[go: up one dir, main page]

JP4339982B2 - Airtight terminal - Google Patents

Airtight terminal Download PDF

Info

Publication number
JP4339982B2
JP4339982B2 JP2000143028A JP2000143028A JP4339982B2 JP 4339982 B2 JP4339982 B2 JP 4339982B2 JP 2000143028 A JP2000143028 A JP 2000143028A JP 2000143028 A JP2000143028 A JP 2000143028A JP 4339982 B2 JP4339982 B2 JP 4339982B2
Authority
JP
Japan
Prior art keywords
glass
copper
outer peripheral
terminal
peripheral metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000143028A
Other languages
Japanese (ja)
Other versions
JP2001326002A (en
Inventor
健一 安藤
Original Assignee
株式会社フジ電科
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジ電科 filed Critical 株式会社フジ電科
Priority to JP2000143028A priority Critical patent/JP4339982B2/en
Publication of JP2001326002A publication Critical patent/JP2001326002A/en
Application granted granted Critical
Publication of JP4339982B2 publication Critical patent/JP4339982B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Connections Arranged To Contact A Plurality Of Conductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は気密端子、さらに詳細には熱放散性の優れた気密端子に関する。
【0002】
【従来の技術】
従来技術の気密端子構造は、外周金属およびリード端子が鉄ニッケルコバルト合金(コバール)を使用する場合、ガラスの歪み点以下の範囲で前記金属の熱膨張と整合するホウケイ酸系ガラスを組み合わせた整合封着タイプと、外周金属を鉄またはステンレス、リード端子は鉄ニッケル合金を用いガラスは外周金属よりも熱膨張係数が低くリード端子の鉄ニッケル合金より高いか同一程度のソーダ系ガラスを組み合わせた圧縮封着の2形態に大別される。
【0003】
このような気密端子は、単なる配線用の絶縁端子として用いられるだけでなく、電気・電子部品や半導体デバイスなど搭載した後、カバーを被せて、前記部品などを完全なる気密に封止し、多様な環境条件から保護できるパッケージとして使用されている。
【0004】
【発明が解決しようとする課題】
エレクトロニクス技術の進歩はめざましく高密度、高速化が進むとともに高出力時の発熱が問題となり熱放散性の向上が必要である。
【0005】
前記の従来パッケージを採用する場合、パッケージ内部に搭載する素子の発熱も同様に外部へ効率よく放散する必要があるが、パッケージ本体である材料は熱伝導率の低いコバールや鉄系またはステンレスを用いるため、機能および仕様を充分に満足できない問題があった。
【0006】
上記問題点を解決するために、素子を搭載する直下に部分的に銅や銅合金をパッケージ本体にロウ付け法などで接合した構造が提案および採用されているが熱放散度としては完全とはいえず、パッケージ本体全体を熱放散性の良いものにする必要がある。また、本構造では、設計の自由度が少ないとともに、部品の点数が増えることとロウ付け工程の追加などで、コストアップになるという問題も発生している。
【0007】
【課題を解決するための手段】
前記課題を解決するために、本発明は、外周金属の内側に設けられたガラス層と前記ガラス層の上下を貫通して封着されたリード端子を有する気密端子において、前記外周金属は銅または銅合金、前記リード端子は鉄ニッケル系合金であり、前記外周金属の銅または銅合金より熱膨張係数が低く、前記リード端子の鉄ニッケル合金よりも高いガラスで封着したことを特徴とする。
【0008】
本発明の気密端子に用いるガラスは、少なくとも厚み方向に3層以上で積層されており、最外表層は高融点高強度ガラスまたはガラスセラミックスで構成した特徴を有する。
【0009】
更に本発明の気密端子は、外周金属の銅または銅合金の表面に酸化被膜を有し、その被膜厚を2〜10μmの範囲に調整したことを特徴とする。
【0010】
本発明をさらに詳しく説明すると、図1は本発明による気密端子の一例を示す斜視図であるが、この図より明らかなように断面帽子状の外周金属1の厚さ方向に貫通穴2が設けられており、ガラス層3によってリード端子4が前記ガラス層3の上下方向に貫通封着された構造になっている。
【0011】
本発明の気密端子封着形態は、基本的には従来の圧縮封着体である。すなわち外周金属からリード端子の中心に向かって膨張係数を順次低くすることで、ガラスおよび接合界面に残留圧縮応力を働かせている。
【0012】
ガラス、特に気密端子の機械的・熱的強度は、表面に露呈しているガラス表面(両面)で決定され、すなわちクラックのような破壊は表面から伝搬することが一般的であり、微細な傷や引っ張り的な残留応力を回避することが必須である。
【0013】
特に銅および銅合金は熱膨張係数が一般的に高くそれに追従する封着用ガラスはアルカリ分を多くすることになり、ガラスの軟化点が低くなり信頼性、特に耐熱性が劣化するとともに酸やアルカリに対する強度が劣化し、高信頼性の気密端子を製作できない。
【0014】
本発明の気密端子は、上記技術的問題点を回避するために、従来の圧縮封着体で採用する封着用ガラス、すなわち前記外周金属の銅または銅合金より熱膨張係数が低く、前記リード端子の鉄ニッケル合金よりも高いガラス、たとえばソーダ系ガラスを中間層32に用いるとともに、ガラス層3の最表層31には高融点高強度のガラスまたはガラスセラミックスを配置し、必要に応じてリード端子軸方向へガラス組成分を傾斜させる構造を採用している(図2参照)。
【0015】
このような高融点高強度ガラス(最表層31)としては、前述の封着用ガラスにAl23、ZrO2などの酸化物を添加したものが使用される。このような酸化物の添加量を順次変化させることによってガラス成分を傾斜させる(酸化物添加量を0を超え100重量%間での範囲で添加量を調整する)ことが可能である。特に、最表層31がガラス組成分を傾斜させないときには、上述の酸化物の一種以上を30重量%以上添加したものを使用するのが好ましい。酸化物の添加量が30重量%未満の場合強度が不足する恐れがあるからである(100重量%の場合ガラスセラミックとなる)。このようにすることで、膨張係数の極端な変化を防止する事で、ガラス内部応力回避になる。
【0016】
従来の圧縮封着体で比較的ヤング率や抗張力の高い外周金属を採用しているのは、封着体完成後に圧縮応力がガラスおよび接合界面に作用させるためで、銅や銅合金などのような加熱による軟化する材料では充分な圧縮力が働かないと考えられ、気密が取れないとされている。これを補う意味で、本発明では、封着前に銅および銅合金は予備酸化を行いガラスとの反応を促進させている。しかしながら、酸化被膜の厚みに制限があり、2μm未満であると接合界面からのリークが発生し気密が取れず、10μmを越えると過剰酸化になりガラスの発泡や内部応力のバランスが崩れガラス層3にガラスクラックが発生する。
【0017】
本発明によれば、パッケージ本体である外周金属が銅または銅合金で構成するため、従来のパッケージよりも熱放散性は格段に向上する。更に部品点数も最小に抑えられ、かつロウ付け工程などの追加工程が不要になりコスト低減がはかれる効果がある。
【0018】
【実施例】
以下に発明の実施の形態を図面を参照しながら説明する。外周金属1は無酸素銅で箱状の形状にプレス加工や切削加工もしくは射出成形加工法などで形成した。更にこの外周金属1の底部11もしくは側面部12には少なくとも1つ以上の貫通穴2が形成され、この貫通穴2の中心には外周金属1を貫通するようにFe−Ni50%合金のリード端子4がガラス層3を介して気密に絶縁封着される。
【0019】
気密封着は、グラファイト製のカーボン治具に外周金属1、ガラスタブレット(焼成した後ガラス層になる)並びにリード端子4を組み込み不活性雰囲気(窒素)の860℃でガラス焼成することで作製される。
【0020】
この構造の材料組み合わせにおいて、熱膨張係数を考えると、外周金属の無酸素銅が166×10-7/℃、Fe/Ni50%合金は98×10-7/℃、そして封着ガラスはその中間である130×10-7/℃を用いた。この構造体は、ガラス封着部の内部応力がリード端子に向かって圧縮応力が働くことになり、気密保持が可能である。
【0021】
しかしながら、無酸素銅は860℃の加熱により軟化してしまい充分なガラスを締め付けるような圧縮応力が働かない。実際に単純な圧縮封着のみでは気密が取れず銅のガラスシール界面から気密不良が発生した。
【0022】
これを解決するために、封着前にヘッダーである無酸素銅は予備酸化を行いガラスとの濡れや密着性を向上させた。酸化被膜厚と気密並びにガラスクラックそして気泡の相関について実験したところ、以下の表1の事実が判明した。表1より明らかなように被膜厚が2μm未満であると密着性が損なわれ気密不良が発生し、10μmを越えるとクラック並びに気泡が発生する。以上のことからヘッダーである無酸素銅の酸化被膜厚は2〜10μm範囲が望ましいことがわかる。
【0023】
【表1】

