in the bottomed cylindrical metal can 1 for JIS standard LR6 type (AA) that also serves as the positive electrode terminal, and the core rod is inserted into the hollow portion of the positive electrode molded body, The positive electrode molded body was pressed against the can wall of the metal can 1 by pressurizing with an upper arm to obtain a positive electrode molding mixture 2. Furthermore, a bottomed cylindrical separator 3 made of a non-woven fabric of acetalized polyvinyl alcohol fibers was inserted into the hollow part of the positive electrode molding mixture 2. The separator 3 was filled with a gelled negative electrode, and a JIS standard LR6 type (AA) alkaline battery shown in FIG. 1 was assembled.
[0037]
About the battery obtained by the said process, the incidence rate of the defect | deletion of a positive electrode molded object was investigated. The results are also shown in Table 1.
[0038]
[Table 1]
Figure 0004357191
[0039]
From the results shown in Table 1, it was revealed that the defect generation rate of the positive electrode molding mixture in which 0.5% by mass of manganese dioxide was added to the positive electrode active material was lowered and practical.
[0040]
(Test Example 2)
A battery was produced in the same manner as in Test Example 1 except that in the battery assembly method of Test Example 1 described above, the positive electrode compact was not pressurized when housed in a metal can. The batteries obtained in Test Example 1 and Test Example 2 were examined for pulse discharge duration until the open circuit voltage dropped to 0.9 V in the process of discharging a current of 1200 mA for 3 seconds and then opening for 7 seconds. The results are shown in Table 2.
[0041]
[Table 2]
Figure 0004357191
[0042]
As can be seen from Table 2, in the battery using the positive electrode mixture to which 50.0% by mass of manganese dioxide particles were added, it was found that the high-load pulse discharge characteristics were deteriorated.
[0043]
【The invention's effect】
According to the sealed nickel zinc primary battery of the present invention described above, it is possible to prevent the battery performance from being deteriorated due to the damage of the positive electrode molded body during battery assembly.
Moreover, according to the manufacturing method of the sealed nickel zinc primary battery of this invention, the method which was excellent in battery performance and improved manufacturing efficiency is realizable.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a battery in which a sealed alkaline zinc primary battery manufactured according to the present invention is applied to JIS standard LR6 type (AA).
FIG. 2 is a process flow diagram showing manufacturing steps of the positive electrode molded body of the present invention.
FIG. 3 is a graph showing the effect of the production method of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Positive electrode can 2 ... Positive electrode mixture 3 ... Separator 4 ... Gel-like zinc negative electrode 5 ... Negative electrode collector rod 6 ... Insulating gasket 7 ... Ring-shaped metal plate 8 ...・ Metal sealing plate

Claims (2)

ニッケル高次酸化物を正極活物質とする合剤を中空円筒形状の正極成形体に成形し、筒状の金属缶に挿入した密閉型ニッケル亜鉛一次電池において、
前記正極活物質に対し、3〜7質量%の粒径範囲が10〜80μmの二酸化マンガンを添加したことを特徴とする密閉型ニッケル亜鉛一次電池。
In a sealed nickel zinc primary battery in which a mixture containing a nickel high-order oxide as a positive electrode active material is formed into a hollow cylindrical positive electrode molded body and inserted into a cylindrical metal can,
A sealed nickel-zinc primary battery, wherein manganese dioxide having a particle size range of 3 to 7% by mass of 10 to 80 μm is added to the positive electrode active material.
ニッケル高次酸化物を正極活物質とする合剤を中空円筒形状の正極成形体に成形し、筒状の金属缶に挿入する密閉型ニッケル亜鉛一次電池の製造方法において、
ニッケル高次酸化物、および前記ニッケル高次酸化物に対して3〜7質量%の粒径範囲が10〜80μmの二酸化マンガンを含む合剤を正極成形体成形金型に充填し、加圧成形して中空円筒状の正極成形体を製作する工程、
前記正極成形体を前記金属缶内部に挿入し、加圧することなく、正極成形体を前記容器内に配置させる工程、
および、前記正極成形体の中空内部にセパレータ、及びゲル状負極を充填し、負極集電棒を前記ゲル状負極に挿入して電池を組み立てる工程を少なくとも備えたことを特徴とする密閉型ニッケル亜鉛一次電池の製造方法。
In a method for producing a sealed nickel-zinc primary battery in which a mixture containing a nickel high-order oxide as a positive electrode active material is formed into a hollow cylindrical positive electrode molded body and inserted into a cylindrical metal can,
A positive electrode molding die is filled with a nickel high-order oxide and a mixture containing manganese dioxide having a particle size range of 10 to 80 μm with respect to the nickel high-order oxide and a particle size range of 3 to 7% by mass. A process for producing a hollow cylindrical positive electrode molded body,
Inserting the positive electrode molded body into the metal can and placing the positive electrode molded body in the container without applying pressure;
And a sealed nickel-zinc primary comprising at least a step of assembling a battery by filling a separator and a gel-like negative electrode into a hollow interior of the positive electrode compact, and inserting a negative electrode current collector rod into the gel-like negative electrode Battery manufacturing method.
JP2003069247A 2003-03-14 2003-03-14 Sealed nickel zinc primary battery and manufacturing method thereof Expired - Fee Related JP4357191B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003069247A JP4357191B2 (en) 2003-03-14 2003-03-14 Sealed nickel zinc primary battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003069247A JP4357191B2 (en) 2003-03-14 2003-03-14 Sealed nickel zinc primary battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004281160A JP2004281160A (en) 2004-10-07
JP4357191B2 true JP4357191B2 (en) 2009-11-04

Family

ID=33286332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003069247A Expired - Fee Related JP4357191B2 (en) 2003-03-14 2003-03-14 Sealed nickel zinc primary battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4357191B2 (en)

Also Published As

Publication number Publication date
JP2004281160A (en) 2004-10-07

Similar Documents

Publication Publication Date Title
US7851087B2 (en) Enclosed nickel-zinc primary battery, its anode and production methods for them
US7179310B2 (en) Zinc/air cell with improved anode
KR100646064B1 (en) Sealed Nickel Zinc Primary Battery
JP2008511961A (en) Alkaline battery with MnO2 / NiOOH active material
CN101465439A (en) Alkaline battery
JP4485527B2 (en) Battery cell having improved power characteristics and method of manufacturing the same
US8182941B2 (en) Alkaline dry battery and method for producing the same
JP4357191B2 (en) Sealed nickel zinc primary battery and manufacturing method thereof
JP4253172B2 (en) Sealed nickel zinc primary battery
JP4428909B2 (en) Positive electrode mixture for sealed alkaline zinc primary battery, method for producing the same, and sealed alkaline zinc primary battery
JP2003017079A (en) Zinc alkaline battery
JP2003197206A (en) Sealed alkaline zinc primary battery
JP2003257423A (en) Sealed alkaline zinc primary battery, and alkaline zinc compound positive electrode mix used in the same
JP4267258B2 (en) Positive electrode mixture for alkaline dry battery, its production method and alkaline dry battery
JP4964468B2 (en) Manufacturing method of pocket type hydrogen storage alloy electrode
JPH08138662A (en) Manufacture of alkaline secondary battery
JP3410340B2 (en) Prismatic alkaline secondary battery
JP2007250451A (en) Alkaline cell
JP2007123051A (en) Alkaline zinc primary battery and alkaline zinc system compound positive electrode mixture used for it
JP2003208892A (en) Zinc-alkaline battery
JP2000012073A (en) Manufacture of nickel-hydrogen secondary battery
JPH09129222A (en) Manufacture of alkaline secondary battery
JP2007095675A (en) Alkaline battery
JP2007311246A (en) Method of manufacturing positive electrode for alkaline cell
JP2007073242A (en) Alkaline battery

Legal Events

Date Code Title Description
RD15 Notification of revocation of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7435

Effective date: 20040702

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090804

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees