JP4325328B2 - Deposition equipment - Google Patents
Deposition equipment Download PDFInfo
- Publication number
- JP4325328B2 JP4325328B2 JP2003322638A JP2003322638A JP4325328B2 JP 4325328 B2 JP4325328 B2 JP 4325328B2 JP 2003322638 A JP2003322638 A JP 2003322638A JP 2003322638 A JP2003322638 A JP 2003322638A JP 4325328 B2 JP4325328 B2 JP 4325328B2
- Authority
- JP
- Japan
- Prior art keywords
- hollow container
- raw material
- gas
- container
- material gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000008021 deposition Effects 0.000 title description 4
- 239000002994 raw material Substances 0.000 claims description 38
- 239000010409 thin film Substances 0.000 claims description 38
- 239000010408 film Substances 0.000 claims description 25
- 238000007599 discharging Methods 0.000 claims description 8
- 238000005268 plasma chemical vapour deposition Methods 0.000 claims description 6
- 239000007789 gas Substances 0.000 description 81
- 239000004033 plastic Substances 0.000 description 17
- 229920003023 plastic Polymers 0.000 description 17
- 230000004888 barrier function Effects 0.000 description 11
- 239000000919 ceramic Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 238000000034 method Methods 0.000 description 7
- 230000035699 permeability Effects 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 238000007740 vapor deposition Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000000151 deposition Methods 0.000 description 3
- UQEAIHBTYFGYIE-UHFFFAOYSA-N hexamethyldisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)C UQEAIHBTYFGYIE-UHFFFAOYSA-N 0.000 description 3
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- UBAZGMLMVVQSCD-UHFFFAOYSA-N carbon dioxide;molecular oxygen Chemical compound O=O.O=C=O UBAZGMLMVVQSCD-UHFFFAOYSA-N 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- -1 polyethylene terephthalate Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Landscapes
- Chemical Vapour Deposition (AREA)
Description
本発明はプラスチック、ガラス等の胴部にくびれ部を有する中空容器の内表面へセラミック等からなる蒸着薄膜を均一に成膜するための成膜装置に関する。 The present invention relates to the deposition equipment for uniformly forming a deposited thin film made of ceramic or the like to the inner surface of a hollow container having a plastic, a constricted portion in the body portion such as glass.
ここ最近、食品分野や医薬品分野等の様々な分野において中空容器が包装容器として多く用いられている。種々ある中空容器の中でプラスチック製中空容器があるが、この中空容器は軽量、低コストという理由から包装容器として広く使用されるようになってきている。しかしながら、プラスチック製容器は、酸素や二酸化炭素、水蒸気のような低分子ガスを透過する性質や、低分子有機化合物が内部に吸着してしまうという性質、或いはアセトアルデヒトのような溶出成分があるという性質を有しており、酸素や二酸化炭素、水蒸気を嫌う被包装物や低分子有機化合物を含む被収納物等の収納容器としては使用できないことがある。 Recently, hollow containers are often used as packaging containers in various fields such as food and pharmaceutical fields. Among various hollow containers, there is a plastic hollow container. However, this hollow container is widely used as a packaging container because of its light weight and low cost. However, plastic containers have the property of permeating low-molecular gases such as oxygen, carbon dioxide and water vapor, the property that low-molecular organic compounds are adsorbed inside, or the elution components such as acetaldehyde. It may have a property and may not be used as a storage container such as a packaged object that dislikes oxygen, carbon dioxide, and water vapor, or a packaged object containing a low molecular organic compound.
