[go: up one dir, main page]

JP4345491B2 - Induction heating device - Google Patents

Induction heating device Download PDF

Info

Publication number
JP4345491B2
JP4345491B2 JP2004007681A JP2004007681A JP4345491B2 JP 4345491 B2 JP4345491 B2 JP 4345491B2 JP 2004007681 A JP2004007681 A JP 2004007681A JP 2004007681 A JP2004007681 A JP 2004007681A JP 4345491 B2 JP4345491 B2 JP 4345491B2
Authority
JP
Japan
Prior art keywords
heating coil
electric conductor
heated
thickness
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004007681A
Other languages
Japanese (ja)
Other versions
JP2005203212A (en
Inventor
篤志 藤田
泉生 弘田
博志 桑村
勝行 相原
敏弘 慶島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004007681A priority Critical patent/JP4345491B2/en
Publication of JP2005203212A publication Critical patent/JP2005203212A/en
Application granted granted Critical
Publication of JP4345491B2 publication Critical patent/JP4345491B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Induction Heating Cooking Devices (AREA)

Description

本発明は、一般家庭やオフィス、レストラン、工場などで使用される誘導加熱装置に関するものであり、さらに詳しくは被加熱物としてアルミニウムや銅などの低透磁率かつ高電気伝導率の材料からなる被加熱物を加熱する誘導加熱調理器や、誘導加熱式湯沸かし器、誘導加熱式アイロン、またはその他の誘導加熱式加熱装置などで、特にアルミニウムや銅などを加熱可能とする誘導加熱装置に関するものである。   The present invention relates to an induction heating device used in general homes, offices, restaurants, factories, and the like, and more specifically, as a material to be heated, a low permeability and high electrical conductivity material such as aluminum or copper. The present invention relates to an induction heating apparatus that can heat aluminum, copper, and the like, particularly with an induction heating cooker that heats a heated object, an induction heating water heater, an induction heating iron, or another induction heating apparatus.

従来、この種の誘導加熱装置として、例えば、誘導加熱調理器に関して、複数のスイッチング素子を有し、一方のスイッチング素子のオン期間中に周期の短い共振電流を加熱コイルに発生し、かつ平滑コンデンサから加熱コイルに電力を供給することにより、入力電圧の脈流による鍋鳴り音が生じず、騒音の少ないアルミ鍋などを加熱する技術が知られている(例えば、特許文献1参照)。   Conventionally, as an induction heating apparatus of this type, for example, an induction heating cooker has a plurality of switching elements, generates a resonance current with a short period in the heating coil during the ON period of one switching element, and a smoothing capacitor. There is known a technique for heating an aluminum pan or the like with less noise by supplying electric power to the heating coil without causing a squealing sound due to a pulsating flow of input voltage (see, for example, Patent Document 1).

また、加熱コイルの入力インピーダンスにおける等価直列抵抗(被加熱物及び電気導体を加熱状態と同様の位置配置で、加熱コイル近傍の周波数を使用して測定した加熱コイルの入力インピーダンスにおける等価直列抵抗(以下単に加熱コイルの等価直列抵抗と呼ぶ))を大きくする機能を有する電気導体を、加熱コイルとアルミニウムなどの低透磁率かつ高電気伝導率の材料でなる被加熱物の間に設けることにより、加熱コイルに流れる電流を小さくして被加熱物に作用する浮力を低減し、入力電力が大でも浮力による被加熱物のずれ、浮きが少なくする技術が知られている(例えば、特許文献2参照)。   In addition, equivalent series resistance in the input impedance of the heating coil (equivalent series resistance in the input impedance of the heating coil measured below using the frequency near the heating coil at the same position as the heated object and the electric conductor in the heated state) By simply providing an electric conductor having the function of increasing the equivalent series resistance of the heating coil) between the heating coil and an object to be heated made of a material having low magnetic permeability and high electrical conductivity such as aluminum. A technique is known in which the current flowing through the coil is reduced to reduce the buoyancy acting on the object to be heated, and even when the input power is large, the object to be heated is less displaced and lifted by buoyancy (see, for example, Patent Document 2). .

以下、従来の誘導加熱装置として、特許文献2における誘導加熱装置(誘導加熱調理器)について、図を用いて説明する。   Hereinafter, as a conventional induction heating apparatus, an induction heating apparatus (induction heating cooker) in Patent Document 2 will be described with reference to the drawings.

図5は加熱コイル21及びその周辺の構成を示す斜視図であり、図6は誘導加熱装置本体(図示せず)に収納された加熱コイル21と、本体上部に固定された天板28と、天板28に置される被加熱物29を示す断面図である。 FIG. 5 is a perspective view showing the configuration of the heating coil 21 and its surroundings, and FIG. 6 shows a heating coil 21 housed in an induction heating device main body (not shown), a top plate 28 fixed to the upper portion of the main body, is a sectional view showing an object to be heated 29 is location mounting the top plate 28.

図5及び図6において、21は加熱コイルであり、インバータ(図示せず)から供給された約70kHzの高周波電流により磁界を発生し、天板28上に置された被加熱物29を誘導加熱する。 5 and 6, 21 is a heating coil, an inverter generates a magnetic field by about 70kHz high frequency current supplied from the (not shown), induce the heated object 29 which is location mounting on the top plate 28 Heat.

電気導体27は、厚さが略1mmの材料がアルミニウムの板により形成され、絶縁板31と天板28の間に設けられている。   The electric conductor 27 is formed of an aluminum plate made of a material having a thickness of about 1 mm, and is provided between the insulating plate 31 and the top plate 28.

加熱コイル21の上部に出た磁界は、電気導体27に鎖交するので、電気導体27には誘導電流が誘起される。電気導体27の厚みは約1mmで、加熱コイル21電流により誘導される高周波電流の浸透深さ(以下単に誘導電流の浸透深さと呼ぶ)以上の厚みを有するので、電気導体27に鎖交した磁界の大部分はほとんど電気導体27を通過せず、外周側または内周側に迂回してから被加熱物29に到達する。   Since the magnetic field emitted from the upper part of the heating coil 21 is linked to the electric conductor 27, an induced current is induced in the electric conductor 27. The electric conductor 27 has a thickness of about 1 mm and a thickness greater than the penetration depth of the high-frequency current induced by the heating coil 21 current (hereinafter simply referred to as the penetration depth of the induced current). Most of these do not pass through the electric conductor 27, and detour to the outer peripheral side or the inner peripheral side before reaching the object 29 to be heated.

電気導体27がない場合には、加熱コイル21から発生した高周波磁界に対して、アルミニウム若しくは銅又はこれらと同等以上の電気伝導率を有し、かつ低透磁率材料からなる被加熱物29の内部には、反発する方向に磁界を発生すべく、誘導電流が誘起される。この結果、被加熱物29内部の誘導電流から誘起される磁界と、加熱コイル21から発生する磁界との交互作用により、被加熱物29に浮力が生じる。   When there is no electric conductor 27, the inside of the object 29 to be heated is made of aluminum, copper, or an electric conductivity equal to or higher than that of the high frequency magnetic field generated from the heating coil 21 and made of a low magnetic permeability material. An induced current is induced to generate a magnetic field in the repulsive direction. As a result, buoyancy is generated in the heated object 29 due to the interaction between the magnetic field induced from the induced current in the heated object 29 and the magnetic field generated from the heating coil 21.

しかしながら、本従来の技術では、加熱コイル21と被加熱物29との間に電気導体27が設けられており、さらにその厚みを誘導電流の浸透深さよりも大としている。加熱コイル21から発生する磁界は、電気導体27と被加熱物29に鎖交し、両者に誘導電流を発生することになる。これにより電気導体27に誘導された誘導電流の発生する磁界と、被加熱物29に誘導された電流の発生する磁界の重畳磁界が、加熱コイル21の発生する磁界の変化を妨げるように電気導体27及び被加熱物29に誘導電流が流れる。   However, in this conventional technique, the electric conductor 27 is provided between the heating coil 21 and the object 29 to be heated, and the thickness thereof is larger than the penetration depth of the induced current. The magnetic field generated from the heating coil 21 is linked to the electric conductor 27 and the object to be heated 29 and generates an induced current in both. Thus, the electric conductor is generated so that the superposed magnetic field of the magnetic field generated by the induced current induced in the electric conductor 27 and the magnetic field generated by the current induced in the object to be heated 29 prevents a change in the magnetic field generated by the heating coil 21. An induced current flows through 27 and the object 29 to be heated.

つまり、被加熱物29に誘導される電流分布は、電気導体27が十分に厚みを備えている場合、電気導体27に誘導電流が発生することにより変わる。この電流分布の変化で、加熱コイル21の等価直列抵抗が大きくなり、同一出力を得る場合の加熱コイル21に流す電流を小さくすることができ、被加熱物29に作用する浮力が低減するとともに、電気導体27が被加熱物29に働くべき浮力の一部を分担することで、被加熱物29に作用する浮力が低減できる。   That is, the current distribution induced in the object to be heated 29 changes when an induced current is generated in the electric conductor 27 when the electric conductor 27 has a sufficient thickness. With this change in current distribution, the equivalent series resistance of the heating coil 21 is increased, the current flowing through the heating coil 21 when obtaining the same output can be reduced, the buoyancy acting on the object 29 to be heated is reduced, and By sharing a part of the buoyancy that the electric conductor 27 should act on the object 29 to be heated, the buoyancy acting on the object 29 can be reduced.

図7は被加熱物29がアルミニウム製の鍋の場合の消費電力と浮力の関係を、アルミニウム製の電気導体27がある場合(Bで示す)と電気導体27がない場合(Aで示す)について、また図8は消費電力と加熱コイル電流の関係を、電気導体27がある場合(Bで示す)と電気導体27がない場合(Aで示す)について測定結果の一例を示している。ただし、インバータの共振周波数は約70kHzである。   FIG. 7 shows the relationship between power consumption and buoyancy when the object to be heated 29 is an aluminum pan. When there is an aluminum electrical conductor 27 (shown by B) and when there is no electrical conductor 27 (shown by A). FIG. 8 shows an example of the measurement result of the relationship between the power consumption and the heating coil current when the electric conductor 27 is present (indicated by B) and when the electric conductor 27 is absent (indicated by A). However, the resonance frequency of the inverter is about 70 kHz.

これらの測定結果によると、電気導体27を挿入することにより、加熱コイル21の等価直列抵抗が増加し、被加熱物29に働く浮力が低減するとともに、加熱コイル21電流も低減されている。   According to these measurement results, by inserting the electric conductor 27, the equivalent series resistance of the heating coil 21 is increased, the buoyancy acting on the object to be heated 29 is reduced, and the current of the heating coil 21 is also reduced.

図9は電気導体27の厚みと浮力に関する傾向である。電気導体27の厚みを浸透深さ以上にすることにより、浮力低減効果を得ることが可能としている。
特開2003−257609号公報 特開2003−264054号公報
FIG. 9 shows the tendency regarding the thickness and buoyancy of the electric conductor 27. By making the thickness of the electrical conductor 27 equal to or greater than the penetration depth, it is possible to obtain a buoyancy reduction effect.
Japanese Patent Laid-Open No. 2003-257609 JP 2003-264054 A

しかしながら、前記従来の技術は、被加熱物29の誘導加熱と同時に、電気導体27の誘導加熱が行われることになる。さらに、電気導体27の厚みが誘導電流の浸透深さよりも大であるため、加熱コイル21から発生した高周波磁界は電気導体27を浸透、通過することがほとんどない、つまり浸透、通過しないだけの十分大きな誘導電流が電気導体27内に誘起されている。したがって、特に電気導体27の発熱による損失が大きくなるという課題が生じた。   However, in the conventional technique, induction heating of the electric conductor 27 is performed simultaneously with induction heating of the object 29 to be heated. Furthermore, since the thickness of the electric conductor 27 is larger than the penetration depth of the induced current, the high-frequency magnetic field generated from the heating coil 21 hardly penetrates and passes through the electric conductor 27, that is, sufficient to not penetrate and pass. A large induced current is induced in the electrical conductor 27. Therefore, the subject that the loss by the heat_generation | fever of the electrical conductor 27 became large especially occurred.

また図9に示した電気導体27の厚みと浮力に関する傾向について、アルミニウム若しくは銅またはこれらと略同等以上の電気伝導率を有する低透磁率材料を誘導加熱する技術は開発が新しく、十分な知見が不足であり、加えて当時の実験では測定点が離散的であり、それぞれの測定点間での浮力の振る舞いについて十分な知見が提示されていなかった。   Further, regarding the tendency regarding the thickness and buoyancy of the electric conductor 27 shown in FIG. 9, a technology for induction heating of aluminum, copper, or a low magnetic permeability material having an electric conductivity substantially equal to or higher than these is newly developed, and sufficient knowledge has been obtained. In addition, the measurement points were discrete in the experiments at that time, and sufficient knowledge was not presented about the behavior of buoyancy between the measurement points.

本発明は、前記従来の課題を解決するもので、低透磁率かつ高電気伝導率の材料で形成された被加熱物を加熱することができるとともに、被加熱物に働く浮力を低減し、かつ損失の少ない誘導加熱装置を提供することを目的としている。   The present invention solves the above-mentioned conventional problems, can heat a heated object formed of a material having low magnetic permeability and high electrical conductivity, reduces buoyancy acting on the heated object, and It aims at providing the induction heating apparatus with few losses.

前記従来の課題を解決するために、本発明の誘導加熱装置は、約70kHzの高周波電流が供給されて被加熱物を誘導加熱する加熱コイルと低透磁率かつ高電気伝導率材料からなる被加熱物との間に加熱コイルから磁界が発生したときに前記被加熱物に対して働く浮力を低減する浮力低減機能を有する、アルミニウム製または銅製の電気導体を設け、この電気導体の厚みを10〜30μmとしたものである。 In order to solve the above-described conventional problems, an induction heating apparatus of the present invention is a heating coil comprising a heating coil that is supplied with a high-frequency current of about 70 kHz to induction-heat an object to be heated, and a material having low magnetic permeability and high electrical conductivity. buoyant reducing function of reducing the buoyancy acting on the object to be heated when the magnetic field from the heating coil is generated between the objects, provided with aluminum or copper electrical conductors, the thickness of the electrical conductors 10 ˜30 μm .

このような電気導体は、加熱コイルの等価直列抵抗を、電気導体のないときに比べて大きくするものである。そのため、同一出力を得る場合の加熱コイルに流れる電流を低減して、加熱コイルの発生する磁界により被加熱物に働く浮力を低減する浮力低減機能を有する。   Such an electrical conductor increases the equivalent series resistance of the heating coil as compared to when there is no electrical conductor. Therefore, it has a buoyancy reduction function for reducing the buoyancy acting on the object to be heated by the magnetic field generated by the heating coil by reducing the current flowing through the heating coil when obtaining the same output.

これによって、アルミニウム若しくは銅又はこれらと同等以上の電気伝導率を有し、かつ低透磁率材料からなる被加熱物を加熱した時に浮き上がったりずれたりするのを防止することができることができる。   Accordingly, it is possible to prevent the object to be lifted or shifted when the object to be heated made of aluminum, copper, or an electric conductivity equivalent to or higher than these is heated and made of a low magnetic permeability material.

