[go: up one dir, main page]

JP4347553B2 - (Meth) acrylic compound having oxetanyl group, side chain type liquid crystalline polymer substance having oxetanyl group derived from said compound, and polymer liquid crystal composition comprising said side chain type liquid crystalline polymer substance - Google Patents

(Meth) acrylic compound having oxetanyl group, side chain type liquid crystalline polymer substance having oxetanyl group derived from said compound, and polymer liquid crystal composition comprising said side chain type liquid crystalline polymer substance Download PDF

Info

Publication number
JP4347553B2
JP4347553B2 JP2002289226A JP2002289226A JP4347553B2 JP 4347553 B2 JP4347553 B2 JP 4347553B2 JP 2002289226 A JP2002289226 A JP 2002289226A JP 2002289226 A JP2002289226 A JP 2002289226A JP 4347553 B2 JP4347553 B2 JP 4347553B2
Authority
JP
Japan
Prior art keywords
formula
liquid crystalline
liquid crystal
side chain
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002289226A
Other languages
Japanese (ja)
Other versions
JP2004123597A5 (en
JP2004123597A (en
Inventor
卓也 松本
仁詩 真崎
徹 中村
正明 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP2002289226A priority Critical patent/JP4347553B2/en
Priority to US10/672,946 priority patent/US7244798B2/en
Priority to DE60312276T priority patent/DE60312276T2/en
Priority to EP03103578A priority patent/EP1405850B1/en
Priority to CNB031648983A priority patent/CN1310896C/en
Priority to KR1020030067727A priority patent/KR101122884B1/en
Priority to TW092127169A priority patent/TWI242009B/en
Publication of JP2004123597A publication Critical patent/JP2004123597A/en
Publication of JP2004123597A5 publication Critical patent/JP2004123597A5/ja
Application granted granted Critical
Publication of JP4347553B2 publication Critical patent/JP4347553B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Polarising Elements (AREA)
  • Epoxy Compounds (AREA)
  • Liquid Crystal Substances (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、新規な重合可能なオキセタニル基を有する(メタ)アクリル化合物に関し、さらには当該化合物から誘導される新規な側鎖型液晶性高分子物質に関する。
【0002】
【従来の技術】
近年、液晶材料を光学用途に適用するための研究開発が活発に行われており、液晶材料を配向してフィルム化した液晶フィルムは、液晶ディスプレイの色補償用途や視野角拡大用途などに実用化されている。
液晶材料をフィルムする方法としては種々の方法が知られている。例えば、配向能を有する基板上に液晶性高分子物質の薄膜を形成せしめた後、ガラス転移点Tg以上の温度に加熱して液晶を配向させた後、急冷することで液晶配向を固定化し、液晶フィルムを作成する方法(例えば、特許文献1参照。)が挙げられる。この方法は、主鎖型、側鎖型双方の液晶高分子物質に適用することができものの、Tgの高い主鎖型液晶性高分子物質では、液晶を配向させる温度が高くなるため、プロセス負荷が大きくなることや配向能を持つ基板が限られるなどの問題がある。また、Tgの低い側鎖型液晶性高分子物質では、作成後の液晶フィルムの耐熱性に問題があり、Tg近くの温度になることで、液晶配向が乱れてしまうという欠点がある。
【0003】
別の方法として、反応性基を有する液晶性低分子物質を配向基板を備えた液晶セルに封入した後、液晶発現温度に加熱して液晶配向させ、次いでこれを光や熱などの外部刺激によって液晶配向を重合固定化して液晶フィルムを作成する方法(例えば、特許文献2参照。)が挙げられる。この方法では、配向させる液晶が低分子物質であるが故に、流動性や複屈折などの物性の温度依存性が大きいため作成後の液晶フィルムのパラメータの制御が難しく、また重合後の液晶も側鎖型液晶性高分子物質と類似の構造となるため、Tgが充分上昇せず、液晶フィルムの耐熱性に問題があることが多い。
【0004】
また、液晶配向を外部刺激によって重合固定化する方法として、液晶性高分子物質と反応性低分子物質の混合物を液晶配向させた後、外部刺激を与えて、反応硬化させる方法(例えば、特許文献3参照。)が報告されているが、反応性低分子物質と液晶性高分子物質との反応は充分には進まないため、依然Tgが充分な程度に上昇せず、液晶フィルムの耐熱性に問題のあることが多い。
【0005】
その点、側鎖型などのTgが比較的低い液晶性高分子物質に直接反応性基を導入し、その反応性基を液晶配向後、光や熱などの外部刺激によって反応架橋させることで、Tgを上昇させる方法(例えば、特許文献4参照。)が最も優れていると言える。しかし、この方法では、反応性基を有する側鎖型液晶性高分子物質の合成が困難であるという問題がある。例えば、高分子構造を先に構築しておいて反応性基を導入する場合には、反応性基の導入量が不充分になり易い。一方、反応性基を2つ持つモノマーの片方の反応性基を重合して、反応性基を有する側鎖型液晶性高分子物質を合成する方法では、残す方の反応性基の反応性を最初に反応させる方の反応性基より低くしておく必要があり、液晶配向後の反応性基の反応が不充分になり易いという問題がある。
【0006】
【特許文献1】
特開平3−9321号公報
【特許文献2】
特開平8−21915号公報
【特許文献3】
特開平10−120640号公報
【特許文献4】
特開2000−319527号公報
【0007】
【発明が解決しようとする課題】
本発明は、上記課題を鑑みてなされたものであり、液晶配向構造の固定化の際の反応性に優れた反応性基を有する側鎖型液晶性高分子物質の原料に適した新規化合物を提供し、また当該化合物から誘導される側鎖型液晶性高分子物質を提供するものである。
【0008】
【課題を解決するための手段】
本発明者らは、前記課題を解決するために鋭意研究した結果、合成が容易で、配向性に優れ、なおかつ配向構造の固定化に優れた側鎖型液晶性高分子物質の原料となるオキセタニル基を有する新規な重合性化合物を見出したものである。
【0009】
すなわち本発明の第1は、下記式(1)で表されるオキセタニル基を有する(メタ)アクリル化合物に関する。
【化5】

Figure 0004347553
【0010】
(式(1)中、Rは水素またはメチル基を表し、Rは水素、メチル基またはエチル基を表し、LおよびLはそれぞれ個別に単結合、−O−、−O−CO−、または−CO−O−のいずれかを表し、Mは式(2)または式(3)を表し、nおよびmはそれぞれ0〜10の整数を示す。
−P−L−P−L−P− (2)
−P−L−P− (3)
式(2)および式(3)中、PおよびPはそれぞれ個別に式(5)から選ばれる基を表し、Pは式(6)から選ばれる基を表し、
【化6】
Figure 0004347553
【化7】
Figure 0004347553
およびLはそれぞれ個別に単結合、−CH=CH−、−C≡C−、−O−、−O−CO−または−CO−O−を表す。)
【0011】
本発明の第2は、前記式(1)で表されるオキセタニル基を有する(メタ)アクリル化合物から誘導される式(7)で表されるユニットを含む側鎖型液晶性高分子物質に関する。
【化8】
Figure 0004347553
【0012】
本発明の第3は、前記式(7)で表されるユニットを5〜100モル%含むことを特徴とする側鎖型液晶性高分子物質に関する。
本発明の第4は、重量平均分子量が2,000〜100,000であることを特徴とする本発明の第2又は第3に記載の側鎖型液晶性高分子物質に関する。
本発明の第5は、本発明の第2から第4のいずれかに記載の側鎖型液晶性高分子物質を少なくとも10質量%以上含むことを特徴とする高分子液晶組成物に関する。
本発明の第6は、光カチオン発生剤および/または熱カチオン発生剤を含むことを特徴とする本発明の第5に記載の高分子液晶組成物に関する。
【0013】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明のオキセタニル基を有する(メタ)アクリル化合物は、下記式(1)で表されるオキセタニル基を有する(メタ)アクリル化合物である。
【0014】
【化9】
Figure 0004347553
上記式(1)中、Rは水素またはメチル基を表し、Rは水素、メチル基またはエチル基を表し、LおよびLはそれぞれ個別に単結合、−O−、−O−CO−、または−CO−O−のいずれかを表し、Mは式(2)または式(3)を表し、nおよびmはそれぞれ0〜10の整数を示す。
−P−L−P−L−P− (2)
−P−L−P− (3)
【0015】
式(2)および式(3)中、PおよびPはそれぞれ個別に式(5)から選ばれる基を表し、Pは式(6)から選ばれる基を表し、LおよびLはそれぞれ個別に単結合、−CH=CH−、−C≡C−、−O−、−O−CO−または−CO−O−を表す。
【化10】
Figure 0004347553
【化11】
Figure 0004347553
【0016】
すなわち、本発明のオキセタニル基を有する(メタ)アクリル化合物は、芳香族エステルなどからなるメソゲン部分とそれに結合した炭化水素鎖からなるスペーサー部分と、片末端の反応性オキセタニル基、他方の片末端を(メタ)アクリル基を構成単位として含み、この化合物の(メタ)アクリル基を単独もしくは他の(メタ)アクリル化合物と共重合して得られる高分子物質が液晶性を示すことを特徴とする化合物である。
【0017】
まず各構成単位から説明する。
本発明のオキセタニル基を有する(メタ)アクリル化合物のメソゲン部分は、式(1)における「−L−M−L−」で表され、さらにMは、「−P−L−P−L−P−」または「−P−L−P」で表される。当該メソゲン部分は、1個ないし3個の芳香環またはシクロヘキサン環が、直接結合(単結合)、エーテル結合(−O−)あるいはエステル結合(−CO−O−)を介して、スペーサ部分、オキセタニル基あるいは(メタ)アクリル基と結合した構造を有している。
式(1)において、L、L、LおよびLは、それぞれ独立に、単結合(ここでは、Lで表される基を介さずに直接両側の基が結合する場合を意味する。)、−CH=CH−、−C≡C−、−O−、−O−CO−または−CO−O−のいずれかを表し、PおよびPは、それぞれ独立に前記した式(5)から選ばれるいずれかの基を表し、またPは前記した式(6)のから選ばれるいずれかの基を表す。
【0018】
本発明のオキセタニル基を有する(メタ)アクリル化合物のメソゲン部分としては、前記した各種の組み合わせから任意に選択することができるが、下記式で表される構造の基が特に好ましい例として挙げることができる。
【化12】
Figure 0004347553
【0019】
本発明において、式(1)中の「-(CH2n-」および「-(CH2m-」で表されるスペーサー部分は、単結合(ここでは、nまたはmが0の場合を意味する。)または炭素数が1〜10(すなわち、nまたはmが1〜10)の2価の直鎖状炭化水素基である。目的とする化合物が液晶性を示す場合、メソゲン部分とオキセタニル基部分および(メタ)アクリル基部分がスペーサー部分を介さず直接結合(単結合)していてもよく、エーテル結合(−O−)あるいはエステル結合(−CO−O−)を介して結合していてもよい。一般に、メソゲン部分と(メタ)アクリル基部分の間のスペーサー部分が、短すぎると液晶性を発現する温度領域が狭くなることがあり、長い場合には、液晶フィルムとした場合の耐熱性に悪影響を及ぼすことがある。これらのことからメソゲン部分と(メタ)アクリル基部分の間のスペーサー部分の炭素数は通常1〜8、好ましくは2〜6であることが望ましい。また、メソゲン部分とオキセタニル基部分の間のスペーサ部分は、長すぎると液晶フィルムとした場合の耐熱性に悪影響を及ぼすことがある。そこでメソゲン部分とオキセタニル基部分の間のスペーサー部分の炭素数は通常0〜6、好ましくは0〜4であることが望ましい。(ここで炭素数0とは、メソゲン部分とオキセタニル基部分が直接単結合でつながっている場合を指す)
【0020】
本発明のオキセタニル基を有する(メタ)アクリル化合物の片末端は反応性オキセタニル基であり、他方の片末端は(メタ)アクリル基である。カチオン重合性基であるオキセタニル基と、ラジカル重合性またはアニオン重合性の(メタ)アクリル基の両方を有する2官能性のモノマーとすることにより、ラジカル重合またはアニオン重合で(メタ)アクリル基のみを重合することが可能となり、カチオン重合性基であるオキセタニル基を持つ側鎖型液晶性高分子物質を得ることができる。すなわち、重合性反応基としてカチオン以外の条件では反応性が低いオキセタニル基をカチオン重合性基として用いることにより、ラジカル重合もしくはアニオン重合でまず(メタ)アクリル基を重合させて側鎖型液晶性高分子化合物を合成する。側鎖型液晶性高分子化合物は主鎖型液晶性高分子と比べてTgが低いため配向し易く、容易に低い温度で配向することができる。側鎖型液晶性高分子化合物を配向処理した後、次にカチオンの存在でオキセタニル基を重合(硬化/架橋)させることで、Tgが上昇し、耐熱性や機械的強度が向上した液晶フィルムを作成することができる。
【0021】
本発明のオキセタニル基を有する(メタ)アクリル化合物の合成法は特に制限されるものではなく、通常の有機化学合成法で用いられる方法を適用することによって合成することができる。
例えば、ウィリアムソンのエーテル合成や、縮合剤を用いたエステル合成などの手段でオキセタニル基を持つ部位と(メタ)アクリル基を持つ部位をつなげることで、オキセタニル基と(メタ)アクリル基の2つの反応性官能基を持つオキセタニル基を有する(メタ)アクリル化合物を合成することができる。
具体的一例を挙げれば、次に示す工程により本発明のオキセタニル基を有する(メタ)アクリル化合物を合成することができる。
【0022】
【化13】
Figure 0004347553
【0023】
上記式中、略号はそれぞれ下記を表す。
DCC:1,3−ジシクロヘキシルカルボジイミド
DMAP:4,−ジメチルアミノピリジン
DCM:ジクロロメタン
PPTS:ピリジニウム−p−トルエンスルホン酸
THF:テトラヒドロフラン
DMF:ジメチルホルムアミド
BHT:2,6−ジ−t−ブチル−4−メチルフェノール
【0024】
本発明の側鎖型液晶性高分子物質は、式(1)で表されるオキセタニル基を有する(メタ)アクリル化合物から誘導される、下記式(7)で表されるユニットを含む側鎖型液晶性高分子物質である。
【化14】
Figure 0004347553
【0025】
式(7)で表されるユニットを含む側鎖型液晶性高分子物質は、式(1)で表されるオキセタニル基を有する(メタ)アクリル化合物の(メタ)アクリル基部分をラジカル重合またはアニオン重合で単独もしくは他の(メタ)アクリル化合物と共重合することにより容易に合成することができる。重合条件は特に限定されるものではなく、通常の条件を採用することができる。
【0026】
ラジカル重合の例としては、(メタ)アクリル化合物をジメチルホルムアミド(DMF)などの溶媒に溶かし、2,2’−アゾビスイソブチロニトリル(AIBN)や過酸化ベンゾイル(BPO)などを開始剤として、80〜90℃で数時間反応させる方法が挙げられる。また、液晶相を安定に出現させるために、臭化銅(I)/2,2’−ビピリジル系やTEMPO系などを開始剤としたリビングラジカル重合を行い、分子量分布を制御する方法も有効である。これらのラジカル重合は厳密に脱酸素条件で行う必要がある。
【0027】
アニオン重合の例としては、(メタ)アクリル化合物をテトラヒドロフラン(THF)などの溶媒に溶かし、有機リチウム化合物、有機ナトリウム化合物、グリニャール試薬などの強塩基を開始剤として、反応させる方法が挙げられる。また、開始剤や反応温度を最適化することでリビングアニオン重合とし、分子量分布を制御することもできる。これらのアニオン重合は、厳密に脱水かつ脱酸素条件で行う必要がある。
【0028】
また、共重合する(メタ)アクリル化合物は特に限定されるものではなく、合成される高分子物質が液晶性を示せば何でもよいが、合成される高分子物質の液晶性を高めるため、メソゲン基を有する(メタ)アクリル化合物が好ましい。具体的には、下記式で示されるような(メタ)アクリル化合物が特に好ましい。
【0029】
【化15】
Figure 0004347553
【0030】
本発明の側鎖型液晶性高分子物質は、式(7)で表されるユニットを5〜100モル%含むものが好ましく、10〜100モル%含むものが特に好ましい。 また本発明の側鎖型液晶性高分子物質は、重量平均分子量が2,000〜100,000であるものが好ましく、5,000〜50,000のものが特に好ましい。
【0031】
次に、本発明の側鎖型液晶性高分子物質を含む高分子液晶組成物について説明する。
本発明の高分子液晶組成物は、本発明の側鎖型液晶性高分子物質を少なくとも10質量%以上、好ましくは30質量%以上、さらに好ましくは50質量%以上含む高分子液晶組成物である。側鎖型液晶性高分子物質の含有量が10質量%未満では組成物中に占める重合性基濃度が低くなり、重合後の機械的強度が不十分となるため好ましくない。
【0032】
本発明の高分子液晶組成物においては、本発明の側鎖型液晶性高分子物質の他に液晶性を損なわずに混和し得る種々の化合物を含有することができる。含有することができる化合物としては、オキセタニル基、エポキシ基、ビニルエーテル基などのカチオン重合性官能基を有する化合物、フィルム形成能を有する各種の高分子物質、ネマチック液晶性、コレステリック液晶性あるいはディスコティック液晶性を示す各種の低分子液晶性化合物や高分子液晶性化合物などが挙げられる。また、本発明の高分子液晶組成物にコレステリック液晶性を発現させる目的で、液晶性の有無を問わず各種の光学活性化合物を配合することもできる。
【0033】
本発明の高分子液晶組成物は配向処理された後、オキセタニル基をカチオン重合させて架橋することにより、液晶フィルムの耐熱性が向上する。従って、カチオン重合を容易に速やかに進行させるため、高分子液晶組成物中に、光または熱などの外部刺激でカチオンを発生する光カチオン発生剤または熱カチオン発生剤を含有させておくことが好ましい。また必要によっては各種の増感剤を併用してもよい。
【0034】
光カチオン発生剤とは、適当な波長の光を照射することによりカチオンを発生できる化合物を意味し、有機スルフォニウム塩系、ヨードニウム塩系、フォスフォニウム塩系などを例示することが出来る。これら化合物の対イオンとしては、アンチモネート、フォスフェート、ボレートなどが好ましく用いられる。具体的な化合物としては、Ar3+SbF6 -、Ar3+BF4 -、Ar2+PF6 -(ただし、Arはフェニル基または置換フェニル基を示す。)などが挙げられる。また、スルホン酸エステル類、トリアジン類、ジアゾメタン類、β−ケトスルホン、イミノスルホナート、ベンゾインスルホナートなども用いることができる。
【0035】
熱カチオン発生剤とは、適当な温度に加熱されることによりカチオンを発生できる化合物であり、例えば、ベンジルスルホニウム塩類、ベンジルアンモニウム塩類、ベンジルピリジニウム塩類、ベンジルホスホニウム塩類、ヒドラジニウム塩類、カルボン酸エステル類、スルホン酸エステル類、アミンイミド類、五塩化アンチモン−塩化アセチル錯体、ジアリールヨードニウム塩−ジベンジルオキシ銅、ハロゲン化ホウ素−三級アミン付加物などを挙げることができる。
【0036】
これらのカチオン発生剤の高分子液晶組成物中への添加量は、用いる側鎖型液晶性高分子物質を構成するメソゲン部分やスペーサー部分の構造や、オキセタニル基当量、液晶の配向条件などにより異なるため一概には言えないが、側鎖型液晶性高分子物質に対し、通常100質量ppm〜20質量%、好ましくは1000質量ppm〜10質量%、より好ましくは0.2質量%〜7質量%、最も好ましくは0.5質量%〜5質量%の範囲である。100質量ppmよりも少ない場合には、発生するカチオンの量が十分でなく重合が進行しないおそれがあり、また20質量%よりも多い場合には、液晶フィルム中に残存するカチオン発生剤の分解残存物等が多くなり耐光性などが悪化するおそれがあるため好ましくない。
【0037】
【発明の効果】
本発明のオキセタニル基を有する(メタ)アクリル化合物から、ラジカル重合またはアニオン重合で容易に側鎖型液晶性高分子物質が得られ、この側鎖型液晶性高分子物質は低い温度で容易に配向させることができ、次にカチオン重合によりオキセタニル基を重合させることにより架橋が起こり、配向が固定化した耐熱性に優れた液晶フィルムが得られる。
【0038】
【実施例】
以下に実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
なお、実施例で用いた各分析方法は以下の通りである。
(1)H−NMRの測定
化合物を重水素化クロロホルムに溶解し、400MHzのH−NMR(日本電子社製JNM−GX400)で測定した。
(2)GPCの測定
化合物をテトラヒドロフランに溶解し、東ソー社製8020GPCシステムで、TSK−GEL SuperH1000、SuperH2000、SuperH3000、SuperH4000を直列につなぎ、溶出液としてテトラヒドロフランを用いて測定した。分子量の較正にはポリスチレンスタンダードを用いた。
(3)相挙動の観察
相挙動はメトラー社製ホットステージ上で、試料を加熱しつつ、オリンパス光学社製BH2偏光顕微鏡で観察した。
相転移温度は、Perkin−Elmer社製示差走査熱量計DSC7により測定した。
(4)液晶フィルムのパラメータ測定
ネマチック配向のリタデーション測定は、王子計測機器社製のKOBRAを用いた。
【0039】
[実施例1]
スキーム1に従い、3−エチル−3−ヒドロキシメチルオキセタン(東亞合成社製、商品名OXT−101)を原料として、オキセタニル基を持つアクリル化合物1を合成した。
アクリル化合物1の1H−NMRスペクトルを図1に示す。なお、図中の×は不純物のピークを表す。
【0040】
【化16】
Figure 0004347553
【0041】
[実施例2]
スキーム2に従い、3−エチル−3−ヒドロキシメチルオキセタン(東亞合成社製、商品名OXT−101)を原料として、オキセタニル基を有するアクリル化合物2を合成した。
アクリル化合物2の1H−NMRスペクトルを図2に示す。
【0042】
【化17】
Figure 0004347553
【0043】
[実施例3]
スキーム3に従い、オキセタニル基を有するアクリル化合物3を合成した。
アクリル化合物3の1H−NMRスペクトルを図3に示す。
【0044】
【化18】
Figure 0004347553
【0045】
[実施例4]
スキーム4に従い、オキセタニル基を有するアクリル化合物4を合成した。
アクリル化合物4の1H−NMRスペクトルを図4に示す。
【0046】
【化19】
Figure 0004347553
【0047】
[実施例5]
スキーム5に従い、オキセタニル基を有するアクリル化合物5を合成した。
アクリル化合物5の1H−NMRスペクトルを図5に示す。
【0048】
【化20】
Figure 0004347553
【0049】
[実施例6]
スキーム6に従い、オキセタニル基を有するアクリル化合物6を合成した。
アクリル化合物6の1H−NMRスペクトルを図6に示す。
【0050】
【化21】
Figure 0004347553
【0051】
[参考例1]
スキーム7に従い、オキセタニル基を持たないアクリル化合物7(式中のm=1)および8(式中のm=3)を合成した。アクリル化合物7および8のそれぞれの1H−NMRスペクトルを図7および図8に示す。
【0052】
【化22】
Figure 0004347553
【0053】
[実施例7]
オキセタニル基を持つ側鎖型液晶性ポリアクリレートの合成
実施例1〜6および参考例1で合成したアクリルモノマー(アクリル化合物1〜8)を使って、2,2’−アゾビスイソブチロニトリルを開始剤、DMFを溶媒として、窒素下、90℃、6時間、ラジカル重合を行い、メタノールに再沈して精製することで、オキセタニル基を持つ側鎖型液晶性ポリアクリレート1〜12を合成した。
【0054】
[参考例2]
オキセタニル基を持たない側鎖型液晶性ポリアクリレートの合成
実施例7と同様の手法で、参考例1で合成したアクリルモノマー7および8から、オキセタニル基を持たない側鎖型液晶性ポリアクリレート13および14を合成した。
【0055】
表1に、合成した側鎖型液晶性ポリアクリレートの組成、分子量、Tg、相挙動を示す。なお、表1中、相挙動において、Smはスメクチック相、Nmはネマチック相、Isoはアイソトロピック相を示す。左が低温側で、高温側がSmやNmとなっているものは、アイソトロピックに転移する温度が250℃以上だったものを表す。
図9および図10に、側鎖型液晶性ポリアクリレート3および14の1H−NMRスペクトルを示す。
【0056】
【表1】
Figure 0004347553
【0057】
[実施例8]
オキセタニル基を持つ側鎖型液晶性ポリアクリレート4を用いた液晶フィルムの作成
実施例7で合成したオキセタニル基を持つ側鎖型液晶性ポリアクリレート4の1.0gを、9mlのシクロヘキサンに溶かし、暗所でトリアリルスルフォニウムヘキサフルオロアンチモネート50%プロピレンカーボネート溶液(アルドリッチ社製試薬)0.05gを加えた後、孔径0.45μmのポリテトラフルオロエチレン製フィルターで不溶分をろ過して液晶性組成物の溶液を調製した。
この溶液を、表面をレーヨン布によりラビング処理した厚み50μmのポリエチレンナフタレートフィルムテオネックスQ−51(帝人社製)上にスピンコート法を用いて塗布し、塗布後60℃のホットプレート上で乾燥させた。得られたポリエチレンナフタレートフィルム上の液晶性組成物層を150℃に加熱しながら、空気雰囲気下、高圧水銀ランプにより積算照射量450mJ/cm2の紫外線光を照射した後、冷却して硬化した液晶性組成物層を得た。
【0058】
基板として用いたポリエチレンテレフタレートフィルムは大きな複屈折を持ち光学用フィルムとして好ましくないため、得られたフィルムを紫外線硬化型接着剤UV−1394(東亜合成社製)を介して、トリアセチルセルロース(TAC)フィルムに転写し光学フィルムを得た。すなわち、ポリエチレンナフタレートフィルム上の硬化した液晶性組成物層の上に、UV−1394を5μm厚となるように塗布し、TACフィルムでラミネートして、TACフィルム側から400mJ/cm2の紫外線光を照射して接着剤を硬化させた後、ポリエチレンナフタレートフィルムを剥離した。
【0059】
得られた光学フィルムを偏光顕微鏡下で観察すると、ディスクリネーションなどがないモノドメインの均一なネマチック液晶配向が観察され、そのリタデーションは115nmであった。さらに光学フィルムの液晶性組成物部分のみをかきとり、DSCを用いてガラス転移点を測定したところ、Tgは95℃であった。またフィルムの液晶性組成物層表面の鉛筆硬度は2H程度となり、充分に強固な膜が得られた。このように、側鎖型液晶性ポリアクリレート4を用いることで、良好な液晶配向性を有し、液晶配向固定化後の熱安定性と強度に優れたフィルムが作成できることがわかった。
【0060】
[参考例3]
側鎖型液晶性ポリアクリレート13を用いた液晶フィルムの作成
参考例2で合成した側鎖型液晶性ポリアクリレート13の1gを9mlのシクロヘキサンに溶かし、孔径0.45μmのポリテトラフルオロエチレン製フィルターで不溶分をろ過して液晶性組成物の溶液を調整した。
この溶液を、表面をレーヨン布によりラビング処理した厚み50μmのポリエチレンナフタレートフィルムテオネックスQ−51(帝人社製品)上にスピンコート法を用いて塗布し、塗布後60℃のホットプレート上で乾燥させた。得られたポリエチレンナフタレートフィルム上の液晶性組成物層を150℃で5分間加熱し、室温まで急冷することで液晶性組成物層を得た。
【0061】
基板として用いたポリエチレンテレフタレートフィルムは大きな複屈折を持ち光学用フィルムとして好ましくないため、得られたフィルムを紫外線硬化型接着剤UV−1394(東亜合成社製)を介して、TACフィルムに転写し光学フィルムを得た。すなわち、ポリエチレンナフタレートフィルム上の硬化した液晶性組成物層の上に、UV−1394を5μm厚となるように塗布し、TACフィルムでラミネートして、TACフィルム側から400mJ/cm2の紫外線光を照射して接着剤を硬化させた後、ポリエチレンナフタレートフィルムを剥離した。
【0062】
得られた光学フィルムを偏光顕微鏡下で観察すると、ディスクリネーションなどがないモノドメインの均一なネマチック液晶配向が観察され、そのリタデーションは100nmであった。しかし、光学フィルムの液晶性組成物部分のみをかきとり、DSCを用いてガラス転移点を測定したところ、Tgは80℃と低く、またフィルムの液晶性組成物層表面の鉛筆硬度はB程度と光学フィルムとして用いるには軟らかいものだった。
【図面の簡単な説明】
【図1】実施例1で得られたアクリル化合物1の1H−NMRスペクトルを示す。
【図2】実施例2で得られたアクリル化合物2の1H−NMRスペクトルを示す。
【図3】実施例3で得られたアクリル化合物3の1H−NMRスペクトルを示す。
【図4】実施例4で得られたアクリル化合物4の1H−NMRスペクトルを示す。
【図5】実施例5で得られたアクリル化合物5の1H−NMRスペクトルを示す。
【図6】実施例6で得られたアクリル化合物6の1H−NMRスペクトルを示す。
【図7】参考例1で得られたアクリル化合物7の1H−NMRスペクトルを示す。
【図8】参考例1で得られたアクリル化合物8の1H−NMRスペクトルを示す。
【図9】実施例7で得られた側鎖型液晶性ポリアクリレート3の1H−NMRスペクトルを示す。
【図10】参考例2で得られた側鎖型液晶性ポリアクリレート14の1H−NMRスペクトルを示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel (meth) acrylic compound having a polymerizable oxetanyl group, and further to a novel side chain liquid crystalline polymer substance derived from the compound.
[0002]
[Prior art]
In recent years, research and development for applying liquid crystal materials to optical applications has been actively conducted, and liquid crystal films obtained by aligning liquid crystal materials into films have been put to practical use for liquid crystal display color compensation and viewing angle expansion applications. Has been.
Various methods are known for filming liquid crystal materials. For example, after forming a thin film of a liquid crystalline polymer material on a substrate having alignment ability, the liquid crystal is aligned by heating to a temperature of the glass transition point Tg or higher, and then the liquid crystal alignment is fixed by rapid cooling. A method for producing a liquid crystal film (for example, see Patent Document 1) can be mentioned. This method can be applied to both main-chain and side-chain liquid crystal polymer materials, but the main-chain liquid crystal polymer material having a high Tg increases the temperature at which the liquid crystal is aligned. There are problems such as an increase in size and a limited number of substrates having orientation ability. Further, the side chain type liquid crystalline polymer substance having a low Tg has a problem in the heat resistance of the liquid crystal film after preparation, and there is a drawback that the liquid crystal alignment is disturbed when the temperature is close to Tg.
[0003]
As another method, after encapsulating a liquid crystalline low-molecular substance having a reactive group in a liquid crystal cell provided with an alignment substrate, the liquid crystal is heated to the liquid crystal expression temperature to align the liquid crystal, and then this is subjected to external stimuli such as light and heat. A method of preparing a liquid crystal film by polymerizing and fixing liquid crystal alignment (for example, see Patent Document 2). In this method, since the liquid crystal to be aligned is a low-molecular substance, the temperature dependence of physical properties such as fluidity and birefringence is large, so it is difficult to control the parameters of the liquid crystal film after preparation, and the liquid crystal after polymerization is also on the side. Since the structure is similar to that of the chain-type liquid crystalline polymer substance, Tg is not sufficiently increased, and there are many problems in the heat resistance of the liquid crystal film.
[0004]
In addition, as a method for polymerizing and fixing liquid crystal alignment by external stimulation, after liquid crystal alignment of a mixture of a liquid crystalline polymer substance and a reactive low molecular substance, external stimulation is applied and reaction curing is performed (for example, Patent Documents) However, since the reaction between the reactive low molecular weight substance and the liquid crystalline polymeric substance does not proceed sufficiently, the Tg still does not rise to a sufficient extent, and the heat resistance of the liquid crystal film is improved. Often there are problems.
[0005]
In that respect, by directly introducing a reactive group into a liquid crystalline polymer substance having a relatively low Tg such as a side chain type, and reacting the reactive group by external stimulation such as light or heat after liquid crystal alignment, It can be said that the method of increasing Tg (for example, see Patent Document 4) is the most excellent. However, this method has a problem that it is difficult to synthesize a side chain type liquid crystalline polymer substance having a reactive group. For example, when a reactive group is introduced after a polymer structure is first constructed, the amount of reactive group introduced tends to be insufficient. On the other hand, in the method of synthesizing a side chain type liquid crystalline polymer substance having a reactive group by polymerizing one reactive group of a monomer having two reactive groups, the reactivity of the remaining reactive group is reduced. There is a problem that the reactive group needs to be lower than the reactive group to be reacted first, and the reaction of the reactive group after liquid crystal alignment tends to be insufficient.
[0006]
[Patent Document 1]
Japanese Patent Laid-Open No. 3-9321 [Patent Document 2]
JP-A-8-21915 [Patent Document 3]
JP-A-10-120640 [Patent Document 4]
JP 2000-319527 A
[Problems to be solved by the invention]
The present invention has been made in view of the above problems, and provides a novel compound suitable as a raw material for a side-chain liquid crystalline polymer material having a reactive group having excellent reactivity when fixing a liquid crystal alignment structure. The present invention also provides a side chain liquid crystalline polymer substance derived from the compound.
[0008]
[Means for Solving the Problems]
As a result of diligent research to solve the above problems, the present inventors have found that oxetanyl is a raw material for a side-chain liquid crystalline polymer substance that is easy to synthesize, has excellent orientation, and is excellent in fixing the alignment structure. A novel polymerizable compound having a group has been found.
[0009]
That is, the first of the present invention relates to a (meth) acrylic compound having an oxetanyl group represented by the following formula (1).
[Chemical formula 5]
Figure 0004347553
[0010]
(In Formula (1), R 1 represents hydrogen or a methyl group, R 2 represents hydrogen, a methyl group, or an ethyl group, and L 1 and L 2 are each independently a single bond, —O—, —O—CO, -Represents either-or -CO-O-, M represents Formula (2) or Formula (3 ), and n and m each represent an integer of 0 to 10.
-P 1 -L 3 -P 2 -L 4 -P 3- (2)
-P 1 -L 3 -P 3- (3)
In Formula (2) and Formula (3 ) , P 1 and P 2 each independently represent a group selected from Formula (5), P 3 represents a group selected from Formula (6),
[Chemical 6]
Figure 0004347553
[Chemical 7]
Figure 0004347553
L 3 and L 4 each independently represents a single bond, —CH═CH—, —C≡C—, —O—, —O—CO— or —CO—O—. )
[0011]