Figure 0004339982
【0024】
更に耐熱性や機械的強度向上のためにガラス層3の最表層32として高軟化点・高強度のガラスセラミックスを積層させた。具体的には母体封着ガラスにアルミナを50%添加させたものを最表層(表裏両面)に配置した。このガラスセラミックスを配置したものとしないものを半田耐熱性、および端子強度試験の実施した結果を表2に示す。
【0025】
【表2】
Figure 0004339982
【0026】
表2の結果より明らかなように、半田耐熱では、80℃の差で積層ガラス品の方が優れており、また折り曲げ試験においてもリークに差は出ないもののクラック発生がないことが判明した。この現象は、ガラスの強度は強化ガラスのように表面状態に大きく依存するものであり、最表層を高強度・高軟化点にすることで、達成されたものと考えられる。
【0027】
本実施例は、外周金属を無酸素銅としたが、これに限定されるものではなく、各種膨張係数の組み合わせを調整することで、多様な銅合金を用いることは容易であるのは言うまでもない。
【0028】
【発明の効果】
本発明によれば、外周金属全体を銅または銅合金で構成するため、従来品よりも熱放散性は格段に向上する効果がある。更に部品点数も最小に抑えられ、かつロウ付け工程などの追加工程が不要になりコスト低減がはかれる効果がある。
【図面の簡単な説明】
【図1】本発明の気密端子の一構造例を示す図。
【図2】本発明の積層ガラスの一構造例を示す図。
【図3】実施例で使用された気密端子の一構造例を示す図。
【符号の説明】
1 外周金属
2 貫通穴
3 ガラス層
31 最表層
32 中間層
4 リード端子[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an airtight terminal, and more particularly to an airtight terminal having excellent heat dissipation.
[0002]
[Prior art]
The airtight terminal structure of the prior art is a combination of borosilicate glass that matches the thermal expansion of the metal within the range below the strain point of the glass when the outer metal and lead terminal use iron-nickel-cobalt alloy (Kovar). A combination of a sealed type and iron or stainless steel for the outer metal, iron nickel alloy for the lead terminal, and glass that has a thermal expansion coefficient lower than that of the outer metal and higher or equal to the soda glass of the lead terminal. It is roughly divided into two forms of sealing.
[0003]
Such airtight terminals are not only used as insulation terminals for wiring, but also after mounting electrical / electronic parts, semiconductor devices, etc., and then covering them with a complete airtight seal. It is used as a package that can be protected from various environmental conditions.
[0004]
[Problems to be solved by the invention]
Advances in electronics technology are remarkable, and high density and high speed are progressing, and heat generation at high output becomes a problem, and heat dissipation is required to be improved.
[0005]
When the above-described conventional package is adopted, it is necessary to efficiently dissipate the heat generated by the elements mounted inside the package as well, but the material for the package body is made of Kovar, iron or stainless steel having a low thermal conductivity. For this reason, there has been a problem that the functions and specifications cannot be sufficiently satisfied.
[0006]
In order to solve the above problems, a structure in which copper or a copper alloy is partially bonded to the package body by brazing or the like is proposed and adopted directly under the element mounting. No, it is necessary to make the whole package body have good heat dissipation. In this structure, there is a problem that the degree of freedom in design is low and the cost increases due to an increase in the number of parts and the addition of a brazing process.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a hermetic terminal having a glass layer provided inside a peripheral metal and a lead terminal sealed through the top and bottom of the glass layer, wherein the peripheral metal is copper or The copper alloy and the lead terminal are iron-nickel alloys, and are characterized by being sealed with a glass having a lower thermal expansion coefficient than that of the copper or copper alloy of the outer peripheral metal and higher than that of the iron-nickel alloy of the lead terminal.
[0008]
The glass used for the hermetic terminal of the present invention is laminated in at least three layers in the thickness direction, and the outermost surface layer is characterized by being composed of high melting point high strength glass or glass ceramics.
[0009]
Furthermore, the hermetic terminal of the present invention has an oxide film on the surface of the copper or copper alloy of the outer peripheral metal, and the film thickness is adjusted in the range of 2 to 10 μm.
[0010]
The present invention will be described in more detail. FIG. 1 is a perspective view showing an example of an airtight terminal according to the present invention. As is clear from this figure, a through-hole 2 is provided in the thickness direction of a hat-shaped outer peripheral metal 1. The lead terminal 4 is penetrated and sealed in the vertical direction of the glass layer 3 by the glass layer 3.
[0011]
The hermetic terminal sealing form of the present invention is basically a conventional compression sealing body. That is, the residual compressive stress is applied to the glass and the bonding interface by sequentially decreasing the expansion coefficient from the outer peripheral metal toward the center of the lead terminal.
[0012]
The mechanical and thermal strength of glass, especially hermetic terminals, is determined by the glass surface (both sides) exposed on the surface, that is, fractures such as cracks are generally propagated from the surface, and fine scratches It is essential to avoid residual tensile stress.
[0013]
In particular, copper and copper alloys generally have a high coefficient of thermal expansion, and sealing glass that follows this will increase the alkalinity, lowering the softening point of the glass and reducing its reliability, especially heat resistance, as well as acid and alkali. The strength against is deteriorated and a highly reliable airtight terminal cannot be manufactured.
[0014]
In order to avoid the above technical problems, the hermetic terminal of the present invention has a lower thermal expansion coefficient than the sealing glass employed in the conventional compression sealing body, that is, copper or copper alloy of the outer peripheral metal, and the lead terminal. A glass higher than that of the iron-nickel alloy, for example, soda glass, is used for the intermediate layer 32, and a glass or glass ceramic having a high melting point and high strength is disposed on the outermost layer 31 of the glass layer 3, and a lead terminal shaft is provided if necessary. A structure in which the glass composition is inclined in the direction is employed (see FIG. 2).
[0015]
As such a high-melting-point high-strength glass (outermost layer 31), a glass in which an oxide such as Al 2 O 3 or ZrO 2 is added to the sealing glass described above is used. By sequentially changing the addition amount of such an oxide, it is possible to incline the glass component (adjust the addition amount in the range of more than 0 and 100% by weight of the oxide addition amount). In particular, when the outermost layer 31 does not incline the glass composition, it is preferable to use one having at least 30% by weight of one or more of the above-mentioned oxides added. This is because if the amount of oxide added is less than 30% by weight, the strength may be insufficient (if it is 100% by weight, it becomes a glass ceramic). By doing so, it is possible to avoid internal stress in the glass by preventing an extreme change in the expansion coefficient.
[0016]
The reason why the peripheral metal with relatively high Young's modulus and tensile strength is adopted in the conventional compression sealant is because the compressive stress acts on the glass and the joint interface after completion of the sealant, such as copper and copper alloy. It is considered that a material that softens when heated does not exert a sufficient compressive force and cannot be airtight. In order to compensate for this, in the present invention, copper and the copper alloy are pre-oxidized before sealing to promote reaction with glass. However, the thickness of the oxide film is limited. If the thickness is less than 2 μm, leakage from the bonding interface occurs and airtightness cannot be obtained. Glass cracks occur.
[0017]
According to the present invention, since the outer peripheral metal that is the package body is made of copper or a copper alloy, the heat dissipating property is remarkably improved as compared with the conventional package. Further, the number of parts can be minimized, and an additional process such as a brazing process is not required, and the cost can be reduced.
[0018]
【Example】
Embodiments of the present invention will be described below with reference to the drawings. The outer peripheral metal 1 was formed of oxygen-free copper into a box shape by pressing, cutting, injection molding, or the like. Further, at least one or more through holes 2 are formed in the bottom portion 11 or the side surface portion 12 of the outer peripheral metal 1, and a lead terminal made of Fe—Ni 50% alloy so as to penetrate the outer peripheral metal 1 at the center of the through hole 2. 4 is hermetically sealed through the glass layer 3.
[0019]
The hermetic seal is produced by incorporating the outer metal 1, a glass tablet (becomes a glass layer after firing) and a lead terminal 4 into a graphite carbon jig and firing the glass at 860 ° C. in an inert atmosphere (nitrogen). The
[0020]
When considering the thermal expansion coefficient in the material combination of this structure, the oxygen-free copper of the outer peripheral metal is 166 × 10 −7 / ° C., the Fe / Ni 50% alloy is 98 × 10 −7 / ° C., and the sealing glass is in the middle 130 × 10 −7 / ° C. was used. In this structure, the internal stress of the glass sealing portion acts as a compressive stress toward the lead terminal, and can be kept airtight.
[0021]
However, oxygen-free copper is softened by heating at 860 ° C. and does not have a compressive stress that clamps sufficient glass. Actually, simple compression sealing alone did not provide airtightness, and airtight defects occurred at the copper glass seal interface.
[0022]
In order to solve this problem, oxygen-free copper as a header was pre-oxidized before sealing to improve wettability and adhesion with glass. Experiments were conducted on the correlation between the oxide film thickness and airtightness, as well as glass cracks and bubbles, and the facts shown in Table 1 below were found. As is apparent from Table 1, when the film thickness is less than 2 μm, the adhesion is impaired and poor airtightness occurs, and when it exceeds 10 μm, cracks and bubbles are generated. From the above, it can be seen that the oxide film thickness of the oxygen-free copper as the header is desirably in the range of 2 to 10 μm.
[0023]
[Table 1]
Figure 0004339982
[0024]
Further, a glass ceramic with a high softening point and high strength was laminated as the outermost layer 32 of the glass layer 3 in order to improve heat resistance and mechanical strength. Specifically, 50% alumina added to the base sealing glass was placed on the outermost layer (both front and back surfaces). Table 2 shows the results of the solder heat resistance and terminal strength tests conducted on the glass ceramics and those not placed.
[0025]
[Table 2]
Figure 0004339982
[0026]
As is clear from the results in Table 2, it was found that the laminated glass product was superior in solder heat resistance at a difference of 80 ° C., and in the bending test, although there was no difference in leakage, no crack was generated. This phenomenon is considered to be achieved by making the outermost layer have a high strength and a high softening point because the strength of the glass greatly depends on the surface state like tempered glass.
[0027]
In this embodiment, the outer peripheral metal is oxygen-free copper, but the present invention is not limited to this, and it goes without saying that various copper alloys can be easily used by adjusting combinations of various expansion coefficients. .
[0028]
【The invention's effect】
According to the present invention, since the entire outer peripheral metal is made of copper or a copper alloy, the heat dissipating property is significantly improved as compared with the conventional product. Further, the number of parts can be minimized, and an additional process such as a brazing process is not required, and the cost can be reduced.
[Brief description of the drawings]
FIG. 1 is a view showing one structural example of an airtight terminal of the present invention.
FIG. 2 is a view showing one structural example of the laminated glass of the present invention.
FIG. 3 is a diagram showing an example of a structure of an airtight terminal used in an example.
[Explanation of symbols]
1 peripheral metal 2 through hole 3 glass layer 31 outermost layer 32 intermediate layer 4 lead terminal

Claims (3)

外周金属の内側に設けられたガラス層と前記ガラス層の上下を貫通して封着されたリード端子を有する気密端子において、前記外周金属は銅または銅合金、前記リード端子は鉄ニッケル系合金であり、前記外周金属の銅または銅合金より熱膨張係数が低く、前記リード端子の鉄ニッケル合金よりも高いガラスで封着したことを特徴とする気密端子。An airtight terminal having a glass layer provided inside an outer peripheral metal and a lead terminal sealed through the upper and lower sides of the glass layer, wherein the outer peripheral metal is copper or a copper alloy, and the lead terminal is an iron-nickel alloy. A hermetic terminal having a lower thermal expansion coefficient than copper or copper alloy of the outer peripheral metal and sealed with glass higher than iron nickel alloy of the lead terminal. 前記ガラス層は、少なくとも厚み方向に3層以上で積層されており、最外表層は高融点高強度ガラスまたはガラスセラミックスであることを特徴とする請求項1記載の気密端子。The hermetic terminal according to claim 1, wherein the glass layer is laminated in at least three layers in the thickness direction, and the outermost surface layer is a high melting point high strength glass or glass ceramic. 前記外周金属の銅または銅合金の表面には酸化被膜を有し、前記被膜厚は2〜10μmであることを特徴とする請求項1又は2記載の気密端子。The airtight terminal according to claim 1 or 2, wherein an oxide film is provided on a surface of the outer peripheral metal copper or copper alloy, and the film thickness is 2 to 10 µm.
JP2000143028A 2000-05-16 2000-05-16 Airtight terminal Expired - Lifetime JP4339982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000143028A JP4339982B2 (en) 2000-05-16 2000-05-16 Airtight terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000143028A JP4339982B2 (en) 2000-05-16 2000-05-16 Airtight terminal

Publications (2)

Publication Number Publication Date
JP2001326002A JP2001326002A (en) 2001-11-22
JP4339982B2 true JP4339982B2 (en) 2009-10-07

Family

ID=18649900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000143028A Expired - Lifetime JP4339982B2 (en) 2000-05-16 2000-05-16 Airtight terminal

Country Status (1)

Country Link
JP (1) JP4339982B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4220880B2 (en) 2003-10-17 2009-02-04 住友重機械工業株式会社 Waterproof terminal block unit
DE102007061175B3 (en) * 2007-12-17 2009-08-27 Schott Ag Method for producing an electrical feedthrough
JP2013211437A (en) * 2012-03-30 2013-10-10 Mitsubishi Materials Corp Thermistor element and manufacturing method of the same
JP2014049669A (en) * 2012-09-03 2014-03-17 Azbil Corp Electrode shield structure
WO2017214179A1 (en) * 2016-06-06 2017-12-14 Lawrence Livermore National Security, Llc Glass components with custom-tailored composition profiles and methods for preparing same
CN113793704B (en) * 2021-09-15 2023-03-31 清华大学 Metal guide pin for high-temperature gas-cooled reactor electrical penetration assembly and surface pretreatment process

Also Published As

Publication number Publication date
JP2001326002A (en) 2001-11-22

Similar Documents

Publication Publication Date Title
JP4692708B2 (en) Ceramic circuit board and power module
JP4969738B2 (en) Ceramic circuit board and semiconductor module using the same
JP4525636B2 (en) Power module
WO1988007761A1 (en) Metal packages having improved thermal dissipation
JP2006032617A (en) Semiconductor power module
JPH08509844A (en) Power semiconductor device having buffer layer
JP4030930B2 (en) Semiconductor power module
KR890003013A (en) Connection structure between parts for semiconductor device
CN1292474C (en) Package for electronic components, cover thereof, cover material for cover thereof, and method for producing the cover material
JP3856640B2 (en) Semiconductor mounting heat dissipation substrate material, manufacturing method thereof, and ceramic package using the same
TW201240340A (en) Electronic component
US7083759B2 (en) Method of producing a heat dissipation substrate of molybdenum powder impregnated with copper with rolling in primary and secondary directions
JP4339982B2 (en) Airtight terminal
JP2000340876A (en) Optical semiconductor element package and manufacture thereof
KR101212826B1 (en) Electronic component package, cover body for such electronic component package, cover material for such cover body and method for manufacturing such cover material
JP3793562B2 (en) Ceramic circuit board
JP2005191314A (en) Lid and optical semiconductor device using the same
JP4071191B2 (en) Electronic component package lid
JPH06151642A (en) Ic package
JPH08162188A (en) Airtight terminal
JP2525873B2 (en) Connection structure between semiconductor device parts
JP2763476B2 (en) Wiring board and manufacturing method thereof
JPH0548953B2 (en)
JP2010267997A (en) Ceramics circuit substrate and power module
JP2870501B2 (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070425

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071218

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090703

R150 Certificate of patent or registration of utility model

Ref document number: 4339982

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150710

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term