また、電気導体の厚みが十分に小さいため、加熱コイルから発生した高周波磁界は、電気導体内部を浸透、通過する。加熱コイルから発生した高周波磁界を通過させないだけのエネルギー、つまり誘導電流を電気導体内部に発生させることがないため、電気導体の発熱による損失を低減し、加熱コイル近傍の冷却を容易にし、被加熱物に伝達する電力を大きくすることができる。   Further, since the thickness of the electric conductor is sufficiently small, the high frequency magnetic field generated from the heating coil penetrates and passes through the electric conductor. Energy that does not allow the high-frequency magnetic field generated from the heating coil to pass through, that is, induction current, is not generated inside the electric conductor, reducing loss due to heat generation of the electric conductor, facilitating cooling near the heating coil, and heating The power transmitted to the object can be increased.

本発明の誘導加熱装置は、低透磁率かつ高電気伝導率の材料で形成された被加熱物を加熱することができるとともに、被加熱物に働く浮力を低減し、かつ損失の少ない誘導加熱装置を提供することができる。また、電気導体の厚みが十分に大きい場合に比べて、浮力低減の効果は大きく、加えて電気導体の発熱による損失を低減することが可能である。 The induction heating apparatus of the present invention can heat an object to be heated formed of a material having low magnetic permeability and high electrical conductivity, reduces buoyancy acting on the object to be heated, and has little loss. Can be provided. In addition, the effect of reducing buoyancy is greater than when the thickness of the electrical conductor is sufficiently large, and in addition, loss due to heat generation of the electrical conductor can be reduced.

第1の発明は、外郭を構成する本体と、アルミニウム若しくは銅またはこれらと略同等以上の電気伝導率を有する低透磁率材料からなる被加熱物を置する前記本体の上部に設けたトッププレートと、前記トッププレートの下方に設けられ、約70kHzの高周波電流が供給されて前記被加熱物を誘導加熱する加熱コイルと、前記加熱コイルと前記被加熱物との間に設けられ、前記加熱コイルから磁界が発生したときに前記被加熱物に対して働く浮力を低減する浮力低減機能を有する、アルミニウム製または銅製の電気導体とを備え、前記電気導体の厚みを10〜30μmとした誘導加熱装置とするものである。 The first invention includes a main body and an aluminum or copper or top plate provided on an upper portion of the body for placing the object to be heated made of a low permeability material having these substantially equal or higher electrical conductivity constituting an outer shell And a heating coil that is provided below the top plate and that is supplied with a high-frequency current of about 70 kHz to induction-heat the object to be heated, and is provided between the heating coil and the object to be heated , the heating coil wherein when the magnetic field is generated from the buoyant reducing function of reducing the buoyancy acting on the object to be heated, and a aluminum or copper electrical conductors, induction heating and the thickness of the electrical conductors and the 10~30μm It is a device.

本発明では、加熱コイルと被加熱物との間に電気導体が設けられており、さらにその厚みを約70kHzの加熱コイル電流により誘導される高周波電流の浸透深さよりも薄くしている。そのため、加熱コイルから発生した高周波磁界は、電気導体を浸透、通過しつつ、被加熱物に到達することになる。つまり、加熱コイルから見た総加熱面積は、電気導体面積及び加熱コイルから見て電気導体に覆われていない部分の被加熱物面積に、さらに加熱コイルから見て電気導体に覆われている部分の被加熱物面積が加わることになる。電気導体は、加熱コイルと被加熱物との磁気結合を強める作用を有しているわけである。この加熱コイルから見た総加熱面積の増加で、加熱コイルの等価直列抵抗が大きくなり、同一出力を得る場合の加熱コイルに流す電流を小さくすることができ、被加熱物に作用する浮力が低減する。 In the present invention, an electrical conductor is provided between the heating coil and the object to be heated, and the thickness thereof is made thinner than the penetration depth of the high-frequency current induced by the heating coil current of about 70 kHz . Therefore, the high frequency magnetic field generated from the heating coil reaches the object to be heated while penetrating and passing through the electric conductor. That is, the total heating area viewed from the heating coil is the area covered by the electrical conductor as viewed from the heating coil, and the area covered by the electrical conductor as viewed from the heating coil. The area to be heated is added. The electric conductor has an action of strengthening the magnetic coupling between the heating coil and the object to be heated. By increasing the total heating area seen from this heating coil, the equivalent series resistance of the heating coil increases, the current flowing through the heating coil when obtaining the same output can be reduced, and the buoyancy acting on the object to be heated is reduced. To do.

また電気導体は10〜30μmとするものであり十分に薄く、加熱コイルから発生した高周波磁界が電気導体を浸透、通過する。つまり、加熱コイルからの磁界を通過させないほどの大きな誘導電流は、電気導体内部には発生しないということであり、従来の電気導体の厚みが十分に大きい場合に比べて、本願のような厚みを加熱コイル電流により誘導される高周波電流の浸透深さよりも薄くした構成の電気導体においては、電気導体の発熱による損失を低減することが可能である。また、従来の電気導体の厚みが十分に大きい場合に比べて、浮力低減の効果を大きくすることが可能である。 The electric conductor is 10 to 30 μm and is sufficiently thin, and a high-frequency magnetic field generated from the heating coil penetrates and passes through the electric conductor. In other words, a large induced current that does not allow the magnetic field from the heating coil to pass through does not occur inside the electric conductor. Compared to the case where the thickness of the conventional electric conductor is sufficiently large, the thickness as in the present application is reduced. In an electrical conductor having a configuration that is thinner than the penetration depth of the high-frequency current induced by the heating coil current, it is possible to reduce loss due to heat generation of the electrical conductor. In addition, the effect of reducing buoyancy can be increased as compared with the case where the thickness of the conventional electric conductor is sufficiently large.

第2の発明は、特に第1の発明において、電気導体は、トッププレートに接合される構成とした誘導加熱装置とするものである。これにより、電気導体で発生する発熱を、トッププレート及びその上部に置された被加熱物へより伝達しやすくなり、電気導体温度を抑制し、被加熱物の加熱効率を高めることができる。 According to a second aspect of the invention, in the first aspect of the invention, the electric conductor is an induction heating device configured to be joined to the top plate. Accordingly, the heat generated by the electrical conductor, becomes more easily transmitted to the object to be heated location mounting the top plate and the top thereof to suppress the electrical conductor temperature, it is possible to increase the heating efficiency of the object to be heated.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, this invention is not limited by this embodiment.

(実施の形態1)
図1は、本発明の実施の形態1における誘導加熱装置を示すものであり、特に誘導加熱調理器の要部の概略断面図である。
(Embodiment 1)
FIG. 1 shows an induction heating apparatus according to Embodiment 1 of the present invention, and is a schematic cross-sectional view of a main part of an induction heating cooker.

図1において、外郭を構成する本体1の上部に、絶縁体であり、耐熱セラミックス製のトッププレート2が設けられている。トッププレート2の下方には、素線を束ねた撚り線を多層にして平板上に巻き回されて構成される加熱コイル3が備えられている。棒状のフェライト4は、加熱コイル3面と略並行に配置されており、特にその両端を、トッププレート2へ向けて上方垂直に折り曲げた形状となっている。   In FIG. 1, a top plate 2 made of heat-resistant ceramics, which is an insulator, is provided on an upper portion of a main body 1 constituting an outer shell. Below the top plate 2, there is provided a heating coil 3 that is formed by winding a stranded wire bundled with strands in a multilayered manner on a flat plate. The rod-shaped ferrite 4 is arranged substantially in parallel with the surface of the heating coil 3, and in particular, both ends thereof are bent upward and vertically toward the top plate 2.

トッププレート2と加熱コイル3間には、カーボン材料で形成された導電塗膜5が、マイカ製の絶縁板6、7に挟まれて配置されている。この導電塗膜5は、端子8と接続され、さらにコンデンサ9を介して商用電源電位あるいは加熱コイル3に高周波電流を供給するインバータ(図示せず)の入力する商用電源を整流した電位あるいは大地に接続される。   Between the top plate 2 and the heating coil 3, a conductive coating film 5 made of a carbon material is disposed between insulating plates 6 and 7 made of mica. This conductive coating 5 is connected to the terminal 8 and further to a commercial power source potential via a capacitor 9 or to a potential obtained by rectifying a commercial power source input by an inverter (not shown) for supplying a high frequency current to the heating coil 3 or to the ground. Connected.

温度検知手段となるサーミスタ10は、トッププレート2の加熱コイル3側の面に当接されている。   The thermistor 10 serving as temperature detecting means is in contact with the surface of the top plate 2 on the heating coil 3 side.

電気導体11は、厚さが約15μmのアルミニウム塗膜で形成され、絶縁板6とトッププレート2の間に設けられており、特にトッププレート2の加熱コイル3側の面へ転写により、接合されている。   The electric conductor 11 is formed of an aluminum coating having a thickness of about 15 μm, and is provided between the insulating plate 6 and the top plate 2. In particular, the electric conductor 11 is bonded to the surface of the top plate 2 on the heating coil 3 side by transfer. ing.

また図2は、加熱コイル3側から見た電気導体11の形状図である。電気導体11は、外径及び内径が加熱コイル3とほぼ同じの略ドーナツ状をしており、幅10mmのスリット12が外周から内周にわたって設けられているため、ドーナツを2分割したような形状をしている。中央部に開口部13が設けられており、その外周はフェライト4外端よりも小さく設定されている。電気導体11内周部には、深さ約25mm、幅約1mmのスリット14が中心から放射状に約40ヶ所設けられている。   FIG. 2 is a shape diagram of the electric conductor 11 as viewed from the heating coil 3 side. The electric conductor 11 has a substantially donut shape whose outer diameter and inner diameter are substantially the same as those of the heating coil 3, and a slit 12 having a width of 10 mm is provided from the outer periphery to the inner periphery. I am doing. An opening 13 is provided at the center, and the outer periphery thereof is set smaller than the outer end of the ferrite 4. In the inner periphery of the electric conductor 11, about 40 slits 14 having a depth of about 25 mm and a width of about 1 mm are provided radially from the center.

アルミニウム若しくは銅又はこれらと略同等以上の電気伝導率を有する低透磁率材料からなる被加熱物15は、トッププレート2を挟んで加熱コイル3と対向するよう、トッププレート2上に置される。 Heated object 15 made of a low permeability material with aluminum or copper or their substantially equivalent or electrical conductivity, so as to face the heating coil 3 across the top plate 2, is location mounting on the top plate 2 .

以上の構成において、本実施の形態の動作を説明する。   In the above configuration, the operation of the present embodiment will be described.

加熱コイル3には、約70kHzの高周波電流が供給される。加熱コイル3は、高周波電流が供給されると磁界を発生するが、加熱コイル3下方では高透磁率材料であるフェライト4があり、磁界がフェライト4に集中するために、磁界が被加熱物15と反対側に膨らむのを防止できる。フェライト4は、複数のフェライトコアを組み合わせて構成することでも同様の効果が得られる。   The heating coil 3 is supplied with a high-frequency current of about 70 kHz. The heating coil 3 generates a magnetic field when a high-frequency current is supplied, but there is a ferrite 4 that is a high permeability material below the heating coil 3, and the magnetic field concentrates on the ferrite 4, so that the magnetic field is heated 15. Can be prevented from swelling to the opposite side. The same effect can be obtained by configuring the ferrite 4 by combining a plurality of ferrite cores.

一方、加熱コイル3上方へ出た磁界は、電気導体11に鎖交するため、電気導体11内部には誘導電流が誘起される。この時、誘導電流の周波数は約70kHzであり、電気導体11がアルミニウム製である場合の誘導電流の浸透深さδ=約300μmである。本実施の形態では、電気導体11は、誘導電流の浸透深さよりも十分薄い約15μmであるため、加熱コイル3からの磁界を遮蔽することができず、電気導体11内部を磁界が浸透、通過して、被加熱物15方向へ導かれる。フェライト4の両端部分は、上方垂直に折り曲げられているため、上方の被加熱物15方向へ磁界を効率よく誘導する作用をもつ。   On the other hand, since the magnetic field emitted upward of the heating coil 3 is linked to the electric conductor 11, an induced current is induced inside the electric conductor 11. At this time, the frequency of the induced current is about 70 kHz, and the penetration depth δ of the induced current when the electric conductor 11 is made of aluminum is about 300 μm. In the present embodiment, since the electric conductor 11 is about 15 μm, which is sufficiently thinner than the penetration depth of the induced current, the magnetic field from the heating coil 3 cannot be shielded, and the magnetic field penetrates and passes through the electric conductor 11. Then, it is guided toward the object to be heated 15. Since both end portions of the ferrite 4 are bent vertically upward, the ferrite 4 has an action of efficiently inducing a magnetic field toward the heated object 15 above.

加熱コイル3上方へ出た磁界は、電気導体11を浸透、通過した磁界と、電気導体11スリット12、14や開口部13を通過した磁界との合成磁界となって、被加熱物15に到達する。被加熱物15に誘起される誘導電流は、この合成磁界により発生するものである。そのため、電気導体11が介在することにより、電気導体11がない場合と比較し、誘導電流分布は変化する。   The magnetic field emitted upward of the heating coil 3 becomes a combined magnetic field of the magnetic field that has permeated and passed through the electric conductor 11 and the magnetic field that has passed through the slits 12 and 14 and the opening 13 of the electric conductor 11 and reaches the object 15 to be heated. To do. The induced current induced in the object to be heated 15 is generated by this combined magnetic field. For this reason, the presence of the electric conductor 11 changes the induced current distribution as compared to the case without the electric conductor 11.

また、加熱コイル3から見て誘導加熱する総加熱面積は、電気導体11面積及び加熱コイル3から見て電気導体11に覆われていない、スリット12、14や開口部13上部の被加熱物15面積に、さらに加熱コイル3から見て電気導体11に覆われている部分の被加熱物15面積が加わることになる。電気導体11は、加熱コイル3と被加熱物15との磁気結合を強める作用を有しているわけである。この加熱コイル3から見た総加熱面積の増加で、加熱コイル3の等価直列抵抗が大きくなり、同一出力を得る場合の加熱コイル3に流す電流を小さくすることができ、被加熱物15に作用する浮力が低減する。   The total heating area to be induction-heated as viewed from the heating coil 3 is the area of the electric conductor 11 and the heated object 15 above the slits 12 and 14 and the opening 13 that is not covered by the electric conductor 11 as viewed from the heating coil 3. In addition, the area to be heated 15 of the portion covered with the electric conductor 11 when viewed from the heating coil 3 is added to the area. The electric conductor 11 has an action of strengthening the magnetic coupling between the heating coil 3 and the object to be heated 15. By increasing the total heating area as viewed from the heating coil 3, the equivalent series resistance of the heating coil 3 is increased, so that the current flowing through the heating coil 3 when obtaining the same output can be reduced. Buoyancy is reduced.

図3に電気導体11厚みと、加熱コイル3の等価直列抵抗の関係を、アルミニウム製の鍋を被加熱物15として加熱状態と同様の位置配置で測定した場合(図3(a)で示す)と、被加熱物15がない場合(図3(b)で示す)について、測定結果の一例を示している。ただし、加熱コイル3の高周波電流周波数は約70kHzである。   FIG. 3 shows the relationship between the thickness of the electrical conductor 11 and the equivalent series resistance of the heating coil 3 measured with the aluminum pan as the object to be heated 15 in the same position arrangement as in the heated state (shown in FIG. 3A). And an example of a measurement result is shown about the case where there is no to-be-heated material 15 (it shows by FIG.3 (b)). However, the high frequency current frequency of the heating coil 3 is about 70 kHz.

図3(b)に示すように、被加熱物15がない場合、電気導体11厚みが0(ない状態)から10μmまでは等価直列抵抗は単調増加し、電気導体11厚みが10μm以上では単調減少している。アルミニウムにおける誘導電流の浸透深さδ=約300μmを越える領域では、等価直列抵抗はほぼ一定の値となっている。   As shown in FIG. 3 (b), when there is no object to be heated 15, the equivalent series resistance increases monotonically from 0 (no state) to 10 μm, and monotonically decreases when the thickness of the electric conductor 11 is 10 μm or more. is doing. In the region where the penetration depth δ of the induced current in aluminum exceeds about 300 μm, the equivalent series resistance has a substantially constant value.

これは、被加熱物15の代わりに電気導体11が加熱対象となっているためと考えられる。アルミニウム製の電気導体11の電気伝導率をσ、厚みをt、電気導体11における誘導電流の浸透深さをδとしたとき、電気導体11厚みがδよりも小さい場合には、電気導体11表皮に流れる誘導電流から見た高周波抵抗Rs(以下単に表皮抵抗と呼ぶ)は、Rs=1/(t・σ)で定義される。つまり厚みtに対して表皮抵抗は反比例の関係にある。また電気導体11厚みがδよりも大きい場合には、Rs=1/(δ・σ)で定義され、表皮抵抗は一定値となる。   This is presumably because the electric conductor 11 is the object to be heated instead of the article 15 to be heated. When the electrical conductivity of the aluminum electrical conductor 11 is σ, the thickness is t, and the penetration depth of the induced current in the electrical conductor 11 is δ, when the thickness of the electrical conductor 11 is smaller than δ, the electrical conductor 11 skin The high-frequency resistance Rs (hereinafter simply referred to as the skin resistance) viewed from the induced current flowing through is defined by Rs = 1 / (t · σ). That is, the skin resistance is inversely proportional to the thickness t. When the thickness of the electric conductor 11 is larger than δ, it is defined by Rs = 1 / (δ · σ), and the skin resistance is a constant value.

電気導体11厚みが0(ない状態)から10μmまでは、電気導体11の厚みが十分小さく、表皮抵抗が理論上非常に大きくなる。つまり、絶縁体に近い状態となり、加熱コイル3から発生する磁界も容易に通過するため、電気導体11がないのとほぼ同じ状態となる。加熱コイル3の等価直列抵抗は、被加熱物15及び電気導体11がない状態の加熱コイル3自身の高周波抵抗と、近傍のフェライト4の高周波抵抗などの合成抵抗とほぼ同じとなって小さい値となるが、電気導体11厚みを増すにつれ、単調増加する。電気導体11厚みが10μm以上300μm以下の領域では、電気導体11の表皮抵抗減少の影響により、加熱コイル3の等価直列抵抗も電気導体11厚みとほぼ反比例の関係で単調減少する。電気導体11厚みが300μm以上の領域では、電気導体11表皮抵抗が一定となるため、加熱コイル3の等価直列抵抗もほぼ一定値となる。   When the thickness of the electric conductor 11 is 0 (no state) to 10 μm, the thickness of the electric conductor 11 is sufficiently small, and the skin resistance is theoretically very large. That is, it becomes a state close to an insulator, and the magnetic field generated from the heating coil 3 easily passes therethrough, so that the state is almost the same as when there is no electric conductor 11. The equivalent series resistance of the heating coil 3 is substantially the same as the high-frequency resistance of the heating coil 3 without the object to be heated 15 and the electric conductor 11 and the combined resistance such as the high-frequency resistance of the nearby ferrite 4 and is a small value. However, it increases monotonically as the thickness of the electrical conductor 11 increases. In the region where the thickness of the electric conductor 11 is 10 μm or more and 300 μm or less, the equivalent series resistance of the heating coil 3 also decreases monotonously in a substantially inversely proportional relationship with the thickness of the electric conductor 11 due to the influence of the skin resistance reduction of the electric conductor 11. In the region where the thickness of the electric conductor 11 is 300 μm or more, the skin resistance of the electric conductor 11 is constant, so that the equivalent series resistance of the heating coil 3 is also substantially constant.

一方、図3(a)に示すように被加熱物15がある場合には、電気導体11厚みが0から15μmまでは等価直列抵抗は単調増加し、ピークをもつ。電気導体11厚みが200μmになるまで等価直列抵抗は単調減少し、最小となる。電気導体11厚みが1200μmまで等価直列抵抗は再度単調増加する。   On the other hand, when the object to be heated 15 is present as shown in FIG. 3A, the equivalent series resistance increases monotonously and has a peak when the thickness of the electric conductor 11 is 0 to 15 μm. The equivalent series resistance monotonously decreases and becomes the minimum until the thickness of the electric conductor 11 becomes 200 μm. The equivalent series resistance again monotonously increases until the thickness of the electric conductor 11 is 1200 μm.

電気導体11厚み15μmで加熱コイル3の等価直列抵抗が持つピークは、被加熱物15がない場合の図3(b)と同様に、電気導体11厚みが十分小さく、電気導体11表皮抵抗が大きい状態となってほぼ絶縁体と見なされる領域と、ある程度厚みが増加して電気抵抗表皮抵抗が減少する領域とのバランスによって生じると考えられる。   The peak of the equivalent series resistance of the heating coil 3 when the thickness of the electric conductor 11 is 15 μm is the same as in FIG. 3B when there is no object to be heated 15, and the thickness of the electric conductor 11 is sufficiently small and the skin resistance of the electric conductor 11 is large. This is considered to be caused by a balance between a region that is regarded as an insulator and a region where the thickness increases to some extent and the electric resistance skin resistance decreases.

また視点を変えると、先に述べたように、電気導体11を浸透、通過した磁界による、見かけの総誘導加熱面積の増加作用は、電気導体11厚み15μmで最大になっていると言える。   From another viewpoint, as described above, it can be said that the effect of increasing the apparent total induction heating area due to the magnetic field penetrating and passing through the electric conductor 11 is maximum when the electric conductor 11 has a thickness of 15 μm.

また、電気導体11厚み15μm以上での領域については、電気導体11厚みが増加するために、電気導体11表皮抵抗が単調減少していく。さらに、電気導体11内部に誘導電流が流れやすくなるため、加熱コイル3から発生する磁界をある程度遮蔽し、加熱コイル3から見た総加熱面積が減少する。つまり、加熱コイル3の等価直列抵抗が減少する。   Further, in the region where the thickness of the electric conductor 11 is 15 μm or more, the thickness of the electric conductor 11 increases, and thus the skin resistance of the electric conductor 11 decreases monotonously. Furthermore, since the induced current easily flows inside the electric conductor 11, the magnetic field generated from the heating coil 3 is shielded to some extent, and the total heating area viewed from the heating coil 3 is reduced. That is, the equivalent series resistance of the heating coil 3 is reduced.

その一方で、小さい表皮抵抗で誘導電流を流しやすい状態となる電気導体11が、加熱コイル3から見て近い位置に配置されているため、加熱コイル3と電気導体11の磁気結合は強く、加熱コイル3の等価直列抵抗を増加させる作用もあわせて生じる。十分厚い電気導体11は、加熱コイル3から発生する磁界を遮蔽するが、一部の磁界は、電気導体11を迂回して電気導体11の加熱コイル3と反対側面を誘導加熱するため、電気導体11の表皮深さ約300μmを越えても、加熱コイル3の等価直列抵抗は増加する。したがって、電気導体11厚み200μmで加熱コイル3の等価直列抵抗は最小点を持つと推定される。ただし、電気導体11厚みが一定以上となれば、加熱コイル3の等価直列抵抗はほぼ一定値となる。   On the other hand, since the electric conductor 11 that is in a state in which an induced current easily flows with a small skin resistance is arranged at a position close to the heating coil 3, the magnetic coupling between the heating coil 3 and the electric conductor 11 is strong, An effect of increasing the equivalent series resistance of the coil 3 also occurs. The sufficiently thick electric conductor 11 shields the magnetic field generated from the heating coil 3, but a part of the magnetic field bypasses the electric conductor 11 and induction heats the side opposite to the heating coil 3 of the electric conductor 11. Even when the skin depth of 11 exceeds about 300 μm, the equivalent series resistance of the heating coil 3 increases. Therefore, it is estimated that the equivalent series resistance of the heating coil 3 has a minimum point when the thickness of the electric conductor 11 is 200 μm. However, if the thickness of the electric conductor 11 is equal to or greater than a certain value, the equivalent series resistance of the heating coil 3 becomes a substantially constant value.

発明者らは、詳細な検討の結果、電気導体11厚み約15μmで、加熱コイル3の等価直列抵抗が最大となるポイントを見出した。そのため、同一出力を得る場合の加熱コイル3に流す電流を小さくすることができ、被加熱物15に作用する浮力が低減する。なお、発明者らの実験により、電気導体11が誘導電流の浸透深さより薄くても厚くても、加熱コイル3の等価直列抵抗が同じであれば、同様の加熱コイル3電流低減効果、浮力低減効果が得られることは確認された。また、誘導加熱装置として目標とする浮力に対して、加熱コイル3の等価直列抵抗はほぼ一意に決定されるため、電気導体11厚みを所定の加熱コイル3等価直列抵抗を得るべく、変更することが可能である。従って、ある程度、被加熱物15に対して働く浮力が容認される場合には、本実施の形態の加熱構成では、電気導体11厚みを15μmより小さくまたは大きく設定することで所定の浮力となる誘導加熱装置が得られる。   As a result of detailed studies, the inventors have found a point where the equivalent series resistance of the heating coil 3 is maximized when the thickness of the electric conductor 11 is about 15 μm. Therefore, the current flowing through the heating coil 3 when obtaining the same output can be reduced, and the buoyancy acting on the object to be heated 15 is reduced. According to experiments by the inventors, if the equivalent series resistance of the heating coil 3 is the same regardless of whether the electrical conductor 11 is thinner or thicker than the penetration depth of the induced current, the same heating coil 3 current reduction effect and buoyancy reduction are achieved. It was confirmed that an effect was obtained. Moreover, since the equivalent series resistance of the heating coil 3 is almost uniquely determined with respect to the target buoyancy as the induction heating device, the thickness of the electric conductor 11 is changed to obtain a predetermined heating coil 3 equivalent series resistance. Is possible. Accordingly, when buoyancy acting on the object to be heated 15 is accepted to some extent, in the heating configuration of the present embodiment, induction that provides a predetermined buoyancy by setting the thickness of the electric conductor 11 to be smaller or larger than 15 μm. A heating device is obtained.

特に、図3(a)に示す実験データからは、電気導体の厚みが厚い場合においては1000μmにおいて3.6Ωの最大点を示し、同図より電気導体での厚みが浸透深さより薄い厚みにおいては、厚みを10〜30μmとすると3.6Ωよりも高い等価直列抵抗値を得ることができ、従来の電気導体の厚みが十分に大きい場合に比べて、浮力低減の効果は大きく、加えて電気導体の発熱による損失を低減することが可能である。   In particular, from the experimental data shown in FIG. 3 (a), when the thickness of the electric conductor is thick, the maximum point of 3.6Ω is shown at 1000 μm, and from the figure, the thickness at the electric conductor is less than the penetration depth. When the thickness is set to 10 to 30 μm, an equivalent series resistance value higher than 3.6Ω can be obtained, and the effect of reducing buoyancy is great compared to the case where the thickness of the conventional electric conductor is sufficiently large. It is possible to reduce loss due to heat generation.

さらに、電気導体11が薄いため、加熱コイル3から発生した高周波磁界は電気導体11を浸透、通過する。つまり、加熱コイル3からの磁界を通過させないほどの反発磁界を発生させる大きなエネルギー、すなわち大きな誘導電流は、電気導体11内部には発生しないということであり、電気導体11の厚みが大きい場合に比べて、電気導体11の発熱による損失を低減し、加熱コイル3近傍の冷却を容易にすることができる。また、被加熱物15に伝達する電力を大きくし、加熱効率を向上させることが可能である。   Further, since the electric conductor 11 is thin, the high frequency magnetic field generated from the heating coil 3 penetrates and passes through the electric conductor 11. That is, a large energy that generates a repulsive magnetic field that does not allow the magnetic field from the heating coil 3 to pass through, that is, a large induced current is not generated inside the electric conductor 11, compared to a case where the thickness of the electric conductor 11 is large. Thus, loss due to heat generation of the electric conductor 11 can be reduced, and cooling in the vicinity of the heating coil 3 can be facilitated. Further, it is possible to increase the electric power transmitted to the object to be heated 15 and improve the heating efficiency.

また、電気導体11には、スリット12、14を設けている。電気導体11を2分割するスリット12は、加熱コイル3から発生する磁界によって誘起され、加熱コイル3の周回方向に流れる電気導体11内部の誘導電流を抑制するものである。図4は電気導体11内部に流れる誘導電流を示す図であり、スリット12がない場合(図4(a)に示す)、スリット12がある場合(図4(b)に示す)を表したものである。簡略化のため、本実施の形態における電気導体11とは異なり、スリット14がない形状で示している。図4(a)のように、スリット12がない場合、加熱コイル3から発生する磁界によって、電気導体11内部に大きなループで、同心円状となる誘導電流が発生する。この誘導電流は、特に加熱コイル3の内周部と外周部との中間部分に大きく流れるよう分布し、大きな発熱を生じさせる。しかしながら、図4(b)のように、スリット12を設けることによって、ループとなる誘導電流は抑制されるため、電気導体11の発熱を抑制することが可能となる。   The electrical conductor 11 is provided with slits 12 and 14. The slit 12 that divides the electric conductor 11 into two parts is induced by a magnetic field generated from the heating coil 3, and suppresses an induced current inside the electric conductor 11 that flows in the circumferential direction of the heating coil 3. FIG. 4 is a diagram showing the induced current flowing inside the electric conductor 11, and shows the case where there is no slit 12 (shown in FIG. 4A) and the case where there is a slit 12 (shown in FIG. 4B). It is. For simplification, unlike the electric conductor 11 in the present embodiment, it is shown in a shape without the slit 14. As shown in FIG. 4A, when there is no slit 12, the magnetic field generated from the heating coil 3 generates a concentric induction current in a large loop inside the electric conductor 11. This induced current is distributed so as to flow largely in an intermediate portion between the inner peripheral portion and the outer peripheral portion of the heating coil 3, and generates a large amount of heat. However, as shown in FIG. 4B, by providing the slit 12, the induced current that becomes a loop is suppressed, and thus it is possible to suppress the heat generation of the electric conductor 11.

さらに、図2に示すように、電気導体11内周部にスリット14を設けることにより、電気導体11内周部の誘導電流に対する電流路を長く設定することが可能となり、結果として電気導体11内周部の抵抗が大きくなる。誘導電流は流れやすい方向へ流れるため、電気導体11内周部の誘導電流量は減少し、発熱も抑制される。つまり、スリット14は、電気導体11内部に発生する誘導電流を制限する誘導電流制限手段であり、誘導電流による発熱を制限する発熱制限手段である。   Further, as shown in FIG. 2, by providing the slit 14 in the inner peripheral portion of the electric conductor 11, it is possible to set a long current path for the induced current in the inner peripheral portion of the electric conductor 11. The peripheral resistance increases. Since the induced current flows in a direction in which it easily flows, the amount of induced current in the inner periphery of the electric conductor 11 is reduced and heat generation is also suppressed. That is, the slit 14 is an induction current limiting unit that limits the induced current generated in the electric conductor 11, and is a heat generation limiting unit that limits heat generation by the induced current.

また、電気導体11は、トッププレート2の加熱コイル3側の面へ転写により、接合されている。そのため、電気導体11の発熱を熱伝導でトッププレート2に与えることは容易であるし、トッププレート2上部に置された被加熱物15に対しても同様である。このように、電気導体11発熱による損失の増加は、結果として被加熱物15に伝達され、電気導体11温度を抑制し、被加熱物15の加熱効率を高めることができる。 The electric conductor 11 is joined to the surface of the top plate 2 on the heating coil 3 side by transfer. Therefore, to the heating of the electrical conductors 11 is easy to give the top plate 2 by heat conduction, the same applies with respect to the heated object 15 which is location placing the top plate 2 upper. Thus, the increase in loss due to the heat generated in the electric conductor 11 is transmitted to the object to be heated 15 as a result, and the temperature of the electric conductor 11 can be suppressed and the heating efficiency of the object to be heated 15 can be increased.

導電塗膜5は、加熱コイル3の上部に近接して設けられ、コンデンサ9を介して商用電源電位あるいは加熱コイル3に高周波電流を供給するインバータの入力する商用電源を整流した電位あるいは大地に接続されるので、加熱コイル3から使用者に漏洩するリーク電流を低減することができる。また、この導電塗膜5は膜厚が小さく、電気伝導率も低いため、誘導電流の発生量が極めて少なく、加熱コイル3から発生する磁界の分布を変える作用はほとんどないので、電気導体11ような等価直列抵抗の増加作用、加熱コイル3電流の低減作用、そして浮力低減作用はほとんど得られない。 The conductive coating 5 is provided close to the upper portion of the heating coil 3 and is connected to the commercial power source potential or the rectified potential of the commercial power source input to the inverter that supplies high-frequency current to the heating coil 3 or the ground via the capacitor 9. Therefore, the leak current leaking from the heating coil 3 to the user can be reduced. In addition, since the conductive coating 5 has a small film thickness and low electrical conductivity, the amount of induction current is extremely small, and there is almost no action to change the distribution of the magnetic field generated from the heating coil 3 . Such an effect of increasing the equivalent series resistance, an effect of reducing the heating coil 3 current, and an effect of reducing the buoyancy are hardly obtained.

以上のように、本実施の形態によれば、電気導体11厚みを加熱コイル3電流により誘導される高周波電流の浸透深さよりも薄くしている。そのため、加熱コイル3から発生した高周波磁界は、電気導体11を浸透、通過しつつ、被加熱物15に到達することになる。つまり、加熱コイル3から見た総加熱面積は、電気導体11面積及び加熱コイル3から見て電気導体11に覆われていない部分の被加熱物15面積に、さらに加熱コイル3から見て電気導体11に覆われている部分の被加熱物15面積が加わることになる。電気導体11は、加熱コイル3と被加熱物15との磁気結合を強める作用を有しているわけである。この加熱コイル3から見た総加熱面積の増加で、加熱コイル3の等価直列抵抗が大きくなり、同一出力を得る場合の加熱コイル3に流す電流を小さくすることができ、被加熱物15に作用する浮力が低減する。   As described above, according to the present embodiment, the thickness of the electric conductor 11 is made thinner than the penetration depth of the high-frequency current induced by the heating coil 3 current. Therefore, the high frequency magnetic field generated from the heating coil 3 reaches the object to be heated 15 while penetrating and passing through the electric conductor 11. That is, the total heating area as viewed from the heating coil 3 is the area of the electric conductor 11 and the area of the object to be heated 15 that is not covered with the electric conductor 11 when viewed from the heating coil 3. The area to be heated 15 of the portion covered with 11 is added. The electric conductor 11 has an action of strengthening the magnetic coupling between the heating coil 3 and the object to be heated 15. By increasing the total heating area as viewed from the heating coil 3, the equivalent series resistance of the heating coil 3 is increased, so that the current flowing through the heating coil 3 when obtaining the same output can be reduced. Buoyancy is reduced.

また電気導体11は十分に薄く、加熱コイル3から発生した高周波磁界が電気導体11を浸透、通過する。つまり、加熱コイル3からの磁界を通過させないほどの大きな誘導電流は、電気導体11内部には発生しないということであり、電気導体11の厚みが大きい場合に比べて、電気導体11の発熱による損失を低減することが可能である。   Further, the electric conductor 11 is sufficiently thin, and the high frequency magnetic field generated from the heating coil 3 penetrates and passes through the electric conductor 11. That is, a large induced current that does not allow the magnetic field from the heating coil 3 to pass through is not generated inside the electric conductor 11, and compared to a case where the thickness of the electric conductor 11 is large, loss due to heat generation of the electric conductor 11. Can be reduced.

また、電気導体11は、転写などの手段によって、トッププレート2に接合されているため、電気導体11で発生する発熱を、トッププレート2及びその上部に置された被加熱物15へより伝達しやすくなり、電気導体11温度を抑制し、被加熱物15の加熱効率を高めることができる。 The electric conductors 11, by means such as a transfer, because it is joined to the top plate 2, the heat generated by the electrical conductor 11, more transferred to the heated object 15 which is location placing the top plate 2 and its upper Therefore, the temperature of the electric conductor 11 can be suppressed and the heating efficiency of the object to be heated 15 can be increased.

なお、本実施の形態では、電気導体11をトッププレート2に転写する構成としたが、これに限るものではなく、例えば溶射や蒸着によって電気導体11とトッププレート2を接合させても良い。また電気導体11をアルミニウム製でなく銅製にして、トッププレート2にメッキ処理しても良い。さらにトッププレート2の表面加工により微少な凹凸を構成し、電気導体11とトッププレート2との接合性を高めても良い。物作りが容易で、低コストとなる電気導体11材料を採用し、必要となる電気導体11厚みとすべく、適切な接合手段を選択すればよい。   In the present embodiment, the electric conductor 11 is transferred to the top plate 2. However, the present invention is not limited to this. For example, the electric conductor 11 and the top plate 2 may be joined by thermal spraying or vapor deposition. Further, the electric conductor 11 may be made of copper instead of aluminum, and the top plate 2 may be plated. Furthermore, a minute unevenness may be formed by surface processing of the top plate 2 to enhance the bondability between the electric conductor 11 and the top plate 2. It is only necessary to select an appropriate joining means in order to adopt a material of the electric conductor 11 that is easy to manufacture and low in cost and to have a required thickness of the electric conductor 11.

また、電気導体11は、トッププレート2に接合されているため、工場などでの組立時の取り扱いが容易である。   Moreover, since the electric conductor 11 is joined to the top plate 2, it is easy to handle at the time of assembly in a factory or the like.

なお、電気導体11は、内径と外径が加熱コイル3とほぼ同じとしたが、電気導体11の面積は大きいほど、また電気導体11が加熱コイル3に近いほど、加熱コイル3の等価直列抵抗の増加作用は大きくなる。必要となる浮力低減効果を得るように、電気導体11面積や、電気導体11と加熱コイル3との距離、電気導体11の発熱などの条件を考慮して決めればよい。   The electric conductor 11 has an inner diameter and an outer diameter that are substantially the same as those of the heating coil 3. However, the larger the area of the electric conductor 11 and the closer the electric conductor 11 is to the heating coil 3, the equivalent series resistance of the heating coil 3. The increase effect of is increased. In order to obtain the necessary buoyancy reduction effect, it may be determined in consideration of conditions such as the area of the electric conductor 11, the distance between the electric conductor 11 and the heating coil 3, and heat generation of the electric conductor 11.

また、電気導体11は、開口部13を設けているため、加熱コイル3中央部近傍から発生し、特にフェライト4内周側端部によって上方へ向けられた磁界が、集中して被加熱物15に到達する。したがって、被加熱物15に到達する磁界を強め、加熱効率を向上させることが可能である。   Moreover, since the electrical conductor 11 is provided with the opening 13, the magnetic field generated from the vicinity of the center of the heating coil 3 and particularly directed upward by the end portion on the inner peripheral side of the ferrite 4 is concentrated and the article 15 to be heated is concentrated. To reach. Therefore, it is possible to increase the magnetic field reaching the object to be heated 15 and improve the heating efficiency.

以上のように、本発明にかかる誘導加熱装置は、低透磁率かつ高電気伝導率の材料で形成された被加熱物を加熱することができるとともに、被加熱物に働く浮力を低減し、かつ損失の少ない誘導加熱装置を提供することができるので、誘導加熱調理器としてはもちろんのこと、アルミニウムや銅などの高電気伝導率かつ低透磁率材料を加熱する誘導加熱式湯沸かし器、誘導加熱式アイロン、またはその他の誘導加熱式加熱装置としても有用である。   As described above, the induction heating device according to the present invention can heat an object to be heated formed of a material having low magnetic permeability and high electrical conductivity, reduce buoyancy acting on the object to be heated, and Since an induction heating device with low loss can be provided, not only as an induction heating cooker, but also of induction heating water heaters and induction heating irons that heat materials with high electrical conductivity and low permeability such as aluminum and copper Or other induction heating type heating devices.

本発明の実施の形態1における誘導加熱装置の要部概略断面図Main part schematic sectional drawing of the induction heating apparatus in Embodiment 1 of this invention 同誘導加熱装置の加熱コイル側から見た電気導体の形状図Shape of electrical conductor as seen from the heating coil side of the induction heating device 同誘導加熱装置の電気導体厚みと加熱コイルの等価直列抵抗の相関を示す図The figure which shows the correlation of the electric conductor thickness of the same induction heating device and the equivalent series resistance of the heating coil 同誘導加熱装置の電気導体11内部に流れる誘導電流を示す図The figure which shows the induction current which flows into the inside of the electric conductor 11 of the same induction heating apparatus 従来の誘導加熱装置の要部斜視図Main part perspective view of a conventional induction heating device 同誘導加熱装置の要部断面図Cross section of the main part of the induction heating device 同誘導加熱装置の加熱コイルの等価直列抵抗と浮力の相関を示す図The figure which shows the correlation of the equivalent series resistance and buoyancy of the heating coil of the same induction heating device 同誘導加熱装置の加熱コイルの等価直列抵抗と加熱コイル電流値の相関を示す図The figure which shows the correlation of the equivalent series resistance of the heating coil of the same induction heating apparatus, and a heating coil electric current value 同誘導加熱装置の電気導体の厚みと被加熱物に作用する浮力の相関を示す図The figure which shows the correlation of the buoyancy which acts on the to-be-heated material, and the thickness of the electrical conductor of the induction heating apparatus

符号の説明Explanation of symbols

1 本体
2 トッププレート
3 加熱コイル
11 電気導体
15 被加熱物
1 Body 2 Top plate 3 Heating coil 11 Electrical conductor 15 Object to be heated

Claims (2)

外郭を構成する本体と、アルミニウム若しくは銅またはこれらと略同等以上の電気伝導率を有する低透磁率材料からなる被加熱物を置する前記本体の上部に設けたトッププレートと、前記トッププレートの下方に設けられ、約70kHzの高周波電流が供給されて前記被加熱物を誘導加熱する加熱コイルと、前記加熱コイルと前記被加熱物との間に設けられ、前記加熱コイルから磁界が発生したときに前記被加熱物に対して働く浮力を低減する浮力低減機能を有する、アルミニウム製または銅製の電気導体とを備え、前記電気導体厚みを10〜30μmとした誘導加熱装置。 A body constituting an outer shell, and aluminum or copper or top plate provided on an upper portion of the body for placing them substantially object to be heated made of low permeability material having a same or higher electrical conductivity, of the top plate A heating coil that is provided below and that is provided with a high-frequency current of about 70 kHz to inductively heat the object to be heated, and is provided between the heating coil and the object to be heated, and when a magnetic field is generated from the heating coil And an aluminum or copper electrical conductor having a buoyancy reduction function for reducing the buoyancy acting on the object to be heated , wherein the thickness of the electrical conductor is 10 to 30 μm. 電気導体は、トッププレートに接合される構成とした請求項1に記載の誘導加熱装置。 The induction heating apparatus according to claim 1, wherein the electrical conductor is configured to be joined to the top plate.
JP2004007681A 2004-01-15 2004-01-15 Induction heating device Expired - Fee Related JP4345491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004007681A JP4345491B2 (en) 2004-01-15 2004-01-15 Induction heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004007681A JP4345491B2 (en) 2004-01-15 2004-01-15 Induction heating device

Publications (2)

Publication Number Publication Date
JP2005203212A JP2005203212A (en) 2005-07-28
JP4345491B2 true JP4345491B2 (en) 2009-10-14

Family

ID=34821244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004007681A Expired - Fee Related JP4345491B2 (en) 2004-01-15 2004-01-15 Induction heating device

Country Status (1)

Country Link
JP (1) JP4345491B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4752386B2 (en) * 2005-08-04 2011-08-17 パナソニック株式会社 Cooker
CN100424436C (en) * 2005-09-30 2008-10-08 洪祥鹰 Electronic water heater
KR20210078138A (en) 2019-12-18 2021-06-28 엘지전자 주식회사 Induction heating type cooktop with reduced thermal deformation of thin layer
KR20210105777A (en) * 2020-02-19 2021-08-27 엘지전자 주식회사 Induction heating type cooktop having improved usability
KR20210106071A (en) * 2020-02-19 2021-08-30 엘지전자 주식회사 Induction heating type cooktop having improved usability
KR20210105778A (en) * 2020-02-19 2021-08-27 엘지전자 주식회사 Induction heating type cooktop having improved usability

Also Published As

Publication number Publication date
JP2005203212A (en) 2005-07-28

Similar Documents

Publication Publication Date Title
US7057144B2 (en) Induction heating device
US3440384A (en) Electromagnetic unit
JPWO2005006813A1 (en) Induction heating device
KR20220052594A (en) Double heating type heat-emitting apparatus for electronic cigarette, heat-emitting method and electronic cigarette
JP4345491B2 (en) Induction heating device
JP3888290B2 (en) Induction heating device
JP2003264054A (en) Induction heater device
JP2009048867A (en) Heating cooker
JP3861731B2 (en) Induction heating device
JP4444068B2 (en) Induction heating device
EP0748577A1 (en) Induction heating element
JP3883478B2 (en) Induction heating device
JP4173825B2 (en) Induction heating device
JP3925388B2 (en) Induction heating device
JP2009123603A (en) Induction heating cooker
JPWO2021116241A5 (en)
JP2006120336A (en) Induction heating device
JP2010129175A (en) Induction heating device
JP2011003490A (en) Induction heating device
JP3465712B2 (en) Induction heating device
JP4784130B2 (en) Induction heating device
JP2006059626A (en) Induction heating device
JP2006164722A (en) Induction heating device
JP2010267423A (en) Induction heating device
JP3465711B2 (en) Induction heating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061218

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090706

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140724

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees