[go: up one dir, main page]

JP4030930B2 - Semiconductor power module - Google Patents

Semiconductor power module Download PDF

Info

Publication number
JP4030930B2
JP4030930B2 JP2003205321A JP2003205321A JP4030930B2 JP 4030930 B2 JP4030930 B2 JP 4030930B2 JP 2003205321 A JP2003205321 A JP 2003205321A JP 2003205321 A JP2003205321 A JP 2003205321A JP 4030930 B2 JP4030930 B2 JP 4030930B2
Authority
JP
Japan
Prior art keywords
resin
power module
solder
semiconductor power
semiconductor chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003205321A
Other languages
Japanese (ja)
Other versions
JP2005056873A (en
Inventor
太佐男 曽我
大助 川瀬
康二 佐々木
英一 森崎
和弘 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003205321A priority Critical patent/JP4030930B2/en
Publication of JP2005056873A publication Critical patent/JP2005056873A/en
Application granted granted Critical
Publication of JP4030930B2 publication Critical patent/JP4030930B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • H01L2224/26152Auxiliary members for layer connectors, e.g. spacers being formed on an item to be connected not being a semiconductor or solid-state body
    • H01L2224/26175Flow barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83385Shape, e.g. interlocking features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00013Fully indexed content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01042Molybdenum [Mo]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01051Antimony [Sb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/0665Epoxy resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor power module which is improved in reliability and heat dissipation property using a substrate of metal, such as inexpensive Al, Cu, or the like, without using an insulating substrate of a material, such as AlN, Al<SB>2</SB>O<SB>3</SB>or the like, so as to cope with an increase in size and output power. <P>SOLUTION: The linear expansion coefficient of filler epoxy resin 15 is set higher than that of solder 3 or at (24&plusmn;3)&times;10<SP>-6</SP>/&deg;C, its Young's modulus is set at 1 to 12 Gpa, preferably at 5 to 8 Gpa. A semiconductor chip 1 is surrounded with the epoxy resin 15 that has physical properties near to those of the solder 3, is somewhat soft, and high in adhesion, so that the semiconductor chip 1 can be protected against large stress acting on it so as to protect its element unit against interface delamination damage, and the solder 3 can be ensured a longer service life. The glass transition temperature Tg of the filler resin 15 is set at a temperature of 150&deg;C or above, so that an adverse affect caused by the thermal expansion of the filler resin 15 at a high temperature such as a secondary reflow or the like can be restrained. <P>COPYRIGHT: (C)2005,JPO&amp;NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、家電用あるいは産業用に広く用いられる半導体パワーモジュールの改良に関する。
【0002】
半導体スイッチング素子を内蔵した半導体パワーモジュールは、スイッチング素子の発熱量の大きさを考慮し、高熱伝導性の放熱基板と、高熱伝導性でかつ高電気絶縁性の材料からなる絶縁板を用いるのが一般的である。
【0003】
発熱量の大きな中〜大容量の製品では、絶縁板として、高価ではあるが、熱伝導率の高いセラミックが主として用いられている。比較的、小容量の製品では熱伝導率は小さいが安価な絶縁樹脂が用いられている。
【0004】
特許文献1には、半導体パワーモジュールの2例が開示されている。その図2では、放熱基板の上面に絶縁板等を介して半導体チップを半田付けし、シリコーンゲルを充填し、その上から硬いエポキシ樹脂で封止している。柔らかいシリコーンゲルを用いるのは、ケースの熱変形等の応力が半導体チップや金属細線に加わることを避けるためである。
【0005】
また、特許文献1の図1には、線膨張係数が5×10-6/℃〜25×10-6/℃の樹脂で半導体チップを直接封止する構造が提案されている。
【0006】
【特許文献1】
特開平6−5742号公報(図1,図2、全体)
【0007】
【発明が解決しようとする課題】
特許文献1には、半導体チップでの熱放散性や、充填される樹脂についての線膨張係数以外の物性について触れられておらず、「線膨張係数が25×10-6/℃より大きいと発生する応力が大きくなりアルミ配線の断線等が起こりやすくなる。」と述べている。
【0008】
チップは益々大型化し、高出力化している中で、低コスト化が要求されており、高出力化に伴う大きな発生熱の熱放散性と信頼性の向上を低コストで実現することが重要となっている。
【0009】
本発明の目的は、高価なAlN絶縁基板やAl2O3絶縁基板等を用いず、安価なAlやCu等の放熱基板を用いて、信頼性と熱放散性を向上させた半導体パワーモジュールを提供することである。
【0010】
【課題を解決するための手段】
本発明はその一面において、メタライズ面を熱拡散板に半田付けされた半導体チップをケースに入れ、このケース内に樹脂を充填した半導体パワーモジュールにおいて、樹脂の線膨張係数を半田の線膨張係数以上とし、熱拡散板は、Cuと低膨張材の粉体を混合し焼結した焼結形成体と、この焼結形成体と連なるCu板とを備えたことを特徴とする。
【0011】
この樹脂の線膨張係数は、具体的には(20〜45)×10-6/℃である。
【0012】
このような、樹脂の線膨張係数の選定により、半田クラック起点での応力集中を抑え、半導体チップの破壊を起さないレベルの応力でチップを保護、拘束することと相俟って、複合体の熱拡散板の採用により、半導体チップとの線膨張係数の差をより小さくすることにより、応力、歪みを抑制でき、樹脂の効果を更に顕著に発揮させることができる。
【0013】
本発明は、他の一面において、前記樹脂の選定に加え、室温(15〜20℃)における前記樹脂のヤング率を、1〜12GPaとする。
【0014】
すなわち、半導体チップ周辺を、半田と同レベルに柔らかくし、かつ密着力のあるエポキシ系樹脂で取り囲む。これにより、半導体チップに大きな応力が作用しないように隔離するように機械的に保護し、半導体チップの保護、界面剥離破壊等を防止し、かつ、半田の寿命を保証する。
【0015】
また、本発明は、他の一面において、前記樹脂の選定に加え、ガラス転移温度(Tg)が150℃以上の樹脂を使用する。
【0016】
これにより、ガラス転移温度に達することによる線膨張係数の急激な(2〜3倍)上昇を避けることで、半導体パワーモジュールの信頼性を向上できる。
【0017】
本発明の望ましい実施形態においては、充填する樹脂のヤング率を、3〜10GPa、より望ましくは5〜8GPaとする。
【0018】
これにより、半導体チップを拘束できて、半導体チップ界面剥離を防止でき、半田の寿命向上が期待できる。
【0019】
本発明の他の実施形態においては、半導体チップ表面と接する箇所を、前記樹脂よりも柔らかい(ヤング率の小さい)樹脂で薄く(0.01〜1mm)コートし、その上に前記樹脂でチップ周囲を覆うように充填する。
【0020】
これにより、特に、半導体チップ表面が弱い場合の対策として、素子の保護をより重点化した実装が可能である。
【0021】
更に、本発明の望ましい実施形態においては、上記の構造に加え、半導体チップ周辺にヒートシンクを配置し、上部からも熱放散させる。
【0022】
本発明によるその他の目的と特徴は以下の実施形態の説明で明らかにする。
【0023】
【発明の実施の形態】
図1は、本発明の第1の実施形態による半導体パワーモジュールの断面図である。MOSFETなどのパワー半導体チップ1を、NiめっきしたCu製の熱拡散板2に、Pb−5Snの半田3で水素炉において半田付けする。一方、Al製の放熱基板4の上端部に樹脂絶縁層5を形成し、この樹脂絶縁層5上にNiめっきCu箔導体の電気回路61を形成する。この電気回路61に、鉛フリーのSn−3Ag−0.5Cuの半田ペーストを塗布し、その上に、半導体チップ1を半田付けした熱拡散板2の裏面を位置決め搭載後、max240℃のリフロー炉で半田7で半田付けする。Cu箔導体製の電気回路61の厚さは70μm程度で、熱拡散板2の厚さは、熱拡散の効果を考慮して1〜2mm程度である。熱拡散板2は、Cuと低膨張材の粉体を混合し焼結した焼結形成体と、この焼結形成体を固着、圧着、又は焼結時に一体化させたCu板とを備えた複合体である。この低膨張材としては、具体的には次のようなものである。(1)Cu合金、CuとCu2O、CuとMo、CuとC(カーボン繊維)又はCuとインバーの粉体を一定比率で混ぜて成型した構造。もしくは、(2)上記の成型体を核としたサンドイッチ構造のCu−(Cu/Cu2O)−Cu、Cu−(Cu/Mo)−Cu、Cu−(Cu/C)−Cu又はCu−(Cu/インバー)−Cuの異方性構造である。
【0024】
前記電気回路61に、Al製の金属細線8による接続が施され、更に外部接続端子9に対する配線が施される。IC10は、制御基板11上の電気回路62に半田12で接着される。制御基板11は、ガラスエポキシ製の多層基板であり、樹脂絶縁層5上に接着剤により固着され、半導体チップ1と制御基板11は金属細線8で電気的に接続される。外部接続端子13が、制御基板11の接続端子に半田12で半田付けされる。これらは、ケース14に収められ、半田3以上の線膨張係数を持つエポキシ系の充填樹脂15で封止される。
【0025】
本実施形態で、線膨張係数が24×10-6/℃、室温のヤング率が8GPaのエポキシ系の充填樹脂15の場合、パワーサイクル試験及び温度サイクル試験において、クラック進展は殆ど認められないことが判った。シリコーンゲルで充填した構造に比べると、約3〜10倍の寿命向上を期待できることが判った。寿命が向上するメカニズムは、適正な樹脂の選定により、半田クラック起点での応力集中を抑えること、半導体チップ1の破壊を起さないレベルの応力でチップを保護、拘束することである。更に、熱拡散板2をCu製でなく、Cuと低膨張材の粉体を混合し焼結した焼結形成体と、この焼結形成体を固着、圧着、又は一体化させたCu板とを備えた複合体としたことにより、半導体チップとの線膨張係数の差をより小さくしている。このため、応力、歪みの値は小さくなり、樹脂15の効果を更に顕著に発揮させることを確認できた。低膨張材として、具体的には、Cu−Mo、Cu−Cu2O、Cu−インバー(線膨張係数:約10×10-6/℃)製の紛体を用い、焼結形成した。
【0026】
なお、樹脂15の線膨張係数は、高精度に半田3に合わせる必要はなく、半田3と同等の値として(24±3)×10-6/℃であれば、Sn−Pb系、Sn−Ag−Cu系の半田組成域の値を包含するので、共通の樹脂で対応できる。
【0027】
他方、同一樹脂系でもフィラーを多く含有させてヤング率を20GPa以上に高めると、樹脂15と半導体チップ1の界面でのSi剥がれ、素子部の破壊等を起こす確率が高くなることが判った。ヤング率15〜20GPaでは、構造、試験条件の厳しさによって起きる場合と、起きない場合の境界レベルにある。
【0028】
従って、上記物性を特定化したエポキシ系の充填樹脂15で全体を被覆することで、高価な放熱基板を用いなくとも、半導体チップ1の破壊を防止でき、かつ、半田3のクラック進展を防止できる半導体パワーモジュールの提供を可能にした。
【0029】
以下に、本発明によって、低コスト実装で高信頼性をもたらす充填樹脂の役割について詳述する。
【0030】
本発明では、機械的に特定した物性を有する樹脂15を充填することで、半導体チップ1とCu製の熱拡散板2間の半田3継手部の寿命を大幅に向上する。この寿命向上のために、樹脂の線膨張係数を半田3以上の(20〜45)×10-6/℃にする。また、ヤング率を下げ、半導体チップ1に応力的負担をかけない物性の樹脂15で半導体チップ1の周囲を取り囲むことで、素子への影響、半導体チップの界面剥離等から開放する。そして、樹脂15が半田3と半導体チップ1を取り囲み拘束する補強効果、即ち、樹脂15は半導体チップ1の端部での半田3の応力集中を緩和する役割を果たすことにより、半田3のクラック進展を阻止する。この場合、樹脂15の応力−歪特性は熱弾性で近似できるが、半田3の場合は熱弾塑性で近似される。
【0031】
図2は、充填樹脂15の応力−歪曲線(A)と半田3の応力−歪曲線(B)の温度依存性のモデルを示すグラフである。半導体チップ1と半田3との間に大きな歪が発生しても、図2(B)から分かるように、半田3は塑性変形するので、高温では大きな応力はかからない。また、低温で大きな応力が作用しても半導体チップに割れを起こす程の応力は発生し難い状態にある。他方、図2(A)に示す樹脂15の場合は、熱弾性のため高温になるとヤング率が下がり応力は下がるが、低温ではヤング率が高く応力も高い。従って、温度差が生ずると歪量に比例した大きな応力が作用し、樹脂の密着力がないとせん断応力によりチップ1と樹脂15の界面で剥れを起こす恐れがある。ヤング率が比較的高い樹脂(15〜20℃の室温で15Gpa)を用いた苛酷なパワーサイクル試験において、半導体チップ1と樹脂との界面での破壊を確認し、解析でも大きな応力が作用することを確認できた。
【0032】
このように、各種実験と解析で確認した結果、基本的に樹脂の線膨張係数を半田3のそれ以上(20〜45)×10-6/℃にし、室温(15〜20℃)でのヤング率を1〜12Gpa(望ましくは3〜10Gpa)とすべきことが判明した。このような樹脂15を使用することで、苛酷な加速試験条件の範囲で半導体チップ1の界面破壊を防止できた。しかも、後述する図6の解析結果からも分かるように、シリコーンゲル充填構造に比べ、半田3の歪みが小さくなることから、半田3の寿命も向上することが判った。
【0033】
図3は、樹脂充填構造での半導体チップ割れ発生のメカニズムを示すための端部断面図と、充填樹脂と半田の応力−歪曲線のモデルを示すグラフである。樹脂被覆構造において、樹脂15により半導体チップ1の破壊の有無の目安を説明するものである。半導体チップ1の破壊し易い場所は、チップ端部101である。特に、IGBT等の高耐圧半導体素子においては、端部の欠けは耐圧低下の原因となる。図3(A)は、半導体チップ1を熱拡散板2に半田3で半田付けし、樹脂15で被覆した断面モデルであり、半導体チップ1の表面で応力が最大になるチップ端部101と、半田3のクラックの起点になる最大相当歪をとる位置301を示す。図3(B)は、半導体チップ1の割れの有無の単純な見方を示すもので、温度差により生じた歪Δεの範囲で、チップ1の破壊発生レベルの応力σBを超えるか超えないかで、割れの発生の有無が決まることを示している。室温でのヤング率Eの大きい樹脂151を使用すると、温度差による歪Δεが生じたとき、それに比例した応力σ1が半導体チップ1に作用し、a点でチップの破壊応力の限界を超え、チップ1のへき界割れを起こす。一方、ヤング率Eの小さい樹脂152を使用すると、b点までにチップ1の破壊応力を超えることはなく、界面破壊は生じない。
【0034】
更に、樹脂特有の問題として、ガラス転移温度Tgがあり、信頼性に大きく影響を及ぼす。一般に、Tgの低い樹脂は作業性に優れることから、使い勝手性に優れるが、Tg温度以上では線膨張係数が約3倍に急上昇するので、信頼性試験結果で裏切られるケースが多い。したがって、使用環境条件、加速試験、2次リフロー等の最高温度もTg温度以下であることが高信頼性の条件である。少なくともパワーサイクル試験なら、最低でもTgは150℃以上が必要で、170℃位のTgであることが望ましい。これにより厳しい環境条件、2次リフロー等の高温での熱影響のダメージを最小限に抑え、高信頼性を確保できる。
【0035】
線膨張係数とガラス転移温度Tgの測定は、真空理工製の熱物理試験機TMA−1500を用いて測定した。厚さ4mmの硬化試験片を圧縮モード、毎分1℃の速度で昇温し、伸びの温度特性を測定した。線膨張係数αは伸びの温度特性から求め、ガラス転移温度は伸びの温度直線の変曲点とした。Tgは変曲点を取っているので、多少のズレはあるので厳密に150℃と定めることは難しい。
【0036】
図4A〜図4Dは、充填樹脂に対するフィラー、可撓化剤添加と充填樹脂物性との関係を示すグラフである。Si等への密着性に優れるエポキシ系の充填樹脂15の機械的性質を決めるフィラー配合量と可撓化剤添加量が、線膨張係数及びヤング率へ及ぼす影響、及び可撓化剤添加量による線膨張係数対ヤング率の関係への影響について示す。エポキシ化合物としてAER−8501(アデカ社製)、CEL−2021P(ダイセル社製)を用い、硬化剤は酸無水物でMHAC−P(日立化成社製)、可撓化剤はX−22−166C(信越化学社製)を用いた。他に、分散剤S−2(日立化成社製)、界面活性剤A−187(日本ユニカ社製)、充填剤FB−30X(電気化学社製)を用いた。一液性の無溶剤系で、25℃での粘度は520Poiseで、ポッテイング用として使用した。不純物濃度測定は硬化物を100メッシュ以下に粉砕し、この微粉末5gfと脱イオン水50mlをテフロン(登録商標)〜SUS二重容器に入れ、120℃で240h保持し、抽出イオン成分をイオンクロマトグラフを用いて行った。Na+,K+;1ppm、Cl-;5ppmである。硬化条件は110℃(10h)/200℃(10h)で、Tgは170℃ある。なお、パワーモジュールのポッテイング用、モールド用としては一液性樹脂である必要はなく、使い易い二液性樹脂で良い。また、溶剤が抜け易い構造であれば、無溶剤系でなく樹脂組成等の制約の少ない溶剤系で良いので、流動性から開放され、広い範囲の樹脂系が選べる利点がある。上記組成で配合量を変えた各種の検討を行った。
【0037】
図4Aは、上記エポキシ樹脂に石英フィラーの配合量(Vol%)を変えた場合の線膨張係数とヤング率の関係を示す。エポキシ化合物と充填剤を合計した体積%(Vol%)である。エポキシ線膨張係数とヤング率の関係は逆相関の関係にあり、図示するように、フィラー配合量は20〜55vol%の範囲とすることが必要である。線膨張係数を半田(Pb−5Snの場合)の値の27×10-6/℃にするにはフィラー配合量は約50vol%にする必要がある。エポキシ系で素材が柔らかい場合は、フィラーを配合しても配合比率の割りにヤング率が低い樹脂となる。従って、ヤング率はこのエポキシ素材では室温で約8GPaになる。
【0038】
図4Bは、同一エポキシ樹脂系でフィラーの入っていない樹脂にゴムの可撓化剤を添加した場合の物性を示す。可撓化剤として高温で変質しないシリコーン系としてエポキシシリコーン、アミノシリコーン、ヒドロキシシリコーン等が可能である。ここでは溶解度の観点で優れるエポキシシリコーン;信越化学(株)社製X−22−166Cを用いた。ベースの樹脂が決まると線膨張係数とヤング率はフィラー量で決まり、可撓化剤の添加量の及ぼす影響は少ない。可撓化剤は微細粒として分散することが前提であり、15mass%以上では均一分散できなくなり、逆に、線膨張係数が増すデメリットから10±5%レベルが望ましい。
【0039】
図4Cは、フィラーとゴムの配合率に対する基板の端子部破壊による断線を調べる評価結果を説明する図である。薄膜で配線を施した破壊し易いソーダガラス基板(線膨張係数;9.3×10-6/℃)上にSiチップをフリップチップで接続した。その隙間及び周囲に樹脂を充填し、硬化後、温度サイクル試験(−40〜100℃)を実施し、樹脂物性による素子、基板の端子部破壊による断線を調べる評価法を採用した。パワーモジュール構造ではないが、樹脂の基板及びチップへの熱応力的影響を調べるのに適した評価法である。ゴムはエポキシ樹脂100gfに対する重量部で表示した。ゴムを分散する配合率が20重量部(16,7%に相当)以上では分散が不均一になると共に、それ自体の線膨張係数が大きく、混入後の線膨張係数が大となり、耐熱疲労性を低下させる原因となる。判定法として、樹脂のない構造の寿命よりも短い場合を×とし、長い場合を程度に応じ、優れる:△印、大幅に優れる:○印とした。その結果から、ゴム配合量としては、均一分散性を考慮し、10±5mas%(5〜15mas%)が望ましいことが判る。なお、ゴムの効果はヤング率の変化ではそれ程大きいとは思えないが、熱衝撃時の急激な温度変化に対し、衝撃緩和作用があるものと思われる。
【0040】
図4Dは、充填樹脂15におけるヤング率と線膨張係数の関係を示すグラフである。半田の線膨張係数の範囲で、ほぼ望ましいヤング率(5〜10GPa)の範囲40(斜線部)を示し、破線で示す可撓化剤を11%添加した組成は、適正な領域に入っている。この樹脂系においては、ヤング率を3GPa程度に下げようとすると、チップ破壊は防止できるものの、線膨張係数が増えるので、半田の寿命向上への寄与は少なくなるトレードオフの関係がある。
【0041】
図5は、樹脂構造パワーモジュールの設計指針を得るための充填樹脂物性と信頼性を示す線膨張係数対チップ応力と半田歪のグラフである。図5(A)のグラフ中に示す断面モデル構造で、パワーサイクル試験における半導体チップ端部101の相当応力、半田のクラック起点301の相当歪の有限要素法による3次元弾塑性解析を行った。温度プロファイルは、実績のある120℃→20℃→120℃→20℃の変化で、1.5サイクルの温度変化で発生した半導体チップ端部101の相当応力振幅及び半田のクラック起点301での相当歪振幅を求めた。なお、半導体チップ表面に作用する応力として、相当応力の他に主応力、σx、σy、σz等での評価も行ったが、ほぼ相当応力に比例していることから、ここでは相当応力で評価した。
【0042】
図5(A)から、同一ヤング率の場合、ヤング率が低い15GPa以下では、樹脂の線膨張係数が(20〜45)×10-6/℃の広い範囲で、樹脂の線膨張係数が半田と同等(28×10-6/℃)レベルで最小になることが判る。しかし、ヤング率が15GPaを超えるとチップ表面部にかかる相当応力は急激に上昇する傾向がある。即ち、樹脂のヤング率が15GPa超では、樹脂の線膨張係数が45×10-6/℃以上で、チップ表面部にかかる相当応力が上昇する。従って、最適な樹脂設計としては、第1に、樹脂15の線膨張係数を(20〜45)×10-6/℃の範囲とすることである。第2に、樹脂15の室温におけるヤング率を15GPa以下に低く抑え、チップ表面部にかかる相当応力を下げることがポイントになる。ヤング率の低い樹脂を用いることは、半導体チップ素子部、Al導体部、Si界面等の破壊を防止する上での効果は大きいと考えられる。図5(B)から、樹脂15の線膨張係数が(20〜45)×10-6/℃の範囲で、同一ヤング率の場合、樹脂15のヤング率が高い程、半田のクラック起点の相当歪が小さくなり、かつ樹脂15の線膨張係数が下がる程、小さくなることが判る。しかも、破線のシリコーンゲル封止構造と比べると、樹脂の線膨張係数が(10〜45)×10-6/℃の広い範囲で、半田の相当歪は低い値を示し、半田の寿命はシリコーンゲル封止構造より長いと考えられる。実際の加速試験でも、この樹脂構造では、別の原因での寿命低下おきるまでに、半田に起因する寿命低下は生じないことが確認されている。これは、樹脂15により半田3の応力集中を緩和する作用と考えられ、有限要素法解析でも確認できた。
【0043】
図6は、充填樹脂物性と信頼性を示す線膨張係数対チップ応力と半田歪のグラフである。図4Aの関係を下に、横軸に樹脂の線膨張係数をとり、縦軸に半田のクラック起点の相当歪と半導体チップ表面素子部に作用する相当応力をプロットしたものである。破線はシリコーンゲルで全体を被覆した場合の半田のクラック起点の相当歪である。樹脂15の線膨張係数が(20〜45)×10-6/℃の範囲601(斜線部)で、本実施形態の樹脂被覆構造は、シリコーンゲルで全体を被覆した構造よりも、半田3のクラック起点301での相当歪は小さい。従って、本実施形態の物性を有する樹脂15を用いると、シリコーンゲル封止構造に比べ、半田の歪は小さいことから、半田による断線はより少なくなる。また、半導体チップ端部101の相当応力σも小さく、領域602(斜線部)にあり、素子部の破壊、界面での剥離等が起こり難いことから、良好な結果が得られた。
【0044】
図7は、充填樹脂のヤング率と樹脂による拘束の関係を示す解析結果のグラフである。樹脂のヤング率を変えた場合に、半導体チップ1(10×0.5mm厚さ)とアルミナ基板41(10×1mm厚さ)間に樹脂42を入れ、150℃から−55℃変化させた。このとき、最外周部の両者の相対変位(ΔL)を2次元熱弾塑性解析で求め縦軸に示した。樹脂42の線膨張係数は25×10-6/℃として計算した。図7より、変位を拘束する樹脂42のヤング率は少なくとも1GPa以上であることが分かる。更に、チップを拘束する効果が確実に現われる樹脂42のヤング率は3GPa以上である。12GPa以上ではSiチップ1の界面に作用する応力が大きくなり、チップ素子部への影響、チップ界面剥離、素子部の破壊、チップ割れ等を起こしやすくなる。このため、弱い半導体チップ表面を保護する意味からも、ヤング率の高い樹脂は問題である。また、製品のばらつきにより、弱い強度を有する場合もあり、それでも高歩留まりで高信頼性を確保するにはヤング率を下げることが重要である。有限要素法による3次元弾塑性解析でも物性による違いを確認できた。特に、素子部に問題がある場合には、チップ表面のみをシリコーンゲル等で薄くコートし、チップ周囲をこの樹脂で拘束するように充填することも可能である。
【0045】
なお、ヤング率(曲げ弾性率)の測定に当っては、硬化物を5×10×100mmに切削し、JIS−6911規定の曲げ試験片を作製した。これを、島津製作所製オートグラフDSS−5000を用い、曲げ速度1mm/min、支点間距離80mmの両端指示中央集中荷重法によって測定した。
【0046】
以上の検討をまとめ、半導体パワーモジュールの高信頼性を得るための充填樹脂の物性を整理すると次の通りである。
【0047】
▲1▼線膨張係数:半田以上(20〜45)×10-6/℃。
【0048】
▲2▼ヤング率:1〜12GPa(望ましくは3〜10GPa)。
【0049】
▲3▼ガラス転移温度Tg:150℃以上。望ましくは170℃以上。
【0050】
▲4▼半導体チップ、基板に対する密着性に優れること。
【0051】
▲5▼シリコーンゲル等の高温で安定な微粒子ゴムを分散させて熱衝撃を緩和。
【0052】
▲6▼不純物濃度:Na+,K+≦1ppm、Cl-≦5ppm
これら▲1▼〜▲6▼を管理することで、半導体パワーモジュールにおける高信頼実装を実現することが可能である。
【0053】
図8は、本発明の第2の実施形態による半導体パワーモジュールの断面図である。図1と同一符号は同一物を表わし、なるべく重複説明は避ける。Cu製の放熱基板4の上面に樹脂絶縁層5を設けている。この上に、予め打ち抜き等で作製したNiめっきCu製の電極(熱拡散板)2を接着剤で貼り付ける。なお、樹脂絶縁層5は、耐圧により絶縁層の膜厚が変わり、ここでは耐圧を保証できる厚さとして160μmを選定した。そして、Sn−3Ag−0.5Cu(融点;217〜221℃)の鉛フリー半田ペースト(RMAタイプのフラックス)3を約250μmの厚さに印刷した。この上に、4.9mm半導体チップ1を搭載後、max240℃の温度で窒素中のリフローで半導体チップ1及びIC10、部品等を半田付けした構造である。フラックスで洗浄後、Al製細線8を素子の端子部に超音波ワイヤボンドし、他端子を絶縁層5上に接着剤で貼り付けたNiめっきCu製端子61上に超音波ワイヤボンドした断面構造である。他方、マイコン等の電子部品が搭載された制御基板11は、主に多層ガラスエポキシ基板で構成される。なお、多層ガラスエポキシ基板は、先にCu製の放熱基板4に接着し、その後、半導体チップ1の接続と同時にリフローを行うのが理想的である。しかし、印刷等のプロセス上の制約から、別工程で予め多層ガラスエポキシ基板に部品搭載リフローしておき、半導体チップ1をCu放熱基板4に半田付け後に、部品搭載済の多層ガラスエポキシ製の制御基板11をCu放熱基板4に接着しても良い。IC10、部品等を搭載した多層ガラスエポキシ製の制御基板11は、パワー素子1部からは離れており、熱伝導性の悪い接着剤及びガラスエポキシ基板が介在している。したがって、マイコンを誤動作させるほどの温度上昇にはならない。本構造はプラスチックケース14にエポキシ系の充填樹脂15をポッテイングする方式であるが、量産には低コスト化に有利なモールド方式を使うことも可能である。硬化後の樹脂15の機械的物性値は前述した通りのものである。
【0054】
この実施形態では、打ち抜きで作製した電極61を絶縁層5に貼り付けた構造で、制御側の外部接続端子13は、フラットリード型構造である。
【0055】
本実施形態においても、線膨張係数が24×10-6/℃、室温のヤング率が8GPaのエポキシ系の充填樹脂15の場合、パワーサイクル試験及び温度サイクル試験において、クラック進展は殆ど認められない。
【0056】
図9は、本発明の第3の実施形態による半導体パワーモジュールの断面図である。図1や図8と同一符号は同一物を表わし、重複説明は避ける。約0.1tのNiめっきしたCu箔62を絶縁層5上に貼り付け、パターンをエッチングで形成したもので、制御側外部接続端子13はピン型構造である。半導体チップ1を予め熱拡散板2にPb−5Sn高温半田3で接続したものを更に低温のSn−3Ag−0.5Cu半田16で接続した構造である。高温半田3と低温半田16の組み合わせとして、半導体チップ1側は高温半田3で、Pb−5Sn等のPbリッチ系のPb−Sn系半田が一般的組成である。この組合せの低温系半田16は、Sn−Pb系、Sn−Ag−Cu系、Sn−Cu系等の共晶系の広い組み合わせが可能である。鉛フリーに限定すると、高温系はSn−Sb系の一例としてSn−5Sb(融点:232〜240℃)がある。この組成と温度階層を可能とする低温系で高温域での信頼性を保障できる半田16として、Sn−Ag−Cu、Sn−Cu共晶系にInを5〜10%添加した半田がある。これは、機械的性質に優れ、比較的柔軟であり、炉内温度分布の優れた炉の使用によりmax230℃での接続が可能である。後付け用として、鉛フリー組成が使用可能であれば、高温用としてはSn系が使用可能となる。鉛フリー組成としては、Sn−9Zn(融点;199℃)もしくはSn−9Znに微量のIn、Bi、Ag、Cu等を1種類以上添加したものがある。Sn系としては、Sn−Ag−Cu系(例えばSn−3Ag−0.5Cu)、Sn−Cu系(例えばSn−0.7Cu)、Sn−Sb系(例えばSn−5Sb)等がある。
【0057】
本実施形態においても、線膨張係数が24×10-6/℃、室温のヤング率が8GPaのエポキシ系の充填樹脂15の場合、パワーサイクル試験及び温度サイクル試験において、クラック進展は殆ど認められなかった。
【0058】
以下、第1〜第3の実施形態の各要素について機能面を中心に、性能、生産性、コスト等からの制約条件下での検討結果を説明する。
【0059】
まず、放熱基板4は、軽量化を重視する場合はAlもしくはAl合金もしくはAl−カーボン複合材を選択し、放熱性、小型高性能を考慮する場合はCuもしくはCu合金もしくはCu−カーボン複合材を選択する。放熱基板4は、内部の熱の拡がりによる熱抵抗の低減が十分に得られるように、1〜3mmの厚さにする。なお、実装した段階での反りを少なくするために、Cu基板の厚さを3mm以上にすることもある。半導体電力変換装置内の放熱基板4は比較的大きな体積を有するので、軽量のAlを選択する利点は大きい。但し、Alの線膨張係数(24×10-6/℃)はCu(17×10-6/℃)に比べ大きいので、部品との線膨張係数の差が大きくなる。このため、半導体チップの半田付け、および同一基板上にチップ部品等を搭載した場合、半田付け継手の信頼性はCu基板に比べ低下する。それでも問題が起きない場合に限定して使用することで、Alの長所を活かすことができる。
【0060】
本発明の実施形態に採用する樹脂15は、線膨張係数としては30×10-6/℃レベルを目標にしているので、Al放熱基板4に対しては、放熱基板4の反り防止の面で望ましい方向と言える。一般的に線膨張係数が高くなるにつれ、フィラー量は少なくなるので、樹脂のヤング率は低くなり、反り量は少ないことが予想される。なお、この放熱基板4は、冷却フィンに取り付けられるようになっている。
【0061】
次に、樹脂絶縁層5は、低熱抵抗と高絶縁性が必要であり、このため、フィラーが分散された耐熱性エポキシ樹脂を用いる。樹脂絶縁層5は液状塗布、もしくはフィルム状の樹脂(樹脂のプリプレグを含む)を加熱加圧成型あるいはローラで貼り付ける。樹脂としてはエポキシ樹脂、フェノール樹脂、その他ポリアミドイミド、ポリアミドエーテル系を含めた熱可塑性樹脂が可能である。樹脂絶縁層5に入れるフィラーは酸化ケイ素、アルミナ、窒化珪素、窒化ボロン、窒化アルミなどの高熱伝導性の無機化合物が使用される。このとき、フィラーの充填量を増すほど、樹脂絶縁層5の熱抵抗を低減できるが、エポキシ樹脂中に分散可能なフィラー量は限界があるので、通常はフィラーの含有量として50〜90mass%の範囲で使用する。フィラーの充填率が95mass%以上ではフィラーを均一に充填できない。この場合の樹脂絶縁層5の熱伝導率は1〜5W/m・Kの範囲となる。一方、樹脂絶縁層5の熱抵抗を低減するのに有効な方法は薄くすることである。しかし、樹脂絶縁層5を薄くすると、その分、絶縁耐圧が低下し、樹脂絶縁層5にピンホールなどが発生し易くなって信頼性が低下する恐れがある。樹脂絶縁層5の厚さの下限には限界があり、要求される絶縁耐圧にもよるが、50μm以上は必要である。
【0062】
次に、電気回路は、板厚が0.7mm以上の熱拡散板2であるCu導体もしくはAl導体で作られ、樹脂絶縁層5の表面に張りつけられる。電気回路の厚さを0.7mm以上とすることにより十分な熱拡がりが得られ、熱拡散板の役割も担う。Cu,Al導体は厚くなってもプレス加工が容易でコスト面でも有利である。
【0063】
以上の構造でパワーサイクル試験を行った結果、ジャンクション温度Tj:50〜150℃では、10000サイクルでも破壊せず、半田のクラック進展は殆ど認められないことが判った。
【0064】
図10は、本発明による半導体パワーモジュールに用い得る各種熱拡散板の断面図である。大型チップ、もしくは厳しい環境条件下で使用する場合、熱拡散板としてCu板の使用は信頼性(チップ破壊、チップ割れ、半田の寿命等)で限界がある。そこで、半導体チップに線膨張係数を近づけて、熱放散性にも優れる材料として、次の材料等の組合せがある。すなわち、粒子分散型のCu−Mo〔例えば(株)アライドマテリアル社製〕、Cu−Cu2O〔例えば(株)日立電線社のL−COPカタログ資料、NoC−1178、02−4〕、Cu−インバーもしくは複合繊維型のAl−カーボン、Cu−カーボン等の組み合わせである。L−COPの資料によると、線膨張係数は(9〜15)×10-6/℃の範囲で、熱伝導率は約120〜240W/m・Kの範囲で調整可能である。また、(株)アライドマテリアル社のカタログによると、Cu−Moの線膨張係数は(7〜13)×10-6/℃の範囲で、熱伝導率は約200〜280W/m・Kの範囲で調整が可能である。粉末加工時に加工したCu板と一体化、あるいは粉末加工後に加工したCu板と一体化し、Cuとの複合材を作ることで、熱拡散板を低熱膨張化することができる。半導体チップと半田付けされる熱拡散板を低熱膨張化することで、より継手の信頼性、及び半導体チップ界面剥離を防止し、大型チップ及び厳しい条件に耐えられる構造を提供することができる。複合材の線膨張係数はCuの比率を増減することで制御できる。成型したものをCu板にかしめて一体化する方法も可能である。
【0065】
図10(A)は、上記のCu−Mo、Cu−Cu2O、Cu−インバー、Cu−カーボン繊維等を用いた各種熱拡散板の断面図である。Pb−5Sn高温半田3でチップ1と熱拡散板2を接続後、この熱拡散板2とCu電極パッド62とはSn−3Ag−0.5Cuの鉛フリー半田16で接続した。
【0066】
図10(B)〜(E)は、粒子分散型とCu板とを組合せて作った複合構造の熱拡散板2の断面図である。(B)は薄く貼り付ける場合のかしめ構造で、Cu板201に、粒子分散材202をかしめ部203でかしめた構造である。(C)は、パンチング等で打ち抜いたCu板204の中に粒子分散材205を埋め込む構造である。(D)は、Cu板206と粒子分散材207を貼り合わせた構造である。(E)は、予め加工したCu板208を置いて、粉末加工で粒子分散材209を一体化した構造である。これらの一体化した厚さは、1〜1.5mmである。
【0067】
図11は、本発明による半導体パワーモジュールに用いる形状を変えた各種熱拡散板の断面図である。熱拡散板の形状を変えて、各種の機能を持たすことができる。(A)は、異方性を利用した高熱伝導性と低熱膨張を兼ねた構造で、Cu−Mo分散剤もしくはCu−インバー分散剤もしくはCu−Cu2O分散剤の何れかで作製した板210を、Cu板211及び212で挟んだ複合構造である。あるいは、Cu−Mo材、もしくはインバー材210をCu板211及び212で挟んだ複合構造であり、反りが少ない熱拡散板2が作れる。これらの配合比率を変えることで特性を自由に変えることができる。なお、複合構造は粉末以外の製法で造っても良い。(B)は、図13〜図15で後述する横拡がり熱拡散板213、214で板215を挟んだ複合構造で、性能向上のため材料の異方性を利用した構造である。板215は、(A)と同様Cu−インバー−Cu、Cu−Cu/Mo−Cu、Cu−Cu2O−Cu、Cu−Cu/C−Cu等の組み合わせであれば、線膨張係数は同様に制御でき、反りも少ない。他方、熱はチップ1からCu213を伝わり横拡がり部に容易に伝達でき、異方性のメリットが現れる。(C)〜(F)は、粒子分散型のCu−Mo、Cu−Cu2O、Cu−インバー等で作った熱拡散板216〜219の形状を変えたもので、粉末加工時に自由な形に形成できる。また、異方性を利用した構造で造ることもできる。(C)、(D)の構造は、半田3の位置決めと、剛性の低下による半田3の亀裂発生寿命の向上が期待できる。(E)、(F)の構造は、半田3の厚さの調節、半田3の亀裂発生寿命、亀裂進展寿命の向上が期待できる。なお、これらの組合せに使用した一部の複合材の線膨張係数は、α≒10×10-6/℃であり、半導体チップ1の半田付け時、冷却時、及び冷却後における残留応力等のSiへの負担は小さく問題はない。また、樹脂封止後もCu製熱拡散板に比べSiチップへの負担は小さく、大型チップ、苛酷な試験にも耐え得る構造である。従って、Cu熱拡散板構造に比べ、より高信頼性の半導体パワーモジュールを提供することができる。
【0068】
図12は、本発明による半導体パワーモジュールに用い得る半田の寿命向上策を示す断面モデルである。半田の耐熱疲労性向上及び温度階層接続を目的としたもので、高温での強度低下を阻止し、クラック進展を遅らすことが可能である。図12(A)は、PbフリーのSn−3Ag−0.5Cu半田302ペースト中に、Cu粒子303を約10〜30vol%混ぜて、比較的高い温度の260〜280℃でリフローしたものである。18はTi/Ni/Au薄膜である。これにより、球状のCu粒子303では、図12(B)に示すように、棒状に伸びたCu6Sn5化合物304がランダムに成長し、半田のクラック進展を阻止する役割を果たす。なお、複合半田箔に作ることも可能であり、半田ボールは圧延で一体化されるので、Cu粒子だけが半田中に分散された状態になる。Cu6Sn5化合物304は融点が高く硬いので、2次リフロー等の250℃レベルの高温処理があった場合でも、周囲のSn系半田が溶けても、形が崩れることはない。このため、連結した化合物、金属による弾性的連結で高温での接合強度を有し、2次リフロー時の温度に耐えられる強度を確保している。Cu粒子を多く入れると、ボイド形成が多くなる傾向なので望ましくなく、他方、10vol%レベルでも連結による強度向上の効果があることは確認できた。図12(C)は、Cu網305をベースにした複合半田箔をセットした状態で、Cu粒子303を若干混ぜたものである。図12(D)は、半田付け後の断面モデルである。高温ではCuのSn中への拡散は早いので、半田中、及びメタライズ界面でのCu6Sn5化合物304が形成され、高温での強度を確保する。この方式ではボイドは少ないが、半田は半田箔として供給する制約がある。半田粒子としては鉛フリー半田として、Sn−3Ag−0.5Cu、Sn、Sn−0.7Cu、Sn−(5〜10)Sbが一般的組成である。
【0069】
従来のSn系半田だけでは、高温での信頼性を確保できる温度階層接続は難しい状況にある。この複合半田を温度階層用高温系半田として使用し、従ってここでの低温系半田は一般的なSn系、例えばSn−3Ag−0.5Cu23を使用することで、継手としては信頼性の高い温度階層接続が可能になる。これより、耐熱性の向上、耐温度サイクル性の向上、半田の熱伝導性の向上等によりCu放熱板の使用領域を拡張することができる。
【0070】
なお、半田組成として、鉛フリー半田の代表組成としてSn−3Ag−0.5Cuの例を示したが、他にSn系、Sn−Sb系、Sn−Cu系、Sn−Ag系等においても同様な結果を得ることができる。
【0071】
図13は、本発明の第4の実施形態であり、半導体チップの熱放散性を向上した半導体パワーモジュールの断面図である。図1,図8及び図9と同一符号は同一物を表わし、重複説明は避ける。樹脂絶縁基板の弱点である信頼性と熱放散性の向上策であり、低コストで実現する構造である。粒子分散型のCu−Mo、Cu−Cu2O、Cu−インバー等で作る場合は、成型の型があれば大きなコスト上昇には繋がらない。そこで、熱拡散板2の構造として凹型で2面が開いた構造で熱放散性の向上とワイヤボンデイング性を両立させる横拡がり熱拡散板220とした。チップ1の下の樹脂絶縁層5には熱伝導性の悪い樹脂絶縁膜があるので、チップ下から熱がCu放熱基板4に直接に伝わり難い状態にある。一方、熱拡散板220には熱が良く伝わる。そこで、熱拡散板220の形状を工夫してチップの周囲にヒートシンク部221を設ける構造として、一対の側面間を開放した凹型形状とした。これにより、ワイヤボンドへの影響をなくし、かつ、半田付け性、洗浄等への悪影響を軽減した。
【0072】
図14は、本発明の第5の実施形態であり、半導体チップの表面からの熱放散性を向上した半導体パワーモジュールの断面図である。図13の熱拡散板220だけの構造では放熱効果が少ない場合、図14に示すように、熱伝導性に優れ、安価なセラミックス(例えばメタライズなしのAl2O3、AlN)の板43を載せ、上面にCu,Al等の放熱板44を当てた状態で樹脂に埋め込む。そして、Cu,Al等の放熱板44の上にはフィン(図示せず)を取り付けることができる。熱拡散板220とセラミックス板43とCu,Al等の放熱板44との接触を良くさせた状態でポッテイング樹脂15でしっかり固定する。これにより、ヒートシンク221の凹部とセラミックス板43間、セラミックス板43とCu,Al等の放熱板44間の接触は、充填した周囲の樹脂15でしっかり拘束される。Cu,Al等の放熱板44の中央の穴45は、充填樹脂15によるボイド発生防止用である。以上により、チップ1の上側からも熱引きを可能にする。
【0073】
図15は、本発明の第6の実施形態であり、半導体チップの表面からの熱放散性を向上した半導体パワーモジュールの断面図と平面図である。前述した実施形態と同一符号は同一物を表わし、重複説明は避ける。熱拡散板220とヒートシンク221の凹部を更に高くし、この凹部とメタライズなしの高熱伝導セラミックス板46間は、図14と同様に、接触状態で樹脂でしっかり拘束されている。ヒートシンク221の凹部とワイヤボンドの配置の関係は、図15(B)に正しく図示している。図13、図14及び図15(A)に示した断面図では、分り易くするため、90度回転した構造として図示している。
【0074】
以上の実施形態によれば、半田以上の線膨張係数をもつ充填樹脂の採用により、AlやCu製の安価な放熱基板と組み合わせて、低コストで、信頼性に富み、長寿命の半導体パワーモジュールを提供することができる。また、充填樹脂の線膨張係数がAlに近いこともあり、Al線の超音波ワイヤボンド部の疲労劣化、断線等が起こらなくなる効果も期待できる。
【0075】
【発明の効果】
本発明によれば、高価なAlN絶縁基板やAl2O3絶縁基板等を用いず、安価なAlやCu等の放熱基板を用いて、信頼性と熱放散性を向上させた半導体パワーモジュールを提供することができる。
【図面の簡単な説明】
【図1】 本発明の第1の実施形態による半導体パワーモジュールの断面図。
【図2】 樹脂と半田の応力−歪曲線の温度依存性のモデルを示すグラフ。
【図3】 樹脂充填構造での半導体チップ割れ発生のメカニズムを示すための要部断面図と、充填樹脂と半田の応力−歪曲線のモデルを示すグラフ。
図4Aエポキシ樹脂に石英フィラーの配合量(Vol%)を変えた場合の線膨張係数とヤング率の関係を示すグラフ。
図4B同一エポキシ樹脂系でフィラーの入っていない樹脂にゴムの可撓化剤を添加した場合の物性を示すグラフ。
図4Cフィラーとゴムの配合率に対する基板の端子部破壊による断線を調べる評価結果を説明する図。
図4D充填樹脂15におけるヤング率と線膨張係数の関係を示すグラフ。
【図5】 線膨張係数対チップ応力及び線膨張係数対半田歪のグラフ。
【図6】 充填樹脂物性と信頼性を示す線膨張係数対チップ応力と半田歪のグラフ。
【図7】 樹脂のヤング率と樹脂による拘束の関係を示す解析結果のグラフ。
【図8】 本発明の第2の実施形態による半導体パワーモジュールの断面図。
【図9】 本発明の第3の実施形態による半導体パワーモジュールの断面図。
【図10】 本発明による半導体パワーモジュールに用い得る各種熱拡散板の断面図。
【図11】 本発明による半導体パワーモジュールに用い得る形状を変えた各種熱拡散板の断面図。
【図12】 本発明による半導体パワーモジュールに用い得る半田の寿命向上案を示す断面モデル。
【図13】 本発明の第4の実施形態として半導体チップの熱放散性を向上した半導体パワーモジュールの断面図。
【図14】 本発明の第5の実施形態として半導体チップの表面からの熱放散性を向上した半導体パワーモジュールの断面図。
【図15】 本発明の第6の実施形態として半導体チップの表面からの熱放散性を向上した半導体パワーモジュールの断面図と平面図。
【符号の説明】
1…半導体チップ、2,220…熱拡散板、201,204,206,208…Cu製熱拡散板、202,205,207,209…粒子分散材、210,215…インバー材、211〜214,216〜219…Cu板、229…ヒートシンク、3,7,12,16,17…半田、4…放熱基板、43,46…セラミックス板、44…Cu,Al等の放熱板、5…樹脂絶縁層、6…電気回路(Cu箔導体)、61…Cu端子、62…Cuパッド、8…金属細線、9,13…外部接続端子、10…IC、11…制御基板、14…ケース、15…充填(エポキシ系)樹脂。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement of a semiconductor power module widely used for home appliances or industrial use.
[0002]
  A semiconductor power module with a built-in semiconductor switching element has high thermal conductivity in consideration of the amount of heat generated by the switching element.Heat dissipation boardIn general, an insulating plate made of a material having high thermal conductivity and high electrical insulation is used.
[0003]
In a medium to large capacity product having a large calorific value, a ceramic having a high thermal conductivity is mainly used as an insulating plate although it is expensive. In relatively small-capacity products, an inexpensive insulating resin having a low thermal conductivity is used.
[0004]
Patent Document 1 discloses two examples of semiconductor power modules. In FIG. 2, a semiconductor chip is soldered to the upper surface of the heat dissipation board via an insulating plate or the like, filled with silicone gel, and sealed from above with a hard epoxy resin. The reason why soft silicone gel is used is to prevent stress such as thermal deformation of the case from being applied to the semiconductor chip and the fine metal wires.
[0005]
Further, in FIG. 1 of Patent Document 1, the linear expansion coefficient is 5 × 10.-6/ ° C. to 25 × 10-6A structure in which a semiconductor chip is directly sealed with a resin at / ° C. has been proposed.
[0006]
[Patent Document 1]
Japanese Patent Laid-Open No. 6-5742 (FIGS. 1 and 2, overall)
[0007]
[Problems to be solved by the invention]
Patent Document 1 does not touch on heat dissipation in a semiconductor chip or physical properties other than the linear expansion coefficient of the resin to be filled.-6If the temperature is higher than / ° C., the generated stress increases and the aluminum wiring is likely to break. "It has said.
[0008]
Chips are becoming larger and higher in output, and cost reduction is required. It is important to realize high heat dissipation and improved reliability at a low cost due to high output. It has become.
[0009]
  The object of the present invention is to use inexpensive AlN, Cu, etc. without using an expensive AlN insulating substrate or Al2O3 insulating substrate.Heat dissipation boardIs used to provide a semiconductor power module with improved reliability and heat dissipation.
[0010]
[Means for Solving the Problems]
In one aspect of the present invention, in a semiconductor power module in which a semiconductor chip having a metallized surface soldered to a heat diffusion plate is put in a case and the resin is filled in the case, the linear expansion coefficient of the resin is greater than the linear expansion coefficient of the solder. The thermal diffusion plate includes a sintered formed body obtained by mixing and sintering Cu and a powder of a low expansion material, and a Cu plate connected to the sintered formed body.
[0011]
Specifically, the linear expansion coefficient of this resin is (20 to 45) × 10.-6/ ° C.
[0012]
By selecting the linear expansion coefficient of the resin, the stress concentration at the solder crack starting point is suppressed, and the chip is protected and restrained with a level of stress that does not cause destruction of the semiconductor chip. By adopting this heat diffusion plate, the difference in the coefficient of linear expansion from the semiconductor chip is further reduced, so that stress and strain can be suppressed and the effect of the resin can be exhibited more remarkably.
[0013]
In another aspect of the present invention, in addition to the selection of the resin, the Young's modulus of the resin at room temperature (15 to 20 ° C.) is set to 1 to 12 GPa.
[0014]
That is, the periphery of the semiconductor chip is softened to the same level as that of the solder and is surrounded by an epoxy resin having an adhesive force. Thus, the semiconductor chip is mechanically protected so as not to be subjected to a large stress, the semiconductor chip is protected, the interface peeling failure is prevented, and the life of the solder is guaranteed.
[0015]
In another aspect of the present invention, a resin having a glass transition temperature (Tg) of 150 ° C. or higher is used in addition to the selection of the resin.
[0016]
Thereby, the reliability of the semiconductor power module can be improved by avoiding a rapid (2 to 3 times) increase in the linear expansion coefficient due to reaching the glass transition temperature.
[0017]
In a desirable embodiment of the present invention, the Young's modulus of the resin to be filled is 3 to 10 GPa, more desirably 5 to 8 GPa.
[0018]
As a result, the semiconductor chip can be restrained, the semiconductor chip interface peeling can be prevented, and the life of the solder can be expected to be improved.
[0019]
In another embodiment of the present invention, the portion in contact with the surface of the semiconductor chip is thinly coated (0.01 to 1 mm) with a softer resin (small Young's modulus) than the resin, and the resin is coated on the periphery of the chip. Fill to cover.
[0020]
As a result, in particular, as a countermeasure when the surface of the semiconductor chip is weak, mounting with more emphasis on element protection is possible.
[0021]
Furthermore, in a preferred embodiment of the present invention, in addition to the above structure, a heat sink is arranged around the semiconductor chip to dissipate heat from above.
[0022]
Other objects and features of the present invention will become apparent from the following description of embodiments.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a cross-sectional view of a semiconductor power module according to a first embodiment of the present invention. A power semiconductor chip 1 such as a MOSFET is soldered to a Ni-plated Cu heat diffusion plate 2 with Pb-5Sn solder 3 in a hydrogen furnace. On the other hand, a resin insulating layer 5 is formed on the upper end portion of the Al heat dissipation substrate 4, and an Ni-plated Cu foil conductor electric circuit 61 is formed on the resin insulating layer 5. A lead-free Sn-3Ag-0.5Cu solder paste is applied to the electric circuit 61, and the back surface of the heat diffusion plate 2 to which the semiconductor chip 1 is soldered is positioned and mounted, and then a reflow furnace of max 240 ° C. Solder with solder 7. The thickness of the electric circuit 61 made of a Cu foil conductor is about 70 μm, and the thickness of the thermal diffusion plate 2 is about 1 to 2 mm in consideration of the effect of thermal diffusion. The thermal diffusion plate 2 was provided with a sintered formed body obtained by mixing and sintering Cu and a powder of a low expansion material, and a Cu plate integrated with the sintered formed body during fixation, pressure bonding, or sintering. It is a complex. Specifically, the low expansion material is as follows. (1) A structure in which Cu alloy, Cu and Cu2O, Cu and Mo, Cu and C (carbon fiber) or Cu and Invar powder are mixed at a fixed ratio and molded. Or (2) Cu- (Cu / Cu2O) -Cu, Cu- (Cu / Mo) -Cu, Cu- (Cu / C) -Cu, or Cu- (Cu) having a sandwich structure with the above molded body as a core. / Invar) -Cu anisotropic structure.
[0024]
The electric circuit 61 is connected by a thin metal wire 8 made of Al, and further wired to the external connection terminal 9. The IC 10 is bonded to the electric circuit 62 on the control board 11 with solder 12. The control board 11 is a glass epoxy multilayer board, and is fixed to the resin insulating layer 5 with an adhesive, and the semiconductor chip 1 and the control board 11 are electrically connected by a thin metal wire 8. The external connection terminal 13 is soldered to the connection terminal of the control board 11 with the solder 12. These are housed in a case 14 and sealed with an epoxy-based filling resin 15 having a linear expansion coefficient equal to or greater than that of the solder 3.
[0025]
In this embodiment, the linear expansion coefficient is 24 × 10-6In the case of the epoxy filled resin 15 having a Young's modulus of 8 GPa at / ° C. and room temperature, it was found that almost no crack growth was observed in the power cycle test and the temperature cycle test. Compared to the structure filled with silicone gel, it was found that a life improvement of about 3 to 10 times can be expected. The mechanism for improving the service life is to suppress stress concentration at the solder crack starting point by selecting an appropriate resin, and to protect and restrain the chip with a level of stress that does not cause the semiconductor chip 1 to break down. Furthermore, the heat diffusion plate 2 is not made of Cu, and a sintered formed body obtained by mixing and sintering Cu and a powder of a low expansion material, and a Cu plate in which the sintered formed body is fixed, pressed, or integrated. By using the composite including the above, the difference in coefficient of linear expansion from the semiconductor chip is further reduced. For this reason, the values of stress and strain were reduced, and it was confirmed that the effect of the resin 15 was further exhibited. Specifically, as a low expansion material, Cu-Mo, Cu-Cu2O, Cu-Invar (linear expansion coefficient: about 10 × 10-6/ ° C.) was used for sintering.
[0026]
The linear expansion coefficient of the resin 15 does not need to be adjusted to the solder 3 with high accuracy, and is equivalent to the solder 3 (24 ± 3) × 10.-6/ ° C. includes values of Sn—Pb-based and Sn—Ag—Cu-based solder composition ranges, and can be handled with a common resin.
[0027]
On the other hand, it was found that, even when the same resin system contains a large amount of filler and the Young's modulus is increased to 20 GPa or more, the probability of causing Si peeling at the interface between the resin 15 and the semiconductor chip 1 and the destruction of the element portion increases. When the Young's modulus is 15 to 20 GPa, it is at the boundary level between when it occurs and when it does not occur depending on the severity of the structure and test conditions.
[0028]
Therefore, by covering the whole with the epoxy-based filling resin 15 having the specified physical properties, the semiconductor chip 1 can be prevented from being broken and the cracks of the solder 3 can be prevented from progressing without using an expensive heat dissipation substrate. We have made it possible to provide semiconductor power modules.
[0029]
The role of the filling resin that brings about high reliability with low-cost mounting according to the present invention will be described in detail below.
[0030]
In the present invention, by filling the resin 15 having mechanically specified physical properties, the life of the solder 3 joint portion between the semiconductor chip 1 and the Cu heat diffusion plate 2 is greatly improved. In order to improve the lifetime, the linear expansion coefficient of the resin is (20 to 45) × 10 which is 3 or more of solder.-6/ ° C. Further, by lowering the Young's modulus and surrounding the periphery of the semiconductor chip 1 with a resin 15 having physical properties that do not place a stress on the semiconductor chip 1, it is free from influence on the element, interface peeling of the semiconductor chip, and the like. Then, the resin 15 surrounds and restrains the solder 3 and the semiconductor chip 1, that is, the resin 15 plays a role of relaxing the stress concentration of the solder 3 at the end of the semiconductor chip 1. To prevent. In this case, the stress-strain characteristic of the resin 15 can be approximated by thermoelasticity, but in the case of the solder 3, it is approximated by thermoelasticity.
[0031]
FIG. 2 is a graph showing models of temperature dependence of the stress-strain curve (A) of the filling resin 15 and the stress-strain curve (B) of the solder 3. Even if a large strain occurs between the semiconductor chip 1 and the solder 3, as can be seen from FIG. 2B, since the solder 3 is plastically deformed, no large stress is applied at a high temperature. Further, even if a large stress is applied at a low temperature, it is difficult to generate a stress enough to cause a crack in the semiconductor chip. On the other hand, in the case of the resin 15 shown in FIG. 2A, the Young's modulus decreases and the stress decreases at high temperatures due to thermoelasticity, but the Young's modulus is high and the stress is high at low temperatures. Accordingly, when a temperature difference occurs, a large stress proportional to the strain amount acts, and if there is no resin adhesion, there is a risk of peeling at the interface between the chip 1 and the resin 15 due to shear stress. In a severe power cycle test using a resin with a relatively high Young's modulus (15 Gpa at room temperature of 15 to 20 ° C.), the fracture at the interface between the semiconductor chip 1 and the resin is confirmed, and a large stress acts in the analysis. Was confirmed.
[0032]
Thus, as a result of confirmation by various experiments and analyses, basically, the linear expansion coefficient of the resin is higher than that of the solder 3 (20 to 45) × 10.-6The Young's modulus at room temperature (15 to 20 ° C.) should be 1 to 12 Gpa (preferably 3 to 10 Gpa). By using such a resin 15, it was possible to prevent the interface breakage of the semiconductor chip 1 within the range of severe acceleration test conditions. In addition, as can be seen from the analysis result of FIG. 6 described later, since the distortion of the solder 3 is reduced as compared with the silicone gel filling structure, it has been found that the life of the solder 3 is also improved.
[0033]
FIG. 3 is a graph showing an end cross-sectional view for illustrating a mechanism of occurrence of cracking of a semiconductor chip in a resin-filled structure, and a stress-strain curve model of the filled resin and solder. In the resin-coated structure, an indication of whether or not the semiconductor chip 1 is broken by the resin 15 will be described. A place where the semiconductor chip 1 is easily broken is the chip end portion 101. In particular, in a high breakdown voltage semiconductor element such as an IGBT, chipping at the end causes a decrease in breakdown voltage. FIG. 3A is a cross-sectional model in which the semiconductor chip 1 is soldered to the heat diffusion plate 2 with the solder 3 and covered with the resin 15, and the chip end portion 101 where the stress is maximum on the surface of the semiconductor chip 1, A position 301 where the maximum equivalent strain that becomes the starting point of the crack of the solder 3 is taken is shown. FIG. 3B shows a simple view of whether or not the semiconductor chip 1 is cracked. The stress σ at the level of occurrence of breakage of the chip 1 within the range of the strain Δε caused by the temperature difference.BThis indicates that whether or not cracking occurs is determined by whether or not. When a resin 151 having a large Young's modulus E at room temperature is used, when a strain Δε due to a temperature difference occurs, a stress σ1 proportional to that acts on the semiconductor chip 1, exceeding the limit of the fracture stress of the chip at point a. Causes a crack at 1 boundary. On the other hand, when the resin 152 having a small Young's modulus E is used, the fracture stress of the chip 1 is not exceeded by the point b, and interface fracture does not occur.
[0034]
Furthermore, there is a glass transition temperature Tg as a problem peculiar to the resin, which greatly affects the reliability. In general, a resin having a low Tg is excellent in workability because it is excellent in workability. However, since the linear expansion coefficient rapidly rises about three times above the Tg temperature, it is often betrayed by the reliability test result. Therefore, it is a highly reliable condition that the maximum temperature for use environment conditions, acceleration test, secondary reflow, etc. is also Tg temperature or less. At least for the power cycle test, the minimum Tg is required to be 150 ° C. or higher, and it is desirable that the Tg is about 170 ° C. As a result, severe environmental conditions, secondary reflow and other high-temperature heat damage can be minimized, and high reliability can be ensured.
[0035]
The linear expansion coefficient and the glass transition temperature Tg were measured using a thermophysical tester TMA-1500 manufactured by Vacuum Riko. A cured specimen having a thickness of 4 mm was heated in a compression mode at a rate of 1 ° C. per minute, and the temperature characteristics of elongation were measured. The linear expansion coefficient α was obtained from the temperature characteristic of elongation, and the glass transition temperature was the inflection point of the temperature line of elongation. Since Tg takes an inflection point, it is difficult to determine exactly 150 ° C. because there is some deviation.
[0036]
  4A to 4DThese are the graphs which show the relationship between the filler with respect to filling resin, the addition of a flexibilizer, and filling resin physical property. Effect of filler blending amount and flexibilizer addition amount that determines mechanical properties of epoxy-based filling resin 15 excellent in adhesion to Si etc. on linear expansion coefficient and Young's modulus, and by flexibilizer addition amount The influence on the relationship between the coefficient of linear expansion and Young's modulus will be described. AER-8501 (manufactured by Adeka) and CEL-2021P (manufactured by Daicel) were used as the epoxy compounds, the curing agent was acid anhydride, MHAC-P (manufactured by Hitachi Chemical Co., Ltd.), and the flexibility was X-22-166C. (Shin-Etsu Chemical Co., Ltd.) was used. In addition, dispersant S-2 (manufactured by Hitachi Chemical Co., Ltd.), surfactant A-187 (manufactured by Nihon Unika Co., Ltd.), and filler FB-30X (manufactured by Electrochemical Co., Ltd.) were used. It is a one-part solvent-free system and has a viscosity of 520 poise at 25 ° C. and was used for potting. For impurity concentration measurement, the cured product is pulverized to 100 mesh or less, and 5 gf of this fine powder and 50 ml of deionized water are placed in a Teflon (registered trademark) to SUS double container and held at 120 ° C. for 240 hours, and the extracted ion component is ion chromatographed. This was done using a graph. Na +, K +; 1 ppm, Cl-; 5 ppm. The curing conditions are 110 ° C. (10 h) / 200 ° C. (10 h), and Tg is 170 ° C. In addition, it is not necessary to use a one-component resin for potting and molding a power module, and an easy-to-use two-component resin may be used. Moreover, as long as the structure allows the solvent to easily escape, a solvent system with less restrictions on the resin composition and the like may be used instead of a solvent-free system, so that there is an advantage that a wide range of resin systems can be selected. Various examinations were performed by changing the blending amount with the above composition.
[0037]
  4A.These show the relationship between a linear expansion coefficient and a Young's modulus at the time of changing the compounding quantity (Vol%) of a quartz filler to the said epoxy resin. It is volume% (Vol%) which added the epoxy compound and the filler. The relationship between the epoxy linear expansion coefficient and the Young's modulus is inversely related, and as shown in the figure, the filler content needs to be in the range of 20 to 55 vol%. In order to set the linear expansion coefficient to 27 × 10 −6 / ° C. which is the value of solder (in the case of Pb-5Sn), the filler content needs to be about 50 vol%. When the material is soft with an epoxy system, even if a filler is blended, the resin has a low Young's modulus for the blending ratio. Therefore, the Young's modulus is about 8 GPa at room temperature with this epoxy material.
[0038]
  4B.These show the physical properties when a rubber flexing agent is added to a resin containing no filler in the same epoxy resin system. Epoxy silicones, amino silicones, hydroxy silicones and the like can be used as the silicone system that does not deteriorate at a high temperature as the flexibilizing agent. Here, epoxy silicone excellent in terms of solubility; X-22-166C manufactured by Shin-Etsu Chemical Co., Ltd. was used. When the base resin is determined, the linear expansion coefficient and Young's modulus are determined by the amount of filler, and the influence of the amount of the flexibilizer added is small. The flexibilizer is premised to be dispersed as fine particles, and when it is 15 mass% or more, it cannot be uniformly dispersed. On the contrary, the level of 10 ± 5% is desirable from the demerit of increasing the linear expansion coefficient.
[0039]
  4C.These are the figures explaining the evaluation result which investigates the disconnection by the terminal part destruction of a board | substrate with respect to the compounding rate of a filler and rubber | gum. A Si chip was connected by a flip chip on a soda glass substrate (linear expansion coefficient: 9.3 × 10 −6 / ° C.), which was thinly wired and easily broken. A resin was filled in the gap and the periphery, and after curing, a temperature cycle test (−40 to 100 ° C.) was performed, and an evaluation method for examining disconnection due to breakage of the element due to resin physical properties and the terminal portion of the substrate was adopted. Although it is not a power module structure, it is an evaluation method suitable for examining the thermal stress effect of a resin on a substrate and a chip. The rubber was expressed in parts by weight with respect to 100 gf of epoxy resin. If the compounding ratio for dispersing rubber is 20 parts by weight (corresponding to 16,7%) or more, the dispersion becomes non-uniform, the linear expansion coefficient itself is large, the linear expansion coefficient after mixing becomes large, and heat fatigue resistance It will cause the decrease. As a determination method, the case where the lifetime of the structure without resin was shorter was marked with “X”, and the case where it was long was marked as “Excellent”: Δ and markedly marked as “Good” depending on the degree. From the results, it can be seen that the rubber compounding amount is preferably 10 ± 5 mass% (5 to 15 mass%) in consideration of uniform dispersibility. The effect of rubber does not seem to be so great with changes in Young's modulus, but it seems to have an impact mitigating action against sudden temperature changes during thermal shock.
[0040]
  4DThese are graphs showing the relationship between the Young's modulus and the linear expansion coefficient in the filled resin 15. In the range of the coefficient of linear expansion of the solder, the composition in which the desired Young's modulus (5 to 10 GPa) is in the range 40 (shaded part) and 11% of the flexibilizer indicated by the broken line is added is in an appropriate region. . In this resin system, if the Young's modulus is reduced to about 3 GPa, chip breakage can be prevented, but the linear expansion coefficient increases, so there is a trade-off relationship in which the contribution to the improvement of the solder life is reduced.
[0041]
FIG. 5 is a graph of linear expansion coefficient versus chip stress and solder strain showing the physical properties and reliability of filled resin for obtaining design guidelines for a resin structure power module. With the cross-sectional model structure shown in the graph of FIG. 5A, a three-dimensional elastoplastic analysis was performed by the finite element method of the equivalent stress of the semiconductor chip end portion 101 and the equivalent strain of the solder crack starting point 301 in the power cycle test. The temperature profile is a proven change of 120 ° C. → 20 ° C. → 120 ° C. → 20 ° C., the equivalent stress amplitude of the semiconductor chip end portion 101 generated by the temperature change of 1.5 cycles and the equivalent at the solder crack starting point 301. The strain amplitude was determined. In addition to the equivalent stress, the principal stress, σx, σy, σz, etc. were also evaluated as stress acting on the surface of the semiconductor chip. However, since this is almost proportional to the equivalent stress, it is evaluated here with the equivalent stress. did.
[0042]
From FIG. 5A, in the case of the same Young's modulus, the linear expansion coefficient of the resin is (20 to 45) × 10 at a low Young's modulus of 15 GPa or less.-6The linear expansion coefficient of resin is equivalent to that of solder in a wide range of / ° C (28 x 10-6It can be seen that it is minimized at the / ° C level. However, when the Young's modulus exceeds 15 GPa, the equivalent stress applied to the chip surface tends to increase rapidly. That is, when the Young's modulus of the resin exceeds 15 GPa, the linear expansion coefficient of the resin is 45 × 10-6At / ° C. or higher, the equivalent stress applied to the chip surface increases. Therefore, as an optimal resin design, first, the linear expansion coefficient of the resin 15 is (20 to 45) × 10.-6/ C. Secondly, it is important to keep the Young's modulus of the resin 15 at room temperature low to 15 GPa or less and to reduce the equivalent stress applied to the chip surface. Use of a resin having a low Young's modulus is considered to have a great effect in preventing the destruction of the semiconductor chip element portion, the Al conductor portion, the Si interface, and the like. From FIG. 5 (B), the linear expansion coefficient of the resin 15 is (20 to 45) × 10.-6In the case of the same Young's modulus in the range of / ° C., it can be seen that the higher the Young's modulus of the resin 15 is, the smaller the equivalent strain at the solder crack starting point is, and the smaller the linear expansion coefficient of the resin 15 is. In addition, the linear expansion coefficient of the resin is (10 to 45) × 10 compared to the broken silicone gel sealing structure.-6In a wide range of / ° C., the equivalent strain of the solder shows a low value, and the life of the solder is considered to be longer than that of the silicone gel sealing structure. Even in an actual acceleration test, it has been confirmed that in this resin structure, the life reduction due to solder does not occur until the life reduction due to another cause occurs. This is considered to be an effect of relaxing the stress concentration of the solder 3 by the resin 15 and could be confirmed by a finite element method analysis.
[0043]
  FIG. 6 is a graph of linear expansion coefficient versus chip stress and solder strain showing the physical properties and reliability of the filled resin.4A.The linear expansion coefficient of the resin is plotted on the horizontal axis, and the equivalent stress acting on the semiconductor chip surface element portion is plotted on the vertical axis. The broken line is the equivalent strain of the solder crack starting point when the whole is covered with silicone gel. In the range 601 (shaded area) where the linear expansion coefficient of the resin 15 is (20 to 45) × 10 −6 / ° C., the resin-coated structure of the present embodiment is more of the solder 3 than the structure coated entirely with silicone gel. The equivalent strain at the crack starting point 301 is small. Therefore, when the resin 15 having the physical properties of this embodiment is used, the solder distortion is smaller than that of the silicone gel sealing structure, so that the disconnection due to the solder is reduced. Further, the equivalent stress σ of the semiconductor chip end portion 101 is also small and is in the region 602 (shaded portion), and the element portion is not easily broken, peeling at the interface, and the like.
[0044]
FIG. 7 is a graph of analysis results showing the relationship between the Young's modulus of the filled resin and the restraint by the resin. When the Young's modulus of the resin was changed, the resin 42 was put between the semiconductor chip 1 (10 × 0.5 mm thickness) and the alumina substrate 41 (10 × 1 mm thickness), and the temperature was changed from 150 ° C. to −55 ° C. At this time, the relative displacement (ΔL) of both of the outermost peripheral portions was obtained by two-dimensional thermoelastic-plastic analysis and indicated on the vertical axis. The linear expansion coefficient of the resin 42 is 25 × 10-6Calculated as / ° C. 7 that the Young's modulus of the resin 42 that restrains the displacement is at least 1 GPa or more. Furthermore, the Young's modulus of the resin 42 that surely shows the effect of restraining the chip is 3 GPa or more. When the pressure is 12 GPa or more, the stress acting on the interface of the Si chip 1 is increased, and the influence on the chip element part, chip interface peeling, element part destruction, chip cracking, and the like are likely to occur. For this reason, a resin having a high Young's modulus is also a problem from the viewpoint of protecting the weak semiconductor chip surface. In addition, it may have weak strength due to product variations, and it is still important to lower the Young's modulus to ensure high yield and high reliability. Differences due to physical properties were also confirmed by three-dimensional elasto-plastic analysis using the finite element method. In particular, when there is a problem in the element portion, it is possible to coat only the chip surface thinly with silicone gel or the like and fill the periphery of the chip with this resin.
[0045]
In measuring the Young's modulus (flexural modulus), the cured product was cut to 5 × 10 × 100 mm to prepare a bending test piece defined in JIS-6911. This was measured by Shimadzu Autograph DSS-5000 by a both-end directed centralized load method with a bending speed of 1 mm / min and a fulcrum distance of 80 mm.
[0046]
It is as follows when the above examination is summarized and the physical properties of the filling resin for obtaining high reliability of the semiconductor power module are arranged.
[0047]
(1) Linear expansion coefficient: More than solder (20-45) × 10-6/ ° C.
[0048]
(2) Young's modulus: 1 to 12 GPa (preferably 3 to 10 GPa).
[0049]
(3) Glass transition temperature Tg: 150 ° C. or higher. Desirably 170 ° C or higher.
[0050]
(4) Excellent adhesion to semiconductor chips and substrates.
[0051]
(5) Thermal shock is reduced by dispersing high-temperature stable fine particle rubber such as silicone gel.
[0052]
(6) Impurity concentration: Na+, K+≦ 1ppm, Cl-≦ 5ppm
By managing these (1) to (6), it is possible to realize highly reliable mounting in the semiconductor power module.
[0053]
FIG. 8 is a sectional view of a semiconductor power module according to the second embodiment of the present invention. The same reference numerals as those in FIG. 1 represent the same items, and repeated explanations are avoided as much as possible. The resin insulating layer 5 is provided on the upper surface of the Cu heat dissipation substrate 4. On top of this, an electrode (thermal diffusion plate) 2 made of Ni plating Cu prepared by punching or the like is pasted with an adhesive. The resin insulating layer 5 has a thickness that varies depending on the withstand voltage. Here, 160 μm is selected as the thickness that can guarantee the withstand voltage. Then, a lead-free solder paste (RMA type flux) 3 of Sn-3Ag-0.5Cu (melting point: 217 to 221 ° C.) was printed to a thickness of about 250 μm. On top of this, after mounting the 4.9 mm semiconductor chip 1, the semiconductor chip 1, IC 10, components, etc. are soldered by reflow in nitrogen at a temperature of max 240 ° C. After cleaning with flux, an aluminum wire 8 is ultrasonically wire-bonded to the terminal portion of the element, and the other terminal is ultrasonically wire-bonded on a Ni-plated Cu terminal 61 bonded to the insulating layer 5 with an adhesive. It is. On the other hand, the control board 11 on which electronic parts such as a microcomputer are mounted is mainly composed of a multilayer glass epoxy board. It is ideal that the multilayer glass epoxy substrate is first bonded to the Cu heat dissipation substrate 4 and then reflowed simultaneously with the connection of the semiconductor chip 1. However, due to process restrictions such as printing, the components mounted on the multilayer glass epoxy substrate are reflowed in a separate process in advance, and after the semiconductor chip 1 is soldered to the Cu heat dissipation substrate 4, the components mounted multilayer glass epoxy control The substrate 11 may be bonded to the Cu heat dissipation substrate 4. The control substrate 11 made of multilayer glass epoxy on which the IC 10 and components are mounted is separated from the power element 1 part, and an adhesive having poor thermal conductivity and a glass epoxy substrate are interposed. Therefore, the temperature does not rise so high that the microcomputer malfunctions. This structure is a system in which an epoxy-based filling resin 15 is potted on a plastic case 14, but a mold system that is advantageous for cost reduction can be used for mass production. The mechanical property values of the resin 15 after curing are as described above.
[0054]
In this embodiment, the electrode 61 manufactured by punching is attached to the insulating layer 5, and the external connection terminal 13 on the control side has a flat lead type structure.
[0055]
Also in this embodiment, the linear expansion coefficient is 24 × 10.-6In the case of the epoxy filled resin 15 having a Young's modulus of 8 GPa at / ° C. and room temperature, almost no crack growth is observed in the power cycle test and the temperature cycle test.
[0056]
FIG. 9 is a sectional view of a semiconductor power module according to the third embodiment of the present invention. The same reference numerals as those in FIG. 1 and FIG. About 0.1 t of Ni-plated Cu foil 62 is pasted on the insulating layer 5 and a pattern is formed by etching. The control-side external connection terminal 13 has a pin-type structure. In this structure, the semiconductor chip 1 connected in advance to the thermal diffusion plate 2 with Pb-5Sn high-temperature solder 3 is further connected with low-temperature Sn-3Ag-0.5Cu solder 16. As a combination of the high-temperature solder 3 and the low-temperature solder 16, the semiconductor chip 1 side is a high-temperature solder 3, and a Pb-rich Pb—Sn solder such as Pb-5Sn is a general composition. The combination of the low-temperature solders 16 can be a wide variety of eutectic systems such as Sn—Pb, Sn—Ag—Cu, and Sn—Cu. When limited to lead-free, the high temperature system is Sn-5Sb (melting point: 232 to 240 ° C.) as an example of the Sn—Sb system. As a solder 16 capable of ensuring reliability in a high temperature region in a low temperature system that enables this composition and temperature hierarchy, there is a solder in which 5 to 10% of In is added to a Sn—Ag—Cu, Sn—Cu eutectic system. This is excellent in mechanical properties, relatively flexible, and can be connected at a maximum of 230 ° C. by using a furnace having an excellent furnace temperature distribution. If a lead-free composition can be used for retrofitting, a Sn system can be used for high temperatures. The lead-free composition includes Sn-9Zn (melting point: 199 ° C.) or Sn-9Zn added with one or more trace amounts of In, Bi, Ag, Cu, or the like. Examples of the Sn system include Sn-Ag-Cu system (for example, Sn-3Ag-0.5Cu), Sn-Cu system (for example, Sn-0.7Cu), and Sn-Sb system (for example, Sn-5Sb).
[0057]
Also in this embodiment, the linear expansion coefficient is 24 × 10.-6In the case of the epoxy filled resin 15 having a Young's modulus of 8 GPa at / ° C. and room temperature, almost no crack growth was observed in the power cycle test and the temperature cycle test.
[0058]
Hereinafter, the examination results under the constraint conditions from the performance, productivity, cost and the like will be described focusing on the functional aspects of each element of the first to third embodiments.
[0059]
First, the heat radiating substrate 4 is selected from Al, Al alloy or Al-carbon composite when weight reduction is important, and Cu, Cu alloy or Cu-carbon composite is selected when considering heat dissipation and small high performance. select. The heat dissipating substrate 4 has a thickness of 1 to 3 mm so that the heat resistance can be sufficiently reduced due to the spread of internal heat. In order to reduce warpage at the stage of mounting, the thickness of the Cu substrate may be 3 mm or more. Since the heat dissipation substrate 4 in the semiconductor power conversion device has a relatively large volume, the advantage of selecting lightweight Al is great. However, the linear expansion coefficient of Al (24 × 10-6/ ° C.) Cu (17 × 10-6/ ° C.), the difference in coefficient of linear expansion from the part increases. For this reason, when soldering a semiconductor chip and mounting a chip component or the like on the same substrate, the reliability of the solder joint is lowered as compared with the Cu substrate. However, the advantages of Al can be utilized by using only when there is no problem.
[0060]
The resin 15 employed in the embodiment of the present invention has a linear expansion coefficient of 30 × 10-6Since the target is the / ° C. level, it can be said that this is a desirable direction for the Al heat dissipation substrate 4 in terms of preventing warpage of the heat dissipation substrate 4. In general, as the linear expansion coefficient increases, the amount of filler decreases, so the Young's modulus of the resin decreases and the amount of warpage is expected to be small. In addition, this thermal radiation board | substrate 4 is attached to a cooling fin.
[0061]
Next, the resin insulating layer 5 needs to have a low thermal resistance and a high insulating property. For this reason, a heat-resistant epoxy resin in which a filler is dispersed is used. The resin insulating layer 5 is applied by liquid coating or film-like resin (including resin prepreg) by heat-pressure molding or a roller. As the resin, an epoxy resin, a phenol resin, and other thermoplastic resins including polyamide imide and polyamide ether can be used. As the filler to be inserted into the resin insulating layer 5, an inorganic compound having high thermal conductivity such as silicon oxide, alumina, silicon nitride, boron nitride, and aluminum nitride is used. At this time, the thermal resistance of the resin insulating layer 5 can be reduced as the filler content increases, but the amount of filler that can be dispersed in the epoxy resin is limited, so that the filler content is usually 50 to 90 mass%. Use with a range. If the filling rate of the filler is 95 mass% or more, the filler cannot be filled uniformly. In this case, the thermal conductivity of the resin insulating layer 5 is in the range of 1 to 5 W / m · K. On the other hand, an effective method for reducing the thermal resistance of the resin insulating layer 5 is to make it thin. However, when the resin insulating layer 5 is thinned, the dielectric strength voltage is lowered correspondingly, and pinholes are easily generated in the resin insulating layer 5 and the reliability may be lowered. There is a limit to the lower limit of the thickness of the resin insulating layer 5, but 50 μm or more is necessary, although it depends on the required withstand voltage.
[0062]
Next, the electric circuit is made of a Cu conductor or an Al conductor, which is a heat diffusion plate 2 having a plate thickness of 0.7 mm or more, and is attached to the surface of the resin insulating layer 5. By setting the thickness of the electric circuit to 0.7 mm or more, sufficient heat spread can be obtained, and it also serves as a heat diffusion plate. Cu and Al conductors are easy to press even when they are thick, and are advantageous in terms of cost.
[0063]
As a result of conducting a power cycle test with the above structure, it was found that at a junction temperature Tj of 50 to 150 ° C., no breakage was observed even at 10,000 cycles, and almost no crack growth of solder was observed.
[0064]
FIG. 10 is a cross-sectional view of various heat diffusion plates that can be used in the semiconductor power module according to the present invention. When using a large chip or under severe environmental conditions, the use of a Cu plate as a heat diffusion plate is limited in reliability (chip destruction, chip cracking, solder life, etc.). Therefore, there are combinations of the following materials and the like as materials having a linear expansion coefficient close to that of the semiconductor chip and excellent in heat dissipation. That is, particle-dispersed Cu—Mo [for example, manufactured by Allied Material Co., Ltd.], Cu—Cu2It is a combination of O [for example, L-COP catalog material of Hitachi Cable, NoC-1178, 02-4], Cu-Invar or composite fiber type Al-carbon, Cu-carbon, and the like. According to the data of L-COP, the linear expansion coefficient is (9-15) × 10-6In the range of / ° C, the thermal conductivity can be adjusted in the range of about 120 to 240 W / m · K. Moreover, according to the catalog of Allied Material Co., Ltd., the coefficient of linear expansion of Cu—Mo is (7 to 13) × 10.-6The thermal conductivity can be adjusted in the range of about 200 to 280 W / m · K in the range of / ° C. By integrating with a Cu plate processed during powder processing or with a Cu plate processed after powder processing to make a composite material with Cu, the thermal diffusion plate can be reduced in thermal expansion. By reducing the thermal diffusion plate to be soldered to the semiconductor chip, the reliability of the joint and the semiconductor chip interface peeling can be prevented, and a large chip and a structure that can withstand severe conditions can be provided. The linear expansion coefficient of the composite material can be controlled by increasing or decreasing the Cu ratio. A method of caulking and integrating the molded product with a Cu plate is also possible.
[0065]
FIG. 10A shows the above Cu-Mo, Cu-Cu.2It is sectional drawing of the various thermal-diffusion board using O, Cu-invar, Cu-carbon fiber, etc. After connecting the chip 1 and the thermal diffusion plate 2 with the Pb-5Sn high-temperature solder 3, the thermal diffusion plate 2 and the Cu electrode pad 62 were connected with the lead-free solder 16 of Sn-3Ag-0.5Cu.
[0066]
10B to 10E are cross-sectional views of a heat diffusion plate 2 having a composite structure made by combining a particle dispersion type and a Cu plate. (B) is a caulking structure in the case of being thinly attached, and is a structure in which a particle dispersion material 202 is caulked by a caulking portion 203 on a Cu plate 201. (C) is a structure in which the particle dispersion material 205 is embedded in the Cu plate 204 punched by punching or the like. (D) shows a structure in which a Cu plate 206 and a particle dispersion material 207 are bonded together. (E) is a structure in which a previously processed Cu plate 208 is placed and the particle dispersion material 209 is integrated by powder processing. Their integrated thickness is 1 to 1.5 mm.
[0067]
FIG. 11 is a cross-sectional view of various heat diffusion plates having different shapes used in the semiconductor power module according to the present invention. Various functions can be provided by changing the shape of the heat diffusion plate. (A) is a structure that combines anisotropy with high thermal conductivity and low thermal expansion, and is a Cu-Mo dispersant, Cu-Invar dispersant, or Cu-Cu.2This is a composite structure in which a plate 210 made of any one of O dispersants is sandwiched between Cu plates 211 and 212. Or it is the composite structure which pinched | interposed the Cu-Mo material or the invar material 210 with the Cu plates 211 and 212, and can produce the thermal-diffusion plate 2 with few curvature. By changing these mixing ratios, the characteristics can be freely changed. The composite structure may be made by a manufacturing method other than powder. (B) is a composite structure in which a plate 215 is sandwiched between laterally spread heat diffusion plates 213 and 214, which will be described later with reference to FIGS. 13 to 15, and a structure using the anisotropy of the material for improving performance. The plate 215 is Cu-Invar-Cu, Cu-Cu / Mo-Cu, Cu-Cu as in (A).2If it is a combination of O-Cu, Cu-Cu / C-Cu, etc., the linear expansion coefficient can be controlled in the same manner, and the warpage is small. On the other hand, heat can be transferred from the chip 1 to Cu 213 and easily transmitted to the laterally expanded portion, and an anisotropic merit appears. (C)-(F) are particle-dispersed Cu-Mo, Cu-Cu2The heat diffusion plates 216 to 219 made of O, Cu-Invar, etc. are changed in shape, and can be formed into a free shape during powder processing. It can also be made with a structure utilizing anisotropy. The structures (C) and (D) can be expected to improve the crack generation life of the solder 3 due to the positioning of the solder 3 and the decrease in rigidity. The structures (E) and (F) can be expected to adjust the thickness of the solder 3 and improve the crack generation life and crack propagation life of the solder 3. The linear expansion coefficient of some composite materials used for these combinations is α≈10 × 10 × 10.-6It is / ° C., and the burden on Si such as residual stress after soldering, cooling and after cooling of the semiconductor chip 1 is small and causes no problem. Further, even after resin sealing, the burden on the Si chip is smaller than that of the Cu heat diffusion plate, and the structure can withstand a large chip and a severe test. Therefore, a semiconductor power module with higher reliability can be provided as compared with the Cu heat diffusion plate structure.
[0068]
FIG. 12 is a cross-sectional model showing a measure for improving the life of solder that can be used in the semiconductor power module according to the present invention. The purpose is to improve the thermal fatigue resistance of the solder and to connect the temperature hierarchy, and it is possible to prevent the strength from being lowered at a high temperature and to delay the crack progress. FIG. 12A shows a Pb-free Sn-3Ag-0.5Cu solder 302 paste mixed with about 10 to 30 vol% of Cu particles 303 and reflowed at a relatively high temperature of 260 to 280 ° C. . 18 is a Ti / Ni / Au thin film. Thereby, in the spherical Cu particles 303, as shown in FIG.6SnFiveThe compound 304 grows at random and plays a role in preventing the progress of solder cracks. It is also possible to make a composite solder foil. Since the solder balls are integrated by rolling, only the Cu particles are dispersed in the solder. Cu6SnFiveSince the compound 304 has a high melting point and is hard, even if a high temperature treatment of 250 ° C. such as secondary reflow is performed, even if the surrounding Sn-based solder is melted, the shape does not collapse. For this reason, it has the joining strength at high temperature by the elastic coupling | bonding by the connected compound and metal, and has ensured the intensity | strength which can endure the temperature at the time of secondary reflow. When a large amount of Cu particles are added, void formation tends to increase, which is undesirable. On the other hand, it has been confirmed that there is an effect of improving the strength by connection even at a 10 vol% level. FIG. 12C shows a mixture of Cu particles 303 with a composite solder foil based on Cu net 305 set. FIG. 12D is a cross-sectional model after soldering. Since Cu diffuses quickly into Sn at high temperatures, Cu in the solder and at the metallization interface6SnFiveCompound 304 is formed, ensuring strength at high temperatures. Although this method has few voids, there is a restriction that solder is supplied as a solder foil. As a solder particle, Sn-3Ag-0.5Cu, Sn, Sn-0.7Cu, Sn- (5-10) Sb is a general composition as lead-free solder.
[0069]
With conventional Sn solder alone, it is difficult to establish a temperature hierarchy connection that can ensure reliability at high temperatures. This composite solder is used as a high-temperature solder for the temperature hierarchy. Therefore, the low-temperature solder here uses a general Sn-based, for example, Sn-3Ag-0.5Cu23, so that the temperature of the joint is high. Hierarchical connection is possible. As a result, the use area of the Cu heat sink can be expanded by improving the heat resistance, improving the temperature cycle resistance, and improving the thermal conductivity of the solder.
[0070]
In addition, although the example of Sn-3Ag-0.5Cu was shown as a representative composition of lead-free solder as a solder composition, it is the same also in Sn type, Sn-Sb type, Sn-Cu type, Sn-Ag type, etc. Results can be obtained.
[0071]
FIG. 13 is a sectional view of a semiconductor power module according to the fourth embodiment of the present invention, in which the heat dissipation of the semiconductor chip is improved. The same reference numerals as those in FIGS. 1, 8, and 9 denote the same components, and a duplicate description is avoided. This is a measure to improve the reliability and heat dissipation, which are weak points of the resin insulating substrate, and is a structure realized at low cost. Particle dispersion type Cu-Mo, Cu-Cu2In the case of making with O, Cu-Invar or the like, if there is a mold, there will be no significant increase in cost. Therefore, the heat diffusion plate 2 is a laterally spreading heat diffusion plate 220 that has a concave structure with two open surfaces and achieves both improved heat dissipation and wire bonding. Since the resin insulating layer 5 under the chip 1 has a resin insulating film having poor thermal conductivity, it is difficult for heat to be directly transmitted from the bottom of the chip to the Cu heat dissipation substrate 4. On the other hand, heat is well transmitted to the heat diffusion plate 220. Therefore, the shape of the heat diffusion plate 220 is devised to provide a heat sink portion 221 around the chip, and a concave shape with a pair of side surfaces opened is used. As a result, the influence on the wire bond was eliminated, and the adverse effects on solderability, cleaning, and the like were reduced.
[0072]
FIG. 14 is a cross-sectional view of a semiconductor power module which is a fifth embodiment of the present invention and has improved heat dissipation from the surface of a semiconductor chip. If the structure of only the heat diffusion plate 220 of FIG. 13 has a small heat dissipation effect, as shown in FIG. 14, a plate 43 of ceramics (for example, Al2O3, AlN without metallization) excellent in thermal conductivity and inexpensive is placed on the upper surface. It is embedded in the resin with a heat sink 44 made of Cu, Al or the like applied. A fin (not shown) can be attached on the heat sink 44 of Cu, Al or the like. The heat diffusion plate 220, the ceramic plate 43, and the heat radiating plate 44 made of Cu, Al or the like are in good contact with the potting resin 15 in a state where the contact is good. As a result, the contact between the concave portion of the heat sink 221 and the ceramic plate 43 and between the ceramic plate 43 and the heat radiating plate 44 of Cu, Al or the like is firmly restrained by the surrounding resin 15 filled. A hole 45 at the center of the heat dissipation plate 44 made of Cu, Al or the like is for preventing void generation due to the filling resin 15. As described above, heat can be drawn from the upper side of the chip 1.
[0073]
FIG. 15 is a cross-sectional view and a plan view of a semiconductor power module which is a sixth embodiment of the present invention and has improved heat dissipation from the surface of a semiconductor chip. The same reference numerals as those in the above-described embodiment represent the same items, and redundant description is avoided. The concave portions of the heat diffusion plate 220 and the heat sink 221 are further raised, and the space between the concave portion and the high heat conductive ceramic plate 46 without metallization is firmly restrained with resin in the contact state as in FIG. The relationship between the recesses of the heat sink 221 and the arrangement of wire bonds is correctly illustrated in FIG. In the cross-sectional views shown in FIGS. 13, 14, and 15 (A), a structure rotated 90 degrees is illustrated for easy understanding.
[0074]
According to the above embodiment, the use of a filling resin having a linear expansion coefficient equal to or higher than that of solder, combined with an inexpensive heat dissipation substrate made of Al or Cu, a low-cost, reliable and long-life semiconductor power module. Can be provided. In addition, since the linear expansion coefficient of the filled resin is close to that of Al, an effect of preventing fatigue deterioration and disconnection of the ultrasonic wire bond portion of the Al wire can be expected.
[0075]
【The invention's effect】
  According to the present invention, without using an expensive AlN insulating substrate or Al2O3 insulating substrate, etc.Heat dissipation boardCan be used to provide a semiconductor power module with improved reliability and heat dissipation.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a semiconductor power module according to a first embodiment of the present invention.
FIG. 2 is a graph showing a model of temperature dependence of stress-strain curves of resin and solder.
FIG. 3 is a cross-sectional view of a main part for showing a mechanism of occurrence of cracking of a semiconductor chip in a resin-filled structure, and a graph showing a stress-strain curve model of the filled resin and solder.
[4A.]The graph which shows the relationship between a linear expansion coefficient and a Young's modulus at the time of changing the compounding quantity (Vol%) of a quartz filler to an epoxy resin.
[4B.]The graph which shows the physical property at the time of adding the rubber | gum flexible agent to the resin which does not contain the filler in the same epoxy resin system.
[4C.]The figure explaining the evaluation result which investigates the disconnection by the terminal part destruction of a board | substrate with respect to the compounding rate of a filler and rubber | gum.
[4D]The graph which shows the relationship between the Young's modulus in the filling resin 15, and a linear expansion coefficient.
FIG. 5 is a graph of linear expansion coefficient versus chip stress and linear expansion coefficient versus solder strain.
FIG. 6 is a graph of linear expansion coefficient versus chip stress and solder strain showing physical properties and reliability of filled resin.
FIG. 7 is a graph of analysis results showing the relationship between the Young's modulus of the resin and the restraint by the resin.
FIG. 8 is a cross-sectional view of a semiconductor power module according to a second embodiment of the present invention.
FIG. 9 is a sectional view of a semiconductor power module according to a third embodiment of the present invention.
FIG. 10 is a cross-sectional view of various heat diffusion plates that can be used in the semiconductor power module according to the present invention.
FIG. 11 is a cross-sectional view of various heat diffusion plates having different shapes that can be used in the semiconductor power module according to the present invention.
FIG. 12 is a cross-sectional model showing a plan for improving the life of solder that can be used in the semiconductor power module according to the present invention.
FIG. 13 is a cross-sectional view of a semiconductor power module with improved heat dissipation of a semiconductor chip as a fourth embodiment of the present invention.
FIG. 14 is a cross-sectional view of a semiconductor power module having improved heat dissipation from the surface of a semiconductor chip as a fifth embodiment of the present invention.
FIG. 15 is a cross-sectional view and a plan view of a semiconductor power module having improved heat dissipation from the surface of a semiconductor chip as a sixth embodiment of the present invention.
[Explanation of symbols]
  DESCRIPTION OF SYMBOLS 1 ... Semiconductor chip, 2,220 ... Thermal diffusion plate, 201, 204, 206, 208 ... Cu thermal diffusion plate, 202, 205, 207, 209 ... Particle dispersion material, 210, 215 ... Invar material, 211-214, 216 to 219 ... Cu plate, 229 ... heat sink, 3, 7, 12, 16, 17 ... solder, 4 ... heat dissipation substrate, 43, 46 ... ceramic plate, 44 ... heat dissipation plate such as Cu, Al, etc. 5 ... resin insulation layer , 6 ... Electric circuit (Cu foil conductor), 61 ... Cu terminal, 62 ... Cu pad, 8 ... Metal thin wire, 9, 13 ... External connection terminal, 10 ... IC, 11 ... Control board, 14 ... Case, 15 ... Filling (Epoxy) resin.

Claims (15)

樹脂絶縁層を有する放熱基板と、この放熱基板の前記樹脂絶縁層に接着剤で貼り付けもしくは前記樹脂絶縁層上に形成されたCu箔導体の電気回路に半田で接合した金属製の熱拡散板と、メタライズ面を前記熱拡散板に半田付けされた半導体チップと、これらを収容するケースと、このケース内部に充填された樹脂を備えた半導体パワーモジュールにおいて、前記樹脂の線膨張係数を前記半田の線膨張係数以上とし、前記熱拡散板は、Cuと低膨張材の粉体を混合し焼結した焼結形成体と、この焼結形成体と連なるCu板とを備えたことを特徴とする半導体パワーモジュール。  A heat dissipating board having a resin insulating layer, and a metal heat diffusion plate bonded to the resin insulating layer of the heat dissipating board with an adhesive or joined to an electric circuit of a Cu foil conductor formed on the resin insulating layer by soldering And a semiconductor chip having a metallized surface soldered to the heat diffusion plate, a case for housing these, and a resin filled in the case, the linear expansion coefficient of the resin being determined by the solder The thermal diffusion plate includes a sintered formed body obtained by mixing and sintering Cu and a powder of a low expansion material, and a Cu plate connected to the sintered formed body. Semiconductor power module. 請求項1において、前記樹脂の線膨張係数を、(20〜45)×10−6/℃としたことを特徴とする半導体パワーモジュール。2. The semiconductor power module according to claim 1, wherein the resin has a linear expansion coefficient of (20 to 45) × 10 −6 / ° C. 請求項1において、前記放熱基板は、CuもしくはAlもしくはそれらを含む合金からなる基板と、この基板に接着もしくは塗布された樹脂絶縁層を備え、前記熱拡散板は、Cu、Cu合金、CuとCu2O、CuとMo、もしくはCuとインバーの粉体を混ぜて成型した構造、もしくはこの成型体を核としたサンドイッチ構造のCu−(Cu/Cu2O)−Cu、Cu−(Cu/Mo)−Cu、Cu−(Cu/インバー)−Cu、Cu−(Cu/C)−Cuの異方性構造を持つことを特徴とする半導体パワーモジュール。  2. The heat dissipation substrate according to claim 1, wherein the heat dissipation substrate includes a substrate made of Cu or Al or an alloy containing them, and a resin insulating layer bonded or applied to the substrate. The heat diffusion plate includes Cu, Cu alloy, Cu, and the like. Cu2O, Cu-Mo, or Cu-Invar powder mixed structure, or sandwich structure with this molded body as the core Cu- (Cu / Cu2O) -Cu, Cu- (Cu / Mo) -Cu A semiconductor power module having an anisotropic structure of Cu- (Cu / Invar) -Cu and Cu- (Cu / C) -Cu. 請求項1において、前記熱拡散板を、断面凹状に焼結形成した構造とし、その凹部に前記半導体チップを載置したことを特徴とする半導体パワーモジュール。  2. The semiconductor power module according to claim 1, wherein the heat diffusion plate has a structure in which the heat diffusion plate is sintered to have a concave cross section, and the semiconductor chip is placed in the concave portion. 請求項1において、15〜20℃における前記樹脂のヤング率は、1〜12GPaであることを特徴とする半導体パワーモジュール。  2. The semiconductor power module according to claim 1, wherein Young's modulus of the resin at 15 to 20 [deg.] C. is 1 to 12 GPa. 請求項1において、前記樹脂のガラス転移温度Tgは、150℃以上であることを特徴とする半導体パワーモジュール。  The semiconductor power module according to claim 1, wherein the glass transition temperature Tg of the resin is 150 ° C. or higher. 請求項1において、前記半導体チップの素子形成面を、前記樹脂よりも低いヤング率の樹脂で0.01〜1mm被覆したことを特徴とする半導体パワーモジュール。  2. The semiconductor power module according to claim 1, wherein the element forming surface of the semiconductor chip is covered with a resin having a Young's modulus lower than that of the resin by 0.01 to 1 mm. 請求項1において、前記半導体チップの素子形成面を、シリコーンゲルで0.01〜1mm被覆したことを特徴とする半導体パワーモジュール。  2. The semiconductor power module according to claim 1, wherein the element forming surface of the semiconductor chip is covered with a silicone gel in an amount of 0.01 to 1 mm. 請求項1において、前記樹脂の中に可撓化剤を5〜15mass%の範囲で添加したことを特徴とする半導体パワーモジュール。  2. The semiconductor power module according to claim 1, wherein a flexibilizing agent is added to the resin in a range of 5 to 15 mass%. 請求項1において、15〜20℃における前記樹脂のヤング率は、3〜10GPaであることを特徴とする半導体パワーモジュール。  2. The semiconductor power module according to claim 1, wherein the Young's modulus of the resin at 15 to 20 ° C. is 3 to 10 GPa. 樹脂絶縁層を有する放熱基板と、この放熱基板の前記樹脂絶縁層に接着剤で貼り付けもしくは前記樹脂絶縁層上に形成されたCu箔導体の電気回路に半田で接合した金属製の熱拡散板と、メタライズ面を前記熱拡散板に半田付けされた半導体チップと、これらを収容するケースと、このケース内部に充填された樹脂を備えた半導体パワーモジュールにおいて、前記放熱基板は、CuもしくはAlもしくはそれらを含む合金からなる基板と、この基板に接着もしくは塗布された樹脂絶縁層を備え、前記熱拡散板は、Cuと低膨張材の粉体を混合し焼結した焼結形成体と、この焼結形成体を固着、圧着、又は一体化させたCu板とを備えた複合体とし、前記樹脂の線膨張係数は、(20〜45)×10−6/℃であり、かつ15〜20℃における前記樹脂のヤング率は、1〜12GPaであることを特徴とする半導体パワーモジュール。A heat dissipating board having a resin insulating layer, and a metal heat diffusion plate bonded to the resin insulating layer of the heat dissipating board with an adhesive or joined to an electric circuit of a Cu foil conductor formed on the resin insulating layer by soldering And a semiconductor chip having a metallized surface soldered to the heat diffusion plate, a case for housing them, and a resin filled in the case, wherein the heat dissipation substrate is made of Cu or Al or A substrate made of an alloy containing them, and a resin insulating layer adhered or applied to the substrate, the thermal diffusion plate is a sintered formed body obtained by mixing and sintering Cu and a powder of a low expansion material, The composite is provided with a Cu plate in which the sintered compact is fixed, pressure-bonded, or integrated, and the linear expansion coefficient of the resin is (20 to 45) × 10 −6 / ° C., and 15 to 20 At ℃ A semiconductor power module, wherein the resin has a Young's modulus of 1 to 12 GPa. 請求項11において、前記樹脂のガラス転移温度Tgは、150℃以上であることを特徴とする半導体パワーモジュール。  The semiconductor power module according to claim 11, wherein the glass transition temperature Tg of the resin is 150 ° C. or higher. 請求項11において、前記半導体チップの素子形成面を、前記樹脂よりも低いヤング率の樹脂で0.01〜1mm被覆したことを特徴とする半導体パワーモジュール。  12. The semiconductor power module according to claim 11, wherein the element forming surface of the semiconductor chip is covered with a resin having a Young's modulus lower than that of the resin by 0.01 to 1 mm. 請求項11において、前記樹脂の中に可撓化剤を5〜15mass%の範囲で添加したことを特徴とする半導体パワーモジュール。  12. The semiconductor power module according to claim 11, wherein a flexibilizer is added to the resin in a range of 5 to 15 mass%. 請求項11において、15〜20℃における前記樹脂のヤング率は、3〜10GPaであることを特徴とする半導体パワーモジュール。  The semiconductor power module according to claim 11, wherein the Young's modulus of the resin at 15 to 20 ° C is 3 to 10 GPa.
JP2003205321A 2003-08-01 2003-08-01 Semiconductor power module Expired - Lifetime JP4030930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003205321A JP4030930B2 (en) 2003-08-01 2003-08-01 Semiconductor power module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003205321A JP4030930B2 (en) 2003-08-01 2003-08-01 Semiconductor power module

Publications (2)

Publication Number Publication Date
JP2005056873A JP2005056873A (en) 2005-03-03
JP4030930B2 true JP4030930B2 (en) 2008-01-09

Family

ID=34362657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003205321A Expired - Lifetime JP4030930B2 (en) 2003-08-01 2003-08-01 Semiconductor power module

Country Status (1)

Country Link
JP (1) JP4030930B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016215894A1 (en) 2016-04-04 2017-10-05 Mitsubishi Electric Corporation Power semiconductor device
US11276629B2 (en) 2019-08-02 2022-03-15 Kabushiki Kaisha Toshiba Semiconductor device

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4492448B2 (en) * 2005-06-15 2010-06-30 株式会社日立製作所 Semiconductor power module
JP2007115983A (en) * 2005-10-21 2007-05-10 Shin Kobe Electric Mach Co Ltd Wiring board
JP4595877B2 (en) * 2006-04-25 2010-12-08 株式会社日立製作所 Semiconductor power module
JP4858290B2 (en) 2006-06-05 2012-01-18 株式会社デンソー Load drive device
JP4972503B2 (en) * 2007-09-11 2012-07-11 株式会社日立製作所 Semiconductor power module
JP5056620B2 (en) * 2008-06-30 2012-10-24 新神戸電機株式会社 Wiring board
JP5450192B2 (en) 2010-03-24 2014-03-26 日立オートモティブシステムズ株式会社 Power module and manufacturing method thereof
US9082707B2 (en) 2010-11-25 2015-07-14 Mitsubshi Electric Corporation Semiconductor device and method for manufacturing semiconductor device
JP5892655B2 (en) * 2012-06-20 2016-03-23 ニチコン株式会社 Power module design method
JP5946128B2 (en) * 2012-06-20 2016-07-05 ニチコン株式会社 Power module
JP2016128184A (en) * 2015-01-09 2016-07-14 カルソニックカンセイ株式会社 Solder joint method and power module
US10741413B2 (en) * 2016-05-12 2020-08-11 Mitsubishi Electric Corporation Semiconductor device and method for manufacturing semiconductor device
JP2016171344A (en) * 2016-06-10 2016-09-23 カルソニックカンセイ株式会社 Solder joint body and solder joining method
JP6816691B2 (en) 2017-09-29 2021-01-20 三菱電機株式会社 Semiconductor device
JP2022107077A (en) * 2019-05-31 2022-07-21 日立Astemo株式会社 Semiconductor devices and manufacturing methods for semiconductor devices
DE102019131857B4 (en) 2019-11-25 2024-03-07 Infineon Technologies Ag A SEMICONDUCTOR COMPONENT HAVING A CAN HOUSING A SEMICONDUCTOR EMBEDDED BY AN ENCAPSULAR
CN114192915A (en) * 2021-12-27 2022-03-18 烟台台芯电子科技有限公司 IGBT welding process method
WO2024122070A1 (en) * 2022-12-09 2024-06-13 株式会社レゾナック Estimated value display device, method, and program
JP2025021146A (en) * 2023-07-31 2025-02-13 株式会社東芝 Semiconductor device and method for manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016215894A1 (en) 2016-04-04 2017-10-05 Mitsubishi Electric Corporation Power semiconductor device
US10192811B2 (en) 2016-04-04 2019-01-29 Mitsubishi Electric Corporation Power semiconductor device
DE102016215894B4 (en) 2016-04-04 2025-01-09 Mitsubishi Electric Corporation power semiconductor device
US11276629B2 (en) 2019-08-02 2022-03-15 Kabushiki Kaisha Toshiba Semiconductor device

Also Published As

Publication number Publication date
JP2005056873A (en) 2005-03-03

Similar Documents

Publication Publication Date Title
JP4030930B2 (en) Semiconductor power module
JP4319591B2 (en) Semiconductor power module
US6563225B2 (en) Product using Zn-Al alloy solder
JP4492448B2 (en) Semiconductor power module
JP5602077B2 (en) Semiconductor device
JP4893096B2 (en) Circuit board and semiconductor module using the same
JP4893095B2 (en) Circuit board and semiconductor module using the same
WO1997020347A1 (en) Semiconductor device, process for producing the same, and packaged substrate
JP2008041752A (en) Semiconductor module, and radiation board for it
US7582510B2 (en) Electronic packaging materials for use with low-k dielectric-containing semiconductor devices
US20190273041A1 (en) Semiconductor device and method of manufacturing semiconductor device
JP2006179538A (en) Semiconductor power module
JP5370460B2 (en) Semiconductor module
JP2005311019A (en) Semiconductor power module
JP3702877B2 (en) Resin-sealed semiconductor device, die-bonding material and sealing material used therefor
JP5218621B2 (en) Circuit board and semiconductor module using the same
JP2005056944A (en) Electronic circuit equipment
JP3666576B2 (en) Multilayer module and manufacturing method thereof
JP5444299B2 (en) Semiconductor device
JP2006179732A (en) Semiconductor power module
TW200409321A (en) Semiconductor device
JP3426827B2 (en) Semiconductor device
JP2000252392A (en) Semiconductor element mounting wiring board and its mounting structure
JP3561671B2 (en) Semiconductor device
JP4357493B2 (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070604

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071017

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4030930

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term