プラスチック製容器が有する上述したような性質を改変し、様々な被収納物を収納できるようにするための方策が種々とられているが、どれもが種々の問題を抱えており、問題を完全に解決することができていない。例えば、プラスチック製容器のガス透過性を低減する方法として、ガス遮断性に優れるプラスチックを含む複数のプラスチックを積層してなるプラスチック材料や、ガス遮断性に優れるプラスチックをブレンドしてなるプラスチック材料をその構成材料として使用して容器を製造する方法がある。これらの方法を用いると、ある程度まではガス透過度を低減することはできるが、容器を構成するプラスチック材料の選択だけではガス透過度の低減化には限界があり、より高いガスバリア性を必要とする容器が求めるガス透過性までには低減することができていない。また、このような製造方法においてガス透過性低減のために使用されるプラスチック材料のコストも非常に高く、製造コストが上昇するという問題点もあった。 Various measures have been taken to modify the above-mentioned properties of plastic containers so that various objects can be stored, but all have various problems, and the problems are completely solved. Could not be solved. For example, as a method for reducing the gas permeability of a plastic container, a plastic material formed by laminating a plurality of plastics including a plastic excellent in gas barrier property or a plastic material formed by blending plastics excellent in gas barrier property is used. There is a method of manufacturing a container using it as a constituent material. When these methods are used, the gas permeability can be reduced to a certain extent, but there is a limit to reducing the gas permeability only by selecting the plastic material constituting the container, and a higher gas barrier property is required. It has not been possible to reduce the gas permeability required by the container to be used. Further, the cost of the plastic material used for reducing gas permeability in such a manufacturing method is very high, and there is a problem that the manufacturing cost increases.
一方、プラスチック製中空容器にセラミックの薄膜を蒸着により成膜し、容器のガスバリア性を向上させようとする技術も提案されている。これらのほとんどは単一のプラスチック材料からなる中空容器成形品にセラミック薄膜の成膜を行ってセラミック薄膜付き中空容器とし、そのガスバリア性を向上させているものである。この技術を利用し、比較的安価なプラスチック材料を用いて中空容器を成形し、その成形された中空容器の内面にセラミック薄膜を蒸着することで、ガスバリア性に優れるセラミック薄膜付き中空容器を安価に得ることができる。 On the other hand, a technique for improving the gas barrier property of a container by forming a ceramic thin film on a plastic hollow container by vapor deposition has been proposed. In most of these, a ceramic thin film is formed on a hollow container molded product made of a single plastic material to form a hollow container with a ceramic thin film, and the gas barrier properties thereof are improved. Using this technology, a hollow container is formed using a relatively inexpensive plastic material, and a ceramic thin film is deposited on the inner surface of the formed hollow container. Obtainable.
このようなセラミック薄膜付き中空容器を製造する場合、蒸着時に使用する原料ガスの組成や流量、さらには高周波電力の印加度合や電極の位置関係等の様々な条件を蒸着薄膜を成膜しようとする中空容器や蒸着装置に合わせて選択し、プラスチック製中空容器の内面に良好なガスバリア性を有するセラミックの薄膜が均一に成膜できるようにしている。 When manufacturing such a hollow container with a ceramic thin film, an attempt is made to form the deposited thin film under various conditions such as the composition and flow rate of the raw material gas used during vapor deposition, as well as the degree of application of high frequency power and the positional relationship of the electrodes. The ceramic thin film having a good gas barrier property can be uniformly formed on the inner surface of the plastic hollow container, which is selected according to the hollow container or the vapor deposition apparatus.
例えば、特許文献1に示されている実施例では、中空容器の薄膜成膜面と中空容器の形状に近似の形状の高周波電極との間隔を薄膜成膜面とアース電極との間隔より小さくして成膜を行い、成膜薄膜の膜厚を均一化する提案を行っている。 For example, in the embodiment shown in Patent Document 1, the distance between the thin film forming surface of the hollow container and the high frequency electrode having a shape approximate to the shape of the hollow container is made smaller than the distance between the thin film forming surface and the ground electrode. In this way, a proposal is made to make the film thickness uniform.
ところがこのような条件で中空容器の内面に薄膜を成膜する際には、所定形状の外部電極内に中空容器を出し入れする時、容器の形状によっては外部電極内に挿入できず、上記のようなセッティングで蒸着が行えないことがある。また、中空容器がその中央部で絞られた形状である場合、この絞られた箇所での蒸着被膜の膜厚がその他の部分に較べて薄く
なってしまうため、酸素透過度も不均一になってしまう。また、胴部と比べて口元径の小さい形状の容器ではそれに対応する形状の外部電極の加工が困難なこともある。
本発明は以上のような状況に鑑みなされたものであり、胴部にくびれ部を有する中空容器の内表面に均一な膜厚の蒸着被膜をプラズマCVD法により成膜することを可能とする成膜装置の提供を課題とする。 The present invention has been made in view of the situation as described above, and makes it possible to form a vapor-deposited film having a uniform film thickness on the inner surface of a hollow container having a constricted portion in a body portion by a plasma CVD method. the object of the present invention to provide a MakuSo location.
上記の課題を達成するためになされ、請求項1記載の発明は、胴部にくびれ部を有する中空容器を内部に設置する高周波電極(本体部)と、前記中空容器内に挿入し原料ガスを供給するアース電極を兼ねた原料ガス放出ノズルと、を少なくとも有し、前記電極間に高周波電力を印加し原料ガスをプラズマ化させ、プラズマCVD法により中空容器の内面に薄膜を成膜する装置であって、
前記原料ガス放出ノズルには薄膜を成膜しようとする中空容器の軸方向と径方向に原料ガスを放出する放出口が少なくとも一個ずつ設けられており、前記径方向に原料ガスを放出する放出口は中空容器のくびれ部に原料ガスを放出するように設置されており、各放出口から中空容器内に放出される原料ガスの放出流量はガス流量コントローラにより調整可能になっていることを特徴とする成膜装置である。
In order to achieve the above-mentioned problems, the invention according to claim 1 is characterized in that a hollow container having a constricted part in the body part is installed therein, a high-frequency electrode (main body part), and a raw material gas inserted into the hollow container. a material gas discharge nozzle which also serves as a ground electrode for supplying, at least, a high-frequency power to a plasma source gas is applied between the electrodes, an apparatus for forming a film of the thin film on the inner surface of the hollow container by plasma CVD method There,
The raw material gas discharge nozzle is provided with at least one discharge port for discharging a raw material gas in the axial direction and the radial direction of a hollow container for forming a thin film, and the discharge port for discharging the raw material gas in the radial direction. Is installed to discharge the raw material gas to the constricted part of the hollow container, and the discharge flow rate of the raw material gas discharged from each discharge port into the hollow container is adjustable by a gas flow rate controller. The film forming apparatus.
本発明は以上のようであるので、胴部にくびれ部を有する中空容器の内面に均一な蒸着薄膜が成膜でき、形成された被膜が発現するガスバリア性等の機能がどの部分においても同じになる。また、薄膜を成膜しようとする中空容器は必ずしもバリア性に優れる高価な材料で構成する必要がなく、優れたバリア性を有するプラスチック容器を安全な工程を経て安価で、しかも容易に得ることができる。 Since the present invention is as described above, can deposition uniform deposition film on the inner surface of the hollow container having a constricted portion in the barrel, even in the portion of the function Gad gas barrier properties such as coating formed is expressed Be the same. In addition, the hollow container to be used for forming a thin film does not necessarily need to be composed of an expensive material having excellent barrier properties, and a plastic container having excellent barrier properties can be obtained easily and inexpensively through a safe process. it can.
以下、本発明を図面を参照にして詳細に説明する。図1には本発明の成膜装置の概略の断面構成が示してある。この成膜装置ではプラズマCVD法により胴部にくびれ部を有す
る中空容器の内表面に蒸着薄膜が皮膜されるようになっており、大略的には、蓋部3と本体部1とから構成される真空チャンバーと、この真空チャンバーを支持する基台11と、真空チャンバー内の気体を吸引するための真空ポンプ8と、高周波電極を兼ねる本体部1に高周波電力を印加するための高周波電源部9と、真空チャンバー内に設置されていて薄膜を成膜しようとする中空容器10を載置するための設置台13と、中空容器10内に原料ガスを供給するためのアース電極を兼ねた原料ガス放出ノズル2と、真空チャンバー内の圧力を調整するためのゲートバルブ7とで構成されている。
Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 shows a schematic cross-sectional configuration of a film forming apparatus of the present invention. This film forming device has a constricted part in the body part by the plasma CVD method.