2nd of this invention is related with the side chain type liquid crystalline polymer substance containing the unit represented by Formula (7) induced | guided | derived from the (meth) acryl compound which has the oxetanyl group represented by said Formula (1).
[Chemical 8]
Figure 0004347553
[0012]
3rd of this invention is related with the side chain type liquid crystalline polymer substance characterized by including 5-100 mol% of units represented by said Formula (7).
A fourth aspect of the present invention relates to the side chain type liquid crystalline polymer material according to the second or third aspect of the present invention, which has a weight average molecular weight of 2,000 to 100,000.
A fifth aspect of the present invention relates to a polymer liquid crystal composition comprising at least 10% by mass or more of the side chain type liquid crystalline polymer substance according to any one of the second to fourth aspects of the present invention.
6th of this invention is related with the polymer liquid crystal composition of 5th of this invention characterized by including a photo cation generator and / or a thermal cation generator.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The (meth) acrylic compound having an oxetanyl group of the present invention is a (meth) acrylic compound having an oxetanyl group represented by the following formula (1).
[0014]
[Chemical 9]
Figure 0004347553
In the above formula (1), R 1 represents hydrogen or a methyl group, R 2 represents hydrogen, a methyl group or an ethyl group, and L 1 and L 2 each independently represent a single bond, —O—, —O—CO. -Represents either-or -CO-O-, M represents Formula (2) or Formula (3 ), and n and m each represent an integer of 0 to 10.
-P 1 -L 3 -P 2 -L 4 -P 3- (2)
-P 1 -L 3 -P 3- (3)
[0015]
In Formula (2) and Formula (3 ) , P 1 and P 2 each independently represent a group selected from Formula (5), P 3 represents a group selected from Formula (6), and L 3 and L 4 Each independently represents a single bond, —CH═CH—, —C≡C—, —O—, —O—CO— or —CO—O—.
Embedded image
Figure 0004347553
Embedded image
Figure 0004347553
[0016]
That is, the (meth) acrylic compound having an oxetanyl group according to the present invention has a mesogenic portion composed of an aromatic ester and the like, a spacer portion composed of a hydrocarbon chain bonded thereto, a reactive oxetanyl group on one end, and the other end on the other end. A compound comprising a (meth) acrylic group as a structural unit, and a polymer substance obtained by copolymerizing the (meth) acrylic group of this compound alone or with another (meth) acrylic compound exhibits liquid crystallinity It is.
[0017]
First, each structural unit will be described.
The mesogenic part of the (meth) acrylic compound having an oxetanyl group of the present invention is represented by “—L 1 -ML 2 —” in the formula (1), and M is “—P 1 -L 3 -P”. 2 -L 4 -P 3 - "or" -P 1 -L 3 -P 3 - represented by ". The mesogen moiety is composed of 1 to 3 aromatic rings or cyclohexane rings via a direct bond (single bond), an ether bond (—O—) or an ester bond (—CO—O—), and a spacer moiety, oxetanyl. Group or a (meth) acryl group.
In the formula (1), L 1 , L 2 , L 3 and L 4 are each independently a single bond (here, it means a case where groups on both sides are bonded directly without a group represented by L) ), -CH = CH-, -C≡C-, -O-, -O-CO- or -CO-O-, and each of P 1 and P 2 independently represents the formula ( 5) represents any group selected from 5), and P 3 represents any group selected from the above-described formula (6).
[0018]
The mesogenic portion of the (meth) acrylic compound having an oxetanyl group of the present invention can be arbitrarily selected from the various combinations described above, and a group having a structure represented by the following formula is particularly preferable. it can.
Embedded image
Figure 0004347553
[0019]
In the present invention, the spacer moiety represented by “— (CH 2 ) n —” and “— (CH 2 ) m —” in formula (1) is a single bond (where n or m is 0). Or a divalent linear hydrocarbon group having 1 to 10 carbon atoms (that is, n or m is 1 to 10). When the target compound exhibits liquid crystallinity, the mesogen portion, the oxetanyl group portion, and the (meth) acryl group portion may be directly bonded (single bond) without a spacer portion, and may be an ether bond (—O—) or You may couple | bond together through an ester bond (-CO-O-). In general, if the spacer part between the mesogenic part and the (meth) acrylic group part is too short, the temperature range where liquid crystallinity is developed may be narrowed. May affect. From these facts, the carbon number of the spacer part between the mesogenic part and the (meth) acrylic group part is usually 1 to 8, preferably 2 to 6. Further, if the spacer portion between the mesogen portion and the oxetanyl group portion is too long, it may adversely affect the heat resistance when a liquid crystal film is formed. Therefore, the carbon number of the spacer portion between the mesogen portion and the oxetanyl group portion is usually 0 to 6, preferably 0 to 4. (Here, 0 carbon atoms refers to the case where the mesogen moiety and the oxetanyl group moiety are directly connected by a single bond)
[0020]
One end of the (meth) acrylic compound having an oxetanyl group of the present invention is a reactive oxetanyl group, and the other end is a (meth) acrylic group. By using a bifunctional monomer having both an oxetanyl group, which is a cationically polymerizable group, and a radically polymerizable or anionically polymerizable (meth) acrylic group, only the (meth) acrylic group is obtained by radical polymerization or anionic polymerization. Polymerization is possible, and a side chain liquid crystalline polymer substance having an oxetanyl group which is a cationic polymerizable group can be obtained. That is, by using an oxetanyl group, which has low reactivity as a polymerizable reactive group under conditions other than the cation, as a cationic polymerizable group, a (meth) acrylic group is first polymerized by radical polymerization or anionic polymerization to improve the side chain type liquid crystallinity. Synthesize molecular compounds. The side chain liquid crystalline polymer compound is easy to align because it has a lower Tg than the main chain liquid crystalline polymer, and can be easily aligned at a low temperature. After aligning the side-chain liquid crystalline polymer compound and then polymerizing (curing / crosslinking) the oxetanyl group in the presence of a cation, a liquid crystal film with improved Tg and improved heat resistance and mechanical strength is obtained. Can be created.
[0021]
The method for synthesizing the (meth) acrylic compound having an oxetanyl group of the present invention is not particularly limited, and can be synthesized by applying a method used in a general organic chemical synthesis method.
For example, by connecting a site having an oxetanyl group and a site having a (meth) acrylic group by means of Williamson's ether synthesis or ester synthesis using a condensing agent, two oxetanyl groups and (meth) acrylic groups are connected. A (meth) acrylic compound having an oxetanyl group having a reactive functional group can be synthesized.
As a specific example, the (meth) acrylic compound having an oxetanyl group of the present invention can be synthesized by the following steps.
[0022]
Embedded image
Figure 0004347553
[0023]
In the above formula, abbreviations represent the following.
DCC: 1,3-dicyclohexylcarbodiimide DMAP: 4, -dimethylaminopyridine DCM: dichloromethane PPTS: pyridinium-p-toluenesulfonic acid THF: tetrahydrofuran DMF: dimethylformamide BHT: 2,6-di-t-butyl-4-methyl Phenol [0024]
The side chain type liquid crystalline polymer substance of the present invention is a side chain type containing a unit represented by the following formula (7) derived from a (meth) acrylic compound having an oxetanyl group represented by the formula (1). It is a liquid crystalline polymer substance.
Embedded image
Figure 0004347553
[0025]
The side chain type liquid crystalline polymer substance containing a unit represented by the formula (7) is a radical polymerization or anion of a (meth) acrylic group portion of a (meth) acrylic compound having an oxetanyl group represented by the formula (1). It can be easily synthesized by polymerization alone or by copolymerizing with other (meth) acrylic compounds. Polymerization conditions are not particularly limited, and normal conditions can be employed.
[0026]
As an example of radical polymerization, a (meth) acrylic compound is dissolved in a solvent such as dimethylformamide (DMF), and 2,2′-azobisisobutyronitrile (AIBN), benzoyl peroxide (BPO), or the like is used as an initiator. And a method of reacting at 80 to 90 ° C. for several hours. In order to make the liquid crystal phase appear stably, it is also effective to control the molecular weight distribution by performing living radical polymerization using a copper (I) bromide / 2,2′-bipyridyl system or a TEMPO system as an initiator. is there. These radical polymerizations must be carried out strictly under deoxygenation conditions.
[0027]
Examples of anionic polymerization include a method in which a (meth) acrylic compound is dissolved in a solvent such as tetrahydrofuran (THF) and reacted with a strong base such as an organic lithium compound, an organic sodium compound, or a Grignard reagent as an initiator. In addition, the molecular weight distribution can be controlled by optimizing the initiator and the reaction temperature for living anionic polymerization. These anionic polymerizations must be performed strictly under dehydration and deoxygenation conditions.
[0028]
In addition, the (meth) acrylic compound to be copolymerized is not particularly limited and may be anything as long as the synthesized polymer substance exhibits liquid crystallinity. However, in order to increase the liquid crystallinity of the synthesized polymer substance, a mesogenic group is used. (Meth) acrylic compounds having Specifically, a (meth) acrylic compound represented by the following formula is particularly preferable.
[0029]
Embedded image
Figure 0004347553
[0030]
The side chain type liquid crystalline polymer substance of the present invention preferably contains 5 to 100 mol%, particularly preferably 10 to 100 mol% of the unit represented by the formula (7). The side chain type liquid crystalline polymer substance of the present invention preferably has a weight average molecular weight of 2,000 to 100,000, particularly preferably 5,000 to 50,000.
[0031]
Next, the polymer liquid crystal composition containing the side chain type liquid crystalline polymer material of the present invention will be described.
The polymer liquid crystal composition of the present invention is a polymer liquid crystal composition containing at least 10% by mass, preferably 30% by mass or more, more preferably 50% by mass or more of the side chain type liquid crystalline polymer substance of the present invention. . If the content of the side chain type liquid crystalline polymer substance is less than 10% by mass, the concentration of the polymerizable group in the composition becomes low, and the mechanical strength after polymerization becomes insufficient.
[0032]
The polymer liquid crystal composition of the present invention may contain various compounds that can be mixed without impairing liquid crystallinity in addition to the side chain type liquid crystalline polymer material of the present invention. Examples of the compound that can be contained include compounds having a cation polymerizable functional group such as oxetanyl group, epoxy group, vinyl ether group, various polymer materials having film forming ability, nematic liquid crystal property, cholesteric liquid crystal property, or discotic liquid crystal material. Examples include various low-molecular liquid crystalline compounds and high-molecular liquid crystalline compounds that exhibit properties. Various optically active compounds can be blended with or without liquid crystallinity for the purpose of exhibiting cholesteric liquid crystallinity in the polymer liquid crystal composition of the present invention.
[0033]
After the alignment treatment of the polymer liquid crystal composition of the present invention, the heat resistance of the liquid crystal film is improved by crosslinking the oxetanyl group by cationic polymerization. Therefore, it is preferable to contain a photocation generator or a thermal cation generator that generates cations by an external stimulus such as light or heat in the polymer liquid crystal composition so that cationic polymerization can easily and rapidly proceed. . If necessary, various sensitizers may be used in combination.
[0034]
The photo cation generator means a compound capable of generating a cation by irradiating with light having an appropriate wavelength, and examples thereof include organic sulfonium salt systems, iodonium salt systems, and phosphonium salt systems. Antimonates, phosphates, borates and the like are preferably used as counter ions of these compounds. Specific examples of the compound include Ar 3 S + SbF 6 , Ar 3 P + BF 4 and Ar 2 I + PF 6 (wherein Ar represents a phenyl group or a substituted phenyl group). In addition, sulfonate esters, triazines, diazomethanes, β-ketosulfone, iminosulfonate, benzoinsulfonate, and the like can also be used.
[0035]
The thermal cation generator is a compound capable of generating a cation by being heated to an appropriate temperature, for example, benzylsulfonium salts, benzylammonium salts, benzylpyridinium salts, benzylphosphonium salts, hydrazinium salts, carboxylic acid esters, Examples thereof include sulfonic acid esters, amine imides, antimony pentachloride-acetyl chloride complexes, diaryliodonium salts-dibenzyloxycopper, and boron halide-tertiary amine adducts.
[0036]
The amount of these cation generators added to the polymer liquid crystal composition varies depending on the structure of the mesogen portion or spacer portion constituting the side chain type liquid crystalline polymer material used, the oxetanyl group equivalent, the liquid crystal alignment conditions, and the like. Therefore, although it cannot be generally stated, it is usually 100 mass ppm to 20 mass%, preferably 1000 mass ppm to 10 mass%, more preferably 0.2 mass% to 7 mass% with respect to the side chain type liquid crystalline polymer substance. Most preferably, it is in the range of 0.5 mass% to 5 mass%. If the amount is less than 100 mass ppm, the amount of cations generated may not be sufficient and polymerization may not proceed. If the amount is more than 20 mass%, the remaining cation generator remains in the liquid crystal film. It is not preferable because there is a risk that the light resistance and the like may deteriorate due to an increase in the number of objects.
[0037]
【The invention's effect】
From the (meth) acrylic compound having an oxetanyl group of the present invention, a side chain liquid crystalline polymer substance can be easily obtained by radical polymerization or anionic polymerization, and this side chain liquid crystalline polymer substance can be easily aligned at a low temperature. Next, by polymerizing the oxetanyl group by cationic polymerization, crosslinking occurs, and a liquid crystal film excellent in heat resistance in which the orientation is fixed is obtained.
[0038]
【Example】
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
In addition, each analysis method used in the Example is as follows.
(1) Measurement compound of 1 H-NMR was dissolved in deuterated chloroform and measured by 1 H-NMR of 400 MHz (manufactured by JEOL Ltd. JNM-GX400).
(2) Measurement of GPC The compound was dissolved in tetrahydrofuran, and TSK-GEL SuperH1000, SuperH2000, SuperH3000, and SuperH4000 were connected in series with a Tosoh 8020GPC system and measured using tetrahydrofuran as an eluent. Polystyrene standards were used for molecular weight calibration.
(3) Observation of phase behavior The phase behavior was observed with a BH2 polarizing microscope manufactured by Olympus Optics while heating the sample on a hot stage manufactured by Mettler.
The phase transition temperature was measured with a differential scanning calorimeter DSC7 manufactured by Perkin-Elmer.
(4) Parameter measurement of liquid crystal film The retardation measurement of the nematic alignment used KOBRA manufactured by Oji Scientific Instruments .
[0039]
[Example 1]
According to Scheme 1, acrylic compound 1 having an oxetanyl group was synthesized using 3-ethyl-3-hydroxymethyloxetane (trade name OXT-101, manufactured by Toagosei Co., Ltd.) as a raw material.
A 1 H-NMR spectrum of acrylic compound 1 is shown in FIG. In the figure, x represents an impurity peak.
[0040]
Embedded image
Figure 0004347553
[0041]
[Example 2]
According to Scheme 2, acrylic compound 2 having an oxetanyl group was synthesized using 3-ethyl-3-hydroxymethyloxetane (trade name OXT-101, manufactured by Toagosei Co., Ltd.) as a raw material.
The 1 H-NMR spectrum of the acrylic compound 2 is shown in FIG.
[0042]
Embedded image
Figure 0004347553
[0043]
[Example 3]
According to scheme 3, acrylic compound 3 having an oxetanyl group was synthesized.
The 1 H-NMR spectrum of the acrylic compound 3 is shown in FIG.
[0044]
Embedded image
Figure 0004347553
[0045]
[Example 4]
According to scheme 4, acrylic compound 4 having an oxetanyl group was synthesized.
The 1 H-NMR spectrum of the acrylic compound 4 is shown in FIG.
[0046]
Embedded image
Figure 0004347553
[0047]
[Example 5]
According to Scheme 5, acrylic compound 5 having an oxetanyl group was synthesized.
A 1 H-NMR spectrum of the acrylic compound 5 is shown in FIG.
[0048]
Embedded image
Figure 0004347553
[0049]
[Example 6]
According to Scheme 6, an acrylic compound 6 having an oxetanyl group was synthesized.
A 1 H-NMR spectrum of the acrylic compound 6 is shown in FIG.
[0050]
Embedded image
Figure 0004347553
[0051]
[Reference Example 1]
According to Scheme 7, acrylic compounds 7 (m = 1 in the formula) and 8 (m = 3 in the formula) having no oxetanyl group were synthesized. The 1 H-NMR spectra of the acrylic compounds 7 and 8 are shown in FIGS.
[0052]
Embedded image
Figure 0004347553
[0053]
[Example 7]
Synthesis of side chain type liquid crystalline polyacrylate having oxetanyl group Using acrylic monomers (acrylic compounds 1 to 8) synthesized in Examples 1 to 6 and Reference Example 1, 2,2'-azobisiso Side chain liquid crystalline polyacrylates 1 to 3 having an oxetanyl group are obtained by performing radical polymerization under nitrogen at 90 ° C. for 6 hours using butyronitrile as an initiator and DMF as a solvent, reprecipitating in methanol and purifying. 12 was synthesized.
[0054]
[Reference Example 2]
Synthesis of side chain type liquid crystalline polyacrylate having no oxetanyl group Side chain type liquid crystal having no oxetanyl group from acrylic monomers 7 and 8 synthesized in Reference Example 1 in the same manner as in Example 7. Polyacrylates 13 and 14 were synthesized.
[0055]
Table 1 shows the composition, molecular weight, Tg, and phase behavior of the synthesized side chain type liquid crystalline polyacrylate. In Table 1, in the phase behavior, Sm represents a smectic phase, Nm represents a nematic phase, and Iso represents an isotropic phase. The one on the left is the low temperature side and the high temperature side is Sm or Nm indicates that the temperature at which isotropic transition occurs is 250 ° C. or more.
9 and 10 show 1 H-NMR spectra of the side chain type liquid crystalline polyacrylates 3 and 14. FIG.
[0056]
[Table 1]
Figure 0004347553
[0057]
[Example 8]
Preparation of liquid crystal film using side chain type liquid crystalline polyacrylate 4 having oxetanyl group 1.0 g of side chain type liquid crystalline polyacrylate 4 having oxetanyl group synthesized in Example 7 was added to 9 ml of cyclohexane. After adding 0.05 g of triallylsulfonium hexafluoroantimonate 50% propylene carbonate solution (Aldrich reagent) in the dark, filter the insoluble matter with a polytetrafluoroethylene filter with a pore size of 0.45 μm. Thus, a liquid crystal composition solution was prepared.
This solution was applied on a polyethylene naphthalate film Theonex Q-51 (manufactured by Teijin Ltd.) having a thickness of 50 μm whose surface was rubbed with a rayon cloth using a spin coating method, and then dried on a hot plate at 60 ° C. I let you. While the liquid crystalline composition layer on the obtained polyethylene naphthalate film was heated to 150 ° C., it was irradiated with ultraviolet light having an integrated irradiation amount of 450 mJ / cm 2 with a high-pressure mercury lamp in an air atmosphere, and then cooled and cured. A liquid crystal composition layer was obtained.
[0058]
Since the polyethylene terephthalate film used as the substrate has a large birefringence and is not preferable as an optical film, the obtained film is triacetylcellulose (TAC) via an ultraviolet curable adhesive UV-1394 (manufactured by Toagosei Co., Ltd.). The film was transferred to a film to obtain an optical film. That is, UV-1394 is applied to a cured liquid crystalline composition layer on a polyethylene naphthalate film so as to have a thickness of 5 μm, laminated with a TAC film, and ultraviolet light of 400 mJ / cm 2 from the TAC film side. Was applied to cure the adhesive, and then the polyethylene naphthalate film was peeled off.
[0059]
When the obtained optical film was observed under a polarizing microscope, a monodomain uniform nematic liquid crystal alignment without disclination was observed, and the retardation was 115 nm. Furthermore, only the liquid crystalline composition portion of the optical film was scraped, and the glass transition point was measured using DSC. The Tg was 95 ° C. Moreover, the pencil hardness of the liquid crystalline composition layer surface of the film was about 2H, and a sufficiently strong film was obtained. Thus, it was found that by using the side chain type liquid crystalline polyacrylate 4, a film having good liquid crystal orientation and excellent in thermal stability and strength after fixing the liquid crystal orientation can be produced.
[0060]
[Reference Example 3]
Preparation of liquid crystal film using side chain type liquid crystalline polyacrylate 13 1 g of side chain type liquid crystalline polyacrylate 13 synthesized in Reference Example 2 was dissolved in 9 ml of cyclohexane, and polytetrafluoro having a pore size of 0.45 μm. The insoluble matter was filtered with an ethylene filter to prepare a liquid crystal composition solution.
This solution was applied to a polyethylene naphthalate film Teonex Q-51 (Teijin Co., Ltd.) having a thickness of 50 μm whose surface was rubbed with a rayon cloth using a spin coating method, and then dried on a hot plate at 60 ° C. I let you. The liquid crystalline composition layer on the obtained polyethylene naphthalate film was heated at 150 ° C. for 5 minutes and rapidly cooled to room temperature to obtain a liquid crystalline composition layer.
[0061]
Since the polyethylene terephthalate film used as a substrate has a large birefringence and is not preferable as an optical film, the obtained film is transferred to a TAC film via an ultraviolet curable adhesive UV-1394 (manufactured by Toa Gosei Co., Ltd.) and optically used. A film was obtained. That is, UV-1394 is applied to a cured liquid crystalline composition layer on a polyethylene naphthalate film so as to have a thickness of 5 μm, laminated with a TAC film, and ultraviolet light of 400 mJ / cm 2 from the TAC film side. Was applied to cure the adhesive, and then the polyethylene naphthalate film was peeled off.
[0062]
When the obtained optical film was observed under a polarizing microscope, a monodomain uniform nematic liquid crystal alignment without disclination was observed, and the retardation was 100 nm. However, when only the liquid crystalline composition portion of the optical film was scraped and the glass transition point was measured using DSC, the Tg was as low as 80 ° C., and the pencil hardness of the surface of the liquid crystalline composition layer of the film was about B. It was soft to use as a film.
[Brief description of the drawings]
1 shows a 1 H-NMR spectrum of acrylic compound 1 obtained in Example 1. FIG.
2 shows a 1 H-NMR spectrum of acrylic compound 2 obtained in Example 2. FIG.
3 shows a 1 H-NMR spectrum of acrylic compound 3 obtained in Example 3. FIG.
4 shows a 1 H-NMR spectrum of acrylic compound 4 obtained in Example 4. FIG.
5 shows a 1 H-NMR spectrum of acrylic compound 5 obtained in Example 5. FIG.
6 shows a 1 H-NMR spectrum of acrylic compound 6 obtained in Example 6. FIG.
7 shows a 1 H-NMR spectrum of acrylic compound 7 obtained in Reference Example 1. FIG.
8 shows a 1 H-NMR spectrum of acrylic compound 8 obtained in Reference Example 1. FIG.
9 shows the 1 H-NMR spectrum of side chain liquid crystalline polyacrylate 3 obtained in Example 7. FIG.
10 shows a 1 H-NMR spectrum of side chain liquid crystalline polyacrylate 14 obtained in Reference Example 2. FIG.

Claims (6)

式(1)で表されるオキセタニル基を有する(メタ)アクリル化合物。
Figure 0004347553
(式(1)中、Rは水素またはメチル基を表し、Rは水素、メチル基またはエチル基を表し、LおよびLはそれぞれ個別に単結合、−O−、−O−CO−、または−CO−O−のいずれかを表し、Mは式(2)または式(3)を表し、nおよびmはそれぞれ0〜10の整数を示す。
−P−L−P−L−P− (2)
−P−L−P− (3)
式(2)および式(3)中、PおよびPはそれぞれ個別に式(5)から選ばれる基を表し、Pは式(6)から選ばれる基を表し、
Figure 0004347553
Figure 0004347553
およびLはそれぞれ個別に単結合、−CH=CH−、−C≡C−、−O−、−O−CO−または−CO−O−を表す。)
A (meth) acrylic compound having an oxetanyl group represented by the formula (1).
Figure 0004347553
(In Formula (1), R 1 represents hydrogen or a methyl group, R 2 represents hydrogen, a methyl group, or an ethyl group, and L 1 and L 2 are each independently a single bond, —O—, —O—CO, -Represents either-or -CO-O-, M represents Formula (2) or Formula (3 ), and n and m each represent an integer of 0 to 10.
-P 1 -L 3 -P 2 -L 4 -P 3- (2)
-P 1 -L 3 -P 3- (3)
In Formula (2) and Formula (3 ) , P 1 and P 2 each independently represent a group selected from Formula (5), P 3 represents a group selected from Formula (6),
Figure 0004347553
Figure 0004347553
L 3 and L 4 each independently represents a single bond, —CH═CH—, —C≡C—, —O—, —O—CO— or —CO—O—. )
請求項1に記載の式(1)で表されるオキセタニル基を有する(メタ)アクリル化合物から誘導される式(7)で表されるユニットを含む側鎖型液晶性高分子物質。
Figure 0004347553
(式(7)中、R、R、L、L、M、nおよびmは式(1)と同じである。)
A side-chain liquid crystalline polymer substance comprising a unit represented by the formula (7) derived from a (meth) acrylic compound having an oxetanyl group represented by the formula (1) according to claim 1 .
Figure 0004347553
(In formula (7), R 1 , R 2 , L 1 , L 2 , M, n and m are the same as in formula (1).)
請求項2に記載の式(7)で示されるユニットを5〜100モル%含むことを特徴とする側鎖型液晶性高分子物質。A side-chain liquid crystalline polymer substance comprising 5 to 100 mol% of a unit represented by the formula (7) according to claim 2 . 重量平均分子量が2,000〜100,000であることを特徴とする請求項2又は3記載の側鎖型液晶性高分子物質。4. The side chain type liquid crystalline polymer material according to claim 2, wherein the weight average molecular weight is 2,000 to 100,000. 請求項2〜4のいずかの項に記載の側鎖型液晶性高分子物質を少なくとも10質量%以上含有することを特徴とする高分子液晶組成物。A polymer liquid crystal composition comprising at least 10% by mass or more of the side-chain liquid crystalline polymer substance according to any one of claims 2 to 4. 光カチオン発生剤および/または熱カチオン発生剤を含むことを特徴とする請求項5記載の高分子液晶組成物。6. The polymer liquid crystal composition according to claim 5, comprising a photo cation generator and / or a thermal cation generator.
JP2002289226A 2002-10-01 2002-10-01 (Meth) acrylic compound having oxetanyl group, side chain type liquid crystalline polymer substance having oxetanyl group derived from said compound, and polymer liquid crystal composition comprising said side chain type liquid crystalline polymer substance Expired - Lifetime JP4347553B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2002289226A JP4347553B2 (en) 2002-10-01 2002-10-01 (Meth) acrylic compound having oxetanyl group, side chain type liquid crystalline polymer substance having oxetanyl group derived from said compound, and polymer liquid crystal composition comprising said side chain type liquid crystalline polymer substance
DE60312276T DE60312276T2 (en) 2002-10-01 2003-09-26 (Meth) acrylic compound having an oxetanyl group and liquid crystal film prepared therewith
EP03103578A EP1405850B1 (en) 2002-10-01 2003-09-26 (Meth)acrylic compound having an oxetanyl group and liquid crystal film produced by using the same
US10/672,946 US7244798B2 (en) 2002-10-01 2003-09-26 (Meth) acrylic compound having an oxetanyl group and liquid crystal film produced by using same
CNB031648983A CN1310896C (en) 2002-10-01 2003-09-29 (meth)Acrylic compound having an oxetanyl group and liquid crystal film produced by using the same
KR1020030067727A KR101122884B1 (en) 2002-10-01 2003-09-30 Methacrylic compound having an oxetanyl group and liquid crystal film produced by using same
TW092127169A TWI242009B (en) 2002-10-01 2003-10-01 (Meth)acrylic compound having an oxetanyl group and liquid crystal film produced by using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002289226A JP4347553B2 (en) 2002-10-01 2002-10-01 (Meth) acrylic compound having oxetanyl group, side chain type liquid crystalline polymer substance having oxetanyl group derived from said compound, and polymer liquid crystal composition comprising said side chain type liquid crystalline polymer substance

Publications (3)

Publication Number Publication Date
JP2004123597A JP2004123597A (en) 2004-04-22
JP2004123597A5 JP2004123597A5 (en) 2005-04-07
JP4347553B2 true JP4347553B2 (en) 2009-10-21

Family

ID=32281493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002289226A Expired - Lifetime JP4347553B2 (en) 2002-10-01 2002-10-01 (Meth) acrylic compound having oxetanyl group, side chain type liquid crystalline polymer substance having oxetanyl group derived from said compound, and polymer liquid crystal composition comprising said side chain type liquid crystalline polymer substance

Country Status (1)

Country Link
JP (1) JP4347553B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006220770A (en) * 2005-02-08 2006-08-24 Nippon Oil Corp Liquid crystal film and liquid crystal display device
JP2006337575A (en) * 2005-05-31 2006-12-14 Nippon Oil Corp Homeotropically oriented liquid-crystal film, and device using the same
JP4899386B2 (en) * 2005-09-07 2012-03-21 Jnc株式会社 Liquid crystalline monomer and polymer thereof
JP4648854B2 (en) * 2006-02-28 2011-03-09 Jx日鉱日石エネルギー株式会社 Dioxetane compound, cationically polymerizable composition, optical film, and liquid crystal display device
JP4925709B2 (en) 2006-04-10 2012-05-09 Jx日鉱日石エネルギー株式会社 Liquid crystalline composition with improved adhesiveness, liquid crystal film comprising the composition, and liquid crystal display device equipped with the film
JP5087260B2 (en) 2006-11-21 2012-12-05 富士フイルム株式会社 Polymerizable liquid crystal compound, retardation film using the same, and liquid crystal display device
JP5638347B2 (en) * 2009-12-21 2014-12-10 株式会社Adeka Novel polymerizable liquid crystal compound and polymerizable liquid crystal composition containing the polymerizable liquid crystal compound
JP5834489B2 (en) * 2011-05-18 2015-12-24 Dic株式会社 Polymerizable naphthalene compound
EP2818531B1 (en) * 2013-06-25 2017-07-26 Merck Patent GmbH Polymerisable compounds and the use thereof in liquid-crystal displays
JP2015197492A (en) * 2014-03-31 2015-11-09 富士フイルム株式会社 Optically anisotropic film and production method of the same, laminate and production method of laminate, polarizing plate, liquid crystal display device, and organic electroluminescence display device
JP6972525B2 (en) * 2016-09-20 2021-11-24 Dic株式会社 Spontaneous orientation aid for liquid crystal compositions

Also Published As

Publication number Publication date
JP2004123597A (en) 2004-04-22

Similar Documents

Publication Publication Date Title
CN101448917B (en) Liquid-crystalline composition with improved adhesion, liquid-crystal film comprising the composition, and liquid-crystal display element employing the film
JP4087205B2 (en) Optical film for liquid crystal display element and liquid crystal display element equipped with the film
JP4673502B2 (en) Main chain type liquid crystalline polyester, liquid crystalline composition, method for producing liquid crystal film, optical film and display device
US7416765B2 (en) Polymerizable liquid crystalline composition and liquid crystal film made from the composition
JP4246536B2 (en) Liquid crystal film and liquid crystal display element equipped with the film
CN1396947A (en) Polymerizable liquid crystalline dioxetanes, their preparation and use
TWI242009B (en) (Meth)acrylic compound having an oxetanyl group and liquid crystal film produced by using same
KR20100014276A (en) Polymerizable compounds and polymerizable compositions
JP4347553B2 (en) (Meth) acrylic compound having oxetanyl group, side chain type liquid crystalline polymer substance having oxetanyl group derived from said compound, and polymer liquid crystal composition comprising said side chain type liquid crystalline polymer substance
JP2008100982A (en) Trifunctional compound, composition and polymer thereof
EP1524309B1 (en) Polymerizable liquid crystalline composition and liquid crystal film produced from the same
JP2002265475A (en) Polymerizable liquid crystal compound and optically anisotropic body
JP4461692B2 (en) Polymerizable liquid crystal composition and optical anisotropic body
JP2007286278A (en) Method of forming hybrid alignment having predetermined average tilt angle
JP2005141206A (en) Polymerizable liquid crystalline composition and liquid crystal film produced from the composition
JP2003313250A (en) Polymerizable liquid crystal composition and optically anisotropic body
JP3972430B2 (en) Liquid crystalline (meth) acrylate compound, composition containing the compound, and optical anisotropic body using the same
JP2006143862A (en) Polymerizable liquid crystal composition and liquid crystalline film using the same
JP2010174128A (en) Liquid crystalline composition, liquid crystal film, method for producing the same, and liquid crystal display element
JP2006282579A (en) Liquid crystalline (meth)acrylic compound having alkoxynaphthyl group and polymer thereof
JP2010174129A (en) Liquid crystalline composition, liquid crystal film, method for producing the same, and liquid crystal display element
JP2014189630A (en) Film
JP2008145836A (en) Method of forming hybrid alignment and method of manufacturing liquid crystal film

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040428

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090714

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090716

R150 Certificate of patent or registration of utility model

Ref document number: 4347553

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term