A vapor deposition thin film is coated on the inner surface of the hollow container. In general, a vacuum chamber composed of the lid 3 and the main body 1 and a base 11 for supporting the vacuum chamber are provided. A vacuum pump 8 for sucking the gas in the vacuum chamber, a high-frequency power supply unit 9 for applying high-frequency power to the main body 1 which also serves as a high-frequency electrode, and a thin film formed in the vacuum chamber A mounting table 13 for mounting the hollow container 10, a source gas discharge nozzle 2 also serving as an earth electrode for supplying source gas into the hollow container 10, and a pressure for adjusting the pressure in the vacuum chamber It consists of a gate valve 7.
一般的にプラズマCVD法では、薄膜を成膜しようとする中空容器内が規定の真空圧に達した後、引き続き真空引きを行いながらそこに原料ガスを流し込んで中空容器内のガス交換を行っている。この時、原料ガスの容器内への供給は容器口元から挿入されたガス供給ノズルで行われており、その放出口から容器底部に向かって原料ガスが放出されるのが一般的である。このようにして容器内を原料ガスで満たしたら高周波電圧を印加してプラズマ化がなされ、容器の内表面に薄膜が成膜される訳であるが、原料ガスの残滓は容器口元から真空圧で容器外に引き出される。このときの原料ガスの流れ方が容器に成膜される薄膜の膜成長速度に影響することが、発明者の研究により明らかになった。すなわち、原料ガスは容器内部を圧力勾配の向きに流れるため、上流側よりも下流側における容器断面の方が大きい箇所では流れのよどみが生じ、その部分におけるガス交換が円滑に行われなくなり、その部分における薄膜の成長が遅くなるという知見を得た。特に、リブ形状の容器や胴中央を絞った容器ではこのようなことが起こりやすい。したがって、容器の径方向の寸法変化に対応して、ガス交換に不利な部分においてもその他の部分と同等の成膜速度が得られるように供給する原料ガスの流量を工夫すれば、円滑で均一な薄膜を成膜することが可能であることが判明した。 In general, in the plasma CVD method, after the inside of a hollow container in which a thin film is to be formed reaches a specified vacuum pressure, the raw material gas is poured into the hollow container while continuing to be evacuated to exchange gas in the hollow container. Yes. At this time, the supply of the source gas into the container is performed by a gas supply nozzle inserted from the container mouth, and the source gas is generally discharged from the discharge port toward the bottom of the container. When the inside of the container is filled with the raw material gas in this way, a high-frequency voltage is applied to form a plasma, and a thin film is formed on the inner surface of the container. It is pulled out of the container. The inventor's research has revealed that the flow of the source gas at this time affects the film growth rate of the thin film formed in the container. That is, since the raw material gas flows in the direction of the pressure gradient inside the container, the stagnation of the flow occurs in the portion where the container cross section on the downstream side is larger than the upstream side, and the gas exchange in that portion is not smoothly performed. The knowledge that the growth of the thin film in the part becomes slow was obtained. In particular, this is likely to occur in rib-shaped containers or containers with a narrowed center. Therefore, by adapting the flow rate of the source gas supplied so that a film formation rate equivalent to that of other parts can be obtained even in the disadvantageous part of gas exchange corresponding to the dimensional change in the radial direction of the container, smooth and uniform It has been found that it is possible to form a thin film.
この成膜装置は叙述のような知見を反映させ、プラズマCVD法により胴部にくびれ部を有する中空容器の内表面に均一な蒸着薄膜を成膜できる構成になっていることを特徴とする。すなわち、本発明はこのような知見に基づき鋭意研究の結果なされたものであり、容器内部の高圧側から低圧側に向かって流れる原料ガスが、流れのよどみが生じ易い部分においても十分に流れ込むようにするため、容器の底部方向(軸方向)にのみに原料ガスを放出するのではなく、容器胴部のくびれ部における径方向にも原料ガスを放出して原料ガスの供給を行うことにより、胴部にくびれ部を有する中空容器の内表面への均一な薄膜の成膜を可能とした。 This film forming apparatus reflects the knowledge as described above, and is characterized in that a uniform vapor deposited thin film can be formed on the inner surface of a hollow container having a constricted part in the body by plasma CVD. That is, the present invention has been made result of intense research based on this Yo I Do findings, raw material gas from the high pressure side of the inner container flows toward the lower pressure side, flows sufficiently also in the easy part flow stagnation occurs For this reason, the raw material gas is not released only in the bottom direction (axial direction) of the container, but the raw material gas is also supplied by discharging the raw material gas in the radial direction of the constricted portion of the container body. In addition, it was possible to form a uniform thin film on the inner surface of a hollow container having a constricted portion in the body portion .
薄膜を成膜しようとする中空容器の上下方向(容器の軸方向)に流れる原料ガスと左右方向(容器の径方向)に流れる原料ガスを合わせることで、胴部にくびれ部を有する中空容器内のくびれ部において放出する原料ガスに淀みの発生がなくなり、中空容器内の全表面において常に新鮮な原料ガスが流れるようになる。したがって、胴部にくびれ部を有する中空容器の内表面の各部分における薄膜の成膜速度に差がなくなり、結果として均一な薄膜の形成が可能となる。 By matching the raw material gas flowing thin film in the vertical direction of the hollow container to be deposited as a raw material gas flowing in the lateral direction (axial direction of the container) (radial direction of the container), a hollow container having a constricted portion in the body portion No stagnation occurs in the raw material gas discharged from the inner constriction , and fresh raw material gas always flows on the entire surface in the hollow container. Therefore, there is no difference in the film formation rate of the thin film in each part of the inner surface of the hollow container having the constricted part in the body part, and as a result, a uniform thin film can be formed.
この時、軸方向への吹き出し流量と径方向への吹き出し流量の合計は、従来の軸方向のみの吹き出し流量に一致させることが望ましい。また、吹き出し速度のプロファイルは、定常流でもよいし非定常でもよい。また、原料ガスの流量の調整に際してはガス流量コントローラを使用して軸方向と径方向の流量を同時に調整してももよいし、それぞれ独立で調整するようにしてもよい。 At this time, it is desirable that the sum of the blow-out flow rate in the axial direction and the blow-off flow rate in the radial direction matches the conventional blow-off flow rate only in the axial direction. Further, the profile of the blowing speed may be a steady flow or an unsteady flow. Further, when adjusting the flow rate of the raw material gas, the flow rate in the axial direction and the radial direction may be adjusted simultaneously using a gas flow rate controller, or may be adjusted independently.
図1に示す成膜装置は、このような条件の下に薄膜の成膜が行われるように、その原料ガス放出ノズル2が、その先端部の放出口14からは中空容器の軸方向に原料ガスが放出されるようになっていると共に、放出口4かからは中空容器のくびれ部の径方向に原料ガスがそれぞれ放出されるようになっている。そして、各放出口14、4のそれぞれには原料ガス供給管5、6から原料ガスが流量を調節しながら供給されるようになっている。 In the film forming apparatus shown in FIG. 1, the raw material gas discharge nozzle 2 has a raw material in the axial direction of the hollow container from the discharge port 14 at the tip so that a thin film is formed under such conditions. The gas is released, and the source gas is discharged from the discharge port 4 in the radial direction of the constricted portion of the hollow container. The source gas is supplied to the discharge ports 14 and 4 from the source gas supply pipes 5 and 6 while adjusting the flow rate.
前記放出口4は薄膜を成膜しようとする中空容器10中で原料ガスの流れが淀みがちなくびれ部に配置されている。そして、この放出口4は薄膜を成膜しようとする中空容器のくびれ部の位置に応じてその設置位置が調整できるように移動可能になっており、胴部にくびれ部を有する様々な形状の中空容器への均一な薄膜の成膜を可能としている。また、図1においては中空容器の軸方向に原料ガスを放出するための放出口が一個となっているが、中空容器の形状に合わせて複数個具備してもよい。 The discharge port 4 is disposed in the constricted portion where the flow of the raw material gas tends to stagnate in the hollow container 10 to form a thin film. The discharge port 4 is movable so that its installation position can be adjusted in accordance with the position of the constricted portion of the hollow container in which the thin film is to be formed, and has various shapes having the constricted portion in the trunk portion . A uniform thin film can be formed in a hollow container. Further, in FIG. 1, there is one discharge port for discharging the source gas in the axial direction of the hollow container, but a plurality of discharge ports may be provided in accordance with the shape of the hollow container.
このような構成の成膜装置において成膜を行う場合は、まず薄膜を成膜しようとする中空容器10を真空チャンバー内の設置台13に口元からアース電極を兼ねた原料ガス放出ノズル2を挿入、配置する。次に、真空ポンプ8を駆動させて真空引きを行う。真空チャンバー内が所定の真空圧に達した後、引き続き真空引きを行いながら原料ガス放出ノズル2の放出口4と放出口14のそれぞれから原料ガスを放出し、中空容器10内を原料ガスで満たす。この際、原料ガスは放出口14からは従来の成膜方法の場合と同じように中空容器の軸方向に向かって放出させる。一方、放出口4は中空容器10のくびれた部分、すなわち原料ガスの流れに淀みが生じ易い部分にセットし、そこから原料ガスを中空容器の径方向に向かって放出させる。この様な状態で原料ガスを流しつつ電極間に高周波電力を印加し原料ガスをプラズマ化させ、中空容器10の内表面に薄膜を成膜する。 When film formation is performed in the film forming apparatus having such a configuration, first, the hollow container 10 to be used for forming a thin film is inserted into the installation base 13 in the vacuum chamber from the mouth with the source gas discharge nozzle 2 serving also as the ground electrode. ,Deploy. Next, the vacuum pump 8 is driven to perform evacuation. After the vacuum chamber reaches a predetermined vacuum pressure, the source gas is discharged from each of the discharge port 4 and the discharge port 14 of the source gas discharge nozzle 2 while evacuating continuously, and the hollow container 10 is filled with the source gas. . At this time, the source gas is discharged from the discharge port 14 in the axial direction of the hollow container in the same manner as in the conventional film forming method. On the other hand, the discharge port 4 is set in a constricted portion of the hollow container 10, that is, a portion in which the flow of the raw material gas tends to stagnate, from which the raw material gas is discharged in the radial direction of the hollow container. In this state, a high-frequency power is applied between the electrodes while flowing the raw material gas to turn the raw material gas into plasma, and a thin film is formed on the inner surface of the hollow container 10.
このようにして原料ガスを放出して成膜を行えば、中空容器の内表面の全ての部分において淀みの発生がなくなり、常に新鮮な原料ガスが中空容器の成膜しようとする面に流れるようになり、中空容器内の薄膜成膜部分における成膜速度に差が出なくなり、延いては均一な薄膜の成膜が可能となる。 When the source gas is released in this way, film formation is eliminated in all parts of the inner surface of the hollow container so that fresh source gas always flows on the surface of the hollow container on which the film is to be formed. Thus, there is no difference in the film forming speed at the thin film forming portion in the hollow container, and it becomes possible to form a uniform thin film.
ここで使用できる原料ガスは、例えば、主ガスとしてヘキサ・メチル・ジ・シロキサン(以下HMDSOと称する)の他、トリ・メチル・シロキサンなどを用いることが可能で、これによりセラミック薄膜の成膜が可能になる。また、サブガスとしては、酸素の他、窒素などを用いることが可能である。このような原料ガスを使用して成膜されたセラミック薄膜は、SiOx(X=1.8〜2.1)を主成分とする原料ガスを使用するが、副次的に炭素を含むものであっても構わない。以下、本発明の実施例につき図1を参照にして説明する。 The source gas that can be used here may be, for example, hexamethyldisiloxane (hereinafter referred to as HMDSO) as a main gas, trimethylsiloxane, or the like, thereby forming a ceramic thin film. It becomes possible. Further, as the sub gas, nitrogen or the like can be used in addition to oxygen. The ceramic thin film formed using such a raw material gas uses a raw material gas mainly composed of SiOx (X = 1.8 to 2.1), but contains carbon as a secondary component. It does not matter. An embodiment of the present invention will be described below with reference to FIG.
まず、ポリエチレンテレフタレートを延伸成形して得られた、容量が500ml、口内径が25mm、平均肉厚が0.5mmの胴部中央がくびれた円筒中空容器を、円筒状の真空チャンバー内に倒立状態で設置した後、円筒状中空容器の内部にはその口部からアース電極を兼ねた原料ガス放出ノズルを挿入、配置した。このアース電極を兼ねた原料ガス放出ノズルは二重管構造になっており、中央部には前記工程で設置した中空容器の径方向に原料ガスを放出する放出口が、先端部には中空容器の軸方向に原料ガスを放出する放出口がそれぞれ設けられている。 First, a cylindrical hollow container with a capacity of 500 ml, an inner diameter of 25 mm, and an average wall thickness of 0.5 mm, obtained by stretching and molding polyethylene terephthalate, is inverted in a cylindrical vacuum chamber. After that, a raw material gas discharge nozzle that also serves as a ground electrode was inserted into the inside of the cylindrical hollow container from the mouth. The raw material gas discharge nozzle also serving as the earth electrode has a double tube structure, and a discharge port for discharging the raw material gas in the radial direction of the hollow container installed in the above process is provided at the center, and a hollow container is provided at the tip. The discharge ports for discharging the source gas are provided in the axial direction.
続いて、HMDSOを気体の標準状態換算で5ml/min、酸素を100ml/minの割合で混合してなる原料ガスを、中空容器の軸方向と径方向の流量比を3:1となるようにそれぞれの放出口から放出した。この時のサブチャンバー圧力は5Paであった。次に、ゲートバルブ開度を調整して10Paとし、圧力が安定してから13.56MHzの高周波電力を印加した。そして、プラズマ発生1秒後にゲートバルブを全開にして10秒間成膜を行った。印加電力は200Wであった。得られた成膜済み中空容器の酸素バリア性を表1に示した。 Subsequently, a raw material gas obtained by mixing HMDSO at a rate of 5 ml / min in terms of gas standard and oxygen at a rate of 100 ml / min is set so that the axial flow ratio and the radial flow ratio of the hollow container are 3: 1. It discharged from each discharge port. The subchamber pressure at this time was 5 Pa. Next, the gate valve opening was adjusted to 10 Pa, and high frequency power of 13.56 MHz was applied after the pressure was stabilized. Then, 1 second after the plasma generation, the gate valve was fully opened to form a film for 10 seconds. The applied power was 200W. Table 1 shows the oxygen barrier properties of the formed hollow containers.
原料ガスの原料ガス放出ノズルからの放出を軸方向のみとした以外は実施例1と同様の条件で、比較のための実施例2に係る成膜済み中空容器を得た。得られた成膜済み中空容器の酸素バリア性を表1に示した。 A film-formed hollow container according to Example 2 for comparison was obtained under the same conditions as in Example 1 except that the source gas was discharged from the source gas discharge nozzle only in the axial direction. Table 1 shows the oxygen barrier properties of the formed hollow containers.
1・・・本体部(高周波電極)
2・・・アース電極兼原料ガス放出ノズル
3・・・蓋部
4・・・放出口
5・・・軸方向放出用原料ガス供給部
6・・・径方向放出用原料ガス供給部
7・・・ゲートバルブ
8・・・真空ポンプ
9・・・高周波電極
10・・中空容器
11・・基台
14・・放出口
1 ... Main body (high frequency electrode)
2 ... Earth electrode / source gas discharge nozzle 3 ... Lid 4 ... Release port 5 ... Source gas supply unit for axial release 6 ... Source gas supply unit for radial release 7 ...・ Gate valve 8 ・ ・ ・ Vacuum pump 9 ・ ・ ・ High frequency electrode 10 ・ ・ Hollow vessel 11 ・ ・ Base 14 ・ ・ Discharge port
Claims (1)
前記原料ガス放出ノズルには薄膜を成膜しようとする中空容器の軸方向と径方向に原料ガスを放出する放出口が少なくとも一個ずつ設けられており、前記径方向に原料ガスを放出する放出口は中空容器のくびれ部に原料ガスを放出するように設置されており、各放出口から中空容器内に放出される原料ガスの放出流量はガス流量コントローラにより調整可能になっていることを特徴とする成膜装置。 A high-frequency electrode (main body part) installed inside a hollow container having a constricted part in the body part, and a source gas discharge nozzle also serving as an earth electrode that is inserted into the hollow container and supplies a source gas, the inter-electrode to plasma applied to the raw material gas to the high-frequency power to an apparatus for forming a film of the thin film on the inner surface of the hollow container by plasma CVD,
The raw material gas discharge nozzle is provided with at least one discharge port for discharging a raw material gas in the axial direction and the radial direction of a hollow container for forming a thin film, and the discharge port for discharging the raw material gas in the radial direction. Is installed to discharge the raw material gas to the constricted part of the hollow container, and the discharge flow rate of the raw material gas discharged from each discharge port into the hollow container is adjustable by a gas flow rate controller. A film forming apparatus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003322638A JP4325328B2 (en) | 2003-09-16 | 2003-09-16 | Deposition equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003322638A JP4325328B2 (en) | 2003-09-16 | 2003-09-16 | Deposition equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005089798A JP2005089798A (en) | 2005-04-07 |
JP4325328B2 true JP4325328B2 (en) | 2009-09-02 |
Family
ID=34453926
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003322638A Expired - Fee Related JP4325328B2 (en) | 2003-09-16 | 2003-09-16 | Deposition equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4325328B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111676463B (en) * | 2020-06-11 | 2022-06-17 | 河北省激光研究所有限公司 | Method for depositing diamond coating on inner wall of annular workpiece |
-
2003
- 2003-09-16 JP JP2003322638A patent/JP4325328B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005089798A (en) | 2005-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0787828B1 (en) | Process for plasma processing | |
JP3970169B2 (en) | DLC film coated plastic container manufacturing method | |
EP1652961A1 (en) | Method of manufacturing gas barrier film coated plastic container | |
TW200416138A (en) | Process and apparatus for depositing plasma coating onto a container | |
JP2002371364A (en) | Thin-film forming apparatus on three-dimensional hollow vessel and thin-film forming method therewith | |
JP2007050898A (en) | Method and apparatus for manufacturing film deposition container | |
JP4325328B2 (en) | Deposition equipment | |
JP4519808B2 (en) | Thin film deposition method and thin film deposition apparatus | |
JP4513332B2 (en) | Deposition equipment | |
CN104386918A (en) | Preparation method of barrier film for inner wall of glass bottle | |
JP2005105294A (en) | Cvd film-forming apparatus, and method for manufacturing plastic container coated with cvd film | |
JP2005068444A (en) | Method of depositing vapor deposition film to inside face of plastic vessel, and non-pressure resisting plastic vessel | |
JP2001335947A (en) | System and method for cvd film deposition | |
JP4794800B2 (en) | Thin film deposition method and thin film deposition apparatus | |
JP5610345B2 (en) | Manufacturing method of plastic container having gas barrier property, adapter for small container and thin film deposition apparatus | |
JP6657766B2 (en) | Plastic container and manufacturing method thereof | |
JP2004352915A (en) | Method for producing hollow vessel provided with ceramic thin film | |
JP2004277757A (en) | Source gas feed pipe for chemical plasma treatment, and chemical plasma treatment method for inner surface of container | |
JP2009221490A (en) | Film-forming apparatus for hollow container | |
JP4244667B2 (en) | Deposition method | |
JP2001146529A (en) | Process for forming thin film on plastic vessel | |
JP3979031B2 (en) | Silicon oxide coating | |
JP2005068471A (en) | Gas feeding member for plasma treatment used for depositing vapor deposition film by plasma cvd method, and method of depositing vapor deposition film using the gas feeding member | |
JP4873037B2 (en) | Non-pressure resistant plastic container | |
KR100976104B1 (en) | DLC film coating plastic container manufacturing apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060725 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090218 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090224 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090421 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090519 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090601 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120619 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4325328 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120619 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130619 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140619 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |